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We consider quantum field theoretic systems subject to a time-dependent perturbation, and discuss the
question of defining a time-dependent particle number not just at asymptotic early and late times, but also
during the perturbation. Naïvely, this is not a well-defined notion for such a nonequilibrium process, as the
particle number at intermediate times depends on a basis choice of reference states with respect to which
particles and antiparticles are defined, even though the final late-time particle number is independent of this
basis choice. The basis choice is associated with a particular truncation of the adiabatic expansion. The
adiabatic expansion is divergent, and we show that if this divergent expansion is truncated at its optimal
order, a universal time dependence is obtained, confirming a general result of Dingle and Berry. This
optimally truncated particle number provides a clear picture of quantum interference effects for
perturbations with nontrivial temporal substructure. We illustrate these results using several equivalent
definitions of adiabatic particle number: the Bogoliubov, Riccati, spectral function and Schrödinger picture
approaches. In each approach, the particle number may be expressed in terms of the tiny deviations between
the exact and adiabatic solutions of the Ermakov-Milne equation for the associated time-dependent
oscillators.
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I. INTRODUCTION

The stimulated production of particles from the quantum
vacuum is a remarkable feature of quantum field theory that
can occur when the vacuum is subjected to an external
perturbation, such as gauge or gravitational curvature.
Notable examples include the Schwinger effect from
applying an external electric field to the quantum electro-
dynamic (QED) vacuum [1–4], Friedmann-Robertson-
Walker (FRW) cosmologies [5–9], de Sitter space times
[10–15], Hawking radiation due to black holes and gravi-
tational horizon effects [16–21], and Unruh radiation seen
by an accelerating observer [22,23]. This particle produc-
tion paradigm plays an important role in the physics of
nonequilibrium processes in heavy-ion collisions [24–26],
astrophysical phenomena [27], and the search for nonlinear
and nonperturbative effects in ultraintense laser systems
[28–31]. There are also close technical analogues with
driven two-level systems, relevant for atomic and con-
densed matter processes [32,33], such as Landau-Zener-
Stückelberg transitions [34], the dynamical Casimir effect
and its analogues [35,36], Ramsey processes and tunnel
junctions [37,38].
Particle production involves evolution of a quantum

system from an initial (free) equilibrium configuration to
a new final (free) equilibrium configuration through an
intervening nonequilibrium evolution due to a perturbing
background. Quantifying the final asymptotic particle
number involves relating the final equilibrium configura-
tion to the initial one. This is a comparison of well-defined
asymptotic vacua where the identification of positive
(particles) and negative (antiparticles) energy states is

unambiguous and exact. On the other hand, a quantitative
description of particle production at all times, not just at
asymptotically early and late times, requires a well-defined
notion of time-dependent particle number also at inter-
mediate times. This is a challenging conceptual and
computational problem, especially if one wants to include
also backreaction effects and the full nonequilibrium
dynamics. In this paper we discuss in detail one significant
aspect of this problem: the role of the truncation of the
adiabatic expansion in the conventional definition of time-
dependent particle number.
At intermediate times, when the system is out of

equilibrium, it is less clear how to distinguish between
positive and negative energy states. The standard
approach [5,8,9,39–48] involves using the adiabatic
expansion to specify a reference basis set of approximate
states, under the assumption of a slowly varying pertur-
bation. Then a time-dependent particle number is defined
by the projection of the evolving system onto these
approximate states. With this procedure, the final particle
number at asymptotically late time is independent of the
basis choice. However, the particle number at intermediate
times has a significant dependence on the basis choice,
often varying over several orders of magnitude before
settling down to its final basis-independent late-time value
[49]. At first sight, this basis dependence would seem to
immediately invalidate any attempt to define a physically
sensible intermediate-time particle number. In particular,
since the adiabatic expansion is a divergent expansion, we
expect that its truncation should be performed at its
optimal order, which is not fixed at a particular order
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but depends on the physical parameters of the perturba-
tion. But here we can invoke a remarkable universality
result due to Dingle and Berry. Dingle found that the
large-order behavior of the divergent adiabatic expansion
has a universal form, providing accurate estimates of its
behavior under optimal truncation [50]. Berry [51] applied
Borel summation to find a generic smoothing of the
associated Stokes phenomenon (i.e., particle production
[52]), leading to a universal time evolution. We have
previously applied these technical results to the physical
phenomena of particle production in time-dependent
electric fields and in de Sitter space time [49]. Here we
present a systematic analysis of the influence of the choice
of order of truncation of the adiabatic expansion, which
corresponds directly to the nonuniqueness of specifying
the approximate adiabatic reference states.
This surprising universality suggests a natural definition

of time-dependent adiabatic particle number at all times,
corresponding to an optimal adiabatic approximation of
the time evolution. This raises interesting questions regard-
ing the physical nature of such a definition of particle
number, some aspects of which have begun to be tested
experimentally in analogous nonrelativistic quantum sys-
tems [53–60]. We will address these questions in the
quantum field theory context in future work.
In this paper, we examine the truncation of the adiabatic

expansion using several common (and equivalent) formu-
lations of particle production: the Bogoliubov [15,39,
40,42], Riccati [52], spectral function [61,62] and
Schrödinger [19,21] approaches. The analysis also extends
straightforwardly to the quantum kinetic approach
[42,43,63–65] and the Dirac-Heisenberg-Wigner approach
with time-dependent background fields [66,67]. For defi-
niteness we study the Schwinger effect in scalar QED
(sQED) with spatially homogeneous but time-dependent
electric fields, but the basic results apply to a wide variety
of quantum systems, as mentioned above. In Sec. II we
review the relation between the Klein-Gordon equation and
the Ermakov-Milne [68–71] equation, associated with the
exact solution to the quantum harmonic oscillator with
time-dependent frequency [72–74]. The projection of the
adiabatic states onto the exact solution of the Ermakov-
Milne equation leads to an analytic expression for the
time-dependent adiabatic particle number, which clearly
illustrates the basis dependence and simplifies its evalu-
ation. The four approaches to time-dependent particle
production yield precisely the same form, demonstrating
that basis dependence is a universal feature of the adiabatic
particle number at intermediate times. In Sec. III we
examine the influence of different truncations of the
adiabatic expansion. This also yields a new perspective:
the adiabatic approximation of time-dependent particle
production is completely characterized by the exponen-
tially small deviations from the exact Ermakov-Milne

solution. Section IV is devoted to a brief discussion of
the results.

II. ADIABATIC PARTICLE NUMBER

A. Field mode decomposition: Klein-Gordon and
Ermakov-Milne equations

We consider scalar QED for simplicity.1 For a charged
(complex) scalar field Φ in a time-dependent and spatially
homogeneous classical electric field, the scalar field can be

separated into spatial Fourier modes, ΦkðtÞ ∼ fkðtÞei~k·~x, so
that the Klein-Gordon equation, ðD2

μ þm2ÞΦ ¼ 0, reduces
to decoupled linear time-dependent oscillator equations:

Klein-Gordon equation : f̈kðtÞ þ ω2
kðtÞfkðtÞ ¼ 0: ð1Þ

Here the effective time-dependent frequency ωkðtÞ is
[39,40,42]

ω2
kðtÞ≡m2 þ k2⊥ þ ðk∥ − A∥ðtÞÞ2 ð2Þ

where k∥ and k⊥ are the momenta of the produced particles
along and transverse to the direction of the electric field,
respectively. The magnitude of the electric field varies
with time as EðtÞ ¼ − _A∥ðtÞ. There is an analogous mode
decomposition for particle production in cosmological and
gravitational backgrounds [5,13,15,19].
We define quantized scalar field operators ϕkðtÞ and

momenta πkðtÞ for each mode as

ϕkðtÞ ¼ fkðtÞak þ f�−kðtÞb†−k ð3Þ

π†kðtÞ ¼ _fkðtÞak þ _f�−kðtÞb†−k ð4Þ

with (time-independent) bosonic creation and annihilation
operators to describe particles and antiparticles. Bosonic
commutation relations impose the Wronskian condition on
the mode functions fkðtÞ:

fkðtÞ _f�kðtÞ − _fkðtÞf�kðtÞ ¼ i: ð5Þ

Writing the complex mode function fkðtÞ in terms of its
real amplitude ξkðtÞ and phase λkðtÞ,

fkðtÞ≡ ξkðtÞe−iλkðtÞ ð6Þ

the Klein-Gordon equation (1) reduces to the Ermakov-
Milne [68–71] equation for the amplitude function ξk:

1Apart from the opposite phase of interference effects, the
physics is very similar to that of spinor QED, but it is notationally
simpler.
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Ermakov-Milne equation :

ξ̈kðtÞ þ ω2
kðtÞξkðtÞ ¼

1

4ξ3kðtÞ
: ð7Þ

As usual, unitarity determines the time-dependent phase
λkðtÞ in terms of ξkðtÞ as

λkðtÞ ¼
Z

t dt0

2ξ2kðt0Þ
: ð8Þ

Note that with the definition (6), the Ermakov-Milne
equations (7), (8) are completely equivalent to the original
Klein-Gordon equation (1). Another equivalent way to
express the time evolution is achieved by defining the
square of the amplitude function, GkðtÞ≡ ξ2kðtÞ, which
satisfies a nonlinear second-order equation, and its corre-
sponding linear third-order equation:

Gel’fand-Dikii equation∶

2GkG̈k − _G2
k þ 4ω2

kðtÞG2
k ¼ 1 ðnonlinear formÞ ð9Þ

G
⃛

k þ 4ω2
kðtÞ _Gk þ 4ωkðtÞ _ωkðtÞGk ¼ 0 ðlinear formÞ:

ð10Þ

This is known as the Gel’fand-Dikii equation [75], arising
in the analysis of the resolvent Green’s function for
Schrödinger operators, which can be written in terms of
products of solutions to the Klein-Gordon equation (1).
The resolvent approach has been used in the analysis of the
Schwinger effect [76,77].
The particle production problem consists of the follow-

ing physical situation: at initial time the vacuum is defined

with respect to the (time-independent) creation and anni-
hilation operators in (3). Then as time evolves the vacuum
is subjected to a time-dependent electric field, which turns
off again as t → þ∞. At t ¼ þ∞, after the electric field
has been turned off, the production of particles from
vacuum can be inferred from the fraction of negative
frequency modes in the evolved mode functions. As is
well known [39,40,52], this can be expressed as an “over-
the-barrier” quantum mechanical scattering problem, in the
time domain, by interpreting the Klein-Gordon equation (1)
as a Schrödinger-like equation

−f̈k − ðk∥ − A∥ðtÞÞ2fk ¼ ðm2 þ k2⊥Þfk ð11Þ

with physical “scattering” boundary conditions [39–41]:

fkðtÞ∼
8<
:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkð−∞Þ

p e−iωkð−∞Þt; t→−∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðþ∞Þ

p ðAke−iωkðþ∞ÞtþBkeiωkðþ∞ÞtÞ; t→þ∞:

ð12Þ

The scattering coefficients Ak and Bk defined at t ¼ þ∞
satisfy jAkj2 − jBkj2 ¼ 1. So, we can evolve the mode
oscillator equation (1) with initial conditions

fkðt → −∞Þ ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkð−∞Þp e−iωkð−∞Þt ð13Þ

_fkðt → −∞Þ ∼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkð−∞Þ

2

r
e−iωkð−∞Þt ð14Þ

or, equivalently, the Ermakov-Milne equation (7) with
initial conditions
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FIG. 1. Plots of the amplitude function ξk (left), and the real (blue solid line) and imaginary (red dashed line) parts of the mode
function fk (right), with the scattering boundary conditions appropriate for the particle-production problem, for a time-dependent single-
pulse electric field given by EðtÞ ¼ E0sech2ðatÞ, with magnitude E0 ¼ 0.25, a ¼ 0.1, longitudinal momentum k∥ ¼ 0, and transverse
momentum k⊥ ¼ 0, all in units withm ¼ 1. For this electric field, both fk and ξk can be obtained analytically (see the Appendix), and ξk
is plotted as a solid red line in each plot for comparison. Note the smooth behavior of ξkðtÞ, with small oscillations about the final
asymptotic value 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðþ∞Þp

shown in the inset figure on the left. As we show in this paper, these small oscillations encode the
particle-production phenomenon.
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ξkðt → −∞Þ ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkð−∞Þp ð15Þ

_ξkðt → −∞Þ ∼ 0: ð16Þ

A numerical advantage of the Ermakov-Milne equation is
that the amplitude function ξkðtÞ typically varies more
smoothly than the mode function fkðtÞ [and recall from (8)
that the phase λkðtÞ is determined by ξkðtÞ]. This is
illustrated in Fig. 1, for an explicit example of a single-
pulse electric field, for which a well-known analytic exact
solution is possible, as reviewed in the Appendix. In this
paper we primarily express particle number in terms of the
amplitude function ξkðtÞ.

B. Bogoliubov transformation and adiabatic
particle number

In processes that involve a time-dependent background
field, a unique separation into positive and negative energy
states with which to identify particles and antiparticles is
only possible at asymptotic times [39,40], when the electric
field is turned off. This is the same as the nonuniqueness of
defining left- and right-moving modes inside an inhomo-
geneous dielectric medium [78,79].
To proceed, we define a time-dependent adiabatic

particle number in the presence of a slowly varying
time-dependent background, with respect to a particular
set of reference mode functions ~fkðtÞ defined as

~fkðtÞ≡ 1ffiffiffiffiffiffiffiffiffi
2Wk

p e−i
R

t WkðtÞ ⟶
t→−∞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkð−∞Þp e−iωkð−∞Þt:

ð17Þ

Clearly there is an infinite number of such reference mode
functions, all having the same initial asymptotic behavior.
This is related to needing to specify also the initial time
derivative [see also Eq. (23) below]. The problem is to
define a physically suitable set of mode functions for use at
intermediate times.
Insisting that ~fk, as defined in (17), be a solution to the

Klein-Gordon equation (1), the functionWkðtÞ is related to
the effective frequency ωkðtÞ by the well-known
Schwarzian derivative form:

W2
kðtÞ ¼ ω2

kðtÞ −
�
ẄkðtÞ
2WkðtÞ

−
3

4

�
_WkðtÞ
WkðtÞ

�2�
: ð18Þ

This can be solved by a systematic adiabatic expansion in
which the leading order is the standard leading WKB
solution to the mode oscillator equation (1) of the form

Wð0Þ
k ðtÞ ¼ ωkðtÞ [49,51]. Higher order terms are analyzed

in detail in Sec. III.
The Bogoliubov transformation is a linear canonical

transformation that defines a set of time-dependent creation

and annihilation operators, ~akðtÞ and ~b−kðtÞ, from the
original time-independent operators, ak and b−k, defined
at the initial time in (3), (4) [40]. They are related by�

~akðtÞ
~b†−kðtÞ

�
¼
�
αkðtÞ β�kðtÞ
βkðtÞ α�kðtÞ

��
ak

b†−k

�
ð19Þ

where unitarity requires jαkðtÞj2 − jβkðtÞj2 ¼ 1 for scalar
fields, for all t. As a result of the Bogoliubov trans-
formation, the equivalent decomposition of the scalar field
operator in terms of these reference mode functions is

ϕkðtÞ ¼ ~fkðtÞ ~akðtÞ þ ~f�kðtÞ ~b†−kðtÞ: ð20Þ

This can also be interpreted as a linear transformation
between the exact mode functions fkðtÞ and the reference
adiabatic mode functions ~fkðtÞ as

fkðtÞ ¼ αkðtÞ ~fkðtÞ þ βkðtÞ ~f�kðtÞ: ð21Þ

We also need to specify the transformation of the scalar
field momentum operator π†k ¼ _ϕk,

π†kðtÞ ¼ QkðtÞ ~fkðtÞ ~akðtÞ þQ�
kðtÞ ~f�kðtÞ ~b†−kðtÞ; ð22Þ

with a corresponding decomposition of the first derivative:

_fkðtÞ ¼ QkðtÞαkðtÞ ~fkðtÞ þQ�
kðtÞβkðtÞ ~f�kðtÞ: ð23Þ

Here QkðtÞ is defined as

QkðtÞ ¼ −iWkðtÞ þ VkðtÞ: ð24Þ
The inclusion of the real time-dependent function VkðtÞ,
specified later, in the decompositions (21) and (23) repre-
sents the most general decomposition of the exact solution
fk that is consistent with unitarity [the preservation of
the bosonic commutation relations, or equivalently the
Wronskian condition (5)]. This can also be understood
technically by the fact that in (21) we trade one complex
function fk for two complex coefficient functions: αk and
βk. Physically, the freedom in the choice ofWkðtÞ and VkðtÞ
encodes the arbitrariness of specifying positive and neg-
ative energy states at intermediate times. We will see later
that a “natural” choice is Vk ¼ − _Wk=ð2WkÞ, coming from
the derivative of the 1=

ffiffiffiffiffiffiffiffiffi
2Wk

p
factor in the definition of the

reference mode functions (17).
The scattering coefficients in (12) are realized as the

Bogoliubov coefficients evaluated at asymptotically late
time, after the perturbation has turned off: Ak ¼ αkðþ∞Þ
and Bk ¼ βkðþ∞Þ. The time-dependent adiabatic particle
number, for each mode k, is defined as the expectation
value of the time-dependent number operator ~a†kðtÞ ~akðtÞ
with respect to the asymptotic vacuum state. Assuming no
particles are initially present, the time-dependent adiabatic
particle number is
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~N kðtÞ≡ h ~a†kðtÞ ~akðtÞi ¼ jβkðtÞj2: ð25Þ
This reduces the problem to the direct evaluation of the time
evolution of the Bogoliubov transformation parameters
αkðtÞ and βkðtÞ. The decompositions (21) and (23) are
exact provided they satisfy the mode oscillator equation (1),
which implies the following evolution equations for the
Bogoliubov transformation parameters αkðtÞ and βkðtÞ:
�

_αk
_βk

�
¼
 

δk ðΔk þ δkÞe2i
R

t Wk

ðΔk þ δ�kÞe−2i
R

t Wk δ�k

!

×

�
αk

βk

�
ð26Þ

where

δk ¼
1

2iWk
ðω2

k −W2
k þ ð _Vk þ V2

kÞÞ ð27Þ

Δk ¼
_Wk

2Wk
þ Vk: ð28Þ

Note that δk vanishes with the choice Vk ¼ − _Wk=ð2WkÞ.
The numerical evaluation of this coupled differential
equation completely determines the time evolution of
αkðtÞ and βkðtÞ with respect to the basis ðWk; VkÞ. The
time evolution of the adiabatic particle number ~N kðtÞ is
obtained by the modulus squared of the time evolution of
the Bogoliubov coefficient following (25), solved using the
initial conditions αkð−∞Þ ¼ 1 and βkð−∞Þ ¼ 0, consistent
with the scattering scenario in (12) and the assumption of
no particles being initially present. The evolution equa-
tions (26) are dependent on the choice made for the basis
functions WkðtÞ and VkðtÞ, which influences the time
evolution of the adiabatic particle number at intermediate
times but does not affect its final asymptotic value at future
infinity, jBkj2 [49]. This is because the final value is
determined by the global information of the Stokes
phenomenon [52].
The time evolution of the coefficients αkðtÞ and βkðtÞ can

also be expressed directly through the time evolution of the
amplitude function ξkðtÞ. Solving the linear equations (21)
and (23) we find

αkðtÞ ¼ i ~f�kðtÞð _fkðtÞ −Q�
kðtÞfkðtÞÞ ð29Þ

βkðtÞ ¼ −i ~fkðtÞð _fkðtÞ −QkðtÞfkðtÞÞ; ð30Þ

Furthermore, from (6) and its time-dependent phase (8), we
find the identity

_fk
fk

¼
_ξk
ξk

−
i

2ξ2k
: ð31Þ

Thus, the Bogoliubov coefficients may be rewritten in the
uncoupled form as

αkðtÞ ¼
ξkffiffiffiffiffiffiffiffiffi
2Wk

p
��

1

2ξ2k
þWk

�
þ i

�
_ξk
ξk

− Vk

��

× exp

�
−i
Z

t
�

1

2ξ2k
−Wk

��
ð32Þ

βkðtÞ ¼ −
ξkffiffiffiffiffiffiffiffiffi
2Wk

p
��

1

2ξ2k
−Wk

�
þ i

�
_ξk
ξk

− Vk

��

× exp

�
−i
Z

t
�

1

2ξ2k
þWk

��
: ð33Þ

This expresses the time evolution of the Bogoliubov
coefficients as a comparison between the time evolution
of the amplitude function, ξkðtÞ, obtained by solving the
Ermakov-Milne equation (7), and the reference mode basis
ðWk; VkÞ. The adiabatic particle number then follows:

jαkðtÞj2 ¼
ξ2k
2Wk

��
1

2ξ2k
þWk

�
2

þ
�
_ξk
ξk

− Vk

�2�
ð34Þ

~N kðtÞ ¼ jβkðtÞj2 ¼
ξ2k
2Wk

��
1

2ξ2k
−Wk

�
2

þ
�
_ξk
ξk

− Vk

�2�
:

ð35Þ

It is straightforward to confirm that unitarity is pre-
served: jαkðtÞj2 − jβkðtÞj2 ¼ 1.
The expression (35) for the time-dependent particle

number is one of the primary results of this paper. It
emphasizes clearly the dependence of the adiabatic particle
number on the basis choice of reference mode functions
ðWk; VkÞ. It is not enough to know the time evolution of
ξkðtÞ; one must also compare it to the reference functions.
With the choice Vk ¼ − _Wk=ð2WkÞ, the expression for the
adiabatic particle number simplifies further to a direct
comparison between ξkðtÞ and WkðtÞ:

~N kðtÞ ¼
ξ2k
2Wk

��
1

2ξ2k
−Wk

�
2

þ
�
_ξk
ξk

þ
_Wk

2Wk

�2�
: ð36Þ

In subsequent subsections we show how exactly the
same expression arises in other different, but equivalent,
methods for defining and computing the adiabatic particle
number. Then in Sec. III we show how in the adiabatic
expansion the expression (36) can be viewed as a measure
of the tiny deviations between the exact solution ξkðtÞ of the
Ermakov-Milne equation and various orders of the adia-
batic approximation for WkðtÞ.
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C. Riccati approach to adiabatic particle number

The time evolution of the Bogoliubov coefficients can be
reexpressed in Riccati form by defining the ratio [40,52]

RkðtÞ≡ βkðtÞ
αkðtÞ

ð37Þ

which can be viewed as a local (in time) reflection amplitude
for this Schrödinger-like equation (11) [39,40]. Using
the unitarity condition, jαkðtÞj2 − jβkðtÞj2 ¼ 1, the time-
dependent adiabatic particle can be rewritten as

~N kðtÞ ¼
jRkðtÞj2

1 − jRkðtÞj2
: ð38Þ

In the semiclassical limit inwhichm is the dominant scale (as
is relevant in QED), this over-the-barrier scattering problem
has an exponentially small reflection probability, which
implies that the adiabatic particle number is well approxi-

mated by ~N kðtÞ≃ jRkðtÞj2.
Using (37), the Bogoliubov coefficient evolution equa-

tions (26), with the basis ðWk; VkÞ, become a Riccati
equation:

_Rk ¼ ðΔk − δkÞe−2i
R

t Wk − 2δkRk − ðΔk þ δkÞe2i
R

t WkR2
k

ð39Þ

with δkðtÞ and ΔkðtÞ defined by Eqs. (27), (28). This is
straightforward to evaluate numerically with the initial
conditions Rkð−∞Þ ¼ 0, and an initial phase of zero. It can
also be solved semiclassically for Rkðþ∞Þ, thereby yield-

ing the final particle number ~N kðþ∞Þ, using complex
turning points and the Stokes phenomenon [52].
Alternatively, using the forms calculated previously for

αkðtÞ and βkðtÞ, Eqs. (33), we obtain an analytic repre-
sentation of the reflection probability as

jRkj2 ¼
ð 1
2ξ2k

−WkÞ2 þ ð_ξkξk − VkÞ2

ð 1
2ξ2k

þWkÞ2 þ ð_ξkξk − VkÞ2
: ð40Þ

Expression (38) for the adiabatic particle number then
yields

~N kðtÞ ¼
ξ2k
2Wk

��
1

2ξ2k
−Wk

�
2

þ
�
_ξk
ξk

− Vk

�2�
ð41Þ

confirming the consistency with the Bogoliubov trans-
formation expression (35).

D. Spectral function approach to adiabatic
particle number

Another physically interesting formalism to describe
particle production at intermediate times is to define the
time-dependent adiabatic particle number through the use of
spectral functions [61,62], which are constructed in terms
of correlation functions of the time-dependent creation and
annihilation operators (19) used in (25). In this section we
show how the basis dependence arises in this formalism.
The spectral approach defines the adiabatic particle

number through unequal time correlators of time-
dependent creation and annihilation operators, in a limit
that recovers the equal-time adiabatic particle number:

~N kðtÞ ¼ lim
t1;t2→t

h ~a†kðt1Þ ~akðt2Þi: ð42Þ

Using (19), (20), the time-dependent creation and annihi-
lation operators can be written in terms of the decomposed
field operators as

~akðtÞ ¼ i ~f�kðtÞ½∂0 −Q�
kðtÞ�ϕkðtÞ ð43Þ

~b†−kðtÞ ¼ −i ~fkðtÞ½∂0 −QkðtÞ�ϕkðtÞ ð44Þ

which match smoothly to the initial creation and anni-
hilation operators. Note the dependence on the choice
of basis ðWkðtÞ; VkðtÞÞ, through the function QkðtÞ≡
−iWkðtÞ þ VkðtÞ, defined in (24). We thus obtain

~N kðtÞ ¼
1

2WkðtÞ
lim

t1;t2→t
ð½∂1 −Qkðt1Þ�

× ½∂2 −Q�
kðt2Þ�Þhϕ†

kðt1Þϕkðt2Þi; ð45Þ

where ∂j denotes a derivative with respect to time tj. This
expression shows a clear separation between the compu-
tation of the correlation function hϕ†

kðt1Þϕkðt2Þi, and the
projection onto a set of reference modes, characterized by
QkðtÞ in (24). In [61,62] a particular basis choice was made,
Wk ¼ ωk and Vk ¼ 0, corresponding to a leading-order
adiabatic expansion and a particular phase choice via Vk.
Equation (45) makes it clear that this is just one of an
infinite set of possible choices, for which the final particle
number at late asymptotic time is always the same, but for
which the particle number at intermediate times can be very
different.
Spatially homogeneous time-dependent external electric

fields decouple the modes k allowing the spectral functions,
the Wigner transformed Pauli-Jordan function Akðt; k0Þ
and Hadamard functionDkðt; k0Þ to be expressed as [61,62]

Akðt; k0Þ ¼
1

V

Z
dTeik0T

��
ϕk

�
tþ T

2

�
;ϕ†

k

�
t −

T
2

���
ð46Þ
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Dkðt; k0Þ ¼
1

V

Z
dTeik0T

�	
ϕk

�
tþ T

2

�
;ϕ†

k

�
t −

T
2

�
�
ð47Þ

with the conjugate variable pair being the energy k0 and the
time separation T. The spatial volume is denoted by V.
The correlation function in (45) can be expressed

through a linear combination of the inverse Wigner trans-
formed functions (46), (47) as�

ϕ†
k

�
t −

T
2

�
ϕk

�
tþ T

2

��

¼ V
2

Z
dk0
2π

e−ik0TWkðt; k0Þ ð48Þ

¼ V
2

Z
dk0
2π

e−ik0TðDkðt; k0Þ −Akðt; k0ÞÞ

ð49Þ
where the total spectral function is defined as Wkðt; k0Þ≡
Dkðt; k0Þ −Akðt; k0Þ. Inserting this expression into (45),
and taking the limit, yields an expression for the time-
dependent adiabatic particle number in terms of the trans-
formed correlation function as

~N kðtÞ ¼
V

4Wk

Z
dk0
2π

�
1

4
∂2
t − Vk∂t þ ðWk þ k0Þ2 þ V2

k

�
×Wkðt; k0Þ: ð50Þ

This expression (50) is the natural extension of Fukushima’s
result [61,62], which employed the leading adiabatic
approximation choice of basis functions as WkðtÞ ¼ ωkðtÞ
and VkðtÞ ¼ 0, to a general basis specified by WkðtÞ
and VkðtÞ.
It is important to appreciate that the spectral function

Wkðt; k0Þ in (50) can be expressed directly in terms of the
solutions to the Klein-Gordon equation or the Ermakov-
Milne equation, without reference to the reference mode
basis functions. Assuming no particles are initially present
in the vacuum, the expectation value of the field operator
commutator and anticommutator are��

ϕk

�
tþ T

2

�
;ϕ†

k

�
t −

T
2

���

¼ fk

�
tþ T

2

�
f�k

�
t −

T
2

�
− f�k

�
tþ T

2

�
fk

�
t −

T
2

�
ð51Þ�	

ϕk

�
tþ T

2

�
;ϕ†

k

�
t −

T
2

�
�

¼ fk

�
tþ T

2

�
f�k

�
t −

T
2

�
þ f�k

�
tþ T

2

�
fk

�
t −

T
2

�
:

ð52Þ

Therefore, the spectral function Wkðt; k0Þ assumes the
form

Wkðt; k0Þ ¼
2

V

Z
dTeik0Tfk

�
t −

T
2

�
f�k

�
tþ T

2

�
: ð53Þ

Alternatively, this can be rewritten in terms of the ampli-
tude function ξkðtÞ:

Wkðt; k0Þ ¼
2

V

Z
dTeik0Tξk

�
t −

T
2

�
ξk

�
tþ T

2

�

× exp

�
i
Z

tþT=2

t−T=2

dt0

2ξ2kðt0Þ
�
: ð54Þ

Thus, the spectral functionWkðt; k0Þ is determined without
any knowledge of the basis functions ðWkðtÞ; VkðtÞÞ and is
exact provided that integration is performed over all possible
values of the separation T. The behavior of the spectral
function (54) is shown in Fig. 2 for the soluble case of a
single-pulse electric field (see the Appendix), integrated over
a finite rangeT ¼ −T0 toT ¼ þT0, for various values of the
cutoff T0. The two upper plots and the lower left plots in
Fig. 2 are plotted for the case when E0 ¼ 0.25, a ¼ 0.1,
k⊥ ¼ k∥ ¼ 0, in units with m ¼ 1, with the upper left plot
integrated with T0 ¼ 20, the upper right plot integrated with
T0 ¼ 40, and the lower left plot integratedwithT0 ¼ 60. The
lower right plot was plotted with the parameters used in [61],
with m ¼ 0, E0 ¼ 0.5, k∥ ¼ 0.25, k⊥ ¼ 0 and integration
withT0 ¼ 40. In each plot of Fig. 2, the dominant features of
Wkðt; k0Þ (54) are well approximated by the negative
effective frequency −ωkðtÞ, plotted with a blue dashed line,
which demonstrates that the spectral function Wkðt; k0Þ
represents the projection of the fundamental frequency on
a plane spanned by time and the conjugate energy variable
k0. Furthermore, we see that the oscillating features of
the spectral function decrease as T0 → ∞. Lastly, we
compared the results obtained in [61], calculated by
numerically evaluating the mode function fkðtÞ and the
subsequent integral in (54), with the exact solution to the
mode-oscillator equation (see the Appendix), which indi-
cates that the numerical approach suffers from sensitive
numerical instabilities in the evaluation of (54) and themode
function fkðtÞ.
We next show how the expression for the time-dependent

adiabatic particle number that was previously derived in the
Bogoliubov (35) and Riccati formalisms (41) is obtained in
the spectral representation formalism. From Eq. (50), and
using the spectral function (53), the expression is recovered
by first rewriting the derivatives in terms of t, and
reorganizing the resulting terms via integration by parts
to eliminate, apart from the exponential term eik0T , the k0
dependence in the integrand. The k0 integration produces a
Dirac delta function which, when integrated over T,
eliminates all integrations. Two terms appear: one
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corresponding directly to the adiabatic particle number, and
the other to a surface boundary term. Recast in terms of ξk
using the identity (31), this lengthy but straightforward
calculation leads to an expression for the time-dependent
adiabatic particle number (50) as

~N kðtÞ ¼
ξ2k
2Wk

��
1

2ξ2k
−Wk

�
2

þ
�
_ξk
ξk

− Vk

�2�
ð55Þ

noting that the total surface boundary term vanishes when
T0 → ∞. This agrees precisely with the Bogoliubov and
Riccati expressions in (35). We see again that the adiabatic
particle number is basis dependent at intermediate times,
through the choice of the Wk and Vk functions. As before,
ξk is solved exactly without any knowledge of the basis
functions, and the selected basis functions are inserted into
the expression (45) to determine the adiabatic particle
number with respect to that basis. In the spectral function

FIG. 2. Density plots with respect to t, and the conjugate energy variable k0, of the spectral function Wkðt; k0Þ for a time-dependent
single-pulse electric field given by EðtÞ ¼ E0sech2ðatÞ, obtained by numerically evaluating Eq. (54) over the range T ¼ −T0 to
T ¼ þT0, utilizing the exact solution ξkðtÞ to the mode-oscillator equation found in the Appendix. The upper left, upper right and lower
left plots are plotted with the magnitude E0 ¼ 0.25, a ¼ 0.1, longitudinal momentum k∥ ¼ 0.25, and transverse momentum k⊥ ¼ 0, in
units with m ¼ 1, with the upper left plot integrated with T0 ¼ 20, the upper right plot integrated with T0 ¼ 40, and the lower left plot
integrated with T0 ¼ 60. The lower right plot is plotted for the physically unrealistic case with m ¼ 0, E0 ¼ 0.5, k∥ ¼ 0.25, k⊥ ¼ 0, as
discussed in [61], and integrated with T0 ¼ 40. In each plot the dominant features of Wkðt; k0Þ are well matched by the negative
effective frequency, −ωkðtÞ (2) (blue dashed line), artificially plotted over each density plot for direct comparison.
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approach this follows because the spectral function (54) is
determined once and for all by the solution ξkðtÞ, and then
the basis-dependent particle number is obtained by the
transform in (50).

E. Time-dependent oscillator and adiabatic
particle number

Another common way to define adiabatic particle
number is through the solution to the time-dependent
oscillator problem, for each momentum mode k
[19,21,40,73]. We consider Schwinger vacuum pair pro-
duction via the Schrödinger picture time evolution of an
infinite collection of time-dependent quantum harmonic
oscillators, in the presence of a time-dependent back-
ground. The sQED Hamiltonian becomes

ĤðtÞ ¼
X
k

�
1

2
p2
k þ

1

2
ω2
kðtÞq2k

�
ð56Þ

where k labels each independent spatial momentum mode,
and the field operators map to their quantum mechanical
counterparts as ϕk → qk and πk → pk. The exact solution
of the corresponding time-dependent Schrödinger equation
can be written as [72–74]

ψðqk; tÞ ¼
X
n

cn;kψnðqk; tÞ ð57Þ

where cn;k is a constant and

ψnðqk; tÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�

1

2πξ2kðtÞ
�

1=4

× e−
1
2
ΩkðtÞq2kHn

�
qkffiffiffi
2

p
ξkðtÞ

�
e−iðnþ1

2
ÞλkðtÞ: ð58Þ

Here ξkðtÞ is the solution to the Ermakov-Milne equa-
tion (7), λkðtÞ is defined by (8), and the time-dependent
function ΩkðtÞ in the Gaussian factor is defined as

ΩkðtÞ ¼ −i
_ξk
ξk

þ 1

2ξ2k
: ð59Þ

These ψnðqk; tÞ are normalized eigenfunctions of the exact
invariant operator

ÎkðtÞ ¼ q2k

�
_ξ2k þ

1

4ξ2k

�
þ ξ2kp

2
k − ξk _ξkðpkqk þ qkpkÞ ð60Þ

satisfying

∂ Îk
∂t þ i½Ĥ; Îk� ¼ 0 ð61Þ

and

ÎkðtÞψnðqk; tÞ ¼
�
nþ 1

2

�
ψnðqk; tÞ: ð62Þ

The function ΩkðtÞ in (59) is directly related to the Riccati
formalism of Sec. II C, and the mode decomposition of the
operator qk, the analog of the field (3), in the Heisenberg
picture:

iΩkðtÞ ¼
_ξk
ξk

þ i
2ξ2k

¼
_f�k
f�k

¼ iWk

�
1 − r�k
1þ r�k

�
þ Vk: ð63Þ

Here, ξkðtÞ is again the solution to the Ermakov-Milne
equation (7), fkðtÞ is the solution to the Klein-Gordon
equation (1), and the function rkðtÞ is related to the
reflection amplitude (37) by an extra phase:

rkðtÞ ¼ RkðtÞe2i
R

t WkðtÞ: ð64Þ

Note that solving for r�kðtÞ in (63) in terms of ξk leads
directly to the analytical form (40) of the Riccati reflection
probability.
We now define the adiabatic particle number by projec-

ting these states onto a basis set of adiabatically evolving
eigenstates of the time-dependent Hamiltonian. The most
general expression for the adiabatically evolving eigen-
function ζnðqk; tÞ, motivated by the assumption of a slowly
varying potential given by ωkðtÞ, takes the form

ζnðqk; tÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�
WkðtÞ
π

�
1=4

× e
i
2
Q�

kðtÞq2kHnð
ffiffiffiffiffiffiffiffiffiffiffiffi
WkðtÞ

p
qkÞe−iðnþ

1
2
Þ
R

t WkðtÞ ð65Þ

where WkðtÞ and VkðtÞ are basis functions, with the
function QkðtÞ defined as in (24).
At asymptotic early and late times, these adiabatic

eigenfunctions reduce to well-defined stationary harmonic
oscillator eigenfunctions

ζnðqk; t → �∞Þ ∼ 1ffiffiffiffiffiffiffiffiffi
2nn!

p
�
ωkð�∞Þ

π

�
1=4

e−
1
2
ωkð�∞Þq2k

×Hnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkð�∞Þ

p
qkÞe−iðnþ1

2
Þωkð�∞Þt:

ð66Þ

A state initially prepared at a particular time can evolve to
become a superposition of a variety of states at a later time t.
Assuming that the system is prepared in the ground state at
t ¼ −∞, the probability amplitude of making a transition to
the nth state is obtained by projecting the adiabatic eigen-
functions ζnðqk; tÞ (66) onto the exact eigenfunction (58) for
the ground state ψ0ðqk; tÞ. The transition amplitude is
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Cn0;kðtÞ ¼
Z

∞

−∞
dqkζ�nðqk; tÞψ0ðqk; tÞ

¼
�

1

2ξ2kWk

�
1=4

ffiffiffiffiffiffiffiffiffi
2Wk

Jk

s �
2Wk

Jk
− 1

�
n=2

× eiðnþ
1
2
Þ
R

t Wk−iλkðtÞ ð67Þ

where n ¼ 0; 2; 4;…. Here JkðtÞ≡ΩkðtÞ þ iQkðtÞ.
Recalling the form ofΩkðtÞ (59) andQkðtÞ (24), the function
JkðtÞ simplifies to

JkðtÞ ¼
�

1

2ξ2k
þWk

�
− i

�
_ξk
ξk

− Vk

�
: ð68Þ

Its modulus squared is related to the Bogoliubov coefficient
αkðtÞ and the Riccati reflection probability (40) as

jJkðtÞj2 ¼
2Wk

ξ2k
jαkðtÞj2 ¼

2Wk

ξ2k

�
1

1 − jRkj2
�
: ð69Þ

Using this result, the term ð2Wk
Jk

− 1Þ in Eq. (67) simplifies to

2Wk

Jk
− 1 ¼ −

ð 1
2ξ2k

−WkÞ − ið_ξkξk − VkÞ
ð 1
2ξ2k

þWkÞ − ið_ξkξk − VkÞ
¼ r�k ¼ R�

ke
−2i
R

t Wk :

ð70Þ

Its magnitude is equal to the magnitude of the reflection
amplitude RkðtÞ. Thus the final form for the transition
probability from the ground state to the nth state can be
expressed in terms of the reflection probability as

jCn0;kðtÞj2 ¼
ðn − 1Þ!!

n!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jRkj2

q
jRkjn; ð71Þ

for n ¼ 0; 2; 4;… For example, the time-dependent vacuum
persistence probability, the probability of the system occu-
pying the ground state at time t, is

jC00;kðtÞj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jRkj2

q
¼ jαkðtÞj−1 ð72Þ

as expected.
The vacuum expectation value of the state occupation

number for a system that adiabatically evolves from being
initially prepared in the ground state at t ¼ −∞ is the
weighted sum of the transition probabilities (71). Utilizing
the Rk-representation for convenience, the sum simplifies to

~N kðtÞ ¼
X∞

n¼0;2;4;…

njCn0;kðtÞj2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jRkj2

q X∞
n¼0;2;4;…

ðn − 1Þ!!
ðn − 2Þ!! jRkjn

¼ jRkj2
1 − jRkj2

ð73Þ

¼ ξ2k
2Wk

��
1

2ξ2k
−Wk

�
2

þ
�
_ξk
ξk

− Vk

�2�
: ð74Þ

Thus, we find exactly the same expression as before, in the
Bogoliubov, Riccati and spectral function approaches to
adiabatic particle number. In the Schrödinger picture
approach the basis dependence enters through the arbitrari-
ness in (65) of specifying the adiabatic eigenstates ζnðqk; tÞ
of the time-dependent Hamiltonian.

III. ADIABATIC EXPANSION AND OPTIMAL
ADIABATIC APPROXIMATION OF

PARTICLE NUMBER

In the preceding section the expression (35) for the time
evolution of the adiabatic particle number was equivalently
derived through the Bogoliubov, Riccati, spectral function
and Schrödinger approaches. However, the adiabatic refer-
ence mode functions ðWk; VkÞ were left unspecified, and
the arbitrariness of defining positive and negative energy
states implies that an infinite number of consistent choices
could be made. In this section we characterize the different
basis choices and identify an optimal one corresponding to
the optimal truncation of the adiabatic expansion of (18).
This section also explores the structure and final form of the
adiabatic particle number (35), to demonstrate that particle
production can be viewed as a measure of small deviations
between the exact solution of the Ermakov-Milne equation
and various orders of the adiabatic expansion; the devia-
tions from the exact mode function (6) by its adiabatic
approximation; the reference mode function (17) in the
Heisenberg formulation; or, equivalently, the deviations
from the exact eigenfunction by its adiabatic approximation
(65) in the Schrödinger formulation.

A. Adiabatic expansion and basis selection

In Sec. II B we introduced adiabaticity and specified
approximate reference mode functions (17), which led to a
definition of the time-dependent adiabatic particle number
that is dependent on the choice of basis (35). We now study
and characterize the basis choices.
Insisting that the reference mode functions (17) be a

solution to the Klein-Gordon equation (1) requires that the
function WkðtÞ satisfies Eq. (18). This equation can be
solved by an adiabatic expansion [49,51], in which the
leading order is the standard leading WKB solution to (1).
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This adiabatic expansion is divergent and asymptotic.
Successive orders of the adiabatic expansion of WkðtÞ
are obtained by expanding (18) in time derivatives and
truncating the expansion at a certain order of derivatives of
the fundamental frequency ωkðtÞ (2). The up-to-(jþ 1)th
order expansion ofWkðtÞ, with the superscript (j) denoting
the order of the adiabatic expansion, is then generated by
the iterative expansion of

Wðjþ1Þ
k ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
kðtÞ −

�
ẄðjÞ

k ðtÞ
2WðjÞ

k ðtÞ
−
3

4

�
_WðjÞ
k ðtÞ

WðjÞ
k ðtÞ

�2�vuut ð75Þ

truncated at terms involving at most 2ðjþ 1Þ derivatives
with respect to t. For the first three orders see [49]. For
backgrounds that become constant at asymptotic times it

follows that WðjÞ
k ð�∞Þ ¼ ωkð�∞Þ, and _WðjÞ

k ð�∞Þ ¼ 0

for all j.
Despite ambiguity in its explicit form at intermediate

times, a critical feature of the real time-dependent function
VkðtÞ is the necessary requirement that it vanish at
asymptotic times:

Vkð�∞Þ ¼ 0: ð76Þ

At asymptotically late time, the function Vk is no longer
ambiguous since the background becomes constant and the
identification of particles and antiparticles becomes exact.
In terms of the time-dependent adiabatic particle number
(35), this implies that the particle number at future infinity
is independent of the choice of Vk (as well as Wk). At
intermediate times, however, the choice critically
influences the time evolution of the adiabatic particle
number. In the Schrödinger approach the basis function
Vk is identified from (65) as an unphysical time-dependent
phase. This is equivalently observed in the Bogoliubov,
Riccati, and spectral function formalisms through the
Wronskian condition (5) where the normalization of the
mode function is unaffected by the inclusion of the function
Vk in the mode decompositions (21), (23), and thus admits
the same interpretation as a purely time-dependent phase.
In this paper we argue that the choice

VkðtÞ≡ −
_WkðtÞ

2WkðtÞ
ð77Þ

is the most suitable and natural form. In the Bogoliubov,
Riccati, and spectral function approaches the choice (77)
arises in the specified mode function decomposition (23) by
retaining the contribution from the time derivative of the
1=

ffiffiffiffiffiffiffiffiffi
2Wk

p
factor in the definition of the reference mode

function (17). In the Schrödinger approach, the choice (77)
appears from insisting that the general form of the adia-
batically evolving eigenfunction (65) be a solution to the
time-dependent Schrödinger equation. It is a solution

provided that the basis function VkðtÞ has the form (77),
and yields the same condition on the function Wk as (18),
consistent with the Bogoliubov, Riccati, and spectral
function approaches. We adopt this natural choice (77)
for the remainder of this paper. In the next section we
explore the dependence on the choice of WkðtÞ.

B. Optimal adiabatic approximation of particle number

Now we consider the specification of the functionWkðtÞ,
via various orders of expansion of the adiabatic expansion
(75). The time evolution of the adiabatic particle number at
jth adiabatic order is obtained by inserting the preferred

basis (77) into (35) and settingWkðtÞ ¼ WðjÞ
k ðtÞ throughout

the expression. At the jth adiabatic order, it takes the form

~N ðjÞ
k ðtÞ ¼ ξ2kðtÞ

2WðjÞ
k ðtÞ

��
1

2ξ2kðtÞ
−WðjÞ

k ðtÞ
�

2

þ
�
_ξkðtÞ
ξkðtÞ

þ
_WðjÞ
k ðtÞ

2WðjÞ
k ðtÞ

�
2
�
: ð78Þ

This is completely characterized by the amplitude function

ξkðtÞ and the basis functionWðjÞ
k ðtÞ. The general procedure

to evaluate (78) is the following: solve the Klein-Gordon
equation (1), or equivalently the Ermakov-Milne equa-

tion (7), to obtain ξkðtÞ, and compute WðjÞ
k ðtÞ from the

truncation of the adiabatic expansion at the desired adia-
batic order.
The typical behavior of the time evolution of the

adiabatic particle is shown in various figures in this section.
We use the explicit example of the single-pulse electric
field, for which an analytical solution to ξk is known (see
the Appendix) and the evolution of the adiabatic particle
number can thus be analytically obtained. Figure 3 illus-
trates this for the first six orders of the adiabatic expansion.
The main observations are
(1) Truncating the adiabatic expansion at different

adiabatic orders does not affect the final t ¼ þ∞
value of the particle number.

(2) Truncating the adiabatic expansion at different adia-
batic orders does significantly affect the adiabatic
particle number at intermediate times, in particular in
the vicinity of the time of the applied pulse.

(3) Truncating the adiabatic expansion at the optimal
order leads to the smoothest time evolution, which
agrees well with the universal form (79) found by
Berry [49,51].

(4) Going beyond the optimal order again leads to large
oscillations in the time vicinity of the applied pulse.
This behavior is characteristic of an asymptotic
expansion.

A sequential adiabatic order-by-order comparison of the
adiabatic particle number in Fig. 3 shows the typical trend:
at intermediate times the adiabatic particle number initially
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exhibits large oscillations, which become smaller as the
optimal order is reached (here, parameters have been
chosen such that j ¼ 3, for the sake of clarity of figure
presentation), and then increase beyond this optimal order
of truncation. This behavior is generic for (divergent and
asymptotic) adiabatic expansions where the optimal order
of truncation corresponds to a minimum error approxima-
tion, and is strongly dependent on the magnitude of the

expansion parameter and the parameters found in the
effective frequency ωkðtÞ (2). Dingle found a universal
large-order behavior to the adiabatic expansion [50], which
was then used by Berry to obtain an approximate universal
form for the evolution of the Bogoliubov coefficient βkðtÞ
across a Stokes line when the adiabatic expansion is
truncated at optimal order [51]. This result was obtained
by Borel resumming the adiabatic expansion using the
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FIG. 3. The time evolution of the adiabatic particle number (78) for the first six orders of the adiabatic expansion, considering a time-
dependent electric field given by EðtÞ ¼ E0sech2ðatÞ with E0 ¼ 0.25, a ¼ 0.1, longitudinal momentum k∥ ¼ 0, and transverse
momentum k⊥ ¼ 0, in units with m ¼ 1. The adiabatic particle number (blue solid line) was computed from (78) using the exact

solution ξkðtÞ to the Ermakov-Milne equation (7) and the jth order adiabatic expansion for the reference function WðjÞ
k ðtÞ from (75).

Berry’s universal form (79) for the particle number is plotted as a red dashed line. We see clearly the typical behavior of an asymptotic
expansion, which initially tends towards the optimally truncated form, but then the inclusion of further terms leads to deviation away
from this form. For these parameters, the optimal truncation order is j ¼ 3. Notice that the final asymptotic value of the adiabatic particle
number is independent of the order of truncation, but that the intermediate time oscillations of the particle number in the conventional
leading order approximation are a factor of 20 times larger than the final value.
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characteristic factorially divergent form [see (83) below]
found by Dingle, as discussed in detail in [49,51]. This
resummation effectively decouples the Bogoliubov time
evolution equations (26), leading to a simple evolution for
βkðtÞ, and hence by (25) for the adiabatic particle number
~N kðtÞ. In [49] this result was applied to the problem of
particle production, leading to the simple universal expres-
sion for a single-pulse perturbation

~N kðtÞ ≈
1

4
jErfcð−σkðtÞÞe−F

ð0Þ
k j2 ð79Þ

where the exponential factor e−F
ð0Þ
k is determined by the

(real-valued and positive) singulant between the complex
conjugate pair of turning points

Fð0Þ
k ¼ i

Z
t�c

tc

ωkðtÞdt: ð80Þ

[tc is the solution of ωkðtcÞ ¼ 0 that is closest to the real
axis and located in the upper half plane.] The time
dependence is given by a universal error function form
with argument

σkðtÞ≡ ImFkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReFkðtÞ

p ð81Þ

where the “singulant” function FkðtÞ is defined as

FkðtÞ ¼ 2i
Z

t

tc

ωkðt0Þdt0: ð82Þ

In terms of this singulant function, the leading large-order
growth of the adiabatic expansion has a factorial form
[50,51]

φð2lþ2Þ
k ðtÞ ∼ 2

π

ð2lþ 1Þ!
F2lþ2
k ðtÞ ; l ≫ 1 ð83Þ

where the φð2lÞ
k ðtÞ functions are defined as

WkðtÞ≡ ωkðtÞ
X∞
l¼0

φð2lÞ
k ðtÞ: ð84Þ

For a generalization of (79) for multipulse perturbations,
incorporating quantum interference effects, see [49].
The approximate universal form (79) is plotted as a

dashed red curve in Fig. 3, showing good agreement with
the truncation at the optimal order. These, and subsequent,
plots illustrate the agreement of the optimally truncated
adiabatic expansion with Berry’s universal error function
form (79), in the physical context of particle production.
Note that in all our plots, for the sake of clarity of
presentation, we have chosen physical parameters such

that the optimal order is of approximately 3; other choices
with larger optimal order would simply require more plots.
The physical implications of the universal form (79) are
discussed further in [49], and in the conclusions in Sec. IV.
Figure 3 also confirms that the new expression (78) for the
adiabatic particle number agrees with the same adiabatic
order-by-order evaluation, obtained numerically, in [49]. In
comparison to evaluating the coupled time evolution
equations (26) for the Bogoliubov coefficient BðjÞ

k ðtÞ, or
the Riccati equation (39) for the reflection amplitude

RðjÞ
k ðtÞ, a numerical advantage of (78) is that one does

not need to repeatedly solve complicated differential
equations for the adiabatic particle number in which the
difficulty only increases with truncating the adiabatic
expansion at higher orders. The Klein-Gordon equation (1),
or the Ermakov-Milne equation (7), is solved once for ξkðtÞ,
and then repeatedly projected against different WðjÞ

k ðtÞ,
reflecting the truncation of the adiabatic expansion at
different adiabatic orders

C. Particle production as a measure
of small deviations

In this section we “zoom in” and study the fine details of
the time dependence of the particle number. Truncating the
adiabatic expansion at different orders typically has only a
small effect onWkðtÞ, compared to the leading order of the
expansion Wk ¼ ωkðtÞ, but nonetheless has a large and
nontrivial effect on the time evolution of the adiabatic
particle number. In this section we explore how these small
deviations of the adiabatic approximation influence the
evolution of the adiabatic particle number, and show how
this indicates the physical phenomenon of quantum
interference.

1. Optimal adiabatic approximation
of the Ermakov-Milne equation

In Sec. II, the adiabatic particle number was found to be
determined by the projection of the solution fkðtÞ of the
Klein-Gordon equation (1) against a basis set of approxi-
mate adiabatic states ~fkðtÞ defined in (17). The reference
states ~fkðtÞ are chosen to be as good as possible approx-
imations to the exact solution fkðtÞ, with the appropriate
particle production boundary conditions in (12). Therefore,
the approximation is effectively characterized at the jth
order of the adiabatic expansion by

ξk ∼ ð2WðjÞ
k Þ−1

2 ð85Þ

and

_ξk
ξk

∼ VðjÞ
k ≡ −

_WðjÞ
k

2WðjÞ
k

: ð86Þ
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This last approximation can be equivalently seen as
neglecting the exponentially small r�k in (63). Notice that
the approximation (86) is the ratio form of the first
derivative of approximation (85), and thus is consistent
with the natural basis choice (77).
The structure of the adiabatic particle number in (78) is

explicitly composed of the differences of the adiabatic
approximations (85), (86). We now examine how these
approximations work in practice with the adiabatic expan-
sion truncated at various adiabatic orders. Figures 4 and 5
examine the adiabatic approximation (85) by directly
comparing 1=ð2ξ2kÞ with the adiabatic functions WðjÞ

k for
various adiabatic orders, considering a single-pulse time-
dependent electric field of the form

E∥ðtÞ ¼ E0sech2ðatÞ ð87Þ

given by the time-dependent vector potential

A∥ðtÞ ¼ −
E0

a
tanhðatÞ: ð88Þ

Figure 4 considers the first three adiabatic orders, while
Fig. 5 considers the next three orders. The left-hand figures
show the time evolution over a wide range of t; the central
panels zoom in on the vicinity of the pulse, and the right-
hand panels zoom in on the late-time behavior. Notice that
the approximation (85) is extremely good, with only very

small deviations between WðjÞ
k ðtÞ and 1=ð2ξ2kðtÞÞ, which

moreover do not change in any particularly dramatic
fashion as the truncation order changes. Notice the tiny
oscillations about an accurate time-averaged approximation
at late times. There are small deviations near the time
location of the pulse, which shrink until the optimal order
and then begin to grow again. Again, this is typical of
adiabatic expansions where the optimal order of truncation
corresponds to a minimum error approximation, and results

in WðjÞ
k corresponding to the optimal adiabatic approxima-

tion of 1=ð2ξ2kÞ. This optimal approximation represents a
simple “best possible” approximation.
Figures 6 and 7 examine the adiabatic approximation

(86), the first derivative ratio form of approximation (85),
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FIG. 4. The adiabatic approximation (85) of 1=ð2ξ2kÞ (blue solid line) compared to the adiabatic expansion function WðjÞ
k (red dashed

line), for the first three orders of the adiabatic expansion, considering a time-dependent single-pulse electric field given by E∥ðtÞ ¼
E0sech2ðatÞ with the magnitude E0 ¼ 0.25, a ¼ 0.1, longitudinal momentum k∥ ¼ 0, and transverse momentum k⊥ ¼ 0, in units with
m ¼ 1. The central panels zoom in on time scales near the pulse, while the right-hand panels zoom in on the late-time behavior. Notice
that the deviations of the approximation from the exact form are typically very small, capturing well the averaged time dependence
except near the peak of the pulse, and except for tiny oscillations about the average value at late times.
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by directly comparing _ξk=ξk with the basis function

VðjÞ
k ¼ − _WðjÞ

k =ð2WðjÞ
k Þ, evaluated at various orders j of

the adiabatic expansion, using the same electric field
configuration and parameters as used for Figs. 4 and 5.
Figure 6 considers the first three adiabatic orders, while
Fig. 7 considers the next three orders. In both Figs. 6 and 7,
_ξk=ξk is plotted as a solid blue curve, and VðjÞ

k ¼
− _WðjÞ

k =ð2WðjÞ
k Þ is plotted as a dashed red curve. The

left-hand panels show the time evolution over a wide range
of t, and the right-hand panels zoom in on the vicinity of the
pulse. Notice that there are once again oscillations about an
accurate time-averaged approximation at late times, but that
these oscillations are now larger than those seen at late
times in Figs. 4 and 5. This is because this is effectively
measuring the derivatives of the tiny late-time oscillations
in Figs. 4 and 5. We also see that the changes from one
order of truncation to the next are not particularly
pronounced.

We now examine the approximations by considering a
time-dependent electric field with nontrivial temporal
structure, to illustrate the phenomenon of quantum inter-
ference. Figures 8, 9 and 10 examine the adiabatic
approximation (86) by considering the alternating-sign
double-pulse electric field of the form

E∥ðtÞ ¼ −E0sech2½aðtþ bÞ� þ E0sech2½aðt − bÞ� ð89Þ

given by the time-dependent vector potential

A∥ðtÞ ¼ −
E0

a
ð− tanh ½aðtþ bÞ� þ tanh ½aðt − bÞ�Þ: ð90Þ

Figure 8 compares the adiabatic approximation (86) at
the optimal order of truncation, j ¼ 3, for two different
cases of constructive (left panel) and destructive (right

panel) interference. At this optimal order, Vð3Þ
k corre-

sponds to the optimal adiabatic approximation of _ξk=ξk,
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FIG. 5. As in Fig. 4 but with plots of the next three adiabatic orders, j ¼ 3, 4, 5, for the adiabatic approximation (85) of 1=ð2ξ2kÞ (blue
solid line) compared to the adiabatic expansion functionWðjÞ

k (red dashed line), considering a time-dependent single-pulse electric field
given by E∥ðtÞ ¼ E0sech2ðatÞ with the magnitude E0 ¼ 0.25, a ¼ 0.1, longitudinal momentum k∥ ¼ 0, and transverse momentum
k⊥ ¼ 0, in units with m ¼ 1. The central panels zoom in on time scales near the pulse, while the right-hand panels zoom in on the late-
time behavior. Notice that the deviations of the approximation from the exact form are typically very small, capturing well the averaged
time dependence except near the peak of the pulse, and except for tiny oscillations about the average value at late times. The optimal
order is reached at j ¼ 3, after which the deviations begin to grow again.
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accurately capturing the average of its amplitude at all
times, but missing the oscillatory behavior, which
encodes critical information regarding particle produc-
tion. Figures 9 and 10 show zoomed-in views, near
each of the pulses, for the left and right panels of
Fig. 8, respectively. Figures 9 and 10 are plotted with
the same pulse parameters but with different longi-
tudinal momentum to highlight the manifestation of
quantum interference that is associated with electric

fields having nontrivial temporal structure [37,52].
Specifically, the longitudinal momentum in Fig. 9
corresponds to maximum constructive interference in
the adiabatic particle number at asymptotic times, while
the longitudinal momentum in Fig. 10 corresponds to
maximum destructive interference. A similar adiabatic
order-by-order comparison of the adiabatic approxima-
tion shows the same trend observed in Figs. 4, 5, 6,
and 7: the matching of both sides of approximation (86)
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FIG. 6. Plots of approximation (86), the time derivative form of (85) as a ratio, by comparing _ξk=ξk (blue solid line) with the adiabatic

function VðjÞ
k ¼ − _WðjÞ

k =ð2WðjÞ
k Þ (red dashed line), for the first three orders of the adiabatic expansion, considering a time-dependent

single-pulse electric field given by E∥ðtÞ ¼ E0sech2ðatÞwith the same pulse parameters as for Fig. 4. The left-hand panels show the time
evolution over a wide range of t, and the right-hand panels zoom in on the vicinity of the pulse. The approximate (red dashed) curves
accurately describe the averaged time evolution, but miss the late-time oscillations, which are more pronounced than those in Figs. 4 and
5 because they are effectively the derivatives of those small oscillations.
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improves until the optimal order is achieved, and then
grows more and more mismatched after this optimal
order of truncation. The oscillations in _ξk=ξk directly
correspond to quantum interference: in Fig. 9, we
observe oscillations that increase in magnitude as a
result of each pulse and constructively interfere with
one another to double in magnitude, while in Fig. 10
we observe oscillations that increase in magnitude as a

result of the first pulse but then cancel completely as

the oscillations introduced by the second pulse destruc-

tively interfere with the first. Note that the magnitude of

the oscillations in between the two pulses in Figs. 9

and 10, which are widely temporally separated, are

equal to the magnitude of the oscillations at asymptotic

times in the single-pulse case in Figs. 6 and 7.
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FIG. 7. As in Fig. 6, but with plots of the next three adiabatic orders, j ¼ 3, 4, 5, showing the approximation (86), the time derivative

form of (85) as a ratio, by comparing _ξk=ξk (blue solid line) with the adiabatic function VðjÞ
k ¼ − _WðjÞ

k =ð2WðjÞ
k Þ (red dashed line),

considering a time-dependent single-pulse electric field given by E∥ðtÞ ¼ E0sech2ðatÞ with the same pulse parameters as for Fig. 4. The
left-hand panels show the time evolution over a wide range of t, and the right-hand panels zoom in on the vicinity of the pulse. The
approximate (red dashed) curves accurately describe the averaged time evolution, but miss the late-time oscillations, which are more
pronounced than those in Figs. 4 and 5 because they are effectively the derivatives of those small oscillations. The optimal truncation
order is at j ¼ 3, after which the deviations begin to increase again.
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FIG. 8. Plots of the approximation (86) at the optimal truncation order (j ¼ 3), for the time derivative form of (85) as a ratio, by

comparing _ξk=ξk (blue solid line) and VðjÞ
k ¼ − _WðjÞ

k =2WðjÞ
k (red dashed line), for a time-dependent electric field given by (89) with the

magnitude E0 ¼ 0.25, a ¼ 0.1, b ¼ 50, and transverse momentum k⊥ ¼ 0, in units with m ¼ 1. The longitudinal momentum k∥ was
selected to correspond to maximum constructive (k∥ ¼ 2.51555 for left plot) and maximum destructive interference (k∥ ¼ 2.49887 for
right plot) in the particle number at future infinity [37,52]. In the maximum constructive case (left panel), the oscillations introduced
after each pulse interfere to increase in magnitude, and double in scale. In the maximum destructive case (right panel), the oscillations
introduced by the first and second pulse interfere to completely cancel.
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FIG. 9. Zoomed-in view of the left plot of Fig. 8, plotted for a closer examination of the approximation (86) in the vicinity of the pulse
centers ðt ¼ �50Þ, for the case of maximum constructive interference.
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FIG. 10. Zoomed-in view of the right plot of Fig. 8, plotted for a closer examination of the approximation (86) in the vicinity of the
pulse centers ðt ¼ �50Þ, for the case of maximum destructive interference.

ROBERT DABROWSKI and GERALD V. DUNNE PHYSICAL REVIEW D 94, 065005 (2016)

065005-18



2. Adiabatic particle number as a measure
of small deviations

In this subsection we examine how the small deviations
from the adiabatic approximations (85), (86) determine the
adiabatic particle number. We rewrite the expression (78) as
the sum of two terms, the first of which measures the
deviations of the adiabatic approximation (85), and the
second of which measures the deviations of the adiabatic
approximation (86):

~N ðjÞ
k ðtÞ ¼ 1

4

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðjÞ

k ðtÞξ2kðtÞ
q

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WðjÞ
k ðtÞξ2kðtÞ

q
!

2

þ 1

4

 
d
dt ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðjÞ

k ðtÞξ2kðtÞ
q

Þ
WðjÞ

k ðtÞ

!2

: ð91Þ

As shown in the previous subsection, the relationship
between the exact solution ξkðtÞ to the Ermakov-Milne
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FIG. 11. The time evolution of the adiabatic particle number (91) (black solid line) and its components, the first (blue solid line) and
second (red solid line) terms on the right-hand side of (91), for the first six orders of the adiabatic expansion, considering a time-
dependent single-pulse electric field given by EðtÞ ¼ E0sech2ðatÞ with E0 ¼ 0.25, a ¼ 0.1, longitudinal momentum k∥ ¼ 0, and
transverse momentum k⊥ ¼ 0, in units with m ¼ 1. Berry’s universal form for the particle number is plotted as green dashed lines.
Notice that each of the components (blue and red curves) is highly oscillatory and out of phase, especially at late times, but the sum is
smooth except in the vicinity of the pulse. Also note the difference in scales in the various plots. The deviations decrease dramatically as
the optimal order (j ¼ 3) is approached, and then grow again as this order is passed. Further features are discussed in the text.
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equation and the adiabatic expansion functions WðjÞ
k ðtÞ is

given by the approximations (85), (86). The structure of
the adiabatic particle number (78) specifically extracts the
very small changes introduced by truncating the adiabatic
expansion at different orders and the small oscillations from
the exact solution to the Ermakov-Milne equation that
directly encode the particle-production phenomenon. This
yields a new perspective: particle production is character-
ized by the measure of these small deviations. The first term
on the right-hand side of (91) measures the deviations of

2WðjÞ
k ðtÞξ2kðtÞ from 1, while the second term on the right-

hand side of (91) effectively measures the derivatives of this
deviation.

In Fig. 11 we see the results of these small deviations.
The black solid line in Fig. 11 shows the exact adiabatic
particle number, for the first six orders of the adiabatic
expansion. These are the curves plotted previously as
solid blue lines in Fig. 3. The blue and red curves in
Fig. 11 show, respectively, the first and second terms on
the right-hand side of (91). Notice that their combined
envelope matches the adiabatic particle number (the black
curve), but the blue and red curves oscillate out of phase
with one another, since the latter effectively characterizes
the time derivative of the former. Each component is
highly oscillatory, especially at late times, but their
envelope is smooth except in the vicinity of the pulse.
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FIG. 12. The time evolution of the adiabatic particle number (91) (black solid line) and its components, the first (blue solid line) and
second (red solid line) terms on the right-hand side of (91), at the optimal order of the adiabatic expansion, for the time-dependent
double-pulse electric field given by (89) with E0 ¼ 0.25, a ¼ 0.1, b ¼ 50, longitudinal momentum k∥ ¼ 2.51555, and transverse
momentum k⊥ ¼ 0, in units with m ¼ 1. The longitudinal momentum was selected to correspond to maximum constructive
interference, with the final value being four times the intermediate plateau value between the two pulses. At intermediate times, notice
the phase difference of the oscillatory components of (91), which remarkably sum to a smooth evolution of the adiabatic particle
number.
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FIG. 13. The time evolution of the adiabatic particle number (91) (black solid line) and its components, the first (blue solid line) and
second (red solid line) terms on the right-hand side of (91), at the optimal order of the adiabatic expansion, for the time-dependent
double-pulse electric field given by (89) with E0 ¼ 0.25, a ¼ 0.1, b ¼ 50, longitudinal momentum k∥ ¼ 2.49887, and transverse
momentum k⊥ ¼ 0, in units withm ¼ 1. The longitudinal momentum was selected to correspond to maximum destructive interference,
with vanishing final particle number at future infinity. At intermediate times, notice the phase difference of the oscillatory components of
(91), which remarkably sum to a smooth evolution of the adiabatic particle number.
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Also notice the difference of scales in the various plots.
The deviations decrease significantly as the optimal order
is approached, and then grow again as this order is
passed. The green dashed line shows Berry’s universal
approximation, which matches the optimally truncated
order of the adiabatic expansion (here j ¼ 3). At the
optimal order, we see the culmination of the optimal
adiabatic approximation of the Ermakov-Milne equation
in the final answer of the particle number: the scales of
the oscillations of both components become comparable,
they level off much more quickly, and they sum to yield
the smoothest time evolution of the adiabatic particle
number.
In Figs. 12 and 13 we plot in blue and red the same two

components of the right-hand side of the expression (91),
but consider the alternating-sign double-pulse electric field
given by (89). Both figures utilize the same pulse param-
eters, but with different longitudinal momenta that corre-
spond to maximum constructive interference, Fig. 12, and
maximum destructive interference, Fig. 13. The construc-
tive interference can be seen in Fig. 12 as the final value of
the particle number at future infinity ~N kðþ∞Þ, which is
4 ¼ 22 times the value at times in between the two pulses.
The destructive interference can be seen in Fig. 13 through
the vanishing final value of the particle number at future

infinity ~N kðþ∞Þ. Both figures show just the optimal order
of truncation of the adiabatic expansion (j ¼ 3 for these
parameters), but we have confirmed that a similar adiabatic
order-by-order comparison shows the same trend exhibited
in the phase and scale of the oscillations, as seen in Fig. 11.
In Fig. 12, the interference results in the components being
out of phase in such a way to produce enhancement of
particle production, which follow an n2 coherence pattern
[49], while in Fig. 13 it leads to cancellation with no
particles produced at the final time. Again, in each case,
the two different components of (91) remarkably sum to
produce a smooth evolution of the particle number at
all times.

IV. CONCLUSION

In this paper we have explored the detailed structure of
the time evolution of the adiabatic particle number for
particle production in time-dependent electric fields (the
Schwinger effect). Through the Ermakov-Milne equa-
tion (7), the amplitude of the solution to the Klein-
Gordon equation (1), an analytic expression (78) for the
time-dependent adiabatic particle number was derived by
projection of the exact solution ξkðtÞ against a basis of
approximate adiabatic reference states, characterized by
the functionWkðtÞ defined in (17), and its various orders of
adiabatic approximation defined in (75). The form of
expression (78) clearly illustrates the separation between
the exact solution and the choice of adiabatic basis, and
illustrates the role of the adiabatic approximation in

defining the reference states. It also simplifies its numerical
evaluation, as ξkðtÞ need only be computed once, inde-
pendent of the order of truncation of the adiabatic approxi-
mation for the reference states. We showed that the
Bogoliubov, Riccati, spectral function, and Schrödinger
approaches to the adiabatic particle number each yield the
same analytic expression for the particle number, indicating
that this form of basis dependence is a universal feature of
the definition of the adiabatic particle number at inter-
mediate times. Note that the final particle number, at
t ¼ þ∞, is independent of the basis choice, but at
intermediate times the particle number is highly sensitive
to the basis choice. A variety of cases were illustrated and
the new form (78) agrees with previously reported numeri-
cal results in [49].
This leads to a proposal for an optimal adiabatic

particle number, at all times, even during the time
evolution. The logic is the following. We first showed
that the adiabatic particle number at intermediate times is
basis dependent, and therefore presumably unphysical
since the order of truncation of the asymptotic adiabatic
expansion depends sensitively on the physical parameters
of the driving perturbation. But the situation is com-
pletely reversed due to the remarkable universality of the
smoothing of the Stokes phenomenon found by Berry
[51], using which we argued that it is in fact possible to
define an optimal adiabatic particle number. This uni-
versality means that no matter what the optimal order is,
the time dependence of the optimally truncated particle
number will have the same error-function time depend-
ence form in (79). This is confirmed through a number
of examples. Further physical support for this proposed
definition comes from the resulting clear view of
quantum interference effects, illustrated here for the
double-pulse sign-alternating electric field in (89), which
exhibits both constructive and destructive interference,
depending on the longitudinal momentum of the pro-
duced particles. The structure of (78) also shows that the
adiabatic particle number may be characterized by the
small deviations between the exact solution and its
adiabatic approximations. At the optimal order of trun-
cation of the adiabatic approximation, the deviations are
the smallest and smoothest, and correspond to an optimal
adiabatic approximation.
Future work will address the implications of these

results for backreaction and nonequilibrium processes
[42,43,47,63], in both the Schwinger effect and related
time-dependent nonequilibrium systems such as heavy ion
collisions and driven multilevel quantum systems.
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APPENDIX: SINGLE-PULSE
ANALYTICAL EXAMPLE

An analytic example that is commonly used in the
literature [80] in connection with the adiabatic particle
number is the single-pulse electric field given by (87) with
the vector potential (88). The solution of the Klein-Gordon
equation (1) with this electric field case is a hypergeometric
solution of the form

fkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkð−∞Þp ð−xÞ−iμð1 − xÞϵ2F1

× ½ϵ − iðμþ νÞ; ϵ − iðμ − νÞ; 1 − 2iμ; x� ðA1Þ

where x≡ −e2at, and

ϵ ¼ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4E2
0

a4

s !
μ ¼ ωkð−∞Þ

2a

ν ¼ ωkðþ∞Þ
2a

ðA2Þ

which satisfies the Wronskian condition (5) and matches
the rightward scattering scenario (12). From (6), then the
absolute magnitude of (A1) is the analytic solution to the
Ermakov-Milne equation (7). The scattering coefficients in
Eq. (12) with (A1) are

Ak ¼
Γð1 − 2iμÞΓð−2iνÞ

Γðϵ − iðμþ νÞÞΓð1 − ϵ − iðμþ νÞÞ ðA3Þ

Bk ¼
Γð1 − 2iμÞΓð2iνÞ

Γðϵ − iðμ − νÞÞΓð1 − ϵ − iðμ − νÞÞ ðA4Þ

where the coefficients satisfy unitarity, jAkj2 − jBkj2 ¼ 1,
and are related to the final-time Bogoliubov coefficients by
Ak ¼ αkðþ∞Þ and Bk ¼ βkðþ∞Þ. Thus, the final particle
number at future infinity for the single-pulse case is

precisely ~N kðþ∞Þ ¼ jBkj2.
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