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For the case of spin zero, we construct conjugate pairs of operators on Fock space. On states multiplied
by polarization vectors, coordinate operators Q conjugate to the momentum operators P exist. In the
massive case the notion of interest is derived from a geometrical quantity, the massless case is realized
by taking the limit m2 → 0 on the one hand, on the other, starting with m2 ¼ 0 directly, from conformal
transformations. The norm problem of the states on which the Q’s act is crucial: the states determine
eventually how many independent conjugate pairs exist. It is intriguing that (light-) wedge variables and,
hence, the wedge-local case seem to be preferred.
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I. INTRODUCTION AND EMBEDDING

A. Preliminaries

Usually, a student of physics meets conjugate pairs first
in the context of classical mechanics. Generalized coor-
dinates fqkgk¼n

k¼1 serve together with generalized momenta
fpjgj¼n

j¼1 as the constitutive elements of Poisson brackets,

fF;Gg ¼
X
j;k

�∂F
∂pj

∂G
∂qk −

∂G
∂pj

∂F
∂qk
�
; ð1Þ

for F, G being functions of p, q—called observables. The
p’s and q’s span the phase space, and the Poisson brackets
define a symplectic structure. Inserting for F, G the
momenta and coordinates themselves, one obtains

fpj; qkg ¼ δjk; ð2Þ
with δ being Kroneckers δ. The (Hamiltonian) equations of
motion read

∂Hðp; qÞ
∂pk ¼ _qk

∂Hðp; qÞ
∂qk ¼ − _pk; ð3Þ

with H being the Hamiltonian of the system. The equation
of motion for a general observable O ¼ Oðp; q; tÞ which
may explicitly depend on time is given by the Poisson
bracket

dO
dt

¼ ∂O
∂t þ fH;Og: ð4Þ

The equations (3) become a case of (4) for O ¼ pk and
O ¼ qk. They are also known as canonical equations of
motion and transformations P¼Pðp;qÞ;Q¼Qðp;qÞ,
which leave them form invariant, are called canonical.

It is one of the beautiful results of classical mechanics that
the actual motion of a system in time, i.e., the solutions of
(3) pkðtÞ; qjðtÞ, can be understood as a canonical trans-
formation which transports initial data pkðt0Þ; qjðt0Þ to the
actual ones at time t.
It is to be noted that time appears rather as a kind of

“external” label than as a coordinate. One may, however,
incorporate it as nþ 1th coordinate and define -H as its
conjugate momentum [1,2].
In relativistic point particle mechanics, time becomes

part of the coordinates xðjÞμ and may be reintroduced as
eigentime τðjÞ, serving then as an invariant for the labeling
purpose along world lines for the jth particle.
In quantum mechanics, coordinates q and momenta p

become Hermitian operators Q and P, acting on the state
space of the system which is a Hilbert space. The Poisson
brackets go (at least for Cartesian coordinates) over into
the commutator, and the equations of motion (in the
Heisenberg picture) change accordingly:

½Pj;Qk� ¼ −iδjk i
dO
dt

¼ i
∂O
∂t þ ½O;H�: ð5Þ

It is interesting to observe that the transformation P →
−Q;Q → P is (like in classical mechanics) a canonical
transformation, which implies that if we choose as the
“q-representation” square integrable functions f from, say,
R3n → C and consider their Fourier transforms (FT), their
role will be interchanged by the mentioned canonical
transformation.RealizingoperatorsPj,Xk by the prescription

PjfðxÞ ¼ −i
∂
∂xj fðxÞ FT Pj

~fðpÞ ¼ pj
~fðpÞ ð6Þ

XkfðxÞ ¼ xkfðxÞ FT Xk
~fðpÞ ¼ i

∂
∂pk

~fðpÞ ð7Þ*pottel@mis.mpg.de
†sibold@physik.uni‑leipzig.de
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(with j; k running from 1 to 3n), the roles of the operators
will change accordingly. The following relations stay
invariant:

½Pj; Xk� ¼ −iδjk; ½Pj; Pj0 � ¼ 0; ½Xk; Xk0 � ¼ 0:

ð8Þ

The operators P, Q are conjugate to each other, and the
FT indeed realizes the conjugation.
The most intriguing aspect of the operator nature of

observables is certainly the discovery by Heisenberg
that uncertainty relations hold for observables which do
not commute. Most notably, in this context, are conju-
gate pairs.
Here Pj generates translations in R3nðxÞ, whereas Xk

generates translations inR3nðpÞ. In quantummechanics the
identification of Pj with 3nmomentum operators and of Xk

with 3n position operators is automatic, and the unbounded
operators Pj and Xk are essentially self-adjoint. The role of
the Hamiltonian and an associated time operator is, how-
ever, special: the Hamiltonian is bounded from below,
whereas a time operator has to extend over the whole real
line; hence, a tentative time operator cannot be self-adjoint.
This is known as Pauli’s theorem [3] and precludes any
naive extension to the relativistic situation.

B. Embedding our approach

The literature on position and time operators in quantum
mechanics, relativistic quantum mechanics, and quantum
field theory (QFT) is overwhelmingly rich—for a very
good reason: the respective notions are fundamental. We
will not attempt to review it. Instead, we quote only a few
papers with which our results may have a closer relation.
We regret all omissions.
The impact of Poincaré invariance on the notion of

localizability in quantum theory has been analyzed in [4].
Under plausible assumptions on the set of states associated
with localization at a point in three-dimensional space,
the authors arrive at the definition of a position operator
xop¼ i∇p− ip=ð2ðp2þm2ÞÞ acting on one-particle solu-
tions of the Klein-Gordon equation to massm. Thus, spatial
localization at a point is not a Lorentz-covariant concept.
In [5], the reference to a point in space has been

weakened to a finite region in space, again quite plausible
from a conceptual point of view. The group theoretic
analysis leads to the theorem that all Lorentz invariant
systems of m2 > 0 are localizable and their position
variables are unique if the systems are elementary. For
m ¼ 0, the only localizable elementary system has
spin zero.
The next level of sophistication has been reached by

local quantum physics in the spirit of [6]. Over finite
regions in spacetime, one defines nets of algebras of
observables, studies their representations, and deduces

their properties. A recent review of localization based on
these notions has been provided in [7]. Quantum fields may
or may not be used in this context. It turns out that particle
states can never be created by operators strictly localized in
bounded regions of spacetime. Our findings below better be
in accordance with such general statements. After this look
into spatial localizability, we should have a glance at the
construction of time operators.
Notable early papers are [2,8,9]. In analogy to classical

mechanics, a time operator has been introduced and
discussed within ordinary quantum mechanics. It has been
admitted as a Hermitian but not self-adjoint operator.
A wealth of further literature has been provided in [10].
On the more abstract level, time operators are understood as
positive-operator-valued measures [11–14] or affiliated to
C�-algebras [15]. A very recent review within the general
context of quantum spacetime, general relativity, and even
cosmology has been given in [16].
For our own considerations, the reference to the role of

the conformal group is quite important. In [17,18], the
charges of the special conformal transformations have
become candidates for a relativistic four-position operator.
From a different point of view, this has also been studied in
[19–21] (also subsection IV C). We will discuss [22] in
detail below. Eventually, one has to consider the covering
group SUð2; 2Þ, which is out of reach for the time being. In
[23], the simpler case of SUð1; 1Þ has been successfully
treated and provides time observables with projective
covariance. Presumably, it is this research where one
should find the connection with our treatment of the
problem.
Our intention is to understand relativistic position

operators as part of a theory which otherwise has been
already constructed. Since models and their dynamics
which are amenable to experimental tests rely even today
mainly on perturbation theory, the most important Hilbert
space for particle physics is Fock space and its imbedding
into systems of Green functions as off-shell continuation.
Available to us are conserved currents, their associated
charges, and composite operators formed as functions of
the basic quantum fields. Hence, the most useful tools are
invariance groups and, to some extent, geometrical quan-
tities. Since, in flat spacetime, Poincaré invariance is
relevant, the energy-momentum operator P participates
in the game, and a conjugate partner Q is a natural
candidate for a position operator.
If one can dispose over conjugate pairs, one may define

Q0
μ ¼ Qμ þ ΘμλPλ and obtain

½Q0
μ; Q0

ν� ¼ 2iΘμν ð9Þ

(for commuting Q’s). This relation is at the basis of some
model classes realizing noncommutative coordinates. This
may provide additional motivation for studying conjugate
pairs in QFT. One may benefit in this context from
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reading [24].1 In [25–27], we have seen that it is nontrivial
to realize the commutator,

½Pμ; Qν� ¼ iημν; ð10Þ

on Fock space immediately, and that it is easier to study
first preconjugate pairs P, X which satisfy

½Pμ; Qν� ¼ iNμν; ð11Þ

where Nμν is an operator that can (at least on states) be
inverted. In fact, previously we relaxed the diagonality
condition expressed in the rhs of (10), which still yields
interesting results [28], but in the present paper we will
study the full strength of (10) on states in Fock space and its
surrounding system of Green functions.
From all preconjugate operators introduced in [28], we

will consider here in detail Xð∇Þ, Xð<Þ, and XðKÞ, which
are based on the mass shell belonging to four-dimensional
Minkowski space, and Xð<0Þ and XðKÞwhich are based on
ð1; 1Þ þ ð0; 2Þ-dimensional spacetime. The preconjugate
XðωÞ does not lead to Lorentz-covariant Q on (1,3)-
dimensional spacetime and is therefore discarded.
Xðp-confÞ turns out to be essentially P and, hence, does
not need to be discussed.
Group theoretic considerations in Sec. III serve to

recapitulate earlier work [22], to find a place for non-
commutative coordinates, and, in particular—via some new
interpretation on Fock space—to control our derivations
there. The distinguished role played by the special con-
formal generators as the only preconjugate X’s which are
local in position space and permit a smooth transition
between off shell and on shell was pointed out already in
[28]. This explains why, in the group theoretic context, they
have been singled out.
In Sec. IV, we discuss our results, offer some conclusions

and point out open questions.

II. CONJUGATE OPERATORS IN FOCK SPACE

As mentioned already in the Introduction, we would like
to construct operators Qν which act in a sense to be
specified as conjugate to the energy-momentum operator
Pμ of the system:

½Pμ; Qν� ¼ iημν: ð12Þ

On Fock space, the right-hand side of (12) cannot be a
multiple of the unit operator,2 in particular, if Q is charge-
like, i.e., annihilates the vacuum, since P does so by general
assumptions of QFT. Since we wish to obtain the Q’s also

from chargelike X’s, we have to understand the commutator
in a weak sense, namely, applied to states—here, to states
of Fock space. The definition of an appropriateQ satisfying

½Pμ; Qν�jp1;…pni ¼ inημνjp1;…;pni; ð13Þ

thus, has to be found case by case.

A. From Xð∇Þ to Qð∇Þ
In [28], we derived the operator

Xð∇Þ
ν ða; a†Þ ¼ i

2

Z
d3p
2ωp

ða†ðpÞ∇νaðpÞ −∇νa†ðpÞaðpÞÞ:

ð14Þ

Here,

∇ν ≡ ∂
∂pν −

pνpλ

m2

∂
∂pλ with

p0 ¼ ωp;
∂

∂p0
¼ 0 on shell: ð15Þ

The operator Xð∇Þ is chargelike and (formally) Hermitian. It
satisfies the algebraic relation

½Pμ; X
ð∇Þ
ν � ¼ i

Z
d3p
2ωp

�
ημν −

pμpν

m2

�
a†ðpÞaðpÞ ð16Þ

¼ iημνN − i
Z

d3p
2ωp

pμpν

m2
a†ðpÞaðpÞ; ð17Þ

where Pμ, N denote the energy-momentum and the number
operator, respectively,

Pμ ¼
Z

d3p
2ωp

pμa†ðpÞaðpÞ;

N ¼
Z

d3p
2ωp

a†ðpÞaðpÞ: ð18Þ

We, therefore, qualified it as an operator preconjugate to P

on Fock space. Xð∇Þ
ν transforms as a vector under Lorentz,

½Mμν; X
ð∇Þ
ρ � ¼ iðXð∇Þ

μ ηνρ − Xð∇Þ
ν ημρÞ; ð19Þ

and for the commutator of X’s, we found

½Xð∇Þ
μ ; Xð∇Þ

ν � ¼ −
i
m2

Mμνða†; aÞ: ð20Þ

On n-particle states, Xð∇Þ generates

1We are grateful to Jochen Zahn for pointing out this reference
to us.

2K. S. is indebted to Rainer Verch for pointing out the
relevance of this fact.
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iXð∇Þ
ν jp1;…;pni ¼

Xn
k¼1

�
∇ðkÞ

ν −
3

2

pðkÞ
ν

m2

�
jp1;…;pni: ð21Þ

The aim is now to construct an operator Qð∇Þ
ν such that it

satisfies

½Pμ; Q
ð∇Þ
ν � ¼ iημνN ð22Þ

on Fock space. Then we shall call this Q conjugate to P.
In order to proceed, we first apply (16) to the vacuum:

the result is zero.
This originates from the fact that the operators involved

are chargelike and implements the aforementioned projec-
tor property of the conjugation equation (12).
Applying (16) to an n-particle state yields

½Pμ;X
ð∇Þ
ν �jp1;…;pni¼ i

�
nημν−

Xn
k¼1

pðkÞ
μ pðkÞ

ν

m2

�
jp1;…;pni:

ð23Þ

This relation implies further projection content of (22):
for n ¼ 1, we have

½Pμ; X
ð∇Þ
ν �jpi ¼ i

�
ημν −

pμpν

m2

�
jpi ð24Þ

and obtain zero when contracting with Pμ from the left. On
states with n > 1, the corresponding result is nonvanishing.
Furthermore, applying the commutator from the lhs of (24)
to a state Xνð∇Þjpi and summing over ν, we find

½Pμ; X
ð∇Þ
ν �Xνð∇Þjpi ¼ i∇μjpi: ð25Þ

This relation can be read as ½Pμ; Xν� being proportional
to iημν on a “nontrivial” state—a state jpi being multiplied
by a nontrivial function of p. This analysis, thus, suggests
either to admit only states containing more than one particle
or to consider states which are multiplied with nontrivial
functions of the momenta. Let us study this latter case first.

1. Inversion on “spin” states

Since, for n ¼ 1, the rhs of (24) is precisely the spin sum
of a massive vector particle,

X3
l¼1

ϵðlÞμ ðpÞϵðlÞν ðpÞ ¼ −
�
ημν −

pμpν

m2

�
; ð26Þ

we are led to introduce one-particle states,

jp; l; μi ¼ ϵðlÞμ ðpÞjpi; ð27Þ

where

ϵðlÞρ ðpÞ ¼
 pl

m

−δlρ þ plpρ

mðmþωpÞ

!
ð28Þ

represents three ðl ¼ 1; 2; 3Þ polarization four-vectors, the
first line gives the ρ ¼ 0 component, and the second line
refers to their spatial components ρ ¼ 1, 2, 3.3

They obey the orthogonality relations:

ϵðl
0Þ

ρ0 η
ρ0ρϵðlÞρ ¼ ηl

0l: ð29Þ

We first find

X3
l¼1

ϵðlÞμ ðpÞϵðlÞν ðpÞ∇ν ¼ −∇μ; ð30Þ

and then

i½Xν; ½i½Pμ; Xν�; a†�� ¼ ∇μa†; ð31Þ

(recall: p0¼ωp;∂=∂p0≡0); the contribution ð3=2Þpμ=m2

drops out. When applied to the vacuum state, this means
that

½Pμ; Xν�ηνρϵðlÞρ jpi ¼ iϵðlÞμ jpi ð32Þ

i.e., the commutator operates on these states as iημν, which
is the desired conjugation relation on one-particle states.
[A slightly different way to derive (32) is to start from (23)
for n ¼ 1, to insert (26) in the rhs, to replace jpi with
jp; l; μi, and then to use (29)]. Due to the orthogonality
relation (29), the vectors jp; l; μi satisfy

hp0; l0; ρ0jp; l; ρi ¼ 2ωpδðp0 − pÞϵðl0Þρ0 ðpÞϵðlÞρ ðpÞ; ð33Þ

and, thus, have positive norm if we define their scalar
product with the metric −ηρ0ρ.
An explicit form of operators Q can be obtained as

follows. We consider

ηρσ½Xρ; ϵ
ðlÞ
σ ðpÞa†ðpÞ� ¼ −iηρσϵðlÞσ ∇ρa†ðpÞ ð34Þ

½Xρ; ϵðlÞρ ðpÞa†ðpÞ� ≐ − ieðlÞa†ðpÞ ð35Þ

eðlÞ ¼
�
−δlk þ

plpk

mðmþ ωpÞ
� ∂
∂pk

: ð36Þ

3After finding (24), recalling (26), and then defining (27), the
author (K. S.) understood a remark made to him earlier by Erhard
Seiler, that the problem with (12) is analogous to the state space
problem in QED.
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These equations are all supposed to be applied to the
vacuum, where, for the commutator (32) as well, the
interchange of the polarization vector with the operators
P, X is permitted. Then the operators

QðlÞ
ðeffÞjpi ¼ −ieðlÞjpi ð37Þ

generate for p ¼ 0, i.e. in the rest frame, precisely trans-
lations in the momentum p: they are indeed conjugate to P.
[We attached “eff” for “effective” because this equality
only holds when read in the context of (32).]
For finite, i.e., nonvanishing, p, we use the fact that the

polarization vectors can be extended and then composed to
form a matrix L with inverse L−1,

ðLðpÞÞρσ ¼
 ωp

m − pj

m

pi
m δji −

pipj

mðmþωpÞ

!
and

ðL−1ðpÞÞσρ ¼
 ωp

m
pj

m

−pi
m δji −

pipj

mðmþωpÞ

!
; ð38Þ

where L is the boost, mapping the 4-vector ðm; 0; 0; 0ÞT
into the 4-vector ðωp; p1; p2; p3ÞT, and L−1 transforms the
derivatives:

ðL−1ðpÞÞρσ
∂

∂pρ ¼
 ωp

m ∂0 þ pj

m ∂j

−pi
m ∂0 þ δji∂j −

pipj

mðmþωpÞ ∂j

!
: ð39Þ

Since, in the present context, ∂0 ≡ 0, we see first of all
that the contraction of ϵ with ∇ results in the differential
operators e in (37). We may then go a step further and use
the fact that the first column of L in (38) represents a fourth

four-vector ϵð0Þρ (timelike) which permits the following
definition:

Qλ
ðeffÞjpi ¼ Xνη

νρϵðλÞρ jpi ð40Þ

¼ Xνη
νρð−Lλ

ρÞjpi ð41Þ

¼ −ðL−1ÞλνXνjpi ð42Þ

QðeffÞ
λ jpi ¼ − iðL−1Þλν∇νjpi: ð43Þ

(We have suppressed the contribution 3
2
pν

m2 within Xνjpi
since it does not contribute eventually in the commuta-
tor ½P;X�.)
Comparing with (39), we see that there we only have to

replace the ordinary by the tangential derivative to find the
result:

QðeffÞ
0 jpi ¼ 0 ð44Þ

QðeffÞ
j jpi ¼ i

� ∂
∂pj −

pjpl∂l

mðmþ ωpÞ
�
jpi: ð45Þ

For the commutators with Pμ, this implies

½Pμ; Q
ðeffÞ
0 �jpi ¼ 0 ð46Þ

½Pμ; Q
ðeffÞ
l �jpi ¼ iϵðlÞμ jpi ¼ −iLl

μjpi: ð47Þ
If we define

PðeffÞ
j ¼ ðL−1ÞμjPμ; ð48Þ

we obtain finally

½Pμ; Q
ðeffÞ
0 � ¼ ½PðeffÞ

μ ; QðeffÞ
0 � ¼ 0 ð49Þ

½PðeffÞ
μ ; QðeffÞ

l �jpi ¼ iημljpi: ð50Þ
As for the interpretation, we may paraphrase the result as

follows: in the rest frame, the polarization vectors are unit
vectors and the X’s coincide with the Q’s. As can be seen
from (15), at p ¼ 0 → ∇0 ¼ 0 in accordance with geom-
etry: at p ¼ 0 the tangential plane is orthogonal to the p0

axis; hence, no tangential motion into that direction can be
generated by an infinitesimal change of p. This implies
X0 ¼ Q0 ¼ 0. At p ¼ 0, the spatial X’s are conjugate to the
spatial P’s. For finite p, and with the help of polarization
vectors, we may define states with “spin” and introduceQ’s
which evolve with the inverse of these polarization vectors
such that Q0 ¼ 0 still and the commutators with the P’s
become polarization vectors, which can then be absorbed
into new P’s which are also just the evolved one’s for P.
In this way, the whole system remains Lorentz covariant.
The obvious analogue to this (from which the idea of
introducing polarization vectors has been suggested) is the
quantization of a free, massive, Abelian vector field
[29,30]. There, as in the present case, a structure in
three-dimensional space is compatible with Lorentz
covariance in four-dimensional spacetime with a correctly
performed embedding: the time component is a well-
determined function of the space components.
Are the states ϵjpi asymptotic ones? Naively, the answer

is “yes,” since only on-shell momenta enter in their
definition. In x space, the polarization vectors represent
nonlocal differential operators, which can be seen, e.g.,
when acting on a scalar field. So, this may very well be an
explicit realization of the general results reported in [7].
Actually, the operators Xð∇Þða†; aÞ are already nonlocal

when expressed in terms of the free scalar field, in marked
contrast to the conformal case, discussed below, since there
X ¼ K and the K’s are local charges in x space.4

4Xð∇Þ represents the geometrical notion “tangential derivative
∇” in Hilbert space, whereas K represents the invariance of
p2 ¼ 0 there.
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We still have to check how the commutator (20) trans-
lates itself to theQ’s. It turns out that, due to the presence of
the polarization vectors, this commutator does not vanish.
When searching for noncommutative coordinates, one may
thus rely on preconjugate pairs [28], introduce Θ’s like in
(9), or employ the operators QðeffÞ (44). We hope to come
back to this question in the near future.
For n ≥ 2, one has to construct three four-vectors which

are totally symmetric in the n momenta, vanish when
contracted with any one of them and are reproduced by
contraction with the transverse projector in the rhs of (26).
We do not pursue this construction any further, since it is
essentially provided by going over to the helicity basis as
used for scattering amplitudes.

2. Inversion on standard states

We now wish to invert (16) on ordinary n-particle Fock
states in order to obtain effectively (12) on states.
By explicit calculation, we find

½Pμ; X
ð∇Þ
ν �jp1;…;pni ¼ i

Xn
k¼1

�
ημν −

pðkÞ
μ pðkÞ

ν

m2

�
jp1;…;pni;

ð51Þ

and the question is whether the 4 × 4-matrix (in the indices
μ, ν) is invertible. As noted above, this is not the case for
n ¼ 1, since Pμ projects to zero. For n ¼ 2, one checks in
the center-of-mass system p≡ p1 ¼ −p2 that the determi-
nant results in

detðr:h:s:Þ ¼ −
16

m4
p2ω2

p ≠ 0: ð52Þ

Hence, this matrix can be inverted, with the inverse applied
from the right and attributed as a factor to X, which thereby
becomes a Q. (The momentum p ¼ 0 is an unphysi-
cal point).
Since, for n larger than two, the kinematical configura-

tion cannot become worse, we conclude that the inversion
is possible for all n ≥ 2.
Let us now discuss the case n ¼ 2 in more detail.

Equation (51) reads

½Pμ; X
ð∇Þ
ν �jp1;p2i ¼ 2iNμνjp1;p2i ð53Þ

with Nμν ¼
�
ημν −

pð1Þ
μ pð1Þ

ν

2m2
−
pð2Þ
μ pð2Þ

ν

2m2

�
: ð54Þ

In the center-of-mass system and after rotating to zero the y
and z components of p, the matrix Nμν is diagonal

Nμν ¼ −

0
BBBBB@

p2
x

m2 0 0 0

0
2ðm2þp2

xÞ
m2 0 0

0 0 1 0

0 0 0 1

1
CCCCCA

μν

: ð55Þ

Multiplying (53) with the inverse of N,

ðN−1Þνρ ¼

0
BBBBB@

− m2

p2
x

0 0 0

0 m2

2ðm2þp2
xÞ 0 0

0 0 1 0

0 0 0 1

1
CCCCCA

νρ

; ð56Þ

we arrive at the conjugation equation in the form

½Pμ; Qν�jp;−pi ¼ 2iημνjp;−pi ð57Þ

Q0 ¼ −
m2

p2
x
X0 Q1 ¼

m2

2ðm2 þ p2
xÞ
X1 ð58Þ

Q2 ¼ X2 Q3 ¼ X3: ð59Þ

Like in the preceding subsection, we have to check now
the norms of the states created by the commutator ½Pμ; Qν�.
The one generated by ½P0; Q0� is opposite to the one
generated by the spatial components ½Pj;Qj� (j ¼ 1, 2, 3 no
sum). Hence, we face the same problem as in gauge
theories: the scalar component ∂μAμ of the vector field
creates states with negative norm. Thus, we try to remedy it
by the same means: we impose a Gupta-Bleuler condition
on the allowed states, thereby characterizing them as
physical ones. Combining the contribution from the (0,0)
component with that of the (1,1) component and requiring
that the sum vanishes, we find

�
−
2m2

p2
x
α0 þ

m2

m2 þ p2
x
α1

�
jp;−pi ¼ 0: ð60Þ

(Here the α’s are real numbers.) This equation has no
solution identically in p. However, in the massless limit,
such a solution exists with α1 ¼ 2α0.
We conclude from this result that, in the massive case,

such an inversion procedure is not consistent. Only the
construction of the preceding subsection seems to be
applicable. Let us have a look at the massless limit.
Obviously, Q0 ¼ Q1 ¼ 0. This tells us that only the spatial
components Q2 and Q3 exist and are conjugate to P2, P3,
respectively. Effectively, the measurable quantities are
these spatial ones. Hence, this solution is not manifestly
Lorentz covariant but, nevertheless, covariant in the sense
of the transition from fP;Qg to fPeff ; Qeffg above and the
case of QðKÞ treated below in Sec. II C.
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B. From Xð<0Þ to Qð<0Þ
In [28], we introduced wedge variables (“<” for

“wedge”):

inp space pu ¼
1ffiffiffi
2

p ðp0 − p1Þ p0 ¼
1ffiffiffi
2

p ðpv þ puÞ

ð61Þ

pv ¼
1ffiffiffi
2

p ðp0 þ p1Þ p1 ¼
1ffiffiffi
2

p ðpv − puÞ ð62Þ

in x space u ¼ 1ffiffiffi
2

p ðx0 − x1Þ x0 ¼ 1ffiffiffi
2

p ðvþ uÞ ð63Þ

v ¼ 1ffiffiffi
2

p ðx0 þ x1Þ x1 ¼ 1ffiffiffi
2

p ðv − uÞ: ð64Þ

Note that pu ¼ pv; pv ¼ pu. The mass shell condition is
given by

2pupv − papa ¼ m2 a ¼ 2; 3 summation over a:

ð65Þ
We then constructed differential operators ∇ð<Þμ, with
μ ¼ u; v; 2; 3 acting on one-particle wave functions. Here
one can admit p0 ¼ �ωp and ωp ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and hence

both shells of the hyperboloid p2 ¼ m2 are covered. When
aiming at operators Xða; a†Þ for realizing these differential
operators on Fock states, one has to introduce new creation
and annihilation operators since the standard ones are based
on p0 ¼ þωp.
One can proceed as follows [31]. A scalar field satisfying

the Klein-Gordon equation is being introduced as

ϕðxÞ ¼ 1

ð2πÞ3=2
Z

d3p
2pv

e−ip̄xAðpÞ; ð66Þ

with d3p≡dpvdp2dp3, p¼ðpv;paÞ;p̄u¼ðm2þpapaÞ=
ð2pvÞ;p̄v¼pv, and p̄a ¼ paa ¼ 2, 3.
The reality of ϕ implies

A†ðpÞ ¼ −Að−pÞ: ð67Þ
One can invert (66),

AðpÞ ¼ 1

ð2πÞ2=3
Z

d3x2pveip̄xϕðxÞ: ð68Þ

The field is quantized by imposing

½AðpÞ; Aðp0Þ� ¼ 2pvδ
3ðpþ p0Þ ð69Þ

AðpÞj0i ¼ 0 for pv < 0

h0jAðpÞ ¼ 0 for pv > 0: ð70Þ
Below we shall need this definition of Fock states because
it will serve to clarify the relations amongst the different
Q’s which we study. For the purposes of the present

discussion, we work, however, with the differential oper-
ators for which the respective modifications are essentially
trivial.
We treat here ∇ð<0Þ and discuss, in terms of it, the

properties of Xð<0Þ and Qð<0Þ). We found the following
in [28]:

∇u ¼ 1

2

� ∂
∂pu

−
1

pu
pv

∂
∂pv

�

∇v ¼ 1

2

� ∂
∂pv

−
1

pv
pu

∂
∂pu

�
ð71Þ

∇2 ¼ ∂
∂p2

−
p2

papa pb
∂

∂pb

∇3 ¼ ∂
∂p3

−
p3

papa pb
∂

∂pb
: ð72Þ

These differential operators satisfy the algebra:

½∇u;∇v� ¼ −1
2pupv

�
pu

∂
∂pv − pv

∂
∂pu

�

¼ 1

papa

�
pu

∂
∂pv − pv

∂
∂pu

�
ð73Þ

½∇u;∇2� ¼ ½∇u;∇3� ¼ ½∇v;∇2� ¼ ½∇v;∇3� ¼ 0 ð74Þ

½∇2;∇3� ¼ −
1

papa

�
p2

∂
∂p3

− p3
∂

∂p2

�

¼ 1

2pupv

�
p2

∂
∂p3

− p3
∂

∂p2

�
: ð75Þ

They, furthermore, obey projection properties:

pu∇u þ pv∇v ¼ 0p2 ∇2 þ p3∇3 ¼ 0: ð76Þ
We defined accordingly the operators Xð<0Þ acting on

functions ~fðpu; pv; p2p3Þ as differential operators by
Xuð<0Þ ¼ i∇u X2ð<0Þ ¼ i∇2 ð77Þ
Xvð<0Þ ¼ i∇v X3ð<0Þ ¼ i∇3: ð78Þ

Their algebra is given by

½Xuð<0Þ; Xvð<0Þ� ¼ i
1

PaPa M
uv ð79Þ

½X2ð<0Þ; X3ð<0Þ� ¼ i
1

2PuPv
M23 ð80Þ

½Xuð<0Þ;X2ð<0Þ�¼ ½Xuð<0Þ;X3ð<0Þ�¼ ½Xvð<0Þ;X2ð<0Þ�
¼ ½Xvð<0Þ;X3ð<0Þ�¼0: ð81Þ

Their commutation relations with the energy-momentum
operator P read
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½Pα; Xβð<0Þ� ¼
i
2

 
− Pu

Pv
1

1 − Pv
Pu

!
αβ

α; β ¼ u; v ð82Þ

½Pa; Xbð<0Þ� ¼ −i

 
1þ P2P2

Pbpb
−P2P3

PbPb

−P3P2

PbPb 1þ P3P3

PbPb

!
ab

a; b ¼ 2; 3:

ð83Þ

The main implication of this structure is the loss of
symmetry: from the original SOð1; 3Þ invariance, only
SOð1; 1Þ × SOð2Þ survived. The remaining generators do
not exist in the limit of vanishing mass and have thus to
be excluded from participation. This is to be compared
with the limit m2 ¼ 0 taken at the end of the preceding
subsection: there, no boost survived—the limit was effec-
tively nonrelativistic, although Lorentz covariance was
not lost.
Some more information from this limit process will be

useful later on. Using the transformation equations (61), we
find that

for p0 ¼ þp1 > 0 ∇u does not exist ð84Þ

∇v ¼ 1

2
ffiffiffi
2

p ð∂0 − ∂1Þ ð85Þ

for p0 ¼ −p1 > 0 ∇v does not exist ð86Þ

∇u ¼ 1

2
ffiffiffi
2

p ð∂0 þ ∂1Þ: ð87Þ

1. The SOð2Þ sector
In close analogy to the massive case, we try to realize the

conjugation structure on states multiplied by polarization
vectors. We choose

ϵð2Þa ¼ 1

jpj
� jpj cos α
jpj sin α

�
ϵð3Þa ¼ 1

jpj
�−jpj sin α

jpj cos α

�

a ¼ 2; 3 jpj≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ p2

3

q
: ð88Þ

An equivalent form is

ϵð2Þa ¼ 1

jpj
�
p2

p3

�
ϵð3Þa ¼ 1

jpj
�−p3

p2

�
a ¼ 2; 3;

ð89Þ

with the obvious identification p2¼jpjcosα;p3¼jpjsinα.
They are spacelike unit vectors,

ϵð2Þa ηabϵð2Þb ¼ ϵð3Þa ηabϵð3Þb ¼ −1; ð90Þ

and satisfy the completeness relation:

ϵð2Þa ϵð2Þb þ ϵð3Þa ϵð3Þb ¼
�
1 0

0 1

�
¼ −ηab: ð91Þ

The right-hand side of (82) indeed is then equal to

−i
P

2;3
c ϵðcÞa ϵðcÞb , and we may expect that

Xbη
bcϵðrÞc jpi ¼ ηbcϵðrÞc i∇bjpi ð92Þ

gives rise to an effective conjugate:

QðrÞ
eff jpi ¼ iηbcϵðrÞc ∇bjpi: ð93Þ

The explicit calculation leads to

Qð2Þ
eff jpi ¼ 0 ð94Þ

Qð3Þ
eff jpi ¼

i
jpj
�
−p3

∂
∂p2

þ p2

∂
∂p3

�
jpi: ð95Þ

For the effective commutator with P, this implies

½P2; Q
ð3Þ
eff �jpi ¼ −i sin αjpi ð96Þ

½P3; Q
ð3Þ
eff �jpi ¼ i cos αjpi: ð97Þ

Therefore, the system has one independent conjugate
pair which corresponds to the fact that the commutator
matrix (82) has a vanishing determinant which in turn
originates from the projector property (76).
The normalization properties (90) tell us that the states

ϵðrÞjpir ¼ 2, 3 have positive norm, if we introduce the
metric ηrsr; s ¼ 2, 3 in this state space.

2. The SOð1;1Þ sector
Similarly to the choice of polar variables in the previous

subsection, it turns out that, in the present sector, hyper-
bolic variables are most suitable. We introduce

pu ¼
cffiffiffi
2

p ðcoshϕ − sinhϕÞ ¼ cffiffiffi
2

p e−ϕ

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pupv

p
¼ ffiffiffiffiffiffiffiffiffiffiffi

papa
p

sum a ¼ 2; 3 ð98Þ

pv ¼
cffiffiffi
2

p ðcoshϕþ sinhϕÞ ¼ cffiffiffi
2

p eþϕ

ϕ ¼ −
1

2
ln
pu

pv
¼ 1

2
ln
pv

pu
: ð99Þ

(Note: since pupv > 0 always, the functions involved are
well defined).
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The commutator matrix (82) assumes the following
form:

½Pα; Xβð<0Þ� ¼
i
2

�− pu
pv

1

1 − pv
pu

�
αβ

¼ i
2

�
−e−2ϕ 1

1 −e2ϕ

�
αβ

: ð100Þ

The tangential derivatives ∇u;∇v applied to a one-
particle state,

jpi ¼ jpu; pv;p2; p3ijpu¼papa
2pv

≡ j � � �i; ð101Þ

become

∇uj � � �i ¼ −
1ffiffiffi
2

p eϕ

c
∂
∂ϕ j � � �i

∇vj � � �i ¼ 1ffiffiffi
2

p e−ϕ

c
∂
∂ϕ j � � �i: ð102Þ

Geometrically interpreted, this means that they generate
motions on the hyperbolas pu ¼ puðϕÞ and pv ¼ pvðϕÞ for
fixed c ¼ ffiffiffiffiffiffiffiffiffiffiffi

papa
p

. Their projection properties (76) are, of
course, maintained.
We now introduce polarization vectors,

ϵðuÞα ¼ Nuffiffiffi
2

p
�− pu

pv

1

�
ϵðvÞα ¼ Nvffiffiffi

2
p
�

1

− pv
pu

�
; ð103Þ

where Nu, Nv are arbitrary normalization factors, then
calculate their normalization,

ϵðσÞγ ηγβϵðτÞβ ¼

8>>>><
>>>>:

− pu
pv
N2

u for σ ¼ u; τ ¼ u

NuNv for σ ¼ u; τ ¼ v

NuNv for σ ¼ v; τ ¼ u

− pv
pu
N2

v for σ ¼ v; τ ¼ v

; ð104Þ

and their completeness relation:

X
τ

ϵðτÞα ϵðτÞβ ¼ N2
up2

u þ N2
vp2

v

2pupv

 pu
pv

−1

−1 pv
pu

!
αβ

: ð105Þ

For the commutator (100), we can therefore write

½Pα; Xð<0Þβ�j � � �i ¼ i
X
τ

ϵðτÞα ϵðτÞβ

pupv

N2
up2

u þ N2
vp2

v
j � � �i:

ð106Þ

Applying this commutator to the state ηβγϵðσÞγ j � � �i, we
find by explicit calculation the expected result, namely,

½Pα; Xð<0Þβ�ηβγϵðσÞγ j � � �i ¼ −iδγαϵðσÞγ j � � �i; ð107Þ
i.e. the lhs acts as a ½Pα; Q

γ
eff � on these states, with

Qu
eff ¼ −i

Nuffiffiffi
2

p ∇v Qv
eff ¼ −i

Nvffiffiffi
2

p ∇u: ð108Þ

Hence, we have two pairs of conjugate operators. This is
due to the fact that the singularity for vanishing pu, pv
prohibits the transition from the upper part of the hyper-
boloid to the lower one (and vice versa) and that the
respective reflection is not in SOð1; 1Þ. If we now choose

Nu ¼ Nv ≡ N which is possible (e.g. with N ¼
ffiffiffiffiffiffiffiffiffiffi
p2
uþp2

v
2pupv

q
),

then the Qσ
eff operate just like a rescaled Xσ (although on

different states), and hence transform as a vector under
SOð1; 1Þ and have a nontrivial commutator,

½Qσ
eff ; Q

τ
eff �j � � �i ¼ −

1

papa

�
pσ ∂

∂pτ
− pτ ∂

∂pσ

�

≡ i
PaPa M

στj � � �i; ð109Þ

withM being the generator of SOð1; 1Þ. From ∇u;∇v, they
inherit on the states j � � �i the functional dependence

ðpuQu
eff þ pvQv

effÞj � � �i ¼ 0: ð110Þ
Reading Eqs. (108) and (109) in terms of the hyperbolic

variables (98) and (102), we have a perfect analogy to the
purely spatial sector with its covariance under the compact
group SOð2Þ.
The norms of the states ϵðσÞα jpu; pv;p2; p3ijpu¼papa

2pv
;

σ ∈ fu; vg can be read off from (104) for Nu ¼ Nv ≡ N
and are positive definite for σ ¼ u, v, respectively,

hqjϵðσÞα ðqÞηαβϵðσÞβ ðpÞjpi ¼ N2δð2Þðq − pÞδðpv þ qvÞ
× hqv; q2; q3jpv;p2; p3i

×

8<
:

pu
pv

for σ ¼ u
pv
pu

for σ ¼ v:
ð111Þ

If we introduce the metric ηαβ, we have a positive definite
norm for these states, maintaining covariance.
The extension from the one-particle situation to n

particles by tensoring deserves further study: the introduc-
tion of relative momenta and separation of the center-of-
mass Hamiltonian as it has been studied in light-cone
quantization (see [32] for a comprehensive review) should
be complemented by the analogous treatment of the q
variables and could yield quite interesting results.

3. From Xð<Þ to Qð<Þ
Having discussed the massless case <0 and seeing no

obvious reason why the extension to the massive case
should not work, we establish now the analogous structure
there. For the case <0, the relevant spacetime was
ð1; 1Þ × ð0; 2Þ, with the symmetry SOð1; 1Þ × SOð2Þ. In
the massive case, one can also realize this symmetry
manifestly, discuss the construction of Q’s and state space
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associated with it, and thereafter implement the symmetry
generators missing in the complete SOð1; 3Þ.
This can be seen as follows. Again, we base our analysis

on the differential operators and not on the Fock space
expressions, since the difference between the two versions
can safely be expected to be a contribution proportional to
Pμ, hence not contributing to the commutator ½P;Q�.
In [28] we found differential operators ∇ð<Þ tangential

to the mass shell 2pupv ¼ m2 þ papa,

∇u ¼ ∂
∂pu

−
pv

m2
pλ

∂
∂pλ

∇2 ¼ ∂
∂p2

þ p2

m2
pλ

∂
∂pλ

ð112Þ

∇v ¼ ∂
∂pv

−
pu

m2
pλ

∂
∂pλ

∇3 ¼ ∂
∂p3

þ p3

m2
pλ

∂
∂pλ

; ð113Þ

which gave rise to operators

Xð<Þ ¼ i∇ð<Þ; ð114Þ
with commutator

½Pμ; X
ð<Þ
ν �fðpÞ ¼ i

�
η̄μν −

pμpν

m2

�
fðpÞ: ð115Þ

Here the indices μ, ν run over the ranges fu; v; 2; 3g, and
the metric η̄ reads

η̄μν ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA

μν

: ð116Þ

The functions f stand for eigenfuctions of the energy-
momentum operator in terms of the wedge variables p, thus
permitting the transition to the mass shell accordingly.
It is now crucial to observe that, in the massive case, a

partial rest system with p2 ¼ p3 ¼ 0 exists in which the
f2; 3g sector is diagonal, whereas the fu; vg sector assumes
the form

½Pα; X
ð<Þ
β �fðpÞ ¼ −i

 p2
u

m2 −1þ pupv
m2

−1 pvpu

m2

p2
v

m2

!
αβ

fðpÞ

¼ i
2

 
− pu

pv
1

1 − pv
pu

!
αβ

fðpÞ: ð117Þ

The second part of the equation follows by use of the
mass shell condition at papa ¼ 0, but this is precisely
Eq. (100). Hence, with c ¼ m, (98), we have precisely the
same solution. Using the polarization vectors of that case,

we conclude that there exist two conjugate pairs in the
fu; vg sector.
In the f2; 3g sector, which is already diagonal, we may

also choose the same polarization vectors as before and thus
have one conjugate pair. The symmetry SOð1; 1Þ × SOð2Þ
is manifest. However, with the mass now nonzero, we may
apply the boosts M02, M03 and the rotations M12, M13 and
realize the complete SOð1; 3Þ of the four-dimensional
Minkowski momentum space. After any one of these
transformations we have to identify the physical states as
the ones obtained from the previously chosen states
together with their transformed polarization vectors, but
this is a covariant procedure. The massless limit cannot, of
course, be performed and requires the transition to a
ð1; 1Þ × ð0; 2Þ spacetime as shown above in the discussion
of the case Xð<0Þ to Qð<0Þ.

C. From X =K to QðKÞ
In [28], we constructed Hermitian operators Kμ as

charges on Fock space which form together with trans-
lations, Lorentz transformations, and dilatations the
conformal algebra. In covariant normalization of the
annihilation and creation operators, they read

K0 ¼
Z

d3p
2ωp

ωpa†ðpÞ∂l∂laðpÞ ð118Þ

Kj ¼
Z

d3p
2ωp

a†ðpÞðpj∂l∂l − 2pl∂l∂j − 2∂jÞaðpÞ: ð119Þ

In the present subsection, we inquire which operatorsQμ

one can find such that (13) is satisfied. As states, we use
one-particle states with vanishing mass. The operators K
give rise to the following variations of the creation operator:

½K0; a†ðpÞ� ¼ ωp∂l∂la†ðpÞ ð120Þ

½Kj; a†ðpÞ� ¼ ðpj∂l∂l − 2pl∂l∂j − 2∂jÞa†ðpÞ: ð121Þ

It will turn out that two cases have to be distinguished: in
the first one, the complete group SOð2; 4Þ is realized [as
fitting to a spacetime (1,3)]; in the second, the rotations
M12,M13 and the boostsM02,M03 are not realized; we have
at our disposal only the group SOð1; 1Þ × SOð2Þ (as fitting
to a conformal group over a ð1; 1Þ þ ð0; 2Þ spacetime). We
use the group names as labels for the two cases.

1. The SOð2;4Þ case
We start from (121),

Kjjpi ¼ ðpj∂l∂l − 2pl∂l∂j − 2∂jÞjpi
j ¼ 1; 2; 3: ð122Þ

We form
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KrPrPjjpi ¼ pjprðpr∂l∂l − 2pl∂l∂r − 2∂rÞjpi
r ¼ 1; 2; 3: ð123Þ

Rewriting (122) with the use of (123), we get

− 2ðpl∂l þ 1Þ∂jjpi

¼
�
Kj þ

1

ω2
p
KrPrPj þ

2

ω2
p
pjpl∂lpr∂r

�
jpi: ð124Þ

With the identifications

Qjjp >¼ i∂jjpi j ¼ 1; 2; 3 ð125Þ
D ¼ ið1þ pl∂lÞjpi; ð126Þ

we arrive at

QjDjpi ¼ 1

2

�
Kj þ Kr PrPj

P2
0

þ 2ðD − iÞ2 Pj

P2
0

�
jpi ð127Þ

Qjjpi ¼
1

2

�
Kj þ Kr PrPj

P2
0

þ 2ðD − iÞ2 Pj

P2
0

�
D−1jpi:

ð128Þ
An equivalent form is

Qjjpi ¼
1

2

�
Kj − Kr P

rPj

PlPl
− 2ðD − iÞ2 Pj

PlPl

�
D−1jpi;

ð129Þ
which refers to spatial components of four-vectors only and
is manifestly covariant with respect to spatial rotations.
The identification (125) implies that we have conjugate

pairs for the three spatial components. It also implies,
however, that

½P0; Qj�jpi ¼ −i
pj

ωp
jpi: ð130Þ

Lorentz covariance is definitely not manifest, and the
conjugation commutator is not diagonal. The rhs of (130)
would project to zero on states carrying the projector
ηjk − PjPk=ðPlPlÞ. This will require further study to follow
shortly.
In the next step, when searching for a Q0, we may

proceed in a completely analogous manner. We start from

K0jpi ¼ ðωp∂l∂lÞjpi; ð131Þ
form �

K0 þ
pr

ωp
Kr

�
jpi ¼ 2

ωp
pr∂rð−pl∂lÞjpi; ð132Þ

and end up with

�
K0 þ

pr

ωp
Kr

�
jpi ¼ −2Q0Djpi ð133Þ

once we identify D as usual and

Q0 ¼
i
ωp

pr∂r: ð134Þ

This Q0, however, is not Hermitian, and its Hermitian
part commutes with P.
We might, of course, accept a non-Hermitian Q0 and

pursue the respective analysis (we shall take up this
discussion below), but for the time being we prefer to
chooseQ0 ¼ 0 and to go along with this choice. The choice
is suggested by two observations to be presented below in
Sec. III A 2 and corresponds, in the analogy to the
quantization of a massless vector field, to using the
Coulomb gauge: in that context, one works with a vanish-
ing zeroth component of the vector field, A0 ¼ 0, thus
giving up manifest Lorentz covariance and showing after-
wards that covariance is nevertheless maintained for
physical quantities. With these considerations in mind,
we first collect the commutation relations of Pμ with Qν,

½Pμ; Qν�jpi≡ iCμνjpi ¼ i

0
BBBBB@

0 −pk=ωp

0

0 ηjk þ pjpk

ω2
p

0

1
CCCCCA

μν

jpi; ð135Þ

and then define polarization vectors [33]: in the given
Lorentz frame, we choose two unit vectors ϵðλÞðpÞ;
ðλ ¼ 2; 3Þ with time component zero, orthogonal to each
other and to the unit vector p=ωp with the orientation
p=ωp ¼ ϵð2Þ × ϵð3Þ. In addition, we introduce a timelike
unit vector η ¼ ð1; 0; 0; 0ÞT (T for transposed) with the help
of which a third independent spacelike unit polarization
vector p̂ with vanishing time component can be defined:

ϵðλÞμ ημνϵðλÞν ¼ −1 λ ¼ 2; 3 ϵð2Þμ ημνϵð3Þν ¼ 0 ð136Þ
pμ

ωp
ημνϵðλÞν ¼ 0 λ ¼ 2; 3

p̂μ ¼
pμ − ðpηÞημffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpηÞ2 − p2

p ð137Þ

p̂μη
μνp̂ν ¼ −1 p̂μη

μνϵðλÞν ¼ 0

λ ¼ 2; 3 ημη
μνην ¼ 1 ð138Þ

ημη
μνp̂ν ¼ 0 ημη

μνϵðλÞν ¼ 0 λ ¼ 2; 3: ð139Þ

These polarization vectors satisfy the completeness
relation:
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−ημν ¼
Xλ¼3

λ¼2

ϵðλÞμ ϵðλÞν þ p̂μp̂ν − ημην: ð140Þ

It expresses the fact that the four-vectors ϵðλÞ with λ ¼ 2,

3 and ϵð0Þμ ≡ ημ; ϵ
ð1Þ
μ ≡ p̂μ span a four-dimensional space.

In analogy to (32), we calculate now the action of the

commutator (135) on the states ϵðλÞρ jpi for λ ¼ 0;…; 3:

iCμνη
νρϵðλÞρ jpi ¼ i

8>>>>><
>>>>>:

0 for λ ¼ 0

ϵð0Þμ for λ ¼ 1

ϵð2Þμ for λ ¼ 2

ϵð3Þμ for λ ¼ 3

9>>>>>=
>>>>>;
jpi: ð141Þ

The “scalar” state λ ¼ 0 is mapped to zero; the “longi-
tudinal” state λ ¼ 1 is mapped onto the scalar state; the
“transverse” states λ ¼ 2, 3 are diagonally mapped onto
themselves. Using ηλλ0 as a metric in the transverse sector,
those states have positive definite norm. On the quotient
space fλ ¼ 0; 1; 2; 3g=fλ ¼ 0; 1g, we have two conjugate
pairs for the spatial directions two and three.
The completeness relation (140) contains information on

the Lorentz covariance of the setting presented here. Since
spacelike vectors remain spacelike and timelike vectors
remain timelike, it is obvious that the whole state space
changes under a Lorentz transformation, but the divisor
also changes and just removes the offending pieces which
could introduce an indefinite metric in the transverse states.
Effectively, the quotient space is Lorentz covariant.
This result also sheds light on the “Lorentz gauge”: if we

were to use a non-Hermitian Q0, we could introduce
manifestly Lorentz-covariant polarization vectors, but
due to the non-Hermitian nature of Q0, we would also
have to form a quotient space which would then be just
equivalent to the Coulomb gauge case. As to locality, a
similar comment applies as in the case of Qð∇Þ. Although
K is local in x space, Q has to be generated from it by
“dividing” through D. And this is certainly a nonlocal
operation (Eq. (103) in [27]).
The solution for general n-particle states has to be

constructed via symmetrized tensor products. We do not
go into the details of this problem.

2. The SOð1;1Þ þ Sð0;2Þ case
The conformal algebra can also be represented in a form

which is closely related to the symmetry which governed
the <0 case: SOð1; 1Þ × SOð2Þ. Here, two boosts and two
rotations are trivially represented. One may interpret this
type of model as being fully realized on four-dimensional
spacetime with a standard representation of the Lorentz
group for all quantities but the (“would-be”) observables X
and Q, respectively. Alternatively, one can interpret the
underlying spacetime to be ð1; 1Þ × ð0; 2Þ and the full

algebra of it to be implemented. In any of the two
interpretations, we have to restrict the generators and
relabel the states accordingly if we wish to realize this
algebra correctly on suitable one-particle Fock states. For
the states, we shall write

jpi ¼ jp1ijpai≡ jp1;pai a ¼ 2; 3: ð142Þ

For the algebra, we introduce

P0ji¼ωpji P2ji¼p2ji
P1ji¼p1ji P3ji¼p3ji

M10ji¼ iωp∂1ji M23ji¼−iðp2∂3−p3∂2Þji
M01ji¼−M10ji M32ji¼−M23ji

Dð1;1Þji¼ ip1∂1ji Dð0;2Þji¼ ið1þp2∂2þp3∂3Þji
K0ji¼ωp∂1∂1ji K2ji¼ðp2∂b∂b−2ðpb∂bþ1Þ∂2Þji
K1ji¼−p1∂1∂1ji K3ji¼ðp3∂b∂b−2ðpb∂bþ1Þ∂3Þji�
ωp≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p1p1

q �
ji≡ jp1;pai:

Hence, on the factors jp1i and jp2; p3i, respectively, the
conformal algebras for spacetimes with one time þ one
space dimension (1,1) and zero time þ two space dimen-
sions (0,2), respectively, are realized.
The boosts M20, M30 and the rotations M12, M13 of the

ambient spacetime (1,3) with conformal group SOð2; 4Þ are
not realized; they correspond to those Lorentz transforma-
tions whose massless limit did not exist and had to be
discarded there.
Turning our attention now to the construction of Q, we

first observe that on the purely spatial part (0,2), we have
identical formulas as compared with the previous case
(1,3), with the range of the indices being restricted to
a ¼ 2, 3. Hence, we have identical results. The operators
Qa; a ¼ 2, 3 are given by

Qajp1;pai ¼
�
Ka − ðD − iÞ2 Pa

PbPb

�
D−1jp1;pai; ð143Þ

where the range of b (summation) is also 2,3 and
D≡Dð0;2Þ. They have the canonical form

Qajp1;pai ¼ i∂ajp1;pai a ¼ 2; 3: ð144Þ

Again, we have to have a look to the fate of the commutator
½P0; Qj�. That it is indeed vanishing in the present situation
can be checked when using the full expression (143), e.g.,
on the state PbPbDjp1;pai.
In the (1,1) part, we note that the Dð1;1Þ and the M10 as

well as the K0 and K1 transformations differ, at most, by a
sign from each other. This implies, on the one hand, that the
M contribution in the commutator ½P;K� is simply related
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to the D contribution and, on the other hand, that we can
avoid using the projector P=PP contracted with K. Indeed,

½Pα; Kβ�jp1;pai ¼ 2

� −p1∂1 ωp∂1

−ωp∂1 p1∂1

�
αβ

jp1;pai

α; β ¼ 0; 1: ð145Þ

Hence, on 1
2
D−1jp1;pai (note: D commutes with ½P;K�),

½Pα; Kβ�
1

2
D−1jp1;pai ¼ i

�
1 ε

−ε −1

�
jp1;paiαβ

α; β ¼ 0; 1; ε ¼ p1

ωp
¼ �1: ð146Þ

In order to diagonalize the system, we introduce

Pð�Þ ¼ 1

2
ðP1 � P0Þ Kð�Þ ¼ 1

2
ðK0 � K1Þ ð147Þ

and then find

½PðþÞ; Kð−Þ� 1
2
D−1jp1;pai ¼ þijp1;pai

ε ¼ þ1 ð148Þ

½Pð−Þ; KðþÞ� 1
2
D−1jp1;pai ¼ −ijp1;pai

ε ¼ −1; ð149Þ

whereas the other commutator entries vanish. In matrix
form, this reads

½Pð�Þ; Kð∓Þ� 1
2
D−1jp1;pai ¼ i

�
1 0

0 −1

�
jp1;pai

¼ iðηÞαβjp1;pai
α; β ¼ þ;−: ð150Þ

It is, thus, legitimate to interpret the operator on the lhs as
the commutator of a conjugate pair P, Q. The rhs tells one
that the norms of the states generated by this pair are
opposite in sign; hence, the best one can do is to prescribe a
kind of Gupta-Bleuler condition by requiring that the
physical states must always contain an equal number of
½PðþÞ; Kð−Þ� factors. The relation is covariant under appli-
cation of Lorentz boosts in the (0,1) plane, i.e. the boost
belonging to the little group of SOð1; 3Þ, since Pα, Kβ are
vector operators with respect to SOð1; 1Þ and Dð1;1Þ
commutes with Mγ;δ (α; β; δ; γ ¼ 0, 1). The SOð2Þ factor
is not touched by these transformations and is itself
covariant under the SOð2Þ transformations.
Again, for general n, one has to construct tensor

products.

III. GROUP THEORETIC APPROACH

The construction of conjugate pairs of operators in
relativistic QFT has, in particular, been pursued by using
group theoretic methods. In [22], it has been based on the
algebra of the conformal group SOð2; 4Þ interpreted as
acting on four-dimensional Minkowski spacetime. In the
first subsection, we review this work to some extent and,
thereafter, put it into the perspective of our present paper.

A. Representation of the conformal group including Q

In [22], a representation of the conformal algebra has
been established by going over to the enveloping algebra,
where the standard generators fPμ;Mμν; D; Kμg, trans-
lations, Lorentz transformations, dilatations, and special
conformal transformations, respectively, have been
replaced by fPμ; Sμν; Y;Qμg such that P and Q form a
conjugate pair and operate on a Hilbert space HQ, S
satisfies commutation relations with itself like M, repre-
sented on a Hilbert space HS, and the single Y generates an
irreducible, hence, one-dimensional, representation on a
Hilbert space HY . Assuming that these three Hilbert spaces
are different, the representation is based on the tensor
product HQ ⊗ HS ⊗ HY . In our notations and conven-
tions, one starts with some Hilbert space of functions of one
variable and defines on it differential operators P, Q which
satisfy

½Pμ; Qν� ¼ iημν ½Pμ; Pν� ¼ 0 ½Qμ; Qν� ¼ 0: ð151Þ

Next, one introduces operators,

Mμν ¼ QμPν −QνPμ þ Sμν ð152Þ

D ¼ 1

2
ðPQþQPÞ þ Y ¼ QPþ 2iþ Y ≡QPþ Y 0

ð153Þ

Kμ ¼ 2

�
−QμQPþ 1

2
Q2Pμ þQμDþQλMμλ

�
; ð154Þ

with Sμν ¼ −Sνμ. One can convince oneself that the new set
of operators fP;Q; S; Yg closes once one assumes that Y
commutes with P, Q, S. The aim is now to express Q, Y, S
in terms of the original operators fP;M;D;Kg. In [22], it
has been shown that Y, S can be expressed in terms of the
Casimir operators of the conformal group. This information
has then been used, first, for giving an interpretation of
these Casimir operators as “conformal spin” for S and
“fundamental length” for Y 0 and, second, for discussing the
irreducibility of this new representation of the conformal
group. Of particular importance is the inversion for Q. It is
performed via combination:
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1

2
Kλ

�
ηλμ −

PλPμ

P2

�
¼ QλY 0

�
ημλ −

PμPλ

P2

�

þQλMρλ

�
ηρμ −

PρPμ

P2

�
: ð155Þ

Here the expression for D and the commutator (151) have
been used, and Y has been replaced by Y 0. Clearly, this
formula makes sense only if P2 does not vanish. In [22], it
has been argued by counting the number of unknowns
and the number of equations that one can solve for Q. We
note, however, and discuss in more detail below that K and
Q are contracted with the transverse projection operator
ημν − PμPν=P2; hence, their relation might be determined
only up to a longitudinal term, proportional to P=P2.
In the case S ¼ 0, one inserts the expression for M in

terms of P, Q, uses D as a function of P, Q, and arrives at

Qμ ¼
�
1

2
Kλ

�
ημλ −

PμPλ

P2

�
þDðD − 2Y − 4iÞPμ

P2

�
D−1;

ð156Þ

i.e., in this case, a suitable longitudinal term showed up and
the solution is unique. Returning to the general case S ≠ 0,
one notes that in a representation of (151) on a Hilbert
space HQ, the latter must contain at least square integrable
functions fðpÞ, with the scalar product being given by
ðf; gÞ ¼ RVþ

d4pf�ðpÞgðpÞ with Vþ denoting the forward

cone of p2 > 0. On this domain, Pμ is self-adjoint and the
Qμ’s are given by i∂=∂pμ which is Hermitian but not self-
adjoint. Their domain of Hermiticity is the dense set of
differentiable functions of pμ which vanish on the boun-
dary of Vþ. The operators K are self-adjoint on HQ: an
irreducible representation for the conformal group has been
found, and the Casimir invariants are multiples of the
identity.
Other, equivalent representations are given by functions

which have support either for spacelike pμ, i.e. p2 < 0,
or lightlike pμ, i.e. p2 ¼ 0, or the negative cone
V− ¼ fp ∈ R4jp2 > 0; p0 < 0g. But due to the fact that
a self-adjoint Qμ has its spectrum on the entire line, the
decomposition into several irreducible representations
does only yield Hermitian Qμ.

1. Noncommutative coordinates

With (156) at hand, having an operator Q which forms,
together with P, a conjugate pair, we can realize a non-
commutative coordinate operator via

Qnc
μ ¼ Qμ þ ΘμνPν; ð157Þ

with Θ real and antisymmetric. Qnc clearly satisfies

½Qnc
μ ; Qnc

ν � ¼ 2iΘμν ð158Þ
[(9)].
The definition ofQnc and the commutation relation (158)

hold on the function space described before for Q and P,
and likewise they have the same domain of Hermiticity. In
which sense these properties indeed qualify Qnc as a “true”
noncommutative coordinate operator remains an open
question.
We note, however, that restricting the functions f, on

which Qnc acts to obey equations of motion, i.e. to go on
shell, one will encounter the intricacies which have been
presented for Q ¼ QðKÞ in subsection II C. These will be
discussed now.

2. Consistency of off-shell and on-shell treatment for S = 0

The above considerations hold on a Hilbert space of
functions fðpÞ which do not necessarily satisfy any differ-
ential equation. In the parlance of QFT, one could under-
stand them as off-shell one-particle Green functions. The
considerations of Sec. II refer to one-particle states, i.e.,
wave functions solving the respective Klein-Gordon equa-
tion. It is then natural to inquire how the results of the
preceding subsection are related to them. As a first topic,
we show how our variations of one-particle states with
respect to K (120) and (121) come out from (152). K has
been defined as

Kμ ¼ 2

�
−QμQPþ 1

2
Q2Pμ þQμDþQλMμλ

�
: ð159Þ

We interpret now the operators as differential operators
δAðA ¼ P;M;DÞ acting on some eigenfunction of P and,
hence, obtain in the first step

δKμ ¼ 2

�
−pνδQν δ

Q
μ þ 1

2
pμδ

Q
λ δ

λ
Q þ δDδQμ þ δMμνδ

ν
Q

�
: ð160Þ

Eventually, we wish to realizeQj by i∂=∂pj and, therefore,
use as δ’s for A ¼ D, M our standard variations and find in
the second step

δK0 jpi ¼
�
2iδQ0 þ ωp

∂2

∂pl∂pl

�
jpi ð161Þ

δKj jpi ¼
�
−2iωpδ

Q
0

∂
∂pj þ 2iωp

∂
∂pj δ

Q
0 þ pj

∂2

∂pl∂pl

− 2pl ∂2

∂pl∂pj − 2
∂
∂pj jpi: ð162Þ

This result tells us that, for δQ0 ¼ ∂=∂p0, the construction
within [22] provides a relation between all variations δK

and all variations δQ which, as we know from the S ¼ 0

case, one is able to invert. For δQ0 ¼ 0 in the relation for δK0 ,
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i.e., no independent variation with respect to direction 0,
i.e. ∂=∂p0 ≡ 0, we obtain precisely our on-shell variations
δK. Hence, we conclude that the two approaches match.
As the second topic, we discuss—for the [22] case S ¼ 0

and a representation with P2 ¼ 0—what we shall call the
“gauge” problem.
We use the solution (156) and apply it to a one-particle

state DP2jpi:

ðQ0DP2Þjpi ¼
�
1

2
× 0 −

1

2
ωppλδKλ þ ωpðið1þ pl∂lÞ

− 4i − 2yÞið1þ pl∂lÞ
�
jpi ð163Þ

¼ 0 for y ¼ −i: ð164Þ

The “direct” term K0 is annihilated by p2 ¼ 0 (on-
shell-ness); however, the projector contribution KλPλP0

is nontrivially cancelled by the contribution coming from
the D terms. For μ ¼ j, however, no cancellation takes
place, and we arrive at a contradiction: the lhs vanishes,
and the rhs does not. Hence, like in the quantization of
(massless) gauge fields, we have to give up at least one of
the fundamental properties which we would have liked to
see realized. In Sec. II C 1, we gave up manifest Lorentz
covariance, used Q0 ¼ 0 (Coulomb gauge), and were able
to realize two conjugate pairs on states with a definite
metric. If we had stuck to manifest covariance, we would
have had to give up Hermiticity for Q0.
We shall see in the next subsection that a similar

phenomenon happens in the massive case.

B. Representation of Poincaré and dilatations

For n ¼ 1, the relation (16) can be rewritten as

½Pμ; X∇
ν � ¼ i

�
ημν −

PμPν

P2

�
: ð165Þ

It is then suggestive to introduce an operator XðcomÞ (“com”
for “composite”),

XðcomÞ
μ ¼ Mμλ

Pλ

P2
; ð166Þ

which is a Lorentz vector,

½Mμν; X
ðcomÞ
ρ � ¼ −iðημρXðcomÞ

ν − ηνρX
ðcomÞ
μ Þ; ð167Þ

that fulfils

½XðcomÞ
μ ; XðcomÞ

ν � ¼ iMμν
1

P2
; ð168Þ

i.e., the analogue of (20), and reproduces (165).

We now choose eigenfunctions of P as representation
space, interpret the operators involved accordingly as
differential operators, and apply XðcomÞ to an eigenfunction
ϕðpÞ:

XðcomÞ
μ ϕðpÞ ¼ i

� ∂
∂pμ −

pμ

p2
pλ∂λ

�
ϕðpÞ: ð169Þ

The first derivative term points to an operator Q which
indeed is realized once we add a term ðD − ŶÞðPμ=P2Þwith
D ¼ ið1þ pλ∂pλÞ; Ŷ ¼ i on ϕðpÞ. Hence,

Qμ ¼ XðcomÞ
μ þ ðD − ŶÞPμ

P2
ð170Þ

yields

QμϕðpÞ ¼ i
∂

∂pμ ϕðpÞ: ð171Þ

We note, first of all, that adding ðD − ŶÞPμ=P2 to XðcomÞ

generates an Abelian operator Qμ (four components) and,
second, that Qμ obviously satisfies the conjugation relation
½Pμ; Qν� ¼ iημν on the eigenfunctions ϕðpÞ.
We, therefore, succeed in finding an operator (in the

enveloping algebra of Poincaré þ dilatations) which
realizes Qμ ¼ i∂=∂pμ. It is also noteworthy that the
differential operator on the rhs of (169) is just an off-shell
continuation of ∇μ.

1. Noncommutative coordinates

In perfect analogy to the conformal case, we are also in
the present context able to define a differential operator
which qualifies—at least formally—as a noncommutative
coordinate operator:

Qnc
μ ¼ Qμ þ ΘμνPν ¼ XðcomÞ

μ þ ðD − ŶÞPμ

P2
þ ΘμνPν:

ð172Þ

(Again, Θ is real and antisymmetric.) It operates on
functions ϕðpÞ, with P, M, D accordingly interpreted as
differential operators. It is to be noted that the mass can be
either nonvanishing or (for off-shell ϕ) vanishing.

2. Consistency of off-shell and on-shell treatment for S = 0

Let us now choose Fock space as representation space.
Then formulas exactly analogous to the above ones hold on
one-particle states with range of indices λ restricted to
f1; 2; 3g:

XðcomÞ
μ jpi ¼ i

� ∂
∂pμ −

pμ

m2
pl∂l

�
jpi ð173Þ
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Qμ ¼ XðcomÞ
μ þ ðD − ŶÞPμ

P2
ð174Þ

Qμjpi ¼ i
∂

∂pμ
jpi: ð175Þ

We obtain Q0 ¼ 0 once we put the derivative ∂=∂p0 ≡ 0.
Thus, these considerations confirm, on the one hand, that one
can invert off shell and, on the other hand, that our on-shell
arguments on the vanishing ofQ0 in subsubsection II A 1 are
correct.
Obviously, the above formulas are very close to those

of [22] for an operator Qμ derived from the conformal
generators Kμ. The precise derivation proceeds as follows.
We use the definitions of (152) for M and D and obtain

MμλPλ ¼ QμP2 −QPPμ þ SμλPλ ð176Þ
D ¼ QPþ 2iþ Y ð177Þ

Qμ ¼
MμλPλ

P2
þ ððD − ðY þ 2iÞÞημλ − SμλÞ

Pλ

P2
ð178Þ

¼ XðcomÞ
μ þ ððD − ðY þ 2iÞÞημλ − SμλÞ

Pλ

P2:
ð179Þ

For S ¼ 0; Ŷ ¼ Y þ 2i, this is precisely our expression
(174). The only difference is that, in our ad hoc approach,
the Abelian character of Q comes out as a result, whereas
here, going along the lines of [22], it has been assumed
from the start. But clearly, the main content is the same.
In the vein of the present section, these considerations

can be interpreted as the fact, that the operators fP;Q; Yg
generate the same representation of the group Poincaré ×
dilatation as the set of generators fP;M;Dg via the
identification (152) with S ¼ 0, Y ¼ i.
Finding one and the same Q on Fock space starting from

different expressions in different algebras is just analogous
to the well-known fact in QFT, à la Lehmann-Symanzik-
Zimmermann, that different interpolating fields may
represent one and the same particle on shell.

IV. DISCUSSION, CONCLUSIONS,
OPEN QUESTIONS

A. Universality

We first summarize our findings schematically in Table I
and then describe them in detail.
In the massive case we started from Xð∇Þ, s. (14), which

has geometrical meaning, and then derived the on-shell
quantities Qð∇Þ, s. (44). Here it is crucial to rely on the

presence of polarization vectors. The fact that QðeffÞ
0 ¼ 0

can however be seen already when looking at the off-shell
quantities [22]-type Qμ, s. (170), which originate from
group theoretic considerations. Going on shell there con-
firms the vanishing of Qð∇Þ0. Universality clearly means
“equality on Fock space” which obviously has been
achieved. Three (spatial) conjugate pairs exist. Due to
the polarization vectors they operate on states with positive
definite norm. Lorentz covariance is nonmanifestly
realized.
In the limit of vanishing mass, this structure of physical

state space can be maintained, butQ1 vanishes; hence, only
two spatial pairs survive.
The generically massless case has been based on the

preconjugate Xμ ¼ Kμ (118), with K generating the special
conformal transformations. The version relevant for this
universality sector is based on the spacetime with dimen-
sion (1,3). Here also QðKÞ0 ¼ 0, confirmed via off-shell
reasoning, (163), and—in order to diagonalize the con-
jugation commutator—one has to mode out one spatial
component. Two spatial conjugate pairs exist. Quite natu-
ral, however, seems to be a truncation of the algebra to
SOð1; 1Þ × SOð2Þ and the spacetime to ð1; 1Þ þ ð0; 2Þ. On
the state space (142), we found two conjugate pairs for the
spatial part (0,2); those over the (1,1) part have to be moded
out for norm reasons. A class of special interest is formed
by Xð<0Þ with its associated operator Qð<0Þ. In the
massless limit (of Xð<Þ to Xð<0Þ) the symmetry shrinks
to SOð1; 1Þ × SOð2Þ and accordingly also the spacetime
to ð1; 1Þ þ ð0; 2Þ. Since however in momentum space a

TABLE I. Cases of preconjugate and conjugate variables.

Preconjugate Conjugate Symmetry of spacetime State space type state space symm. Number of conj. pairs

m2 ≠ 0 Xð∇Þ → Qð∇Þ SOð1; 3Þ Standard
3 spatial

SOð1; 3Þ
m2 → 0 → Qð∇Þjm2¼0 SOð1; 3Þ Standard

2 spatial
SOð1; 3Þ

m2 ¼ 0 XðKÞ →

Quotient
QðKÞ SOð2; 4Þ SOð1; 3Þ 2 spatial
QðKÞ SOð1; 1Þ × SOð2Þ Quotient 2 spatial

SOð1; 1Þ × SOð2Þ
Standard

m2 ¼ 0 Xð<0Þ → Qð<0Þ SOð1; 1Þ × SOð2Þ SOð1; 1Þ × SOð2Þ 2þ 1
Standard

m2 ≠ 0 Xð<Þ → Qð<Þ SOð1; 3Þ SOð1; 3Þ 2þ 1
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double cone is realized as opposed to the single (forward)
cone in the previous examples ðQð∇Þ; QðKÞÞ the resulting
outcome for Qð<0Þ and the state space differs from the
analogous conformal case: on the (0,2) part of spacetime
one independent conjugate pair is realized on two states
with polarization vectors ϵðrÞ; r ¼ 2, 3, s. (96). In the (1,1)
part of spacetime which appears however as ðu; vÞ and as
ðpu; pvÞ on momentum space we have two conjugate pairs
operating on two states with positive definite norm. Due to
the nondiagonal form of the metric, the operators Qu

eff ; Q
v
eff

have a nonvanishing commutator, (109).
Once this structure has been found one can establish

exactly the same one also for nonvanishing mass,
Xð<Þ → Qð<Þ s. (117), and—just due to the nonzero
mass—one can extend it to the full Lorentz group. The
number and type of conjugate pairs coincides with the
massless case and thus reaches the maximal number
obtainable: two in the fu; vg-sector, one in the f2; 3g
sector. The relevant state space is the standard Fock space
augmented by the polarization vectors.
An intriguing result of our analysis may therefore be that

wedge-local quantum field theories just provide by defi-
nition the right balance between position and momentum
variables on the quantum field theoretic level to form
respective operators which come as conjugate pairs on
shell. Time does not play a preferred role any more.
In order to find a direct relation between Qð<0Þ, on the

one hand, and themassless limit ofQð∇Þ andQðKÞð1; 3Þ on
the other, we first recall that Qð∇Þ0 ¼ Qð∇Þ1 ¼ 0 in
the massless limit (57), and that QðKÞ0 and QðKÞ1 are
moded out in the relevant state space (subsection II C 1).

Let us consider the quadruple fQð<0Þu;v; ϵðu;vÞα ; AðpÞj0i;
h0jAðpÞg and compare it with the corresponding quad-

ruples fQðKÞ0;1; ϵð0;1Þα ; a†ðpÞj0i; h0jaðpÞg, fQð∇Þ0;1; ϵð0;1Þα ;
a†ðpÞj0i; h0jaðpÞg. (The writing should indicate that due
to A†ðpÞ ¼ −AðpÞ, (67), as opposed to ða†ðpÞj0iÞ† ¼
h0jaðpÞ, the Qð<0Þ lives in a bigger space than the other
two Q’s.) Now it becomes clear that the latter two are
effectively the projection to zero of the first one (referring to
the Q’s). The reason for the nontriviality of Qð<0Þu;v is the
presence of the double cone: Qð<0Þ operates on a bigger
space as compared with QðKÞ and Qð∇Þ (massless limit).
Those have only one cone as their area of definition. This
corresponds precisely to the nonexistence of∇u, resp.∇v as
expressed in equations (84) which prohibits a 1 ↔ 1
relation.

B. The gauge problem

In the course of our investigations, it has become clear
that the postulate ½Pμ; Qν� ¼ iημν has, first of all, to be
understood in a weak sense: as applied to spaces of
functions or states. It further became clear that the rhs of
the commutator equation may be interpreted like in gauge
theories: the “pure” ημν form corresponds to Lorentz gauge

and is naturally realized off shell: in the ad hoc version as a
Fourier transform (no realization of Q as function of other
operators of the theory), in the [22] version Q ¼ QðKÞ,
and in the [22]-type construction in subsection III B. On
shell, i.e., on Fock states, we met the Landau gauge in
Xð∇Þ → Qð∇Þ, massive version; the Coulomb gauge in
XðKÞ → QðKÞ; ð1; 3Þ spacetime; and the light cone gauge
in Xð<0Þ → Qð<0Þ. In hindsight, the explanation is simple:
the desired ημν can be expanded into a sum over polari-

zation vectors −ημν ¼
P

λ¼3
λ¼0 ϵ

ðλÞ
μ ϵðλÞν , where the polarization

vectors provide a basis for the space spanned by ημν,

leading one to define new states ϵðλÞμ jpi. It is then nontrivial,
but true, that on these states the inversion from a pre-
conjugate X to a conjugate Q is possible. The different
signs within ημν determine the norm of the eventual state.
The solutionQμ ¼ i∂=∂pμ on these states leads toQ0 ¼ 0,
since, on shell, no independent motion in direction zero,
driven by ∂=∂p0, is generated. Q0 is, however, a tentative
time operator. Pauli’s theorem is refined in a very bold
sense: Q0 is not only not self-adjoint—it vanishes. This
must not be understood as a surprise, after all. On-shell
states are constructed within the limit of�infinite time and,
hence, do not move in the flow of time. They cannot serve
as direct instruments to measure time.
In the context of the case Qð<0Þ, the gauge nature of the

definition of conjugate pairs points to a possible relation
with the construction of gauge theories in noncommutative
field theories, notably [34]. This aspect remains to be
explored.

C. General fields, more general states

Obviously, fields and states carrying spin should be
studied along the lines presented in this paper. The reader
finds the respective discussion in the “Discussion and
conclusions” section of [28], so we do not duplicate it
here, but instead concentrate on the aspects of the problems
related to conjugate pairs.
For the construction of conjugate pairs, we introduced

polarization vectors multiplying ordinary Fock states.
They solved the gauge, i.e., the norm problem associated
with conjugate pairs. Hence, these polarization vectors
should be considered as a new, essential attribute for
constructing the observables Q. They may be interpreted
as tensoring the state space with some factor. But this factor
is in our derivation, not arbitrary. This might be in contrast
with [16].
The quadruples fQð<0Þ; ϵ; AðpÞj0i; h0jAðpÞg, fQð∇Þ;

ϵ; a†ðpÞj0i; h0jaðpÞg, and fQðKÞ; ϵ; a†ðpÞj0i; h0jaðpÞg
serve as “detectors” in the one-particle states of Fock
space for determining the value of Q.
On a formal level, these “dressed” states are asymptotic

with respect to their spacetime variables; a deeper under-
standing of them, however, would be desirable. The
inherent nonlocality in x space when deriving the Q’s
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from the X’s and taking into account the effect of the
polarization vectors seems to be in accordance with [7].
Even off shell, one could probably introduce analogous

quantities and discuss in these terms the domain questions
of the operators Q which would then be related to norm
properties as well.
A last point of discussion concerns the relevance of the

state space, here chosen to be the Fock space for reasons of
practical importance. As far as mathematics is concerned,
this choice fits well with the Poincaré group. Coherent
states have been employed in [19] for the group SUð2; 2Þ
which is the universal covering group for SOð2; 4Þ. (The
general machinery for finding coherent states relative to
symmetry groups has later been provided in [35].) Group
theoretic methods lead to conjugate pairs, for the conformal
case carefully studied in [19–21]. The respective norm
problem has, however, not been addressed. Rather, the
authors discarded the componentQ0 and did not discuss the
ensuing problem of covariance with respect to Lorentz
transformations.
In the present context, it would be most interesting to

extend our considerations to thermal states (s. [36]) and

thermal quantum fields ([37]) because this would provide a
first step to widen the view to the far more general problem
that, obviously, quite a few notions of time exist.
One of them is associated with irreversible processes

giving rise to an arrow in time. Realizing something like
this in relativistic systems requires generalization of
entropy and other thermodynamic quantities and the
introduction of respective state spaces. In the general
relativistic context, this might provide even more insight
and explain phenomena not understood today.
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