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Non-Abelian vortex strings supported in a certain four-dimensional N ¼ 2 Yang-Mills theory with
fundamental matter were shown [1] to become critical superstrings. In addition to translational moduli, the
non-Abelian strings under consideration carry orientational and size moduli. Their dynamics is described
by the two-dimensional sigma model whose target space is a tautological bundle over the complex
projective space. For the N ¼ 2 theory with the Uð2Þ gauge group and four fundamental hypermultiplets,
there are six orientational and size moduli. After combining with four translational moduli, they form a ten-
dimensional target space, which is required for a superstring to be critical. For the theory in question, the
target space of the sigma model is C2 × Y6, where Y6 is a conifold. We study closed string states which
emerge in four dimensions (4D) and identify them with hadrons of the 4D bulk N ¼ 2 theory. It turns out
that most of the states arising from the ten-dimensional graviton spectrum are nondynamical in 4D. We find
a single dynamical massless hypermultiplet associated with the deformation of the complex structure of the
conifold. We interpret this degree of freedom as a monopole-monopole baryon of the 4D theory (at strong
coupling).
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I. INTRODUCTION

This paper builds on the previous discovery of the
non-Abelian solitonic vortex string in a certain four-
dimensional (4D) Yang-Mills theory shown to be critical
in the strong coupling limit [1]. The results reported below
are summarized in Ref. [2]. The particular 4D theory where
the non-Abelian vortex is critical isN ¼ 2 supersymmetric
QCD with a U(2) gauge group and Nf ¼ 4 quark flavors.
The target space of the two-dimensional (2D) theory on the
vortex string is C2 × Y6, where Y6 is a conifold. Analyzing
the closed string spectrum, we find one massless hyper-
multiplet associated with the deformation of the complex
structure of the conifold. Then we interpret this hyper-
multiplet in terms of the four-dimensional Yang-Mills
theory at strong coupling.
In quantum chromodynamics Regge trajectories show

almost perfect linear J behavior (J stands for spin). However,
in all controllable examples at weak coupling, a solitonic
confining string exhibits linear behavior for the Regge
trajectories only at asymptotically large spins [3,4]. The
reason for this is that at J ∼ 1 the physical “string” becomes
short and thick and cannot yield linear Regge behavior.
Linear Regge trajectories at J ∼ 1 have a chance to emerge
only if the string at hand satisfies the thin-string condition [1],

T ≪ m2; ð1:1Þ

where T is the string tension andm is a typical mass scale of
the bulk fields forming the string. The former parameter
determines the string length, while the latter determines
the string width. At weak coupling g2 ≪ 1, where g2 is the
bulk coupling constant, we have m ∼ g

ffiffiffiffi
T

p
. The thin-string

condition (1.1) is therefore badly broken.
For most solitonic strings in four dimensions, like the

Abrikosov-Nielsen-Olesen (ANO) vortices [5], the low-
energy two-dimensional effective Nambu-Goto theory on
the string world sheet is not ultraviolet (UV) complete. To
make the world-sheet theory sensible to the dimension of
the target space, one has to take into account higher
derivative corrections [6]. Higher derivative terms run in
inverse powers ofm and blow up at weak coupling, making
the string world-sheet “crumpled” [7]. The blowup of
higher derivative terms in the world-sheet theory corre-
sponds to the occurrence of thick and short “strings.”
The question of whether one can find an example of a

solitonic string which might produce linear Regge trajec-
tories at J ∼ 1 was addressed and answered in Ref. [1].
Such a string should satisfy the thin-string condition (1.1).
This condition means that higher derivative corrections are
parametrically small and can be ignored. If so, the low-
energy world-sheet theory should be UV complete. This
implies the following necessary conditions:

(i) The low-energy world-sheet theory must be
conformally invariant.
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(ii) The theory must have the critical value of the
Virasoro central charge.

These conditions are satisfied by the fundamental string.
In Ref. [1] it was shown that (i) and (ii) above are

met by non-Abelian vortex strings [8–11] supported in
four-dimensional N ¼ 2 supersymmetric QCD with the
UðNÞ gauge group, Nf ¼ 2N matter hypermultiplets and
the Fayet-Iliopoulos (FI) parameter ξ. The non-Abelian part
of the gauge group has vanishing β function.
The non-Abelian vortex string is 1=2 Bogomolny-

Prasad-Sommerfeld (BPS) saturated and, therefore, has
N ¼ ð2; 2Þ supersymmetry on its world sheet. In addition
to translational moduli characteristics of the ANO strings,
the non-Abelian string carries orientational moduli, as well
as size moduli if Nf > N [8–11]; see Refs. [12–15] for
reviews. Their dynamics is described by a two-dimensional
sigma model with the target space

Oð−1Þ⊕ðNf−NÞ
CP1 ; ð1:2Þ

which we will refer to as WCPðN;Nf − NÞ model. It has a
natural description in terms of the gauged linear sigma
model (GLSM) [16] containing N positive and Nf − N
negative Uð1Þ charged chiral multiplets. For Nf ¼ 2N the
model becomes conformal, and condition (i) above is
satisfied. Moreover, for N ¼ 2 the dimension of orienta-
tional/size moduli space is six, and they can be combined
with four translational moduli to form a ten-dimensional
space required for critical superstrings.1 Thus, the second
condition is also satisfied [1].
Given that the necessary conditions are met, a hypothesis

was put forward [1] that this non-Abelian vortex string does
satisfy the thin-string condition (1.1) at the strong coupling
regime in the vicinity of a critical value of g2c ∼ 1. This
implies that mðg2Þ → ∞ at g2 → g2c.
Moreover, a version of the string-gauge duality for the

four-dimensional bulk Yang-Mills theory was proposed: At
weak coupling this theory is in the Higgs phase and can be
described in terms of (s)quarks and Higgsed gauge bosons,
while at strong coupling hadrons of this theory can be
understood as string states formed on the non-Abelian
vortex string. In this paper we further explore this hypoth-
esis by studying string theory for the critical non-Abelian
vortex. This analysis allows us to confirm and enhance the
construction [1].
Vortices in UðNÞ theories are topologically stable and

can be realized as either closed or open strings. Open
strings need to end on some object, e.g., branes. However,
there are no such objects in N ¼ 2 SQCD.2 Therefore, we
focus on the closed strings emerging from four dimensions,

and we will be able to identify closed string states with
hadrons of the four-dimensional bulk theory.
It is worth mentioning at this point that our solitonic

vortex describes only nonperturbative states. Perturbative
states, in particular, massless states associated with the
Higgs branch of the four-dimensional theory (see Sec. II),
are present at all values of gauge couplings and are not
captured by the vortex string dynamics.
The onset of the thin-string regime (1.1) is determined

by the ratio T=m2. While the string tension is exactly
determined by FI parameter ξ,

T ¼ 2πξ; ð1:3Þ

there is no exact formula known for mass m. The latter is a
(common) mass parameter for the (s)quarks and Higgsed
gauge bosons, which form long non-BPS multiplets. Their
masses receive quantum corrections (see Ref. [14] and
Sec. II below). Thus, condition (1.1) can be argued for, but
it is problematic to rigorously prove it since we are in the
strong coupling regime. We can test it, however. The
effective hadron four-dimensional theory that emerges from
quantization of the non-Abelian string should respect
general properties of the original N ¼ 2 theory.
We perform the following four major tests of our

proposal:
(a) N ¼ 2 space-time supersymmetry in 4D.—From the

string side it emerges due to N ¼ ð2; 2Þ world-sheet
supersymmetry and the fact that we only have closed
string states in our theory. In fact, we show that our
non-Abelian vortex is a Type-IIA superstring.

(b) Absence of 4D massless graviton.—Our original bulk
theory is N ¼ 2 QCD without gravity. Thus, we
expect that 4D massless string modes do not include
graviton.

(c) Absence of unwanted massless vector multiplets.
(d) The 4D massless monopole-monopole baryon.—It

exists only at strong coupling and cannot be continued
to the weak coupling, where its presence would
contradict previous semiclassical analysis.

Note that if the Calabi-Yau manifold Y6 is compact, then
there certainly is a massless 4D graviton in the spectrum.3

However, since the conifold is noncompact, we do not
expect any massless spin-2 states to appear after the
reduction to 4D, nor do they exist in the bulk 4D N ¼2
theory. We explicitly demonstrate that the 4D graviton is
absent due to non-normalizability of its wave function.
Moreover, we show that 4D massless vector multiplets

associated with the Killing vectors on the conifold are also
absent due to non-normalizability of their wave functions
over the internal six-dimensional space. Massless vector

1It corresponds to ĉ ¼ c
3
¼ 3.

2There is a possibility for a string to end on BPS monopoles in
N ¼ 1 theory, which is a deformation of the N ¼ 2 SQCD by a
superpotential.

3An alternative—a massless 4D spin-2 state with no
interpretation in terms of 4D gravity—is ruled out by the
Weinberg-Witten theorem [17].
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multiplets have a natural interpretation as gauge bosons. If
they were present at strong coupling at g2 close to g2c, they
would remain massless at arbitrary g2, in particular, at weak
coupling.4 However, we know that there are no massless
gauge multiplets at weak coupling in the bulkN ¼ 2Yang-
Mills theory—all gauge fields are Higgsed. In particular,
we show that the 4D vector multiplet associated with
deformation of the Kähler structure of the conifold Y6 in
Type-IIA string theory is nondynamical.
We address the physical meaning of the above non-

normalizability. For certain non-normalizable modes we
see that their background values should be considered as
coupling constants in 4D Yang-Mills theory [18]. For
others, non-normalizability is related to instability due to
the presence of the Higgs branch in the bulk (and associated
massless states).
The paper is organized as follows. In Sec. II we review

physics of the N ¼ 2 SQCD, non-Abelian vortices and
introduce a string description for these vortices. In Sec. III
we discuss N ¼ 2 supersymmetry on the world sheet and
show that we deal with Type-IIA strings. In Sec. IV we
briefly review the general framework to obtain 4D states
from 10D massless close string states like graviton and
discuss the normalizability of these states. In Sec. V we
consider the massless vector multiplet and hypermultiplet
associated with deformations of Kähler and complex
structures of the conifold, respectively. In Sec. VI we give
a physical interpretation of the hypermultiplet associated
with deformation of the complex structure of the conifold
as a monopole-monopole baryon. We summarize our
conclusions in Sec. VII. The Appendix contains explicit
expressions for the metric of resolved and deformed
conifolds.

II. NON-ABELIAN VORTEX
AS A CRITICAL SUPERSTRING

In this section we briefly review our bulk N ¼ 2 Yang-
Mills theory, the non-Abelian strings that it supports, and
the corresponding world-sheet model.

A. N = 2 supersymmetric Yang-Mills theory in 4D

The basic bulk model we start from is N ¼ 2 SQCD
with the UðNÞ gauge group and Nf massless matter
hypermultiplets. It is described in detail in Ref. [10]; see
also the review [14]. The field content is as follows.
The N ¼ 2 vector multiplet consists of the U(1)

gauge field Aμ and SUðNÞ gauge fields Aa
μ, where a ¼

1;…; N2 − 1, as well as their Weyl fermion superpartners
plus complex scalar fields a and aa and their Weyl
superpartners, respectively.

The matter sector of the UðNÞ theory contains Nf (s)
quark hypermultiplets each consisting of the complex
scalar fields qkA and ~qAk (squarks) and their fermion
superpartners—all in the fundamental representation of
the SUðNÞ gauge group. Here k ¼ 1;…; N is the color
index while A is the flavor index, A ¼ 1;…; Nf. In this
paper we assume that the matter mass parameters vanish.
In addition, we introduce the FI parameter ξ in the U(1)

factor of the gauge group. It does not break N ¼ 2
supersymmetry.
We consider the bulk theory with Nf ¼ 2N. In this case

the SUðNÞ gauge coupling does not run since the corre-
sponding β function vanishes. Note, however, that the
conformal invariance of the bulk theory is explicitly broken
by the FI parameter.
Let us review the vacuum structure and the excitation

spectrum of the bulk theory assuming weak coupling,
g2 ≪ 1, where g2 is the SUðNÞ gauge coupling. The FI
term triggers the squark condensation. The squark vacuum
expectation values (VEVs) are

hqkAi ¼
ffiffiffi
ξ

p
0
B@

1 … 0 0 … 0

… … … … … …

0 … 1 0 … 0

1
CA; h ~̄qkAi ¼ 0;

k ¼ 1;…; N; A ¼ 1;…; Nf; ð2:1Þ

where we present the squark fields as matrices in the
color (k) and flavor (A) indices.
The squark condensate (2.1) results in the spontaneous

breaking of both gauge and flavor symmetries. A diagonal
global SUðNÞ combining the gauge SUðNÞ and an SUðNÞ
subgroup of the flavor SUðNfÞ group survives, however.
This is the well-known phenomenon of color-flavor
locking.
Thus, the unbroken global symmetry of the bulk is

SUðNÞCþF × SUð ~NÞ × Uð1Þ; ð2:2Þ
where

~N ¼ Nf − N:

Here SUðNÞCþF represents a global unbroken color-flavor
rotation, which involves the first N flavors, while the
SUð ~NÞ factor stands for the flavor rotation of the remaining
~N quarks.
Now, let us briefly discuss the perturbative excitation

spectrum. Since both U(1) and SUðNÞ gauge groups are
broken by the squark condensation, all gauge bosons
become massive. In particular, the mass of the SUðNÞ
gauge bosons is given by

m ≈ g
ffiffiffi
ξ

p
ð2:3Þ

at weak coupling.

4One could avoid this conclusion if gauge fields were Higgsed
at weak coupling. However, this would require an appropriate
amount of massless charged matter multiplets.
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As was already mentioned, N ¼ 2 supersymmetry
remains unbroken. In fact, with the nonvanishing ξ, both
the squarks and adjoint scalars combine with the gauge
bosons to form long N ¼ 2 supermultiplets with eight real
bosonic components [19]. All states appear in the repre-
sentations of the unbroken global group (2.2), namely, in
the singlet and adjoint representations of SUðNÞCþF,

ð1; 1; 0Þ; ðAdj; 1; 0Þ; ð2:4Þ

and in the bifundamental representations of SUðNÞCþF×
SUð ~NÞ,

�
N̄; ~N;

Nf

2 ~N

�
;

�
N; ~̄N;−

Nf

2 ~N

�
: ð2:5Þ

The representations in Eqs. (2.4) and (2.5) are labeled
according to three factors in Eq. (2.2). The singlet and
adjoint fields are the gauge bosons and the first N flavors of
squarks qkP (P ¼ 1;…; N), together with their fermion
superpartners. In particular, the mass of adjoint fields is
given by Eq. (2.3).
The physical reason behind the fact that the (s)quarks

transform in the adjoint or bifundamental representations of
the global group is that their color charges are screened by
the condensate (2.1); therefore, they can be considered as
mesons.
The bifundamental fields (2.5) represent the (s)quarks of

the type qkK with K ¼ N þ 1;…; Nf. They belong to short
BPS multiplets with four real bosonic components. These
fields are massless, provided that the matter mass terms
vanish. In fact, in this case the vacuum (2.1) in which only
N first squark flavors develop VEVs is not an isolated
vacuum. Rather, it is a root of a Higgs branch on which
other flavors can also develop VEVs. This Higgs branch
forms a cotangent bundle to the complex Grassmannian

H ¼ T�GrCNf;N
; ð2:6Þ

whose real dimension is [20,21]

dimH ¼ 4N ~N: ð2:7Þ

The above Higgs branch is noncompact and is hyper-
Kähler [20,22]; therefore, its metric cannot be modified by
quantum corrections [20]. In particular, once the Higgs
branch is present at weak coupling, we can continue it all
the way into strong coupling. In principle, it can intersect
with other branches if present, but it cannot disappear in the
theory with vanishing matter mass parameters. We see
below that the presence of the Higgs branch and associated
massless bifundamental quarks has a deep impact on non-
Abelian vortex dynamics.
The Higgs branch (2.6) has a compact base defined by

the condition

~̄qkA ¼ 0: ð2:8Þ

This is the complex Grassmannian of real dimension 2N ~N.
The BPS vortex solutions exist only on the base of the
Higgs branch. Therefore, we limit ourselves to the vacua
that belong to the base manifold.
Let us comment on the U(1) charges in Eqs. (2.4) and

(2.5). The global unbroken U(1) factor in Eq. (2.2) acts as
follows. Let us make a Uð1Þg gauge transformation on
quarks qkA [we define the U(1) quark charge as 1=2]. To
preserve the vacuum (2.1) we compensate it by the action of
the generator

�
−
1

2
;…;−

1

2
;
N

2 ~N
;…;

N

2 ~N

�
; ð2:9Þ

which belongs to flavor SUðNfÞ. Here we separated the
first N and the last ~N entries. As a result, the quarks qkP do
not transform [hence the vacuum (2.1) is invariant], while
the quarks qkK acquire charges Nf

2 ~N
, where P ¼ 1;…; N and

K ¼ N þ 1;…; Nf. This is reflected in Eqs. (2.4) and (2.5).
What is usually referred to as the baryonic U(1)

symmetry is part of the UðNÞ gauge group in our 4D
Yang-Mills theory. Still, we can identify the unbroken U(1)
factor in Eq. (2.2) as a “baryonic” Uð1ÞB symmetry. The
reason is clear: The baryonic operators constructed as a
product of two bifundamental quarks,

B ¼ εKK0εll0qlKql
0K0
;

~B ¼ εKK
0
εll

0
~qKl ~qK0l0 ;

K; K0 ¼ N þ 1;…; Nf; ð2:10Þ

have the Uð1ÞB baryonic charges

QBðBÞ ¼
Nf

~N
¼ 2;

QBð ~BÞ ¼ −
Nf

~N
¼ −2; ð2:11Þ

where, in what follows, we indicated the numerical values
for the case we are interested in, N ¼ ~N ¼ 2.
Certainly, the physical meaning of the baryonic charge

above is not the same as, say, in actual QCD. As we saw
above, in our theory bifundamental quarks (which can be
viewed as mesons upon Higgs screening) also carry
baryonic charges. Therefore, baryons can decay into
bifundamental mesons. We will see an example of such
a behavior below.
The above analysis of the Higgs phase assumes weak

coupling. What happens if we increase the coupling
constant g2? In fact, the bulk theory at zero ξ is invariant
under S-duality, which interchanges the strong and weak
coupling regimes [20,23],
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τ → τD ¼ −
1

τ
; τ ¼ 4πi

g2
þ θ4D

2π
; ð2:12Þ

where θ4D is the θ angle. Therefore, even at nonzero ξ the
region of g2 ≫ 1 can be described in terms of the dual
weakly coupled gauge theory.

B. Non-Abelian vortex strings

The presence of the global SUðNÞCþF symmetry is the
reason for the formation of non-Abelian flux tubes (vortex
strings) [8–11]. The most important feature of these
vortices is the presence of orientational and size zero
modes. In N ¼ 2 bulk theory these strings are 1=2 BPS
saturated; hence, their tension is determined exactly by the
FI parameter; see Eq. (1.3).
Non-Abelian vortices confine BPS monopoles of the

four-dimensional theory. However, as was already men-
tioned, the monopoles cannot be attached to the string ends.
In fact, in the UðNÞ theories confined elementary monop-
oles are junctions of two “neighboring” non-Abelian
strings; see Ref. [14] and Sec. VI for a more detailed
discussion.
Let us have a closer look at the effective world-sheet

theory for a non-Abelian vortex. The dynamics of the
translational modes (which are also present for the conven-
tional ANO string) in the Polyakov formulation [24] is
described by the action

Str ¼
T
2

Z
d2σ

ffiffiffi
h

p
hkl∂kxμ∂lxμ; ð2:13Þ

where σk (k ¼ 1, 2) are the world-sheet coordinates, xμ

(μ ¼ 1;…; 4) are 4D coordinates, and h ¼ detðhklÞ, where
hkl is the world-sheet metric which is understood as an
independent variable.
If one chooses Nf ¼ N, the dynamics of the orienta-

tional zero modes on the non-Abelian vortex (they become
orientational moduli fields on the world sheet) would
be described by a two-dimensional N ¼ ð2; 2Þ supersym-
metric CPN−1 model which is compact [8–11]; see
Refs. [12–14] for reviews. Size moduli do not appear in
this case. If one adds extra quark flavors, non-Abelian
vortices become semilocal. They acquire size moduli (see
the review paper [25] devoted to Abelian semilocal
vortices).
Non-Abelian semilocal vortices in N ¼ 2 Yang-Mills

theory with Nf > N were studied in Refs. [8,11,26–28].
The world-sheet theory for the orientational (size) moduli
of the semilocal vortex is given by the sigma model
on the tautological bundle over the same projective

space Oð−1Þ⊕ ~N
CPN−1 , where ~N ¼ ðNf − NÞ, which we call

WCPðN; ~NÞ. Its GLSM formulation is as follows [16]. One
introduces two types of complex fields nP; P ¼ 1;…; N
and ρK; K ¼ N þ 1;…; Nf, which have Uð1Þ charges þ1

and −1, respectively. The orientational moduli are
described by the N-plets nP, while the size moduli are
parametrized by the ~N-plet ρK .
The effective two-dimensional theory on the world sheet

has the action

Sor ¼
Z

d2σ
ffiffiffi
h

p �
hklð ~∇kn̄P∇lnP þ∇kρ̄K ~∇lρ

KÞ

þ e2

2
ðjnPj2 − jρKj2 − βÞ2

�
þ fermions: ð2:14Þ

Since fields nP and ρK have charges þ1 and −1 with
respect to the gauge U(1), we have

∇k ¼ ∂k − iAk; ~∇k ¼ ∂k þ iAk:

The limit e2 → ∞ is implied.5

The coupling constant β in Eq. (2.14) is related to the
bulk coupling via

β ≈
4π

g2
: ð2:15Þ

This formula was derived at the weak coupling regime in
the bulk theory [9,10] and is quasiclassical. It is modified at
strong coupling.
Note that the first (and the only) coefficient of the β

function β1 ¼ N − ~N is the same for the bulk and world-
sheet theories. It vanishes provided N ¼ ~N.
The bosonic part of the total string action for the

non-Abelian vortex under consideration is the sum of
Eqs. (2.13) and (2.14),

S ¼ Str þ Sor: ð2:16Þ
As was already mentioned, the two necessary conditions

for a thin string regime are met for the non-Abelian
semilocal vortex supported in four-dimensional N ¼ 2
Yang-Mills theory, provided the gauge group is UðN ¼ 2Þ
and the number of quark hypermultiplets is Nf ¼ 4 [1].
Indeed, in the conformal gauge the translational part of the
action is a free theory and therefore conformal, while the β
function of the orientational (size) part is proportional to
β1 ¼ N − ~N. Thus, the condition of conformality β1 ¼ 0
implies

N ¼ ~N or Nf ¼ 2N: ð2:17Þ

5A remark in passing: In fact, the world-sheet theory on the
semilocal non-Abelian string is not exactly the WCPðN; ~NÞ
model [28]. Both orientational and size moduli have logarithmi-
cally divergent norms [26]. After an appropriate infrared regu-
larization, logarithmically divergent norms can be absorbed into
the definition of two-dimensional fields. The actual theory is
called the zn model. Nevertheless, it has the same infrared
physics as the GLSM in question [29].
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Moreover, the number of orientational (and size) degrees of
freedom in Eq. (2.14) is

2ðN þ ~N − 1Þ ¼ 2ð2N − 1Þ; ð2:18Þ

where we subtracted 2 because of theD-term condition [see
the last line in Eq. (2.14) and Uð1Þ. Requiring that this
number is equal to 6 gives the solution6 N ¼ ~N ¼ 2,
Nf ¼ 4. For these values of N and ~N the target space of
the sigma model (2.14) is resolved conifold [16]

Y6 ¼ Oð−1ÞCP1 ⊕ Oð−1ÞCP1 : ð2:19Þ

The global symmetry of our world-sheet sigma model
(2.14),

SUð2Þ × SUð2Þ × Uð1Þ; ð2:20Þ

is the same as the unbroken global group of the bulk theory
(2.2) for N ¼ ~N ¼ 2. The fields n and ρ transform in the
following representations:

n∶ ð2; 0; 0Þ; ρ∶ ð0; 2; 1Þ: ð2:21Þ

C. Bulk duality vs world-sheet duality

If ~N < N the bulk N ¼ 2 Yang-Mills theory is asymp-
totically free. Its coupling constant g2 is frozen at the scaleffiffiffi
ξ

p
. The theory is in the weak coupling regime if

ffiffiffi
ξ

p
≫ Λ,

where Λ is the dynamical scale. If we make
ffiffiffi
ξ

p
≪ Λ the

physics can be described by weakly coupled infrared-free
N ¼ 2 SQCD with the gauge group Uð ~NÞ × Uð1ÞN− ~N and
Nf flavors of dual quarks [30]; see also Ref. [31] for a
review. This bulk duality is reflected in the world-sheet
duality for the sigma model on the non-Abelian vortex.
Namely, the coupling constant β is reflected, β → −β, and
the roles of N-orientational moduli nP and ~N size moduli
ρK are interchanged [30].
In the theory at hand, ~N ¼ N ¼ 2 and the SU(2) gauge

coupling constant does not run. However, as was already
mentioned, our bulk theory has weak-strong self-duality
[Eq. (2.12)]. This duality should be reflected in the world-
sheet model as well. Indeed, the world-sheet model (2.14)
is obviously self-dual under the reflection of the coupling
constant β,

β → βD ¼ −β: ð2:22Þ
Under this duality the orientational and size moduli nP and
ρK interchange. Note that the 4D self-dual point g2 ¼ 4π is
mapped onto the 2D self-dual point β ¼ 0. The 2D
coupling constant β can be naturally complexified if we
include the θ term in the action of the CPN−1 model,

β → β þ i
θ2D
2π

:

Given the complexification of β, we expect to get a
generalization of Eq. (2.22) to complex values of the
coupling which has the same fix point β ¼ 0.
It was conjectured in Ref. [1] that the thin-string

condition (1.1) is in fact satisfied in this theory at the
strong coupling limit g2c ∼ 1. The conjecture is equivalent to
the assumption that the mass of quarks and gauge bosonsm
has a singularity as a function of g2. If we assume, for
simplicity, that there is only one singular point, then by
symmetry, a natural choice is the self-dual point τc ¼ i or
g2c ¼ 4π. This gives

m2 → ξ ×

8><
>:

g2 g2 ≪ 1

∞ g2 → 4π

16π2=g2 g2 ≫ 1;

ð2:23Þ

where the dependence of m at small and large g2 follows
from the tree-level formula (2.3) and duality (2.12).
Thus, we expect that the singularity of mass m lies at

β ¼ 0. This is the point where the non-Abelian string
becomes infinitely thin, higher derivative terms can be
neglected, and the theory of the non-Abelian string reduces
to Eq. (2.16). The point β ¼ 0 is a natural choice because
at this point we have a regime change in the 2D sigma
model per se. This is the point where the resolved conifold
defined by the D term in Eq. (2.14) develops a conical
singularity [32].
The term “thin string” should be understood with care.

As was mentioned previously, the target space of our sigma
model is noncompact; see Eq. (2.19). Since the non-
compact string moduli ρK have the string-size interpreta-
tion, one might think that at large jρj our string is not thin.
Note that by the thin-string condition (1.1), we mean that
the string core is thin, and higher-derivative corrections run
in powers of ∂2=m2 and are negligible.
Note that there are massless states in the bulk theory,

namely, bifundamental quarks (2.5) which give rise to the
continuous spectrum. Most of these light modes are not
localized on the string and do not participate in the string
dynamics. The only zero modes which are localized (in
addition to the translational modes) are the size and the
orientational modes [26] indicated in Eq. (2.14). They have
logarithmically divergent norms, while other light modes
are power non-normalizable in the infrared. All other
localized modes are massive, with mass ∼m. Integrating

6See Ref. [1] for details of the calculation of the Virasoro
central charge for our sigma model. Technically, there are two
other pairs of N and ~N which formally fit our construction (the
vanishing beta function and vanishing Virasoro central charge):
N ¼ 1, ~N ¼ 3 and N ¼ 3, ~N ¼ 1, with the ratio of the Uð1Þ
charges for nA and for ρK fields being equal to −3 and −1=3,
respectively. Although it is straightforward to generalize GLSM
[Eq. (2.14)], we cannot proceed further since the derivation of
such GLSMs as theories of dynamical vortices in N ¼ 2 SQCD
along the lines of Ref. [26] is not available at the moment.
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out these massive modes leads to higher-derivative correc-
tions running in powers of ∂2=m2. They are negligible if m
is large; see Eq. (1.1). We do not integrate out zero modes.

III. TYPE-IIA DESCRIPTION

A. Vortex string and bulk supersymmetry

In this section we discuss the space-time supersymmetry
of the non-Abelian vortex superstring (2.16). Let us first
describe the fermionic content of the world-sheet theory.
The action of the translational sector of the string in the
static gauge σ1 ¼ x0, σ2 ¼ x3 can be written as a free
theory,

Str ¼
T
2

Z
d2xf∂kxi∂kxi þ ζ̄L∂RζL þ ζ̄R∂RζRg; ð3:1Þ

where the world-sheet integral in the static gauge is taken
over x0 and x3, k ¼ 0, 3, while xi are transversal transla-
tional moduli, i ¼ 1, 2. There are 4 real degrees of freedom
associated with complex free fermions ζL and ζR in the
translational sector.
Note that we use the static gauge because the effective

world-sheet theory for the string was derived in the static
gauge from the solitonic vortex solution of the bulk
theory [9,10].
The bosonic part of the world-sheet action for orienta-

tional-size moduli (of the GLSM) is given by Eq. (2.14).
The fermionic superpartners of nP and ρK are fermionic
fields ξPL;R and χKL;R made of left- and right-moving modes.
They are subject to the constraint

n̄PξPL;R − ρ̄Kχ
K
L;R ¼ 0: ð3:2Þ

These fermions are related to nP and ρK via N ¼ ð2; 2Þ
world-sheet supersymmetry.
The total number of real degrees of freedom in the

fermionic orientational-size sector is 4ðN þ ~N − 1Þ ¼ 12
for N ¼ ~N ¼ 2. Thus, altogether we have 16 fermions in
the world-sheet theory in the static gauge. This corresponds
to 32 fermions in the reparametrization invariant descrip-
tion (which reduces to 16 fermions upon fixing a physical
gauge like light-cone or static gauge). These fermions are
interpreted as θ variables in 10D space for a closed string.
The number of θ variables corresponds to the number of
supercharges. This number is reduced to eight upon
considering the string on a six-dimensional Calabi-Yau
manifold with SU(3) holonomy [33]. Eight supercharges
are required in order to have N ¼ 2 supersymmetry in 4D
space. The rest of the 10D supersymmetry is broken by the
Calabi-Yau background.
As was mentioned in the Introduction, this is one of the

successful tests of our picture: The 4D N ¼ 2 supersym-
metry which we get on the string side matches with N ¼ 2
supersymmetry present in the bulk QCD from the very
beginning. Imagine that we had open vortices in our bulk

QCD. Open strings would break 4D supersymmetry down
to N ¼ 1 on the string side. This would contradict N ¼ 2
supersymmetry of our initial theory. Fortunately, we do not
have open vortex strings.

B. Type-IIA superstring

Given the N ¼ 2 supersymmetry in 4D, the next
question to address is whether our vortex is described
by Type-IIA or type-IIB superstring theory. To answer this
question we consider 10D parity transformation. As it is
well known, type-IIB string is a chiral theory, and it breaks
parity; Type-IIA string theory is left-right symmetric, and it
conserves parity [33].
The parity transformation acts on 4D fermions as

ψα → ~̄ψ _α ð3:3Þ
(for notations see Ref. [26] or [14]). Explicit expressions
presented in Ref. [34] (in the static gauge) for profile
functions of the fermion zero modes show that the U(1)
supertranslational and SU(2) superorientational modes are
proportional to

ψ̄ _2 ∼ ðx1 þ ix2ÞζL; ψ̄ _2Pk ∼ nPξ̄Lk:

~̄ψ _1 ∼ ðx1 − ix2ÞζR; ~̄ψkP
_1

∼ −ξkRn̄P: ð3:4Þ
Since x1;2;3 → −x1;2;3 and n → −n, ρ → −ρ under parity
transformation, we have

ζL → −ζ̄R; ζR → −ζ̄L;

ξPR → −ξPL; χKR → −χKL : ð3:5Þ
Our 2D world-sheet theory is invariant under this trans-
formation (3.1); thus, we conclude that the string theory of
the vortex string (2.16) is of type IIA.
Certainly, this result matches our expectations because

we started with N ¼ 2 supersymmetric Yang-Mills theory
preserving 4D parity (it is a vectorlike theory). Therefore,
we expect that the closed string spectrum in this theory
should respect 4D parity.

IV. FOUR-DIMENSIONAL REDUCTION

In this section we discuss massless states in four
dimensions which are predicted by our string theory.

A. Generalities

Now let us consider a Type-IIA string propagating in
10D space with a nonflat metric,

C2 × Y6; ð4:1Þ
where Y6 is the noncompact target space of sigma model
(2.14), which is a resolved Calabi-Yau conifold [32]. As
was argued above, we expect that the non-Abelian vortex
becomes parametrically thin and can be described by the
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string action (2.16) at strong coupling near the self-dual
point β ¼ 0. Therefore, below we assume that β is small,
jβj ≪ 1.
Strictly speaking, at small β quantum corrections in the

world-sheet sigma model blow up. In other words, we can
say that at small β the gravity approximation does not work.
However, if we are interested in the massless states, we can
perform the supergravity computations at large β and then
extrapolate the results to strong coupling. The massless
states in the sigma model language correspond to chiral
primary operators. They are protected by N ¼ ð2; 2Þ
world-sheet supersymmetry. Their masses are not lifted
by quantum corrections. However, kinetic terms (the
Kähler potentials) can acquire corrections.
The massless 10D bosonic fields of Type-IIA string

theory in flat ten dimensions are the graviton, dilaton, and
antisymmetric tensor BMN, in the NS-NS sector. In the R-R
sector Type-IIA strings give one-form and three-form [35].
Here, M;N ¼ 1;…; 10 are 10D indices. We start with the
massless 10D graviton and examine what states it can
produce in four dimensions. In fact, the states coming from
other massless 10D fields listed above can be recovered
from N ¼ 2 supersymmetry in 4D; see, for example,
Ref. [36]. We follow the standard string theory method,
which is well developed for compact Calabi-Yau spaces
[33]. Our only novel aspect is that for each 4D state, we
have to check normalizability of its wave function over the
noncompact Y6.
The massless 10D graviton is a fluctuation of the metric

δGMN ¼ GMN −Gð0Þ
MN

where Gð0Þ
MN is the metric on Eq. (4.1) which has a block

form: the flat metric for R4 and the Calabi-Yau metric for
the conifold (see the next sections and the Appendix for an
explicit expression for this metric).
The graviton should satisfy the Lichnerowicz equation

DADAδGMN þ 2RMANBδGAB ¼ 0; ð4:2Þ

where DA and RMANB are the covariant derivative and the
Riemann tensor, respectively, calculated in the background

Gð0Þ
MN . Here, the gauge

DAδGA
N −

1

2
DNδGA

A ¼ 0

is imposed. For the block form of the metric Gð0Þ
MN , only the

six-dimensional part Rijkl of RMANB is nonvanishing, while
the operator DADA is given by

DADA ¼ ∂μ∂μ þDiDi

where the indices μ; ν ¼ 1;…; 4 and i; j ¼ 1;…; 6 belong
to flat 4D space and Y6, respectively, and we use the 4D
metric with diagonal entries ð−1; 1; 1; 1Þ.

Following a standard string theory method [33] we look
for solutions of Eq. (4.2) assuming the factorized form of
δGMN ,

δGμν ¼ δgμνðxÞϕ6ðyÞ;
δGμi ¼ BμðxÞViðyÞ;
δGij ¼ ϕ4ðxÞδgijðyÞ; ð4:3Þ

where xμ and yi are coordinates in R4 and Y6, respectively.
Moreover, δgμνðxÞ, BμðxÞ and ϕ4ðxÞ are graviton, vector
and scalar fields in 4D, while ϕ6ðyÞ, ViðyÞ and δgijðyÞ are
fields on Y6.
In order for the fields δgμνðxÞ, BμðxÞ and ϕ4ðxÞ to be

dynamical in 4D, the fields ϕ6ðyÞ, ViðyÞ and δgijðyÞ should
have finite norms when integrated over the six-dimensional
internal space Y6. Otherwise, the 4D fields come with
infinite kinetic energy and are not dynamical [18]. They
just decouple, and this is very important.
Symbolically, the Lichnerowicz equation (4.2) can be

written as

ð∂μ∂μ þ Δ6Þg4ðxÞg6ðyÞ ¼ 0; ð4:4Þ
where Δ6 is the two-derivative operator from Eq. (4.2)
reduced to Y6, while g4ðxÞg6ðyÞ symbolically denotes the
factorization form (4.3). If we expand g6 in eigenfunctions,

−Δ6g6ðyÞ ¼ λ6g6ðyÞ; ð4:5Þ
the eigenvalues λ6 will play the role of the mass squared of
the 4D states.
Since our conifold is asymptotically flat, g6 for λ6 > 0

behaves as a plane wave at large y2i and is non-
normalizable. Thus, we are looking for massless 4D states
with λ6 ¼ 0,

−Δ6g6ðyÞ ¼ 0: ð4:6Þ
Solutions of this equation for Calabi-Yau manifolds are
given by elements of Dolbeault cohomology Hðp;qÞðY6Þ,
where ðp; qÞ denotes numbers of holomorphic and anti-
holomorphic indices in the form. The dimensions of these
spaces hðp;qÞ are called Hodge numbers for a given Y6.

B. 4D graviton

For the 4D graviton gμνðxÞ in Eq. (4.3), Eq. (4.6) takes
the form

−DiDiϕ6 ¼ −Di∂iϕ6 ¼ 0: ð4:7Þ
It has only one solution,

ϕ6ðyÞ ¼ const: ð4:8Þ
For a compact Calabi-Yau space this is expressed as
hð0;0Þ ¼ 1 and leads to the presence of a single graviton
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in 4D. For the conifold under consideration the solution
(4.8) has an infinite norm on Y6, so there is no 4D graviton
in our theory.
This result is expected and most welcome. As was

already mentioned, the original N ¼ 2 Yang-Mills theory
in four dimensions had no gravity and, therefore, we do not
expect a 4D graviton to appear as a closed string state. The
result above is a nontrivial check of our approach and, in
particular, of the validity of the main conjecture of the thin-
string regime for vortex strings (1.1).
The non-normalizability of wave function (4.8), besides

the graviton, also rules out other 4D states of the N ¼ 2
gravitational and tensor multiplets: the vector field, the
dilaton, the antisymmetric tensor and the two scalars
coming from the 10D three-form.
Note also that even if we “forgot” about the GSO

projection, the tachyon would be absent in 4D anyway
due to the non-normalizability of Eq. (4.8).

C. Killing vectors

Consider now the second option in Eq. (4.3): The 10D
graviton δGμi gives rise to a vector field in 4D. This
possibility is related to the presence of continuous sym-
metries on Y6. Our conifold Y6 has a global symmetry, so
we expect to have seven Killing vectors associated with the
generators of Eq. (2.20).
The Killing vectors obey the following equation:

DiVm
j þDjVm

i ¼ 0; m ¼ 1;…; 7: ð4:9Þ

For the Calabi-Yau manifold it then follows that Vi should
satisfy Eq. (4.6), which reads

DjDjVm
i ¼ 0: ð4:10Þ

Being integrated by parts over compact Calabi-Yau
spaces, this equation implies that Vi is a covariantly
constant vector DjVi ¼ 0. Such vectors are incompatible
with the SU(3) holonomy. This leads to the conclusion that
there are no global continuous symmetries on compact
Calabi-Yau manifolds [33].
For noncompact Y6 this conclusion can be avoided, and

we expect the presence of seven Killing vectors associated
with the symmetry (2.20). However, it is easy to see that
Vm
i , produced by rotations of coordinates yi by the

generators of Eq. (2.20), do not fall off at large y2i (where
the Y6 metric tends to be flat). Thus, they are non-
normalizable, and the associated 4D vector fields BμðxÞ
are absent.
This result also matches our expectations. Vector fields

BμðxÞ naturally have the interpretation of gauge fields.
Their presence would mean that we have a low energy
gauge group (2.20) in 4D. However, as we explained in
Sec. II A, symmetry (2.20) is a global unbroken group of
our bulk N ¼ 2 QCD. It is not gauged. Therefore, the

presence of gauge fields BμðxÞ would lead to inconsistency
of our picture. Happily, they are absent.
Moreover, as was noted in Sec. I, massless gauge fields,

if present at strong coupling, could be continued all the way
to the weak coupling domain. Then their presence would
contradict the quasiclassical analysis of Sec. II A, where it
is shown that we do not have massless gauge multiplets at
weak coupling.

D. Physical nature of non-normalizable modes

If we were studying the fundamental string on a non-
compact Calabi-Yau space, we would conclude that the
string propagates in the full 10D space and that its 4D
subspace has no special role. However, our string is a
solitonic vortex in 4D gauge theory. Clearly, we have to
interpret string states as states living in this 4D theory. Most
of the string states are not localized near the 4Dsubspace, and
from the 4D perspective they represent non-normalizable
states.What is the physical nature of these non-normalizable
modes, in particular, those we found above?
One option is that non-normalizable modes, being non-

dynamical, correspond to the coupling constants of 4D
theory [18]. One example of this is the 4D graviton
considered above. It comes with the infinite kinetic term;
hence, the 4D metric cannot fluctuate. It is fixed to be flat
and can be viewed as a fixed background rather than a
dynamical field. In other words, the 4D “Planck mass” is
infinite in our theory.
Another example is the 4D gauge fields BμðxÞ associated

with the Killing vectors. As was noted above, they
correspond to gauging of the global bulk symmetry (2.2)
which, if present, would contradict the consistency of our
picture. However, these gauge fields also come with the
infinite kinetic terms, which means that the gauge coupling
constants of these fields are in fact zero. This confirms that
the symmetry (2.2) is global rather than local.
The most straightforward example of this situation will

be discussed in Sec. V. We will see that the coupling
constant β is a non-normalizable modulus of 4D theory.
There are also non-normalizable massive 4D states

associated with the continuous spectrum of Eq. (4.5).
We interpret these modes as follows. For these modes
the associated integrals over Y6 are divergent at large yi.
Large yi means large nP and ρK; see Eq. (2.14). In
particular, ρK have a size moduli interpretation; they
represent long-range tails of the non-Abelian vortex in
the directions orthogonal to the string axis. The very
presence of these long-range tails (and logarithmic diver-
gence of orientational and size zero modes [26]) is related
to the presence of the Higgs branch (2.7) and associated
massless bifundamental quarks (2.5).
We see that the wave functions of non-normalizable

states are saturated at large distances from the vortex string
axis in four dimensions. Therefore, these states are not
localized on the string. The infinite norm of these states is
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interpreted as an instability. These states are massive and
therefore unstable. Namely, they decay into massless
bifundamental quarks.
As we already mentioned in the Introduction, the vortex

string of Ref. [1] is conceptually different in comparison
with fundamental string theory. In the theory of funda-
mental strings, all states present in four dimensions are
string states. The string theory for vortex strings of Ref. [1]
is slightly different. The string states should describe only
nonperturbative physics at strong coupling, such as mesons
and baryons. The perturbative states seen at weak coupling
are not described by this theory. In particular, the Higgs
branch (and associated massless bifundamental quarks)
found at weak coupling can be continued to the strong
coupling. It can intersect other branches but cannot dis-
appear (for quarks with the vanishing mass terms) [20].

V. DEFORMATIONS OF THE
CONIFOLD METRIC

In this section we consider the last option in Eq. (4.3),
namely, 4D scalar fields associated with deformations of
the conifold metric δgijðyÞ. Equation (4.6), in this case,
reduces to the Lichnerowicz equation on Y6, namely,

DkDkδgij þ 2Rikjlδgkl ¼ 0: ð5:1Þ

Solutions of this equation for the Calabi-Yau spaces reduce
to deformations of the Kähler form or deformations of
complex structure [18,32]. For a generic Calabi-Yau
manifold the numbers of these deformations are given
by hð1;1Þ and hð1;2Þ, respectively. Before describing these
deformations we briefly review conifold geometry.

A. Conifold

The target space of the sigma model (2.14) is defined by
the D-term condition

jnPj2 − jρKj2 ¼ β; ð5:2Þ
and the U(1) phase is gauged away. We can construct the
U(1) gauge invariant variables to be referred to as
“mesonic,”

wPK ¼ nPρK: ð5:3Þ
In terms of these variables the condition (5.2) can be
written as

detwPK ¼ 0; ð5:4Þ
or, alternatively,

X4
α¼1

w2
α ¼ 0; ð5:5Þ

where

wPK ¼ σPKα wα

and σ matrices are chosen ð1;−iτaÞ, a ¼ 1, 2, 3.
Equation (5.5) defines the conifold, which is a cone whose
section is S2 × S3.
At β ¼ 0 this conifold develops a conical singularity, and

both S2 and S3 shrink to zero. It has the Kähler Ricci-flat
metric and represents a noncompact Calabi-Yau manifold
[16,32,37]. The explicit form of this metric is [37]

ds2 ¼ dr2 þ r2

6
ðds21 þ ds22Þ þ

r2

9
ds23; ð5:6Þ

where

ds21 ¼ dθ21 þ ðsin θ1Þ2dφ2
1; ð5:7Þ

ds22 ¼ dθ22 þ ðsin θ2Þ2dφ2
2; ð5:8Þ

ds23 ¼ ðdψ þ cos θ1dφ1 þ cos θ2dφ2Þ2: ð5:9Þ

Here, r is the radial coordinate on the cone, while the
angles above are defined at 0 ≤ θ1;2 < π, 0 ≤ φ1;2 < 2π,
0 ≤ ψ < 4π.
The volume integral associated with this metric is

ðVolÞY6
¼ 1

108

Z
r5drdψdθ1dφ1dθ2dφ2 sin θ1 sin θ2:

ð5:10Þ
We can introduce another radial coordinate,

~r2 ¼
X4
α¼1

jwαj2:

It is related to r in (5.6) via [37]

r2 ¼ 3

2
~r4=3: ð5:11Þ

The conifold singularity can be smoothed in two differ-
ent ways: by deformation of the Kähler form or deforma-
tion of the complex structure. The first option is called a
“resolved conifold” and amounts to introducing nonzero β
in Eq. (5.2). This resolution preserves Kähler structure and
Ricci flatness of the metric. If we put ρK ¼ 0 in Eq. (5.2),
we get the CP1 model with target space S2 of radius

ffiffiffi
β

p
.

The explicit metric for the resolved conifold can be found
in Refs. [37–39]; see also the Appendix.
If β ¼ 0 there is another option—deformation of the

complex structure. It also preserves the Kähler property and
Ricci flatness of the metric of the conifold. This is called a
“deformed conifold.” It is defined by deformation of
Eq. (5.5), namely,

X4
α¼1

w2
α ¼ b; ð5:12Þ
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where b is a complex number. Now, if we take the radial
coordinate ~r ¼ 0, the S3 does not shrink to zero; its size is
determined by b. The explicit metric on the deformed
conifold is presented in Refs. [37,40,41]; see the Appendix.

B. Kähler structure deformations

Consider the 4D scalar field βðxÞ associated with
deformation of the Kähler form of the conifold β; see
Eq. (5.2). The effective action for this field is

SðβÞ ¼ T
Z

d4xhβð∂μβÞ2; ð5:13Þ

where the metric hβðβÞ is given by the normalization
integral over the conifold Y6,

hβ ¼
Z

d6y
ffiffiffi
g

p
gli
� ∂
∂β gij

�
gjk

� ∂
∂β gkl

�
: ð5:14Þ

Here, gijðβÞ is the resolved conifold metric, while g is its
determinant. Using the explicit expression for the resolved
conifold metric (A1), we find

gli
� ∂
∂β gij

�
gjk

� ∂
∂β gkl

�
¼ 90

r4
ð5:15Þ

to the leading approximation at small β. Taking into
account the volume integral (5.10), we arrive at the
following β normalization integral:

hβ ¼ ð4πÞ3 5
6

Z
drr ¼ ∞: ð5:16Þ

It is seen that the β normalization integral is quadratically
divergent in the infrared. Thus, the scalar 4D βðxÞ decou-
ples in the bulk QCD; it is not represented by a local-
ized state.
As was already mentioned, β can be naturally com-

plexified; see Sec. II C. On the string theory side the
imaginary part of β comes from the 10D antisymmetric
tensor. Moreover, in Type-IIA superstring the complex
scalar β is a part of the N ¼ 2 massless vector multiplet
which also includes a 4D vector field coming from the 10D
three-form (see Ref. [36] for a review). All fields of this 4D
massless vector multiplet are nondynamical because of
their infinite norm on Y6.
Much in the same way as in the case of massless vector

multiplets associated with the Killing vectors, the absence
of the vector β multiplet matches our expectations. Indeed,
massless gauge fields, if present at strong coupling, could
be continued all the way up to the weak coupling domain
where their presence would contradict the quasiclassical
analysis of Sec. II A.
As was explained in Sec. IV D, non-normalizable modes

can be interpreted as (frozen) coupling constants in 4D bulk

theory. The β field is the most straightforward example of
this since the 2D coupling β is known to be related to the
4D coupling.

C. Complex structure deformations

Now let us focus on the singular point β ¼ 0. At this self-
dual value of the coupling constant, there is different
deformation of the conifold metric satisfying Eq. (5.1).
Namely, the deformation of the complex structure (5.12)
induced by the complex modulus b. The effective action for
this field is

SðbÞ ¼ T
Z

d4xhbj∂μbj2; ð5:17Þ

where the metric hbðbÞ is given by the normalization
integral over the conifold Y6,

hb ¼
Z

d6y
ffiffiffi
g

p
gli
� ∂
∂b gij

�
gjk

� ∂
∂b̄ gkl

�
: ð5:18Þ

Here, gijðbÞ is the deformed conifold metric.
We calculate hb below using two distinct methods. The

first one follows the general framework developed in
Ref. [18].7

Using the constraint (5.12) we can nominate, say, w2, w3

and w4 as independent variables. Then the volume form of
the Y6 conifold can be written as

ðVolÞY6
∼
Z ���� dw2dw3dw4

w1

����
2

: ð5:19Þ

The metric (5.18) can be expressed as

hb ∼
∂
∂b

∂
∂b̄

Z ���� dw2dw3dw4

w1

����
2

; ð5:20Þ

(see Eq. [42]). Calculating the derivatives under the
constraint (5.12), we arrive at

hb ∼
Z

d~r
~r
∼ log

~r2max

jbj ; ð5:21Þ

where the logarithmic integral at small distances is cut off
by the minimal size of S3, which is equal to jbj.
Now let us verify this result by explicit calculations.

Starting from the explicit expression for the deformed
conifold metric (A3), we obtain (to the leading order in b)

gli
� ∂
∂b gij

�
gjk

� ∂
∂b̄ gkl

�
¼ ðsinψÞ2

~r4
; ð5:22Þ

7We are very grateful to Cumrun Vafa for illuminating
communications and for bringing our attention to this paper.

NON-ABELIAN VORTEX IN FOUR DIMENSIONS AS A … PHYSICAL REVIEW D 94, 065002 (2016)

065002-11



where ~r is given by Eq. (5.11). Substituting this into the
volume integral (5.10) and using the relation (5.11), we
finally get

hb ¼ ð4πÞ3 4
3
log

~r2max

jbj : ð5:23Þ

It is seen that the norm of the field bðxÞ is logarithmically
divergent in the infrared. The modes with logarithmically
divergent norms are on the borderline between normal-
izable and non-normalizable modes. Usually such states are
considered as “localized” on the string. We follow this rule.
In our framework (vortex string vs string theory) we can
relate this logarithmic behavior with the marginal stability
of the b state; see Sec. VI. In fact, this mode is localized on
the string in the same sense as the orientational and size
zero modes are localized on the vortex solution in the bulk
theory: They also have logarithmically divergent norms in
the infrared in 4D space [26].
The upper bound in Eq. (5.21) can be related to the

(infinite) size L of R4. Noting;8 that ~rmax ∼ jnmaxρmaxj∼
ξL2, we finally get

hb ¼ ð4πÞ3 4
3
log

ξ2L4

jbj : ð5:24Þ

In Type-IIA superstring the complex scalar associated
with deformations of the complex structure of the Calabi-
Yau space enters, in fact, as a 4D hypermultiplet. Thus, our
4D scalar b is part of a hypermultiplet. Another complex
scalar ~b comes from the 10D three-form (see Ref. [36] for a
review). Together they form the bosonic component of
the 4D N ¼ 2 hypermultiplet. Thus, we expect that the
bosonic part of the full effective action for the b hyper-
multiplet takes the SUð2ÞR invariant form,

SðbÞ ¼ T
Z

d4xfj∂μbj2 þ j∂μ
~bj2g log T4L8

jbj2 þ j ~bj2 ;

ð5:25Þ
where we absorb the constant in front of the logarithm term
in Eq. (5.24) into field normalization. The fields b and ~b,
being massless, can develop VEVs. Thus, we have a new
Higgs branch with the metric determined by the logarithmic
factor in Eq. (5.25). This branch develops only at the self-
dual value of the coupling constant g2 ¼ 4π. Due to the
nonrenormalization theorem of Ref. [20], the logarithmic
Higgs branch metric (5.25) does not depend on the 4D
coupling constant g2.
To conclude this section we would like to stress that the

presence of the new “nonperturbative” Higgs branch at a
single point g2 ¼ 4π at strong coupling is more successful
evidence for the validity of our picture. Indeed, a hyper-
multiplet is a BPS state. Were it present in some interval of
τ at strong coupling, it could be continued all the way up to

weak coupling where its presence would contradict9; the
quasiclassical analysis; see Sec. II A.

VI. PHYSICAL INTERPRETATION
OF STRING STATES

In this section we reveal a physical interpretation of the b
state as a monopole-monopole baryon.

A. String states at weak coupling

Consider first the weak coupling region g2 ≪ 1 in
N ¼ 2 SQCD. Since squarks develop condensates (2.1),
non-Abelian vortices confine monopoles. As was already
mentioned, confined elementary monopoles are in fact
junctions of two distinct elementary non-Abelian strings
[10,11,43]. As a result, in the bulk SQCD we have
monopole-antimonopole mesons in which the monopole
and antimonopole are connected by two confining strings;
see Fig. 1(a). In the UðNÞ gauge theory we can have
baryons appearing as a closed necklace configuration [14].
For the U(2) gauge group this necklace configuration
consists of two monopoles; see Fig. 1(b).
Moreover, monopoles acquire quantum numbers with

respect to the global symmetry group (2.2). To see this note
that in the world-sheet theory on the vortex string, the
confined monopole is seen as a kink interpolating between
two different vacua (which are distinct elementary non-
Abelian strings) of the corresponding 2D sigma model
[10,11,43]. On the other hand, we know that the sigmamodel
kinks at strong coupling are described by nP and ρK fields
[44,45] [for the sigma model described by Eq. (2.14), it was
shown in Ref. [46]] and therefore transform in the funda-
mental representations10 of non-Abelian factors in Eq. (2.2).
As a result, monopole-antimonopole mesons and bary-

ons in our case can be singlets or triplets of both SU(2)
global groups in Eq. (2.2), as well as in the bifundamental
representations. With respect to baryonic Uð1ÞB sym-
metry in Eq. (2.2), the mesons at hand have charges
QBðmesonÞ ¼ 0, 1, while baryons can have charges

QBðbaryonÞ ¼ 0; 1; 2 ð6:1Þ
[see (2.21)]. All these nonperturbative stringy states are
heavy, with mass of the order of

ffiffiffi
ξ

p
, and therefore can

decay into screened quarks which are lighter and,
eventually, into massless bifundamental screened quarks
[Eq. (2.5)].

8See Sec. IV D for a more detailed explanation.

9In principle, one can avoid this conclusion if other massless
BPS states are present. Together they can combine into a massive
non-BPS multiplet.

10Strictly speaking, to make both bulk monopoles and world-
sheet kinks well defined as localized objects, we should introduce
an infrared regularization, say, a small quark mass term. When we
take the limit of the zero quark masses, the kinks become
massless and smeared all over the closed string. However, their
global quantum numbers stay intact.
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B. Monopole-monopole baryon

Now we pass to the self-dual point β ¼ 0 in the strong
coupling region. We show that the b state of the string
associated with the deformation of the complex structure of
the deformed conifold can be interpreted as a baryon
constructed from two monopoles; see Fig. 1(b). From
Eq. (5.12) we see that the complex parameter b (which
is promoted to a 4D scalar field) is a singlet with respect to
two SU(2) factors of the global world-sheet group (2.20).
What about its baryonic charge? Since

wα ¼
1

2
Tr½ðσ̄αÞKPnPρK� ð6:2Þ

we see that the b state transforms as

ð1; 1; 2Þ; ð6:3Þ

where we used Eqs. (2.5) and (5.12). In particular, it has
baryon charge QBðbÞ ¼ 2.
Since the world-sheet and the bulk global symmetries are

isomorphic, we are led to the conclusion that the massless b
hypermultiplet is a monopole-monopole baryon with the
quantum numbers (6.3) under symmetry (2.20).
We have observed that at infinite coupling of the two-

dimensional theory (β ¼ 0), a new “exotic” Higgs branch
opens up, which is parametrized by the VEV of the
hypermultiplet of the effective string compactification.
This branch emanates only from that locus and does not
exist at nonzero β. Being massless, this state is marginally
stable at β ¼ 0 and can decay into a pair of massless
bifundamental quarks in the singlet channel with the same
baryon charge QB ¼ 2; see Eq. (2.10). The b hyper-
multiplet does not exist at nonzero β. One way to interpret
this fact in terms of bulk SQCD is as follows. The b
hypermultiplet may have a “wall of marginal stability” in
the complex β plane—a closed loop shrunk to a single point
β ¼ 0. Outside this point the b hypermultiplet does not
exist as a stable state, but at this point it is marginally stable.
This interpretation is supported by the logarithmic

divergence of the norm of the b state kinetic term
(5.25), which in turn suggests that the b state is only
marginally stable. Detailed studies of how this can happen
and how the b hypermultiplet interacts with massless
bifundamental quarks is left for future work.

VII. CONCLUSIONS

In this paper we studied the massless spectrum produced
by closed non-Abelian vortex strings in N ¼ 2 QCD with
the U(2) gauge group and Nf ¼ 4 flavors of quark
multiplets. We interpreted 4D closed string states as a
hadrons of the bulk QCD. Most of the string states turn out
to be nondynamical due to the noncompactness of the six-
dimensional internal Calabi-Yau space Y6. In particular, we
showed the absence of the 4D graviton and unwanted
vector fields in full accordance with the expected properties
of N ¼ 2 bulk QCD. We found one massless 4D hyper-
multiplet associated with deformations of the complex
structure of the conifold Y6. This state is present only at
the self-dual point g2 ¼ 4π. We interpreted it as a baryon
constructed from two monopoles connected by confining
strings; see Fig. 1(b).
We expect that this massless hypermultiplet is the lowest

state of the whole Regge trajectory of states with higher
spins in 4D. Since 4D space is flat, we expect this Regge
trajectory to be linear with respect to spin J. The explicit
construction of this Regge trajectory is left for a future
work.
Let us make some comments to connect our results with

other developments in string theory. Non-Abelian vortices
appear as D2-branes extended along the finite interval
between NS5-branes and D3-branes. The length of this
interval is proportional to the FI parameter, which gives the
string tension [8,11]. In some other examples within the
AdS=CFT framework, the solitionic vortices turn out to be
D-branes or D-strings wrapping some compact cycles
[39,47,48]. Yet, to the best of our knowledge, in the current
literature so far, solitonic strings have not been treated as
fundamental superstrings.
In the present paper (and in Ref. [1]) we have neither

assumed the presence of the ten-dimensional space-time,
fundamental strings or D-branes, nor used any holographic
duality. Instead, our starting point is a four-dimensional
N ¼ 2 supersymmetric QCD. Certainly, this theory can be
realized as a low-energy limit of the fundamental string
theory with D-branes or via geometric engineering.
However, we do not assume this construction from the
beginning since our starting basic bulk theory per se is well
defined.
Next, we explored the case Nf ¼ 2N in N ¼ 2 SQCD

and found that it supports 1=2 BPS non-Abelian vortex
strings. If N ¼ 2 the world-sheet theory on this vortex has
ten real moduli which can be interpreted as coordinates on
the target space R4 × Y6 of the two-dimensional sigma
model. This supersymmetric sigma model describes critical
superstring.
Our theory predicts nonperturbative hadronic states of

the original SQCD at strong coupling (at β ¼ 0). The
tension of the vortex string is fixed by the 4D Fayet-
Iliopoulos term ξ, which is a scale for “strong interactions,”
not the bona fide Planck scale. In a sense, we returned to the

(a) (b)

FIG. 1. (a) Monopole-antimonopole stringy meson. (b) Monop-
ole-monopole stringy baryon. Open and closed circles denote the
monopole and antimonopole, respectively.
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early days of string theory and tried to obtain (super-
symmetric) hadrons as closed string excitations of a
solitonic SQCD string. It turns out that in a proper setup
it is possible.
Within our approach we certainly should not think of the

solitonic vortex string [1] as from a D-brane since we do
not have any supergravity or D-branes to begin with.11

However, it would be stimulating to find a possible
connection between the results reported in Refs. [1,2]
and the literature on solitonic strings engineered in string
theory. Presumably, one can see the spectrum of light states
which we described in this work by applying some string
dualities.
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APPENDIX: METRICS OF RESOLVED
AND DEFORMED CONIFOLDS

The Kähler, Ricci flat metric on the resolved conifold has
the form [37–39]

ds2 ¼ κðrÞ−1dr2 þ r2

6
ds21 þ

1

6
ðr2 þ 6βÞds22 þ κðrÞ r

2

9
ds23;

ðA1Þ
where the angle differentials are defined in Eq. (5.7), while
the function κðrÞ is equal to

κðrÞ ¼ r2 þ 9β

r2 þ 6β
: ðA2Þ

Consider now the metric on the deformed conifold. The
deformation (5.12) preserves Kähler structure and Ricci
flatness of the conifold metric. The metric of the deformed
conifold has the form [37,40,41]

ds2 ¼ jbj2=3KðuÞ
� ðsinh uÞ3
3ðsinh 2u − 2uÞ ðdu

2 þ ds23Þ

þ coshu
4

ðds21 þ ds22Þ þ
1

2
ds24

�
; ðA3Þ

where angle differentials are defined in Eq. (5.7), while

ds24 ¼ sinψðsin θ1dθ2dφ1 þ sin θ2dθ1dφ2Þ
þ cosψðdθ1dθ2 − sin θ1 sin θ2dφ1dφ2Þ: ðA4Þ

Here

KðuÞ ¼ ðsinh 2u − 2uÞ1=3
21=3 sinh u

; ðA5Þ

and the radial variable u is defined as

~r2 ¼ jbj cosh u: ðA6Þ
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