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Local and renormalizable framework for the gauge-invariant operator A
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in Euclidean Yang-Mills theories in linear covariant gauges
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We address the issue of the renormalizability of the gauge-invariant nonlocal dimension-two operator A
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whose minimization is defined along the gauge orbit. Despite its nonlocal character, we show that the operator

AZ

min

can be cast in local form through the introduction of an auxiliary Stueckelberg field. The localization

procedure gives rise to an unconventional kind of Stueckelberg-type action that turns out to be renormalizable to

all orders of perturbation theory. In particular, as a consequence of its gauge invariance, the anomalous
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dimension of the operator A

turns out to be independent from the gauge parameter a entering the gauge-fixing

condition, thus being given by the anomalous dimension of the operator A% in the Landau gauge.
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I. INTRODUCTION

Dimension-two condensates have been the object of
intensive investigations in recent years. These condensates
might play an important role in the nonperturbative regime
of Euclidean Yang-Mills theories, as pointed out by the
considerable amount of results obtained through theoretical
and phenomenological studies as well as from lattice
simulations [1-34].

For instance, the gluon condensate (AjAf) has been
largely investigated in the Landau gauge. As pointed out in
[5], this condensate enters the operator product expansion
(OPE) of the gluon propagator. Moreover, a combined OPE
and lattice analysis has shown that this condensate can
account for the 1/Q? corrections that have been reported
[18-21,24,26-30,32-34] in the running of the coupling
constant and in the gluon correlation functions.

An effective potential for (AfAf) in the Landau gauge
has been obtained and evaluated in analytic form at two
loops in [7,10,11,15,16], showing that a nonvanishing
value of (AfA7) is favored as it lowers the vacuum energy.
As a consequence, a dynamical gluon mass is generated.
We also recall that, in the Landau gauge, the operator AjAjy
is Becchi-Rouet-Stora-Tyutin (BRST) invariant on shell, a
property that has allowed for an all-orders proof of its
multiplicative renormalizability [35]. Its anomalous dimen-
sion is not an independent parameter, being expressed as a
combination of the gauge f-function and the anomalous
dimension of the gauge field Ay [35], namely,
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where ($(a), Y59 (a)) denote, respectively, the f-function
and the anomalous dimension of the gauge field A, in the
Landau gauge. This relation was conjectured and explicitly
verified up to three-loop order in [36].

Dimension-two condensates also play an important role
within the context of the Gribov-Zwanziger approach to
confinement [37-41] as well as for the formation of a
dynamical gluon mass within the framework of the Dyson-
Schwinger equations in the Landau gauge, as reported in
[1,42,43]. These nonperturbative effects give rise to the
so-called decoupling solution for the gluon propagator
[1,37-39,42,44], i.e., to a propagator that exhibits positivity
violation, while attaining a finite nonvanishing value at zero
momentum. Until now, this behavior has been in very good
agreement with the most recent lattice numerical simula-
tions [45-48]. The generalization of these results to the
linear covariant gauges has been worked out recently and
can be found in [49-57].

Despite the huge amount of results obtained so far, it seems
fair to state that many aspects related to dimension-two
operators deserve a better understanding. This is certainly
the case for the gauge invariance, a central issue in order to give
a precise physical meaning to the corresponding condensates.
This is precisely the topic that is studied in the present work.
Let us briefly introduce the genuine gauge-invariant
dimension-two operator A2 .

2

min

A. Construction and properties of the operator A

. . . . 1 .
The gauge-invariant dimension-two operator A2, " is

constructed by minimizing the functional Tr f d‘UcA,‘jAjj
along the gauge orbit of A, [58-61], namely,

'See Appendix B for more details.
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A2, Er?i}pTr / d*xA"A"

min u i

i
At =uAu —|—§uT8Mu. (2)

In particular, the stationary condition of the functional (2)
gives rise to a nonlocal transverse field configuration A",
GMAL’ = 0, which can be expressed as an infinite series in
the gauge field A, i.e.,

0,0,
A/Cl = (5ﬂv - gz )4’»’ auA/}j =0,
¢, =A, —i i814 A —I—iﬁ i5‘A 0 i(9A + O(A3)
y =4, —1g 82 s Ay D) 82 s yaz .
(3)

Remarkably, the configuration AZ turns out to be left
invariant by infinitesimal gauge transformations order by
order in the gauge coupling g [62] (see also Appendix B) as

Al =0,

6A, = =0, + iglA,, ®]. (4)

Thus, from expression (2) it follows that

A2 =Tr / d*xAL A

e

| 9,0,\
S g (-2

— gfebe (% am) @ 8A”>A5} +o@AY. (5

The gauge-invariant nature of expression (5) can be made
manifest by rewriting it in terms of the field strength F,,. In
fact, as proven in [58], it turns out that

1 1 1
Alznin__ETr/dé‘x(FﬂUﬁFﬂV_'_zlﬁFlﬂ

1 1
X {— D.F, —D,,FW}

D? D?
1 1 1 .
—2ZEF/1M ﬁDKFKwﬁDDFl/A +0(F ), (6)

from which the gauge invariance becomes apparent. The
operator (D?)~! in expression (6) denotes the inverse of the
Laplacian D* = D, D, with D, being the covariant deriva-
tive [58]. Let us also underline that, in the Landau gauge
9,A, = 0, the operator (AZA!) reduces to the operator A2,
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(AZ,QAZ’(I) |Landau = AzAZ (7)

B. Aim of the paper and its structure

As already mentioned, the main aim of the present work
is to face the issue of the gauge invariance of non-Abelian
gauge theories in the presence of dimension-two operators.
More precisely, we provide a general and detailed analysis
of the gauge-invariant quantity (A"A%), Eq. (5), within the
framework of Euclidean Yang-Mills theories quantized in
the class of the linear covariant gauges. We are able to show
that, despite its nonlocal character, the operator (AZA") can
be localized by means of the introduction of an auxiliary
Stueckelberg field. Nevertheless, the resulting theory can
be seen as a kind of unconventional Stueckelberg model
that does not suffer from the known drawbacks, i.e., the
nonrenormalizability, of the usual Stueckelberg mass term.
Therefore, we end up with a well-defined framework
accounting for the existence of a gauge-invariant dimen-
sion-two operator.

Relying on an exact BRST invariance, we establish the
multiplicative renormalizability of the operator (A}A") to
all orders of perturbation theory by means of the algebraic
renormalization. Moreover, the anomalous dimension of
(AZAfj) can be proven to be independent from the gauge
parameter a and turns out to be equal to the anomalous
dimension of the operator A? in the Landau gauge, namely,

ﬂ(a) andau
Yam: = }/A2|Landau = <T + }’k d ((l) s a=—>—.

We underline that expression (8) is valid to all orders of
perturbation theory, thereby extending the previous one-
loop results obtained in [63].

The paper is organized as follows. In Sec. II we present
the localization procedure for the operator (A%ZA}) within
the framework of a BRST-invariant action. In Sec. III we
derive the Ward identities and establish the all-order
renormalizability of (A!AJ) by means of the algebraic
renormalization [64]. In Sec. IV we discuss the anomalous
dimensions of (A%A}) and the composite operator A/ by
means of the renormalization group equations (RGEs).
Section V contains our conclusion. A few appendixes
collect more details about the construction and properties
of the operator (ALAL).

II. A LOCAL FRAMEWORK FOR THE
OPERATOR (A!Al)

Our first task will be finding a local framework for the
nonlocal operator (AA) of expression (5). For that
purpose we start with the standard Faddeev-Popov action
of Yang-Mills theory quantized in linear covariant gauges
with the inclusion of the mass operator (5) as well as a
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constraint enforcing the transversality of the field configu-
ration AZ, Eq. (3), i.e., we consider the action

2
S = Spp + / d*x (raaﬂAﬁ” + "%A,’}”A,’j'“>, 9)

where Sgp stands for the Faddeev-Popov action in linear
covariant gauges,

SFP = /d4x

1
x (Z FiyFly + 3 bb" + ib"0,Af + E“@MD,‘jbcb> ,

(10)

and where we have introduced the operator (AZA”) through
the mass parameter m”. Also, the transversality of Afj is
enforced by the Lagrange multiplier z¢.

Since the expression for (ALA”) given in (5) is an infinite
sum of nonlocal terms in the gauge field, the action (9)
should be first put in a local form before it can be of any
practical use. Following [62,65,66], this goal can be
achieved by the introduction of an auxiliary localizing
Stueckelberg field &4, whose role is to give, for each gauge
field A, its corresponding configuration that minimizes the
functional A2, i.e., A". This is most naturally implemented
by defining a field £ that effectively acts on A, as a gauge
transformation would act, in order to provide the minimiz-
ing configuration A”, that is,

apa i
Al = AT = h*A,,th;hTaﬂh, (11)

with

h = e'% = 9T, (12)
where {T“} are the generators of the gauge group SU(N)
and &% is a Stueckelberg field. Therefore, by substituting the
expression (11) for A" in the action (9), we now have a local
theory in terms of the field £. The price one has to pay to
have such a local theory is a nonpolynomial action. Indeed,

by expanding (11), one finds an infinite series whose first
terms are

n\a a a g apc C
(AM)a = A4 — Dabeb — 5f beghpeded + O(£),  (13)
where
Dgb = 59, — gfereA; (14)

is the covariant derivative in the adjoint representation.
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The nonlocal expression (3) for AL’ in terms of the gauge
field A” can be recovered by imposing the transversality
condition 8ﬂA’,} = 0, i.e., after taking the divergence of both
sides of (13), equating it to O and solving for the
Stueckelberg field & [see Egs. (B21)-(B24) of
Appendix B]. This check is not only important for the
consistency of the present framework but it also makes it
clear that, due to the transversality condition enforced by
the Lagrange multiplier 7¢, the Stueckelberg field &¢
acquires a specific meaning: it is precisely the field that
brings a generic gauge configuration A, into the gauge-
invariant and transverse field configuration AZ that mini-
mizes the functional A2. . As becomes clear in the
following, this relevant feature, encoded in the term
Ik d4xT“8ﬂAf,"”, gives rise to deep differences between
our construction and the standard Stueckelberg mass term.
The latter is known to be a nonrenormalizable theory that
has to be treated as an effective field theory [65].

An important feature of A%, as defined by Eq. (11), is its
gauge invariance, that is,

AL’ — AL’, (15)
as can be seen from the gauge transformations with SU(N)
matrix V,

A, > VIAVAIVIO V. h=Vih Y
g

(16)

The local version of the action (9), in terms of the
Stueckelberg field £¢, is thus given by

m2

= st [ ds{eappe <2 apeate)
— Spp -+ / dhx |:Ta <AZ _ Dzbgb _ gfabc§bD;d§d>:|
+ %z/d4x<AZ _ Dzbéb _ gfabcfbD;déd)
x (Ag — Daege — g faefgez),{g/:g) T (17)

Because of the use of the auxiliary Stueckelberg field &9,
expression (17) exhibits a nonpolynomial character. At first
sight, this feature might seem to jeopardize its renormaliz-
ability. Nevertheless, this is not the case, as we prove in the
following.

Before entering into the detailed proof of the renorma-
lizability, it is worth addressing the issue of the BRST
symmetry as well as taking a look at the propagators of the
elementary fields in order to achieve a better understanding
of our action as compared to the usual standard massive
Stueckelberg theory.
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A. BRST invariance

The local action S, Eq. (17), enjoys an exact BRST
symmetry,

$S =0, (18)
where the nilpotent BRST transformations are given by

a _ _pab,.b
sAﬂ— Dﬂc,

9 tabe b
sc? :Efa “cc,

sct = ib?,
sb? =0,
st =0,
5?2 =0. (19)

From [67], for the Stueckelberg field we have, with i, j
indices associated with a generic representation,
shil = —ige®(T*)* Kk, s(Aha =0, (20)

from which the BRST transformation of the field £ can be
evaluated iteratively, yielding

2
Séa = —c9 + gfabccbéc _ %famrfmpqcpéqfr 4 0(53)
(21)
Let us also present a second, equivalent, way of evaluating
the BRST transformation of the Stueckelberg field &°.
Owing to the dimensionless character of £, one starts by
writing
5§ = g ()c’, (22)
where g?(£) stands for a generic dimensionless quantity

that can be expanded in power series of £¢. Imposing now
nilpotency of the BRST operator s, i.e.,

560 = 5(g"" (§)c’) = 0, (23)

one gets the condition

) ab
(goe

@ -2 gm)) = - ore)

(24)
The above equation can be easily solved order by order

by expanding the quantity ¢g“*(&) in power series of &,
obtaining
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2
a a g abc gc g ac cbe ze
(&) = =000 4§ puiege - puedfevegegt 4 0(&),
(25)
which gives back precisely expression (21).

Let us end this section by checking out the explicit BRST
invariance of A,’j. To that purpose, it is better to employ a
matrix notation for the fields, i.e.,

sA, = —0,c + ig[A,. c],
sh’ =igh'c, (26)

sc = —igcc,

sh = —igch,

with A, = AT, ¢ = c*T“, £=&T*. From expression
(11) we get

sAl = igh"cA,h 4+ h'(=0,c + ig[A,. c])h — igh"A,ch
—h'cd,h + h'd,(ch)
= igh'cA,h — h'(8,c)h + igh"A,ch — igh'cA,h
—igh'A,ch — h'cd,h + h'(0,c)h + h'cd,h
—0. (27)

B. Comparison with the standard Stueckelberg
mass term

Let us proceed now by discussing the existing
differences between our approach, as expressed by the
local action S of Eq. (17), and the usual Stueckelberg
mass term. We begin by recalling that the standard
Stueckelberg formulation amounts to adding the mass term
"’72 [d*xAj“Aj* to the Faddeev-Popov action, yielding
thus the following action,

m2
SStueck = SFP + 7/ d4XAz’aAI}4La7 (28)

where Sgp is the Faddeev-Popov action of the linear
covariant gauges, Eq. (10).

In particular, with respect to expression (17), one notices
the absence, in the standard Stueckelberg action (28), of the
term [ d4x1“8ﬂAﬁ’“ enforcing the transversality condition
8”AL' = 0. This means that the Stueckelberg mass term,
% J d*xAl“ Al refers to a generic gauge-invariant field
configuration A,’j. One sees therefore that, while in the
ordinary Stueckelberg action the mass term is related to a
generic gauge-invariant configuration A’, in our case,
besides gauge invariance, the configuration Afj is further
constrained by the transversality condition 9,A" = 0.
Therefore, unlike the standard Stueckelberg formulation,
our action refers to a very particular and specific mass term,
which is the one obtained by mininimizing the operator
A2 as precisely expressed by the presence of the term

min”®

065009-4



LOCAL AND RENORMALIZABLE FRAMEWORK FOR THE ...

S d4x7“8ﬂAZ’“. This is a nontrivial feature of our model,
which makes it deeply different from the usual
Stueckelberg action (28).

It is instructive to take a look at the propagators of the
Stueckelberg field £&* which follow from both formulations.
In the case of the standard Stueckelberg action, Eq. (28),
one obtains

am*\ 1
I Pss =0 (1475 ) s 09

This expression captures in a direct and simple way all
drawbacks of the standard Stueckelberg formulation, as
reviewed in [65]. One notices, in particular, the presence of
the mass parameter m? in the denominator of (29), a feature
that persists even in the Landau gauge, corresponding to
a = 0, namely,

5ab
(& (P& (=P))Seek = oz (30)
As one can easily figure out, this property prevents the
renormalizability of the standard Stueckelberg formulation
[65]. In fact, due to the presence of the parameter m? in the
denominator of expressions (29) and (30), nonpower-
counting renormalizable divergences in the inverse of the
mass m?> show up, invalidating the perturbative loop
expansion. As discussed in [65], the theory stemming from
the action (28) has to be treated within the realm of an
effective nonrenormalizable quantum field theory.
Instead, the inclusion of the term [ d*xz* H”A,},"” leads to
a deep modification of the Stueckelberg propagator. In fact,
from the quadratic part of the action S, Eq. (17), one gets
(see also Appendix C where the complete list of propa-
gators has been given)

a b(_ — aa_ab
(&9(p)EP(=p))s o (31)

Expression (31) displays several properties. First of all,
unlike the propagator of Eq. (29), one notices the absence
of the mass parameter m>. As far as the UV behavior is
concerned, expression (31) does not pose any problem for
the validity of the power counting, a property that ensures
in fact the all-order renormalizability of the model, as is
proven in detail in the next section. Another interesting
feature displayed by expression (31) is the decoupling
nature of the Stueckelberg field in the Landau gauge,
a = 0. In fact, from Appendix C, it turns out that

(E(p)E (=) = (Ai(p)&(—p))s°
= (Ai(p)e"(-p))e=0. (32)

This is a remarkable property of the Landau gauge, which
expresses in terms of Feynman rules the decoupling of the
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Stueckelberg field &“. It reflects the expected fact that,
when 9,A, = 0, the higher order terms of the infinite series
(3) become harmless, due to the presence of the divergence
0,A,. Equation (32) reveals in a clear way the deep
difference existing between the present formulation and
the standard Stueckelberg one for which, even in the
Landau gauge, the field &* does not decouple; see
Eq. (30). To some extent, property (32) makes almost
immediate the perturbative renormalizability of the action
S, Eq. (17), in the Landau gauge.

Before ending this section, it is worth spending a few
words on the possible implications of the existence of a
double pole, at vanishing Euclidean momentum p? = 0, in
the Stueckelberg propagator (31). Even if such a behavior
does not pose problems for the UV power counting, it
might give rise to unwanted infrared divergences in the
explicit loop calculations. For that, a BRST-invariant
infrared regularization is presented in the next subsection,
relying on a nice property of the BRST transformation
of the Stueckelberg field £%. Moreover, we underline the
presence, in expression (31), of the gauge parameter a. This
is a welcome feature. In fact, owing to the BRST invariance
of the theory, it turns out that the correlation functions
(O(x)O(y)) of BRST-invariant composite operators O(x)
are independent from the gauge parameter a; see Ref. [60]
for a recent algebraic proof of this statement. This property,
combined with the aforementioned BRST-invariant
infrared regularization and the decoupling nature of the
Stueckelberg field £ in the Landau gauge, ensures that the
gauge-invariant correlators (O(x)O(y)) are infrared safe.
Finally, we restate the Euclidean nature of our construction,
i.e., we do not attempt to provide a possible Minkowski
interpretation for the action S, Eq. (17). Without entering
into details, it suffices to mention that we expect a violation
of perturbative unitary in Minkowski space, even if our
model displays an exact BRST symmetry. This is precisely
corroborated by the presence of a double pole in the
propagator of the Stueckelberg field. Multipole fields are
known in fact to give problems with perturbative unitarity.
A nice example of this is offered by the nonlocal mass
operator F,,(D*)”'F,, that has been studied in detail in
[68—70]. Similarly to the present case, the nonlocal operator
F,,(D*)7'F,, canbe cast in local form by introducing a set
of suitable auxiliary fields, so that a local formulation can
be constructed at the end, enjoying an exact BRST
symmetry [68—70]. The resulting action turns out to be
renormalizable [68,69]. Nevertheless, it violates perturba-
tive unitarity due to the presence of multipole fields [70].
We point out that the operator F,,(D*)™'F,, is the first
term of the infinite series of the gauge-invariant expansion
for the operator A2, | as one sees from Eq. (6). We expect
thus that the same problems encountered in the analysis of
the perturbative unitarity for the operator F,,(D*)™'F,,

will show up also in the case of A2

min*
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Though, as it stands, the Euclidean action S, Eq. (17),
turns out to be useful in order to study nonperturbative
aspects of confining Euclidean Yang-Mills theories. In
particular, expression (17) arises within the context of the
BRST-invariant formulation of the Gribov-Zwanziger
theory recently achieved in [53,54,66], which takes into
account the nonperturbative effects of the Gribov copies. In
addition, the action S can be seen as the BRST-invariant
extension in linear covariant gauges of the effective model
considered by Tissier and Wschebor in the Landau gauge
in order to study the positivity violation of the gluon
propagator [71,72]. Lastly, as already pointed out in the
introduction, action (17) might enable us to investigate the
formation of the dimension-two condensate (AZA”) in a
BRST-invariant and a-independent way.

C. Infrared BRST-invariant regularization for the
Stueckelberg field &

As mentioned before, the propagator for the
Stueckelberg field in expression (31) could give rise to
potential IR divergences when performing explicit loop
calculations. Though, as outlined in [66], it turns out to be
possible to introduce an IR regularizing mass term for the
Stueckelberg field compatible with the BRST invariance.
For the benefit of the reader, let us reproduce here the
construction of [66]. It relies on a nice property displayed
by the BRST transformation of the field £ given in
Egs. (20) and (21), namely,

s<§a§u> _ _gaca, (33)

as it follows from Eq. (260), i.e.,

(%) = —igce'%. (34)
Expanding the exponential in Taylor series, one gets
2 3
. g N
s<v+wf—§f5—z§f&+~->
g g
_—i90<1+i95—5§§—i§§§§+'“>~ (35)
Multiplying both sides of Eq. (35) by & yields
2 3
. g g
& 1+ige—T-ee— i eee+ -
2 3!
g g
= —i950<1 +igE— T - i T L+ ) (36)

Equating now order by order in g the expression (36)
immediately provides Eq. (33).

Because of Eq. (33), we can introduce the following
BRST-exact term

PHYSICAL REVIEW D 94, 065009 (2016)
S = [ drgsioee) = [[an(jaree +peer)
(37)
where (p, M) are constant parameters transforming as

sp = M*, sM* = 0. (38)

As is apparent, the action (S 4 Sirr) is BRST invariant, i.e.,
S(S + SIRR) = O (39)

The parameter p has ghost number —1, while M has ghost
number 0. From Eq. (37), it turns out that the propagator of
the Stueckelberg field &* behaves now like

a

<§a(P)§b(—P)>S+SIRR =5 Pt aM® (40)

showing that the mass parameter M introduces an IR
regularization in a BRST-invariant way. In Appendix C
one finds the whole list of all propagators of the elementary
fields evaluated in the presence of the parameters (p, M),
which have to be set to 0 at the very end of the computation
of the correlation functions.

III. RENORMALIZABILITY

We are now ready to face the issue of the all-order
renormalizability of the action S, Eq. (17). For later
convenience, it turns out to be helpful to employ a slightly
different parametrization, redefining the gauge parameter o
as well as the gauge, Lagrange multiplier, and Stueckelberg
fields as

2

1 1
AL — A% b gbt, & =g a— (41)
g g g

Accordingly, for the field strength and the covariant
derivative, we get

Fa, = 9,A¢ — 0,A% + fH°ALAC, (42)
Dﬁb — 5abaﬂ —f“hCAc, (43)
while for the action S

2
S = Sgp + / d*x <T“aﬂA’,}“ + m?A,’Z'“A,’}*“), (44)

1 a
Spp = /d4x<4—g2FZDFZU+§b”b”

+ib*0,Al + aaaﬂD;;"c”> , (45)
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where
Al = AR°Te = hTA,h + ih0,h, h = e, (46)
Also, for the BRST transformation, we have
sA4 = —Dic,
1
sc? = Efabccbcc’
sc? = ib?,
sb? =0,
st =0, (47)
and
Sfa — gab(é)cb’
1 o1 :
gab(g) — _5ab +§fabL§L _ ﬁfacdfcbefeé:d 4 0(53)7
(48)
with
sS =0. (49)

The usefulness of the new parametrization in Egs. (44) and
(45) relies on the property that, acting on the action S with
the differential operator ¢’ %, gives directly the gauge-

invariant quantity [ d*xF%,F¢, ie.,

1
gzg—;; = —@/ d4xF/‘j,,FZ,,, (50)
a feature that is helpful in order to write down the
parametric form of the most general counterterm allowed
by the quantum corrections.

Let us proceed by identifying the Ward identities of
the model. To that purpose, following the algebraic
renormalization set up [64], we introduce a set of BRST-
invariant external sources (J(x), 7 (x)g, €i(x), L(x),
K“(x)) coupled to the composite operators (A"(x)A%(x))
and A/(x) as well as to the nonlinear BRST variation of the
fields (Ag, ¢, &); namely, we consider the classical com-
plete BRST-invariant action X defined by

J
Y= Sp+ / d*x (T“@,,A,’Z’” + EAZ"ZAZ‘” + JeAR

aab 1 beranb a.a ¢
—Q#D” el + = fabepachec 4 K g b(f)cb+—./2>,
(51)

with

PHYSICAL REVIEW D 94, 065009 (2016)

sJ = 5T = sQ = sL* = sK* =0, (52)
which ensures the BRST invariance of X,
sz =0. (53)

The action S, Eq. (44), can be recovered from X, modulo a

constant vacuum term V%m“, by setting the sources
(J. T} Q. L, K*) equal to

J‘phys = m2’
jz‘phys = QZ|phys = La|phys = Ka|phys =0, (54)
1.€.,
s = S + V§m4, (55)

where V stands for the Euclidean space-time volume. The
parameter ¢ is a dimensionless free parameter that enables
us to take into account possible divergences affecting the
vacuum term J?(x) [7,10,11], allowed by power counting
due to the fact that source J(x) has dimension 2. Let us also
mention that the vacuum term %]z is required in order to
investigate the formation of the dimension-two condensate
(Al(x)Al(x)) via evaluation of the corresponding effective
potential; see [7,10,11]. In particular, the parameter ¢ can
be made a function of the coupling constant g in such a way
that the generating functional of the correlation functions of
the theory obeys a homogeneous renormalization group
equation [7,10,11], a result that is employed in Sec. IV in
order to determine the anomalous dimensions of the
operators (A2A") and AlL.

A. Ward identities

The BRST symmetry stated in the previous section can
be immediately written as a functional identity. The
complete classical action X turns out to fulfil the following
Ward identities:

(1) The Slavnov-Taylor identity

5L 5%
s = [ &
=) / x(asz;;aA;;+
5%
— 0.
=)

In view of the algebraic characterization of the
counterterm, we introduce the so-called linearized
Slavnov-Taylor operator By [64] defined as

0X o
oL% oc

0X OZ
OK“ o6&

+ ib®

(56)
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5L 6 0T 5 T 6
= | &
Bx / x<59,35Ag+

0A; 68 SL" 6¢
0X o oX &6 525—1—'17“5
— +—= l
oc*OL®  OK“ o6& T 6E OK“ sct )’
(57)
which, as the BRST operator s, turns out to be
nilpotent,
(i) The gauge-fixing condition and the antighost equa-
tion [64]
o .. .. ;
% = laﬂA” + (Zb . (59)
ox (>
— —=0. 60
Sct + ﬂéﬁﬁ ( )

In particular, the identity (60) ensures that the
antighost field ¢ and the source Qj enter only
through the combination

Q, = Qi +0,c". (61)
(iii) The 7 Ward identity

ox ox

——-0,— =0, 62

ot keT " (62)
implying that the field z“ and the source J; appear
only in the combination

jz = jz - 8#’[”' (63)

B. Characterization of the most general counterterm

In order to characterize the most general invariant
counterterm that can be freely added to all orders in
perturbation theory we follow the setup of the algebraic
renormalization [64] and perturb the classical action Z by
adding an integrated local quantity in the fields and sources,
¢ with dimension bounded by four and vanishing ghost
number. We demand thus that the perturbed action,
(X 4 €X), where € is an expansion parameter, fulfils, to
the first order in ¢, the same Ward identities obeyed by the
|
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classical action X, i.e., Egs. (56), (59), (60), and (62). This
requirement gives rise to the set of equations

S(Z + ex) = 0(&?),

0 .
(Z+ eZ) = i0,A% + ab” + O(¢?),

5
i i cty 2

(56“ +8ﬂégz)(2+82 ) = O(e?),
2 9,2 )z 4ex) = o) (64)
st Mg B ’

yielding the following constraints on X:

Byser =0, (65)

% st =0, (66)
(5(; +0, 5;:) et — 0, (67)
<5’; -0, 5»(;,‘3) 5 =0, (68)

From the constraint (66) it follows that X is indepen-
dent from the Lagarange multiplier 5, while Eqs. (67) and
(68) ensure that X’ depends only on the combinations
Q¢ =Q¢ +0,c" and T4 = T4 —9,7° of Egs. (61) and (63).

From Eq. (65) one learns that X belongs to the
cohomolgy [64] of the linearized Slavnov-Taylor operator
Bs in the space of the integrated local quantities in the fields
and sources of dimension 4 and ghost number 0. Therefore,
we can set

T = A+ B A, (69)

where A=) denotes a four-dimensional integrated quantity
in the fields and sources with ghost number —1. The term
Bz A in Eq. (69) corresponds to the trivial solution, i.e., to
the exact part of the cohomology of Bs. Instead, the quantity
A identifies the nontrivial solution, i.e., the cohomology of
Bs, meaning that A # By Q, for some local integrated Q.
From the general results on the cohomology of Yang-
Mills theories [64], and with the help of Table I, where the
dimension and the ghost number of all fields and sources
are displayed, it follows that A and A=) can be written as

A= / d*x [4% Fo,F%, + ¢ (0,Ar")0,AL" + c3(0,A0")0, AL + caf AR ALY 9,ALC

+ Aabed AR ARP AL AR+ TIO4(ALE) + JO(A, E) + ¢4 gﬂ , (70)
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TABLE I. The quantum numbers of fields and sources.

c ¢ ¢
0o 2 0
1 -1 0

Fields and sources A b

Dimension 1 2
Ghost number 0 0

and

A = / A LF(EOIAL 1 f3(E)Lach 1 f1P(E)KE),
(71)

where we have taken into account the gauge-invariant
nature of the field A}, i.e.,

BeAp® = sAp“ =0, A #By(pg).  (72)
for any p¢ The parameters (co,cy, ¢y, c3.¢4,4%?) in
expression (70) are free dimensionless coefficients, while
04(A,¢) and O(A, &) stand for generic local quantities
with dimension 1 and 2 and ghost number 0, respectively,
depending only on the fields Aj; and &*. Also, the
quantities f¢°(&), f4b(&), and f4°(¢) in expression (71)
are arbitrary power series in £ with ghost number O,
allowed by the dimensionless character of the Stueckel-
berg field &“. Imposing now the constraint (65), one
immediately gets

B:O;(A, &) = sO;(A, &) =0, (73)

O(A, &) =sO(A,€) =0, (74)
meaning that Oj(A,¢) and O(A.¢) have to be BRST
invariant. Let us work out in detail the most general
solutions of Egs. (73) and (74), beginning with
Eq. (73). Taking into account that the operator

PHYSICAL REVIEW D 94, 065009 (2016)

where (69%(&), 0 (£)) are dimensionless quantities in
the Stueckelberg field £?. Making use of expression
(46), it turns out to be useful to replace Aj by the

gauge-invariant field A" upon a redefinition of the

quantities (¢?’(&), ™ (&)), i.e.,
Oh(A.€) = 6P (AL + o™ (9D, L. (76)
Therefore, from condition (73) one gets
06" dd g hb o, bagb
C c ~ad c<o d
gg I (34"’ O et )0
+ a)abgbcaﬂcc =0, (77)
which immediately gives
85'ab R
9 =0= 6 = b6,
»* =0, (78)

where b, is a constant. We conclude thus that the most
general form for Oy is given by

O4(A &) = biAp“. (79)

The same reasoning applies as well to the case of the
operator O(A,¢) in Eq. (74). Taking into account now
that O(A, §) is of dimension 2, we write

O(A.&) = o™ (§)ALAL + 0 (£)0,A5 + A" (£)Af0, 8

P (&)
R

(048°)0,8" + B(8)07¢°, (80)

where (0% (8), (&), 4 (&), p0(£), (¢)) are dimen-
sionless power series in ¢£. Again, employing the
gauge-invariant variable A/, we obtain, upon a redefi-
nition of (6%, w?, A%, pet, p),

Oji(A.£) has dimension 1, ghost number 0, and carries (A, &) = 6% (&) A Ap” + 0*(£)9,Ap + A7 (£) A0,
both color and Lorentz indices, it can be parametrized b (&)
as +E250,690,8 + b )7 (81)
O4(A. &) = 6“P(E)AL + 0 (£)D,E", (75) " From Eq. (74) we have
|
86 ¢ rh.a ghb o c h.a a;la ¢ 2ad ag h,a c
0= 557 gEA A +a.§c g (0,Ar ")t + 267 7 g%+ A o Ap(0,8")c
laﬁ“b 8 dc a2gdc
ac cb h.a b dc | nad nd a b\ .c
+ 2 Ay“0,c +<2 Gédg +p ¢ +p 85”85’)(6"5)(8"5 )c
agcb a[} R
'\accb 2 a b cb 2 za\ b b _ba 2 .a 2
+ (g 42 S 0,090,00 + (Tt + b L) @eres + eone (52)
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from which it follows that

=0 ~ab __ 5ab’
oed — VT T
O . o
o =0= ®* =0 (by color invariance),  (83)

where b, is a free coefficient. Finally, for the operator
O(A, ¢), we have

b a a
O(A, &) = ?2/1’,} Ape, (84)
Therefore, for the most general counterterm, Eq. (69), we
get

A= / d*x L% Fo,F%, + ¢ (9,Al)0,Al

+ ¢2(0,AF) AL + c3 fUP AL AL D, ALC
+ Abed ppt AR AL ALY+ by T AR

b
+ f]Af}'“Aﬁ'“ + ¢4 gﬂ} . (85)

and A"V is given by Eq. (71).

It remains now to characterize the coefficients
(c1, ¢y, €3,4%¢4). To that aim, we rely on an important
property of the action S in Eq. (44). When the mass

parameter m? is set to 0, i.e., m*> =0, the expression
reduces to

S 20 = Sep+ / (299, A1), (36)

1 a
_ 4 a ra ap,a
Srp = /d x<492 Fink +§b b
+ib"0,A% + aaaﬂngcb) (87)

which coincides, modulo the term [ d4xT“8”AZ'“, with the
Faddeev-Popov action Sgp of the linear covariant gauges.

Nevertheless, as shown in detail in Appendix A, the
additional term [ d4xr“8ﬂAﬁ’“ has no consequences on the
evaluation of the Green functions of the elementary fields
(Aﬂ, b,c,¢), meaning that the correlation functions
(A, (x1)...A, (x,)) 5, , evaluated with the action S,

coincide with those computed with the Faddeev-Popov
action Sgp, namely,

<A/41 (xl ) .- 'Au,, (xn»smzzo = <A;tl (xl)' . 'AM,, (xn)>SFp' (88)

From this property, it follows that when the external fields
(J,J,K) are set to 0, i.e., (J, T, K) — 0, the counterterm

PHYSICAL REVIEW D 94, 065009 (2016)

(85) and (71) has to reduce to that of the Faddeev-Popov
action in the presence of the term [ d*xt* 8MAL"”, namely, to

expressions (Al4), (A22)of Appendix A and Bl of
Appendix B. This requirement gives

01:C2:C3:0, ﬂade:O,

18 = ar, (89)

Co = Ay,

b _ b
ftll _al5a?

so that for the counterterm X¢’ we obtain

T = / d*x Lf—oz Fo,F4, + b JoAL"
g

b
+ ZJAMAL 4 fp
2 2

+ By / d*x[a;QUAY + a;, Lo + KOf9(E)],  (90)
where we have performed the following redefinitions:

[ =8, by=cy o1

C. Parametric form of the counterterm and
renormalization factors

Having determined the most general form of the invari-
ant counterterm, Eq. (90), it remains to check if ¢ can be
reabsorbed in the starting action X through a redefinition of
parameters, fields, and sources. To that end, let us proceed
by casting expression (90) in the so-called parametric form.
From the expressions of the linearized Slavnov-Taylor
operator By, Eq. (57), we can rewrite the counterterm
X as

= /d4x <% Fi, Fi, + b TGAL" + by7°0, A5

¢

b 5%
+ ZJARAR 4 by 2 I+ a Al

3 5 ”5Az - ialb“@ﬂA;‘
o oZ o
—Cllga 7 —|—a1€“8 —a—azc“ 2
ey ey sc
5% 5 afe 5%
L* W) —— K —— |, 92
talt gt f (e:)(%a o 5K,,) (92)

where use has been made of the explicit expressions of 7' "
and Q,‘j given, respectively, in Egs. (63) and (61). In order to
analyze the different terms of expression (92), we set

7
T =) " xe, (93)
n=l1

with
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cr __ 0 a a

Zlf_/d“xFFﬂl/Fﬂb’

th — /d“xbljl‘jA,’}’“,

¢ = /d“xblr‘l(?”AZ’”,
b

Yo = / d*x —2JAﬁ’“Aﬁ’”+b3§J2 ,
2 2

e = / d*x(—ia;b*0,A%),

ox
¢ = /d4xalc“8

”59“’
() . 0% . 0%
27 /d 'x<a1Al46A7_a1Ql‘@+a2L 5L
oZ of* 6%
(&) ——K* — . 94
+f (é) 55“ agb 6Kh> ( )
By noticing that
0x 0 1 Fa pa " a
o = | Mgt == [ dxgg .
(95)
the term X{’ can be rewritten as
. 0z
Iy = —aogza—gz. (96)

Taking the variation of the action X with respect to Jj,
and 7,

8 ha 5%

571 = A 5a—8A,’j“, (97)
H
the terms X' and X¢' are rewritten as
zgount — bl / d4sz 6ja ,
o%
Zgoum = bl / d4x1" ﬁ . (98)

Also, taking the variation of X with respect to J, we obtain

6% 1 h.a sh.a
— ==AAy
5.] 2 " H + é"]’ (99)
from which it follows that Z§' takes the form
6%
24 /d x(sz—J+ <b3 —2b2)g.]2> (100)

On the other hand, we also have that

PHYSICAL REVIEW D 94, 065009 (2016)

C— = cz"‘xgl2

% (101)

Thus,

0x

oZ
Zit = b2 / d4XJ§ + (b3 - 2b2)Ca—C (102)

Now, considering the gauge-fixing equation (59), we can
rewrite X¢' as

oz
T = /d4x<—a1b“ 55 —|—a1ab“b"). (103)

Furthermore, from

2
205% = /d4xab“b", (104)
one gets
0% o))
Zg’ = —a; / d4)Cba 5ba + Zala%. (105)

The term X can be immediately rewritten using the
antighost equation (60) as

Y — g /d4 —aéz.
6 1 5S¢t

Putting together all expressions, for the parametric form of
the counterterm we obtain

(106)

oz
- 2b2)§3_6f

oX oz
/ d x(alAﬂ 5AG —ab°

5b*
I > 5%
C
5c 5

0x

2 -
+ aa Du

0x
DL — 2 b
apg Bre + (b3

+ b 5—a+fa(§)

55“

- CIIQ

ey
D> >

4 byJ = — Kb
5j“ Sy

b T

oft 52)’ (107)

0&* 6K
which can be finally written as
X ="TRE, (108)

with R being the differential operator,
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) ) )
R = —aogza—gz-f— (b3 - 2b2)C8_§+ Zala%
P L6
+/d4 <a1A” 5Aa—a1b 6ba
=da a 5 a 5
e i A e e
5 oL
@ ”5s2u @t spa
5 Y
b, J¢ byJ — — Kb . 109
+ ljﬂajﬁ 255 85“51(“) (109)

The usefulness of expression (108) relies on the fact that it
immediately provides the redefinition of the fields, param-
eter, and sources needed to show that the counterterm X<
can be in fact reabsorbed into the starting action, namely,

T(P) 4 £Z(®) = (D) + O(e?), (110)

where € is an expansion parameter, ® is a shorthand
notation for the fields, parameters, and sources, while ®
stands for the corresponding redefinitions. From Eq. (108)
it is apparent that the redefined fields, parameters, and
sources are given by

By = (1+eR)D (111)

In fact, using (111), it is almost immediate to prove that

2[®y] = Z[® + eRP] = Z[P] + eR(Z) + O(e?), (112)
showing that the counterterm X can be reabsorbed into the
starting action Z.

By direct inspection of Eq. (112), for the renormalization

factors one finds

Ag=2Z’A. by=2b. =2
0=zt &=200¢ 0=zt
Q =29Q, Ly=Z, L,  Kj=2ZPEK,
J():ZJJ, jOZij,
9o = Z,9. ay = Z,a, $o =2, (113)
where
Z, =1+ eay, (114)
7V =1 +¢ay, (115)
7V =1~ ¢ay, (116)
Zy=1+¢b, (117)
Z;=1+eb,, (118)

PHYSICAL REVIEW D 94, 065009 (2016)
(119)
(120)

ZC =1 + 8(b3 - sz),
Zgb — 5ab + gfab

8_fb:5ah_ (f

Z(;(b — 5ab —e aé:a agu

&+ £ >, (121)
and
Zo=74 2V =27V =76 =277"2

1/2 -1/2
T c .

=Z; 7, = (122)

Observe that in Eqgs. (120) and (121) we have used the
definition f*(&) = f4b(£)&P introduced in Eq. (91). We also
underline that, according to (120) and (121), the renorm-
alization factors of the Stueckelberg field & and of the
corresponding source K“ are nonlinear, i.e., they are power
series in &*. This is an expected feature, due to the
dimensionless character of the Stueckelberg field, a feature
common to other renormalizable models displaying mass-
less fields as, for example, N = 1 super Yang-Mills theory
in superspace; see [73].

IV. THE ANOMALOUS DIMENSIONS
OF (AhAl) AND Al

Letus address now the issue of the anomalous dimensions
of the operators (A"“Al) and A/, As a consequence of
their gauge invariance, their anomalous dimensions turn out
to be independent from the gauge parameter a, a result that
can be established at the algebraic level through the use of the
extended BRST technique [64]. (See also the recent proof
given in [66].) In particular, due to its a-independence,
the anomalous dimension of (AL“A%%) is the same as that
computed in the Landau gauge, i.e., for « = 0. Moreover,
taking into account that, in the Landau gauge, the operator
(Al Al reduces to (A4A1), we expect that the anomalous
dimension y (41> of (Al9A%) should be equal to the
anomalous dimension ¥ 42|y 44, Of the operator (A5Af) in
the Landau gauge, namely,

p(a) andau
Vg = }/A2|Landau == (7 + 71% ¢ (a> ’

g2

where (8(a), 7592 (a)) denote, respectively, the -function
and the anomalous dimension of the gauge field A, in the
Landau gauge

*For an all-order algebraic proof of the relationship
pla) g
Y4 |Landan = = (T +rp"(a) ), a= 1622
see [35].
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A similar property is expected in the case of the operator
Al namely,

Landau

YAl = Yah |a:0 —7aA (a)’ (124)

i.e., the anomalous dimension of Afj should equal that of the
gauge field A in the Landau gauge. Therefore, both y (41
and y4» are not independent parameters of the theory.

Let us give a formal proof of Egs. (123) and (124) by
making use of the RGE that, owing to the renormalizability
and to the BRST invariance of the theory, reads

or or or
//la—ﬂ+ﬂ92@—}/ANAF—}’CNCF—]/(Ah)2/d4x]—

oJ
or or
—YA”/d‘l'x( ”5JZ+T ﬁ)
or

or
- [en(ne T s =0, 29

PHYSICAL REVIEW D 94, 065009 (2016)

0— ua% (AL ()AL () + B % (AL ()AL (7))
~2paa (AR ()AL (1)) — 27 (AL () AR (1)),

Oa
(128)

Moreover, due to the a-independence of the gauge-

invariant correlation function (Aj“(x)A™?(y)), it follows
that

O At o) = o (129)
Thus,
Ma%mﬁ’“ (AL (3)) + B, % (Al ()AL (7))
2y (AR ()AL () = . (130)

where In addition, from (129) we can make direct use of the
Landau gauge, namely,
1) 1) ) 1)
NA:/d4x Ay —b® - — Q)
5AZ ob¢ oct 59/(1 h.a b h.a h.b
5 (A ()AL (y) = (A (x)AS” (¥))a=o
+2a%’ = <Al}41.a(x)Al}'l,b(y)>Landau' (131)
N, = / d*x c“i - L“i Therefore
c Sc sLe)’ ’
0 h.a Bb (N =S e
ab __ —1\ac cb DoblA AD* (@.m?=0)
}/5 = (ng ) Ma_,uZ§ s <Az,u<x)Alv1,b(y>> _ f[ ¢] H (x) - (y)e : (132)
’ [IDgle oo
ab —1\ac cb
ve =(Z n—27z°. 126
K= 2K g 2k 126) i [D$] = DADbDcDEDEDT and
Let us act now on the RGE with the test operator 1
62 S([Lmz:o) = /d4x <4_g2 F/(L’F/Z” + lb“@MAZ
8T u(x)6T () +29,Dibch + TaaﬂA,’j*“) : (133)
and set all fields and sources equal to 0. A simple algebraic
calculation gives Integrating out the fields (z, b, ¢, ¢), we get
DADES(0,A1)8(0,A,) det(—0 - D) AL (x)AL" (y)e=Sw
b)) — I PADEDADNO,A,) det( =0 DAL ()AL ()esor. )

[ DADES(D,A1)5(D,A,,) det(=0 - D)eS

Employing the result given in Appendix B, see Eqs. (B22) and (B23), the equation 8”AL' = 0 can be solved iteratively for £

yielding

1 g 0A . g
éIEaMA”‘Fl? |:8A,82:| +l?

so that we can integrate over &%, obtaining

[A,,, 9, aA} +-3 [‘% 8A} +0(A),

(135)

Pl 202 |0*
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DAS(D,A,) det(=0 - D)AL (x) Al (y)e=Swm
Ala(x) Al _ J Lo’ K , 136
(At (@A) [ DAS(D,A,) det(=0 - D)e~w (136)
where Aﬁ is now given by, see Eq. (B24) of Appendix B,
1 0 A 0 1
A=Ay = 0,00~ ig 5, [Ay, d, 2—2] - iga—g [GA,?ﬁA}
. 1 g 9, 3

However, due to the presence in Eq. (136) of the delta function 6(0,A,), all terms containing a divergence JA vanish,

namely,

(A ()AL (v)

_ [ DAS(9,A,) det(=0 - D)AN(x) Al (y)e=Swm

[ DAS(9,A,) det(—0 - D)e~Sw

_ [ DAS(9,A,) det(= - D)Ag(x)AL(y)e~S

[DA5(9,A,) det(= - D)e~Sw

= <A/lj (X)AL{’ (y)>Landau'

(138)

Thus, the RGE for the correlation function (A"“(x)A!""(y)) becomes

0 0
H 8_/1 <AZ ()C)Af (y)>Landau + ﬂgz a—gz <AZ (x)Allj (y)>Landau - 2},A” <AZ (X)Af (y) >Landau = 07

which proves Eq. (124). Of course, the same reasoning can
be applied to Eq. (123).

V. CONCLUSIONS

In this work we have provided a study of the gauge-

. . 2
invariant nonlocal operator Az, ,

AZ

min

:Tr/d“xAhAh

o

(140)

with A" being the transverse configuration, 9,A" =0,
given in expression (3).

Despite the highly nonlocal character, we have shown
that a fully local setup for both operators (A%A}) and A} can
be constructed, giving rise to a local and BRST-invariant
action S, Eq. (17). The main tool in order to achieve such a
local formulation has been the introduction of an auxiliary
Stueckelberg field &4, Eqgs. (11) and (12).

As pointed out in Sec. II, the transversality condition,
GMAL’ =0, plays an important role, giving rise to deep
differences between our formulation and the conventional
Stueckelberg one, which is known to be nonrenormaliz-
able. Unlike the conventional Stueckelberg formulation, the
novel action S, Eq. (17), has been proven to be renorma-
lizable to all orders, as shown in detail in Sec. IIL
Furthermore, owing to the gauge invariance of (AJA”)

(139)

[
and AZ, the corresponding anomalous dimensions,
(7(any2s ¥an), turn out to be independent from the gauge
parameter « entering the gauge-fixing condition, being
given by

(@) | Landa g
Yanp = },A2|Landau = (T + ]/ka da (a) , a= @ ,
Yar = Varlamo = 75" (), (141)

Landau

where (f(a),y3*"*"(a)) denote, respectively, the f-func-
tion and the anomalous dimension of the gauge field A, in
the Landau gauge. We see therefore that (y (42, 7,4) are not
independent parameters of the theory.

The present results can open the road to several future
investigations. For instance, the possibility of having at
our disposal a local and renormalizable framework might
enable us to investigate the formation, through the compu-
tation of the effective potential [7,10,11,15,16], of the
gauge-invariant dimension-two condensate (AZA"). This
result might yield a better understanding, within a mani-
festly BRST-invariant set up, of the relevance of the
condensate (AfA") for the formation of the dynamical
gluon mass [7,10,11,15,16] as well the analysis of the é

corrections in the gluon correlation functions within the
OPE expansion, as reported in [18-21,24,26-30,32-34] in
the case of the Landau gauge.
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Another topic worth mentioning is the study of the
BRST-invariant and a-independent correlation function

(AL ()AL()).

within the local present setup. Because of its a-independ-
ence, expression (142) can be seen as the natural gener-
alization, in the case of the covariant linear gauges, of the
two-point function (A, (x)A,(Y))1andau Studied in the renor-
malizable massive Yang-Mills model in the Landau gauge
considered in [71,72]. As such, expression (142) might
provide information about the occurrence of positivity
violation, already observed in the Landau gauge [71,72].
This could, in principle, shed some light on the important
question regarding the physical significance of positivity
violation and its relation to phenomenological properties,
since this issue might now be studied in a systematic gauge-
parameter invariant manner, instead of relying solely on
gauge-dependent quantities, like the gluon propagator. In
this sense, expression (142) might be regarded as a
powerful and practical tool to detect the positivity violation,
in linear covariant gauges, of the two-point gluon corre-
lation function within a BRST-invariant formulation.
Moreover, it would be interesting to find out whether
(Al(x)Al(y)) develops complex-conjugated poles—as
seems to occur in Gribov-type fits to lattice data for the
gluon propagator—or real ones, with a negative residue
being the cause of the positivity violation in the latter
scenario. Even though the framework presented here
represents a well-defined analytical setup for the study
of correlation functions of the operator A" the determi-
nation of the nature of the poles requires a fully non-
perturbative analysis that is currently accessible only
through lattice input, so numerical studies of expression
(142) are very welcome.

(142)
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APPENDIX A: A REVIEW ON THE
RENORMALIZATION OF THE YANG-MILLS
ACTION IN LINEAR COVARIANT GAUGES

2

When the mass parameter m~ is set to 0, the action S in

Eq. (45) reduces to

Sea= St [dxeoan. (A
where Sgp is
4 1 a a a at,a
SFP: dx 4—92FIWF”U+§bb
+ ib"0,A% + aaaﬂDzbcb) , (A2)

ie., S,2_, coincides, modulo the term | d4xr“8”AZ’“, with
the usual Faddeev-Popov action of the linear covariant
gauge. Evidently, the action S,2_ is left invariant by the
BRST transformations given in Eqgs. (47) and (48),
§S,2-0=0. (A3)
Nevertheless, when m? =0, the additional term
S d4xr”8MAﬁ’“ has no consequences on the evaluation of
the Green functions of the elementary fields (A,.b,c,¢c).
More precisely, it turns out that the correlation functions
(A, (x1)...A, (x,))s ,, evaluated with the action S,
coincide with those computed with the Faddeev-Popov
action Sgp, namely,
<Aﬂ] (xl)' . 'A/t,, (xn)>Sm2:0 = <A/41 (xl)‘ . 'A;t,, (xn)>SFp' (A4)
The statement (A4) can be checked by means of the
functional integral. Let us consider expression

_ f[D¢]Aﬂl (xl ) .. 'Aﬂn (xn)e—s,n2:0
<A/‘1 (xl)"'Ay,, (-xn)>5m2:o - f[D¢]€—S,n2:0 )
(AS)

where [D¢] stands for integration over all fields, i.e., [D¢] =
DADbDcDeDEDrz. Integrating over the field 7, one gets

(A (1) Ay, (x0))s , =

[ DADbDcDeDES(D,AL)A, (x1)...A,, (x,)e~5
[ DADbDcDeDES(D,AlL) e S '

(A6)

Making use of the result given in Appendix (B), see Eqs. (B22) and (B23), the equation @AZ = 0 can be solved iteratively

for & yielding

1 . g 0A]l . g
52?3,/\”—}—1? |:8A,§:| +l?

[A#,G aA} 427 [aA 8A} +O(AY),

vl tag | (A7)
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so that expression (A6) can be written as

| DADbDcDeDES(& — [power series in A])A,, (x;)...A

PHYSICAL REVIEW D 94, 065009 (2016)

o ()€™

<A”1 (x1 ) .. 'A/,{,l (xn)>Sm2:0 -

[ DADbDcDEDES(E — [power series in A])e 5w

(A8)

Observing now that the Faddeev-Popov action Sgp, Eq. (A1), does not contain any dependence from the Stueckelberg field,
it follows that the integration over the variable & in Eq. (A6) is straightforward, giving

_ [ DADbDcDeA, (xy)...A,, (x,)e”5

<All1 (xl)"'Aﬂn (x")>5m2:o B

which proves the statement (A4). The same reasoning
applies to other Green’s functions containing the elemen-
tary fields (b, c,c). In summary, all Green’s functions of
the elementary fields (A,, b, c, ¢) evaluated with the action
(A1) are exactly the same as those computed with the
Faddeev-Popov action (A2).

In particular, from this result it follows that the action
(A1) is renormalizable, the most general counterterm being
given, modulo terms in the variable 7z, by the usual
counterterm of the linear covariant gauges.

Let us give a closer look at the possible local BRST-
invariant counterterm S, affecting the action S,._, at
the quantum level. antz:O is a local integrated quantity in the
fields bounded by dimension 4. Moreover, it is useful to
notice that, besides the BRST invariance, Eq. (A3), the
action S,,2_ is constrained by the additional Ward identity

/d“xM -0,

A10
50 (A10)

which implies that the variable z can enter only through a
space-time derivative, i.e., 9,7¢. Therefore, owing to the
previous considerations, and taking into account that the

field 7 has dimension 2, for the counterterm fan:o we write

set, | = Set - / d*x(0,2)0%A.£),  (All)

where S¢5, is the usual local BRST-invariant counterterm of
the Faddeev-Popov action in linear covariant gauges and
where (A, ¢) is a local quantity of dimension 1. From
BRST invariance, we immediately get

sO(A,§) =0, (A12)
whose general solution, see Eqgs. (73)—(79), is
O%4(A, &) = b Ay, (A13)

with b; being an arbitrary coefficient. Thus, for the most
general counterterm corresponding to S|,._, we have

S, = Sth— b, / dx(0,AL. (Al4)

: A9
[ DADbDcDge 5w (49)

[
Let us end this subsection by providing the expression of
the Faddeev-Popov counterterm Sfp, as derived form the
algebraic renormalization procedure [64].

1. Renormalizability of the Faddeev-Popov action in
linear covariant gauges

Following [64], in order to determine the most general
invariant counterterm S, affecting the Faddeev-Popov
action in linear covariant gauges, Eq. (A2), we start from
the complete classical action

1
o = Spp + / d*x (—Q;ngcb +3 f“bCL"cbcC>, (A15)

where we have introduced the external sources (L, L")
coupled to the nonlinear BRST variations of the fields
(A5, c); see Eqs. (47) and (48).

The action X, obeys the following set of Ward identities
[64]:

55y 6%y 6% 0% 5%

! 0 02 0020 | ;1a%%0) _ A6
/ x<59;; 5A¢ 5L gce 7 5z (A16)

55y
W = laﬂAﬂ + ab N (A17)

5%y . 0%,

—0, Al8
FECrTeY (A18)

from which it turns out [64] that the most general local
invariant counterterm Xf' contains three free parameters
(ag,ay,a,), being given by the expression

1
Z(C)t = dy / d4x4—ngz,,F,‘j,, + BZO / d4x(a1 (QZ + 8”50)145
+ a,Lc?), (A19)
where By, is the nilpotent linearized Slavnov-Taylor operator,

62y 0 o0y O
Bs, = [ oo st S
5QU AL SAL 5Q

6Ty 6 STy 5 .0
SLoct " seisLa ' sz )

(A20)
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Bzo BEO - O (A21)

Expression (A19) can be conveniently written in parametric
form [64] as

. , 0% 0%
6= —ayg? 39 5 t2aa; —— S
5% o% _ 6%
+/d4x(a1A,‘j§Aa —ab* 5b2 a,c 562
5% 5% 5%
—a, Q¢ —— — ac® L® A22
N 5gn ~ P e T 5L”> (422)

which is suitable for establishing the renormalizablity of the
starting action X, i.e., to check that 28’ can be reabsorbed
in X, through a redefinition of the fields, parameters, and
sources, according to

0[A,b,c,e,Q, L, g%, a] + X!

= y[Ag. by. co. T0. Q0. L. g ] + O(7),  (A23)

with ¢ standing for an expansion parameter and where the label
0 denotes the redefined parameters, fields, and sources. By
direct inspection of Eq. (A23), it follows that the counterterm
X&' can be reabsorbed through the following redefinitions:

=ZpP  Ag=2Z{A,  cog=2zc, (A24)

with

Zp =1-eay,

1/2 =1+ eay,

2/2 =1-¢ay, (A25)
and

oy = Z,a,

bo = -1/2b’

¢ = 2,

Q, — —1/29’

Lo=27:""L, (A26)

exhibiting the multiplicative all-orders renormalizability of the
Faddeev-Popov action in linear covariant gauges.

Finally, setting the external sources (€2, L*) to 0, for the
counterterm Sfp,, Eq. (A14), one gets

ct
SFP - Z:() |Q*L70

OSgp aSFP 4 2 OSEp
= —a092 + 2aa /d aA m
OF Oa i 5A;,
N _ oS oS
—a;b? 5bFP ac” 5_ip—a2c“ 5?) (A27)
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APPENDIX B: PROPERTIES OF THE
FUNCTIONAL f 4 [u]

In this appendix we recall some useful properties of the
functional f[u],

I
/d“xAﬂAM = Tr/ d*x <uTA”u +§uT6ﬂu>

X <uTAMu + ! uTaﬂu) .
g

For a given gauge field configuration A,, f4[u] is a
functional defined on the gauge orbit of A,. Let A be the
space of connections A¢ with finite Hilbert norm [|A]l, i.e.,

falu] = Tr

(B1)

1
A|I> = Tr/d“xAﬂAﬂ = E/d‘*xA;;Ag <+, (B2)
and let U be the space of local gauge transformations u such
that the Hilbert norm ||u'Ou]| is finite too, namely,

lufOul|? = Tr/d4x(uT8”u)(uT8Mu) < +o0. (B3)

The following proposition holds [58—61]:

Proposition: The functional f,[u] achieves its absolute
minimum on the gauge orbit of A,.This proposition means
that there exists a 7 € U such that

Sfalh] = (B4)
&falh] 20 (B5)
falh]l < falul, Yuel. (B6)
The operator A2. is thus given by
Ay = minTr / dxAUAY = fuH]. (BT

Let us take a look at the two conditions (B4) and (B5). To
evaluate 5f4[h] and 52f4[h] we set’

7 7 llTﬂ
v = he'9” = he'9 !,

(B8)

1
[Te, TP) = ifebeTe, Tr(T°T?) = 55‘”’, (B9)
where @ is an infinitesimal Hermitian matrix and we
compute the linear and quadratic terms of the expansion
of the functional f4[v] in power series of w. Let us first

obtain an expression for A},

The case of the gauge group SU (N) is considered here.
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i
Al =v"A,v +§1ﬂ(9ﬂv

— e—igthA”heigw + 1 e—igw(hTaﬂh)eigw + ie—igwa”eigw
g g

. . i . .
— e—tgwA/illezgw + ; e—lgwaﬂetga). (BIO)
Expanding up to the order w?, we get

2 2 ; 2 2
Al = <1 —iga)—gz%)Afj(l +iga)—g2%> —I—é <1 —igw—gz%>8”<l —l—iga)—gz%)

) ? . ’ i ) o\ [ . 7 g
— <1 —igw — ¢ 2> (Afj + igAlw — g* Al 2) +§ <1 —igw — g22> <lg(9”w - (0,0)w — 20)(8”60))

2 i 2
= A’,} + igAﬁa) - %A’,}a)z - iga)Afj + gza)AZa) - %20)2AZ +§ <ig(9ﬂa) - ‘% (0,0)0 — %za)aﬂa) + gzwaﬂa}) + 0(0?),
(B11)
from which it follows that
2
v Wy g -9 ;
Al = Al + ig[AL, o] + 5 [, AL, @] — 0,0 + i5 (@, 0,0] + O(?). (B12)

We now evaluate

falv] = Tr/d“xA,‘jAZ

2
= Tr/d“x[(Aﬁ + iglA}, ] —1—% [, AL, ©] — 0,0 + ig [0, 0,0] + 0(w3)>

2
X <A,}j + iglA}, o] + % (@, AL, ®] — 0,0 + ig [0, 0,0] + 0(w3)>}

2
=Tr / d‘bc{AfjA,’} + igAl[AL. 0] + FPALwAL® — %A}jA};wZ - %Aﬁszﬁ - Ald,w
.g . .
+ lEAﬁ (@, 0,0] + lg[Aﬁ, a)]Aﬁ - gZ[Aﬁ, o] [Aﬁ, ] — zg[A,’}, w]0,w + gzwAza)Aﬁ
7
2

2
Ala?All — %wZAZAL’ — 0,wA! — igd,w[Al, w] + 0,w0,w + ig (@, Gﬂw]A,ﬁ’} + O(a?)

2 2
= falh] - Tr/d“x{Aﬁ, d,w} + Tr/d4x (ngL’a)Afja) - ‘%AﬁAI’ja)z - %AszAL’

2 2
- *[AL w][Al, 0] + FwAlwAl - %A},’a)zAﬁ - %a)zAﬁAL’> + Tr/ d*x(0,wd,w
+ ig @, 0,w]Al — igd,w[Al, ] — iglA", w]0,0 + igA,’} [w,0,0]) + O(w?)

= falh] +2 / d*xtr(wd,AL) + / d*xtr{2g?wAlwA! - 2 AlAw? — G (Alw — wA]) (Alw — wAlL)}

+ / d*xtr <8ﬂa)5‘”w + iga)aﬂwAfj - igaﬂa}wAfj
i h ; h _ ioAh Ak 9 ah _ 9 an 3
i190,0A, + ig0,wwA, — igA,wd,® + igwA,0,w + 12A”a)8”a) 12A”8Ma)a) + O(w”)

= falh] + 2Tr/ d*x(wd,A}) + Tr/ d*x(9,w0,w + igwd,wAl — igd,wwAl — 2igd,wAlw + 2igd,wwA})

+ 0(®). (B13)
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Thus,

fA[U] = fA [h] + 2Tr/d4x(a)3ﬂAﬁ)
+ Tr/d“x(aﬂa)aﬂa) + igwd,wAl — igd,wwA"
- ig(0,w)Alw + ig(0,w)wAl) + O(w?)
= falh] + 2Tr/ d*x(wd,A})
+ Tr/d“x{aﬂa)(aﬂw —iglA}, @])} + O(?).
(B14)

Finally

falv] = falh] + 2Tr/ d*x(wd,Al)
- Tr/ d*x09,D,(AM)w + O(0?®),  (BI5)

so that

8falh] =0= 9,Ah =0,

8 falh] > 0= —0,D,(A") > 0. (B16)

We see therefore that the set of field configurations
fulfilling conditions (B16), i.e., defining relative minima
of the functional f,[u], belongs to the so-called Gribov
region Q, which is defined as

Q={A,0,A,=0 and -0,D,(A)>0}. (Bl7)

Let us proceed now by showing that the transversality

condition, GﬂA,’j =0, can be solved for h = h(A) as a
power series in A,. We start from

i
Al = h'Ah +§hfaﬂh, (B18)

with

h = e = 99",

9,0
Al = (5,4”— gz”) (A zg[azaA A]

(B19)
|
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Let us expand % in powers of ¢,

h=1 +ig¢—%2¢2+0(¢3). (B20)
From Eq. (B18) we have
Al = A, +iglA,. ] + FPAP —g—zAﬂ(/ﬂ
</>2A — O+ i3 I1p.0)+ 0. (B21)

Thus, condition 9, Ah 0 gives

0’ = 0,A +igl0,A,. 9] + iglA,. 0,0 + 0,PA, P

1 g2¢8 A+ PPAD, P - g—a A

2

A Oubp =T A, = 7 L 0,004,

- 3¢aﬂ¢Aﬂ - Ed)za A + li {qﬁ 8245} + 0(¢3)
(B22)

This equation can be solved iteratively for ¢ as a power
series in A,, namely,

b= 32 Loa, +zaz [(’M ‘Zf] +i% {Aﬂ,aﬂg—ﬂ
so that
s mn o 5i 0 2]
—l%% {8A ?GA} +ig[A,,,?aA}
+i {82 A, g’; 8A} + 0(A3). (B24)

Expression (B24) can be written in a more useful way,
given in Eq. (3). In fact

{az 0A.0, =3 6AD +0(4)

, 0y Oy g0 0A 0,
:A”—zg[azaAA] [6‘28/4’8”82814} 826A+ gaza [azﬁAA}— 58—;8 {82 az(?A}+O(A3)

0, 0, 10, d, [0A
= ”—?GA—HQ[ ”,azaA] [828A,8M828A} —|—lg82 [azaA A ] + i g? [y,GA] + 0(A?%), (B25)
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which is precisely expression (B24). The transverse field
given in Eq. (3) enjoys the property of being gauge
invariant order by order in the coupling constant g. Let
us work out the transformation properties of ¢, under a
gauge transformation,

bA, = —0,0 + ig[A,, @]. (B26)

We have, up to the order O(g?),
o, = =0, + ig[
g 0A

P’

azaA 0 a)} —iz [a) 8D828A]
8w] 0(g)

L9l d

+ 0(g2). (B27)
Therefore,
.9 [0A
5(]’71/ = —3D <a)—l§ |:E,a):|> _}_0(92)’ (B28)

from which the gauge invariance of A} is established.
Finally, let us work out the expression of A2 as a power
series in A,.

A2, =Tt / dixAnAR

. o, (')
:Tr/dxqﬁﬂ 5,,,,— ¢,
_Tr/d“x{(A”—ig{azaA A }

[(’)2 0A,0, = 7 8A]>

(o) o]
1 [azﬁA 0, 350 m
-1 / i [Ag (a,w - agfv) Ag
0,0A% DA®

7o

-2 fa/n fahcA

F R
(B29)

0AY 9, 8A”}

+ 0(A*%),

leading to the result quoted in Eq. (5).

We conclude this appendix by noting that, due to gauge
invariance, A2, can be rewritten in a manifestly invariant
way in terms of F,, and the covariant derivative D, [58];

see Eq. (6).
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APPENDIX C: PROPAGATORS OF THE
ELEMENTARY FIELDS

In order to evaluate the tree-level two-point functions of
the theory, we start from the local action

2
S = Spp + / d*x (r“@,,Af,"“ + %Aﬁ"’Aﬁ‘“) + SRR

(C1)
where Sgp is the Faddeev-Popov term of the linear covariant
gauges, Eq. (10), and Sjgg stands for the BRST-invariant

infrared regularizing mass term for the Stueckelberg field,
namely,

1 1
SIRR:/d4x5S(p§a§a) :/d4x<§M4§a§a+P§aCa>-
(€2)

From the quadratic part of expression (C1), one finds the
following set of tree-level propagators in momentum space:

; o . a p,,py
(A4(p)AL(-p)) =T 5Py, + e (C3)
p2
(A4(p)bP(-p)) = —m5“bpw (C4)
(X(Sab
(A4(p)Eb(-p)) = iml’w (Cs)
a o aM4 (73
(As(p)e*(=p)) = —lml);ﬁ b, (Co)
4
B PIP(p)) = s ()
2 cab
) =i ()
4
(B (p)(=p)) = —i%aab, (C9)
_ pa a
(@ PAL=P) = =i P (€10
@) (=p)) = i E o™, (C1)
(P (p)) = Lo, (C12)
~a _ _ i a
PP = e (€13)
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. ) - aéab
(&4(p)E(-p)) = el (C14)
a b _ p2 ab
(& (p)e°(=p)) —4p4+aM46 . (C15)
. Tb _ _ mZ(p4 _ aM4) +M4p2 "
R e L0
(C16)

PHYSICAL REVIEW D 94, 065009 (2016)

(@(p)c(=p)) = — 6.

(C17)
p

with P, = (5,“, -L ;p *) being the transverse projector. All
other propagators that have not been listed above are
vanishing. Let us also recall that the parameters M and
p that regularize the propagation of the Stueckelberg field
in the infrared have to be set to 0 at the end of any actual

calculation.
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