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We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with
direct-product gauge groups G. If the gauge coupling for a factor group Gi ⊂ G becomes sufficiently
strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other
gauge symmetries Gj ⊂ G. Our comparative study of a number of strongly coupled direct-product chiral
gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the
relative sizes of the gauge couplings corresponding to factor groups in the direct product.
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I. INTRODUCTION

A problem of longstanding interest has been the behavior
of strongly coupled chiral gauge theories (in four spacetime
dimensions, at zero temperature). Here a chiral gauge
theory is defined as one in which the fermions, written
in left-handed chiral form, transform as complex represen-
tations of the gauge group. A chiral gauge theory is defined
as being irreducibly chiral if it does not contain any
vectorlike subsector. In this case, the chiral gauge sym-
metry forbids any fermion mass terms in the underlying
Lagrangian. In order for the theory to be renormalizable,
one requires that it must be free of any triangle anomalies in
gauged currents.
In this paper we shall analyze a variety of chiral gauge

theories with direct-product gauge groups of the form

G ¼ ⊗
NG

i¼1
Gi ð1:1Þ

with fermion contents chosen so that all non-Abelian gauge
interactions are asymptotically free. The reason for this
choice is that this enables one to carry out perturbative
calculations at a sufficiently large Euclidean energy/
momentum scale, μ, in the deep ultraviolet (UV). As the
theory evolves from the UV to the infrared (IR), these non-
Abelian gauge interactions thus grow in strength. We
restrict our discussion here to theories without fundamental
scalar fields. The gauge group G is taken to contain NNA
non-Abelian factor groups, and, by convention, we order
the factor groups in the tensor product (1.1) so that these
non-Abelian factor groups come before any possible
Abelian factor group(s).
The main question that we investigate is how patterns of

dynamical gauge symmetry breaking depend on the struc-
ture of the direct product gauge group (1.1) and on the
relative strengths of the gauge couplings for various factor
groups Gi ⊂ G that become strong in the IR. We assume
that if G contains any Abelian gauge interaction, it is

weakly coupled at high scales μ in the UV; given that
such a gauge interaction has a positive beta function, this
implies that the Abelian coupling will also remain weak
at lower scales in the infrared. Our study of a variety of
direct-product chiral gauge theories shows how the patterns
of symmetry breaking depend on the structure of G and on
the relative sizes of the gauge couplings corresponding
to factor groups in the direct product. If the gauge coupling
for one of these factor groups Gi ⊂ G gets sufficiently
strong and dominates over the other(s), then it can produce
bilinear fermion condensates that can self-break the Gi
symmetry itself and/or break other gauge symmetries
Gj ⊂ G.
An example of this dependence of the type of gauge

symmetry breaking upon the relative strengths of gauge
couplings in a direct-product chiral gauge theory is
provided by a modification of the Standard Model (SM)
with the same NG ¼ 3 gauge group GSM ¼ SUð3Þc ⊗
SUð2ÞL ⊗ Uð1ÞY and with the usual fermion content,
but with the Higgs field removed. If, at a given scale
ΛQCD, the color SUð3Þc gauge coupling becomes
sufficiently large while the SUð2ÞL [and Uð1ÞY] gauge
couplings are weak, then the SUð3Þc gauge interaction
produces a bilinear quark condensate hq̄qi, which
dynamically breaks the electroweak gauge symmetry
GEW ¼ SUð2ÞL ⊗ Uð1ÞY to electromagnetic Uð1Þem, giv-
ing masses to the W and Z bosons. Indeed, this was a
motivation for models of dynamical electroweak symmetry
breaking by a hypothesized vectorial, asymptotically free
gauge interaction that would become strongly coupled at
the TeV scale and would produce bilinear fermion con-
densates involving a set of fermions that are nonsinglets
under GEW [1]. In this scenario, as well as in quantum
chromodynamics (QCD) itself, the interaction that becomes
strong is vectorial and breaks a weakly coupled chiral
gauge interaction to a vectorial subgroup gauge symmetry,
namely Uð1Þem. In contrast, as discussed in [2] in the
context of the gedanken SM theory with no Higgs field, if
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the SUð2ÞL gauge coupling were sufficiently large at a
given reference scale, while the SUð3Þc gauge coupling
were weak, then a very different pattern of symmetry
breaking would occur: this SUð2ÞL gauge interaction would
produce bilinear fermion condensates that preserve the
SUð2ÞL gauge invariance but break SUð3Þc to SUð2Þc, and
break Uð1ÞY , giving masses to the gluons in the coset
SUð3Þc=SUð2Þc and to the hypercharge gauge boson.
Chiral gauge theories (without scalars) that are asymp-

totically free and can therefore become strongly coupled at
low energies have been of interest in the past for several
reasons. One motivation involved an effort to understand
the pattern of quark and lepton generations. Since the
respective lower bounds on the compositeness scales of
these Standard-Model fermions are much larger than their
masses, a plausible approach was to begin by using a
theoretical framework in which they were massless.
Strongly coupled irreducibly chiral gauge theories are a
natural candidate for such a framework, since the chiral
gauge invariance forbids any fermion mass terms. If such a
theory satisfies the ’t Hooft global anomaly-matching
conditions, then, as the gauge coupling becomes suffi-
ciently strong in the infrared, the gauge interaction could
confine and produce massless gauge-singlet composite
spin-1=2 fermions [3–18].
A different motivation for studying strongly coupled

chiral gauge theories arose in the context of models that
sought to explain both dynamical electroweak symmetry
breaking and fermion mass generation. In terms of
low-energy effective Lagrangians, this involved the
above-mentioned new vectorial gauge interaction that
would become strong at the TeV scale and produce bilinear
fermion condensates, in conjunction with a set of four-
fermion operators that could give rise to quark and lepton
masses [1,8]. A next step was the construction of
ultraviolet-completions of these theories that would have
the potential to explain not only the Standard-Model
fermion masses in a given generation, but also the existence
of a generational hierarchy of fermion masses. A basic
property of a chiral gauge theory is that if it becomes
strongly coupled, it can produce bilinear fermion conden-
sates that self-break the gauge symmetry [9,10].
Reasonably UV-complete models for dynamical electro-
weak symmetry breaking and Standard-Model fermion
mass generation made use of this feature (e.g., [12–20]).
These involved strongly coupled chiral gauge interactions
that led to the formation of various fermion condensates
which broke the initial chiral gauge symmetry in a
sequence of stages that might plausibly explain the SM
fermion masses and their generational hierarchy. This
sequential breaking was such as to yield, as a residual
symmetry, the vectorial gauge symmetry that is strongly
coupled at the TeV scale. Reference [13] used a direct-
product chiral gauge group with two strongly coupled
gauge interactions and pointed out that different patterns of

sequential gauge symmetry breaking (denoted Ga and Gb
in [13]) could occur, depending on the relative sizes of
gauge couplings corresponding to these two factor groups.
A similar phenomenon was noted in other models studied
in [14]. It is this interesting property of the nonperturbative
behavior of direct-product chiral gauge theories that we
wish to explore further here.
Another motivation for the present study is the fact that

patterns of gauge symmetry breaking by Higgs fields
depend on parameters in the Higgs potential V, which
one can choose at will, subject to the constraint that V
should be bounded from below. In contrast, once one has
specified the gauge and fermion content of a chiral gauge
theory, together with the values of the gauge couplings at a
reference point (which is naturally chosen to be in the deep
UV for theories with asymptotically free non-Abelian
gauge interactions), then the dynamics determines the
pattern of gauge symmetry breaking uniquely [21].
This paper is organized as follows. In Sec. II we discuss

our general theoretical framework, methods of analysis,
and a classification of direct-product chiral gauge theories.
Section III contains some useful procedures for the con-
struction of (anomaly-free, asymptotically free) chiral
gauge theories. In Secs. IV–XVI we study a variety of
different chiral gauge theories with direct-product gauge
groups and fermion contents. These involve both unitary
and orthogonal gauge groups and elucidate how the
patterns of dynamical symmetry breaking depend on the
structures of the respective theories. Our conclusions are
contained in Sec. XVII.

II. CLASSIFICATION OF GROUPS
AND METHODS OF ANALYSIS

In order to explore the nonperturbative behavior of
direct-product chiral gauge theories, it is useful to have
a general classification of these theories and general
methods for analyzing them. We discuss these in this
section. As stated above, we consider direct-product chiral
gauge theories with gauge groups of the form (1.1) with
fermion content ffg chosen such that the theory is free of
any anomalies in gauged currents and free of any global
SU(2) Witten anomalies, and also such that all non-Abelian
gauge interactions are asymptotically free. Unless other-
wise indicated, we will, with no loss of generality, write all
fermions as left-handed chiral components.
To describe our classification system, we first introduce

some notation. We generically denote a group that has only
real or pseudoreal representations as Gr and a group that
has complex representations as Gc. A group Gr cannot, by
itself, be the gauge group of a chiral gauge theory, although
it can appear as a factor group in a chiral gauge theory.
A groupGr has zero anomaly, while, in general, a groupGc
has nonzero anomalies AR for its representations [see
Eq. (A14)], which we will indicate by the symbol Gca.
If a groupGc has no anomaly, i.e., AR ¼ 0 for allR, then it
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is commonly termed “safe” (s) [22], and we denote it as
Gcs. Of course, a group Gr is automatically safe. Thus, the
generic class Gs includes Gr and Gcs.
We may then classify a chiral gauge theory with the

direct-product gauge group (1.1) by an NG-dimensional
vector indicating the nature of the factor groups involved in
the direct product. If NG ¼ 1, there are two possibilities:
(i) ðcaÞ, e.g., SUðNÞ with N ≥ 3, and (ii) ðcsÞ, e.g.,
SOð4kþ 2Þ for k ≥ 2 or the exceptional group E6 [22–24].
For NG ¼ 2, the possibilities are

NG ¼ 2∶ ðca; rÞ; ðcs; rÞ; ðca; caÞ; ðca; csÞ; ðcs; csÞ;
ð2:1Þ

where we do not distinguish the order of factor groups, so,
for example, ðcs; caÞ and ðca; csÞ are the same type.
Let us consider a factor group Gi in (1.1) which is of the

form Gca, and set the gauge couplings of the other factor
groups to zero. If the resultant Gca theory is vectorial (v),
then we denote this as Gcav. This is the case, for example,
with the color SUð3Þc factor group in the Standard Model.
Thus, a further classification of direct-product chiral gauge
theories can be carried out in which, for each factor group
of the formGca, one distinguishes whether or not it is of the
form Gcav. The Standard Model gauge group is of the type
ðcav; r; caÞ in this classification. We illustrate the classi-
fication of some chiral gauge theories considered in this
paper in Table I.
Our requirement that each non-Abelian factor group in

the direct product (1.1) is asymptotically free enables us to
describe the theory perturbatively in the deep ultraviolet.
We discuss the evolution from the UV to the IR next. To
each factor group Gi, i ¼ 1;…; NG, there corresponds a
running gauge coupling giðμÞ, and we define αiðμÞ ¼
giðμÞ2=ð4πÞ and aiðμÞ≡ giðμÞ2=ð16π2Þ. The argument μ
will often be suppressed in the notation. The UV to IR
evolution of the gauge coupling is determined by the beta
function, βgi ¼ dgi=dt, or equivalently, βGi

¼ dαi=dt ¼
½g=ð2πÞ�βgi , where dt ¼ d ln μ. This has the series
expansion

βGi
¼ −8πa2i

�
bGi;1l þ

XNG

j¼1

bGi;2l;ijaj

þ
XNG

j;k¼1

bGi;3l;ijkajak þ � � �
�
; ð2:2Þ

where an overall minus sign is extracted and the dots …
indicate higher-loop terms. Here, bGi;1l is the one-loop
[denoted ð1lÞ] coefficient, multiplying a2i , bGi;2l;ij is the
two-loop coefficient, multiplying a2i aj, and so forth for
higher-loop terms. The property of asymptotic freedom for
the non-Abelian gauge interactions means that βGi

< 0

for small αi, i ¼ 1;…; NNA. The set (2.2) constitutes a set
of NG coupled nonlinear first-order ordinary differential
equations for the quantities αi, i ¼ 1;…; NG. To leading
order, i.e., to one-loop order, the set of differential
equations decouple from each, and one has the simple
solution for each i ∈ f1;…; NGg:

αiðμ1Þ−1 ¼ αiðμ2Þ−1 −
bGi;1l

2π
ln

�
μ2
μ1

�
; ð2:3Þ

where we take μ1 < μ2.
In the following discussion, we assume that the funda-

mental Lagrangian has no fermion mass terms, so that all
fermion masses are generated dynamically by chiral sym-
metry breaking. For a pair of gauge interactions corre-
sponding to the factor groups Gi and Gj in Eq. (1.1), the
respective beta functions βGi

and βGj
in the deep UV are

fixed once we choose the fermion content of a given theory.
The values of the corresponding αiðμ1Þ and αjðμ1Þ at lower
Euclidean scales are determined by (i) the initial values of
αiðμ2Þ and αjðμ2Þ in the UV; (ii) the values of βGi

and βGj
;

and (iii) the occurrence of bilinear fermion condensate
formation at some scale(s) as the theory evolves from the
deep UV toward the IR, which produce dynamical masses
for the fermions involved in these condensates. Since we do
not assume that the direct-product group (1.1) is contained
in a simple group in the deep UV, we are free to consider
various different orderings of the sizes of the couplings
αiðμ2Þ in the UV. Furthermore, because of the condensation
process(es) (iii), the fermions involved in these conden-
sates, together with gauge bosons corresponding to broken
generators of gauge symmetries, acquire dynamical masses
and are integrated out of the low-energy effective field
theories that are applicable as the Euclidean reference scale
decreases below each condensation scale. The reduction in
massless particle content in (iii) produces changes in the
beta functions of the gauge interactions involved. Because
of this, even if βGi

> βGj
with all fermions initially present

in the deep UV, it can happen that at a lower scale this
inequality is reversed. The variation of gauge couplings in
the deep UVembodied in the input (i) above was carried out
in the earlier work [13] where both of the cases of relative

TABLE I. Classification of some direct-product chiral gauge
theories. See text for further discussion.

Type NG G

ðca; rÞ, ðcav; rÞ 2 SUðNÞ ⊗ SUð2Þ with N ≥ 3
ðcav; cavÞ 2 SUðNÞ ⊗ SUðMÞ with N, M ≥ 3
ðr; caÞ 2 SUð2Þ ⊗ Uð1Þ
ðca;caÞ, ðcav; caÞ 2 SUðNÞ ⊗ Uð1Þ with N ≥ 3
ðcav; r; caÞ 3 SUðNcÞ ⊗ SUð2ÞL ⊗ Uð1ÞY
ðcav; r; rÞ 3 SUðNÞ ⊗ SUð2ÞL ⊗ SUð2ÞR
ðcav; r; r; cavÞ 4 SUðNcÞ⊗SUð2ÞL⊗SUð2ÞR⊗Uð1ÞB−L
ðcs; rÞ 2 SOð4kþ 2Þ ⊗ SUð2Þ with k ≥ 2
ðcs; cavÞ 2 SOð4kþ 2Þ ⊗ SUðNÞ with N ≥ 3
ðcs; csÞ 2 SOð4kþ2Þ⊗SOð4k0þ2Þ with k, k0 ≥ 2
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sizes of αETC and αHC were considered, and in [2], where
both of the cases of relative sizes of couplings for SUð3Þc
and SUð2ÞL were considered. Henceforth, for notational
simplicity, we set bGi;1l ≡ bGi;1. There have been a number
of interesting studies of renormalization-group (RG) flows
in quantum field theories with multiple interaction cou-
plings using perturbatively calculated beta functions, e.g.,
[25]. Here, as in the earlier works involving gauge theories
with multiple gauge couplings [2,13,15], we will focus on
the nonperturbative phenomenon of fermion condensate
formation and the associated pattern of gauge symmetry
breaking. The one-loop result (2.3) will be sufficient for
our purposes here since we focus on this nonperturbative
fermion condensate formation. These condensates also
generically break global chiral symmetries.
In general, a fermion condensate may involve different

fermion fields or the same fermion field. If the fields are the
same, we may write the bilinear fermion operator product
abstractly as follows. Assume that the gauge group G in
Eq. (1.1) contains t ≤ NG non-Abelian factors Gk and that
the relevant fermion field f transforms as the representation
R≡ ðR1;…;RtÞ under the direct product of these non-
Abelian factor groups. Then the bilinear fermion product of
a given fermion field is

fTR;i;LCfR;j;L; ð2:4Þ

where C is the Dirac conjugation matrix, gauge group
indices are suppressed in the notation, and i, j are copy
(flavor) indices. From the property CT ¼ −C together with
the anticommutativity of fermion fields, it follows that the
bilinear fermion operator product (2.4) is symmetric under
interchange of the order of fermion fields and therefore is
symmetric in the overall product

�Yt
k¼1

ðRk ×RkÞ
�
Sij; ð2:5Þ

where Sij abstractly denotes the symmetry property under
interchange of flavors, with Sij ¼ ðijÞ and Sij ¼ ½ij� for
symmetric and antisymmetric flavor structure, respectively.
For example, for the case t ¼ Ng ¼ 2 and flavor indices i,
j, the symmetry property (2.5) means that fTi;LCfj;L is of
the form ðs; s; sÞ, ðs; a; aÞ, ða; s; aÞ, or ða; a; sÞ, where here
s and a indicate symmetric and antisymmetric and the three
entries refer to the representationsR1 of G1,R2 of G2, and
Sij. Thus, as an illustration, in the last case, ða; a; sÞ, the
product (2.4) would transform as antisymmetric represen-
tations in the Clebsch-Gordan products of Rj ×Rj for
j ¼ 1, 2 and would be symmetric in flavor indices, with
Sij ¼ ðijÞ, and so forth for other cases.
The main perturbative information that we will use is

the one-loop coefficients of the beta functions for the
non-Abelian gauge interactions. We require that these

interactions must be asymptotically free so that we have
perturbative control over them in the deep UV. If αiðμÞ
becomes strong, i.e., O(1) in the IR, one can no longer
use perturbative methods reliably, but one can make use
of several approximate methods to explore possible
nonperturbative properties of the theory. First, one may
investigate whether the fermions in the theory satisfy the
’t Hooft anomaly-matching conditions. For this purpose,
one determines the global flavor symmetry group of
the theory and then checks whether candidate operators
for gauge-singlet composite spin-1=2 fermions match
the anomalies in the global flavor symmetries. If
this necessary condition is satisfied, then it is possible
that in the infrared the strong chiral gauge interaction
could confine and produce massless composite spin-1=2
fermions.
A different possibility in a strongly coupled chiral gauge

theory is that the gauge interaction can produce bilinear
fermion condensates. This will be the main focus of our
analysis here. In an irreducibly chiral theory these conden-
sates break one or more gauge symmetries, as well as global
flavor symmetries. A commonly usedmethod for suggesting
which type of condensate is most likely to form in this case is
the most-attractive-channel (MAC) method [10]. For pos-
sible condensation of chiral fermions in the representations
RGi;1 and RGi;2 of the factor group Gi in (1.1) in various
channels of the form RGi;1 ×RGi;2 → RGi;cond, the MAC
approach predicts that the condensation will occur in the
channel with the largest (positive) value of the quantity

ΔC2 ≡ C2ðRGi;1Þ þ C2ðRGi;2Þ − C2ðRGi;condÞ; ð2:6Þ

where C2ðRÞ is the quadratic Casimir invariant for the
representation R (see the Appendix). This is only a rough
measure, based on one-gluon exchange [26]. The form of the
condensate determines the resultant symmetry and form of
vacuum alignment [11].

III. METHODS FOR CONSTRUCTING CHIRAL
GAUGE THEORIES

In this section we mention some useful methods for
constructing anomaly-free direct-product chiral gauge
theories.

A. Reduction method

Let us say that we have a chiral gauge theory with the
NG-fold direct product gauge group (1.1) and a given
fermion content that satisfies the constraints that the theory
must be free of any anomaly in gauged currents, any
possible global SU(2) anomaly, and, if G includes Abelian
factor groups, also any mixed gravitational-gauge anomaly.
One can then construct a set of chiral gauge theories by a
process of reduction, setting one or more of the gauge
couplings fg1;…; gNG

g equal to zero. As an example, if
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one starts with a modified and extended Standard Model
with gauge group (7.1) and fermion content (7.2)–(7.4)
below, of type ðcav; r; caÞ, then (i) by turning off the
SUðNcÞ gauge coupling, one gets an SUð2ÞL ⊗ Uð1ÞY
gauge theory of type ðr; caÞ; (ii) by turning off the SUð2ÞL
gauge coupling, one gets an SUðNcÞ ⊗ Uð1ÞY gauge
theory of type ðcav; caÞ; and (iii) by turning off the
Uð1ÞY coupling, one gets an SUðNcÞ ⊗ SUð2ÞL gauge
theory of type ðcav; rÞ. Given that the original theory has
the requisite property that all non-Abelian gauge inter-
actions are asymptotically free, the theory derived by
turning off some gauge coupling(s) also has this property.

B. Extension method to construct G= eG ⊗ Gs theories

Here we present a method for constructing a
direct-product chiral gauge theory with an (NG þ 1)-fold
direct-product gauge group, starting from a given chiral
gauge theory with an NG-fold direct-product gauge group
~G by adjoining a safe group Gs to ~G to produce

G ¼ ~G ⊗ Gs ð3:1Þ

and extending the fermion representations of ~G to those of
G ¼ ~G ⊗ Gs. Here Gs may be Gr or Gcs. The procedure is
as follows:

1. Start with an anomaly-free chiral gauge theory with
the NG-fold gauge group ~G ¼⊗NG

i¼1 Gi and a set of
fermion representations fR ~Gg, where each of these is

R ~G ¼ ðRG1
;…;RGNG

Þ: ð3:2Þ

2. Choose the safe group Gs, of type Gr or Gcs, i.e.,
either a group with real representations, such as
SU(2), or a safe group with complex representations,
such as SOð4kþ 2Þ with k ≥ 2 or the exceptional
group E6.

3. Extend each fermion representation R ~G of ~G to a
representationRG of G using a single representation
RGs

ofGs to formRG ¼ ðR ~G;RGs
Þ. As far as the ~G

group is concerned, this simply amounts to a
replication of its original (anomaly-free) fermion
content by dimðRGs

Þ copies, so the resulting ex-
tended fermion content is also anomaly-free.

4. Apply the constraint that if the safe group is
Gs ¼ SUð2Þ, then the resultant theory must be free
of a global SU(2) Witten anomaly associated with
the homotopy group π4ðSUð2ÞÞ ¼ Z2 [27,28]. With
RGs

¼ □, the necessary and sufficient condition
to satisfy this constraint is that the total number of
SU(2) doublets is even [27].

5. Apply the constraints that each of the gauge inter-
actions corresponding to non-Abelian factor groups
in ~G must remain asymptotically free in the larger

group G, and the Gs gauge interaction must also be
asymptotically free.

This method can be used to construct many types of
direct-product chiral gauge groups. Among the NG ¼ 2
cases, for example, these types include all of the ones listed
in Eq. (2.1).

IV. Gcav ⊗ SUð2Þ THEORIES

In this section we construct and study a class of NG ¼ 2
direct-product chiral gauge theories with a gauge group

G1 ⊗ G2 ¼ Gcav ⊗ SUð2Þ: ð4:1Þ

This class is the special case ðcav; rÞ of the class
Gca ⊗ Gr discussed in Sec. II in which Gca ¼ Gcav,
i.e., Gca is a group with complex representations and
AR ≠ 0 and the fermion content is such that if the SU(2)
gauge interaction is turned off, then the Gcav gauge
interaction is vectorial. This property guarantees that there
is no cubic triangle anomaly in gauged currents in the
Gcav sector. Furthermore, as already indicated above, since
SU(2) has (pseudo)real representations, it has no anomaly.
The only anomaly constraint is then the requirement that
the SU(2) group must be free of a global anomaly. We
consider theories of this type with chiral fermion content
(written here as left-handed)

ffns;nsg ¼
X
R

pRðR;□Þ; ð4:2Þ

ffns;sg ¼ 2
X
R

pR̄ðR̄; 1Þ; ð4:3Þ

and optionally,

ffs;nsg ¼ p1ð1;□Þ; ð4:4Þ

where the subscripts ns and s are abbreviations for
“nonsinglet” and “singlet”; R denotes a (nonsinglet)
representation of the group G1; and the first and second
entries in subscripts and in the parentheses refer to the
representations of Gcav and SUð2ÞL, respectively, with □

being the fundamental representation in standard Young
tableaux notation.
If the fermion sector includes only a single R, then we

set pR ≡ p for brevity. We shall use interchangeably a
notation with Young tableaux and dimensionalities to
identify the representation: ðR;□Þ ↔ ðdimðRÞ; 2Þ. In
general, we will allow for several types of (nonsinglet)
representations R, but will focus on minimal theories with
only one R. The subscript indices i, j are copy (“flavor”)
indices, and the total number of copies of the fns;ns
fermions transforming as the R representation of G1 is
denoted pR. We shall mainly focus on irreducibly chiral
theories, i.e., those for which the chiral gauge symmetry
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forbids any bare mass terms, but we shall also discuss some
chiral gauge theories with vectorlike subsectors. The global
symmetries depend on p and p1; we will discuss them for
specific models below.
The number of SU(2) chiral fermion doublets in this

theory, which we shall denote Nd, is

Nd ¼ p1 þ
X
R

pR dimðRÞ: ð4:5Þ

The condition that the SU(2) gauge sector must be free of a
global anomaly is that

Nd is even: ð4:6Þ
Because Nd is necessarily even, one could take half of the
left-handed SU(2)-doublet fermions, rewrite them as right-
handed charge-conjugates, and thereby put the SU(2)
gauge interaction into vectorial form.
As noted, we shall also impose two further requirements

on the theory, namely that the G1 and the SU(2) gauge
interactions must both be asymptotically free. From the
general results in [29], we find that the one-loop coefficient
of the beta function of the G1 gauge interaction is

b1;G1
¼ 1

3

�
11C2ðG1Þ − 8

X
R

pRTðRÞ
�
; ð4:7Þ

so the requirement that the G1 gauge interaction should be
asymptotically free implies that

X
R

pRTðRÞ < 11C2ðG1Þ
8

: ð4:8Þ

Here and below, if p1 ¼ 0 and the theory contains fermions
in one (nonsinglet) representation R of G1, then only
nonzero values of pR ≡ p are relevant, since if p ¼ 0, then
the theory is a pure (direct-product) gauge theory and hence
is not a chiral gauge theory.
The one-loop coefficient of the beta function of the

SU(2) gauge interaction is

b1;SUð2ÞL ¼ 1

3
ð22 − NdÞ

¼ 1

3

�
22 −

�
p1 þ

X
R

pR dimðRÞ
��

; ð4:9Þ

so the requirement that the SU(2) gauge interaction should
be asymptotically free implies that

p1 þ
X
R

pR dimðRÞ < 22: ð4:10Þ

V. SUðNÞ ⊗ SUð2Þ THEORIES

In this section we construct and study several models
with a direct-product gauge group of the form (4.1) with the
first gauge group being SUðNÞ, i.e., with

G ¼ G1 ⊗ G2 ¼ SUðNÞ ⊗ SUð2Þ ð5:1Þ

and various chiral fermion contents, which we denote as
Models A, B, and C. All three of these models are of type
ðcav; rÞ, as indicated in Table I.

A. Model A

The first model that we consider, denoted Model A, is a
minimal one in three respects: (i) it contains no G1-singlet
fermions, i.e., p1 ¼ 0; (ii) the fermions transform accord-
ing to only one representation R of G1 and its conjugate;
and (iii) this representationR is the simplest nontrivial one,
namely the fundamental, R ¼ □. The chiral fermions are

ψa;α
i;L ; i ¼ 1;…; p∶ pð□;□Þ ¼ pðN; 2Þ; ð5:2Þ

and

χa;j;L; j ¼ 1;…; 2p∶ 2pð□; 1Þ ¼ 2pðN̄; 1Þ: ð5:3Þ

Here, a and α are SUðNÞ and SU(2) gauge indices and i, j
are copy (“flavor”) indices. For N ≥ 3, the chiral gauge
symmetry forbids any bare mass terms for the fermions. In
contrast, if N ¼ 2, then gauge-invariant bare mass terms
such as

ϵabχTa;i;LCχb;j;L; i ≠ j; 1 ≤ i; j ≤ 2p ð5:4Þ

and

ϵabϵαβψ
a;αT
i;L Cψb;β

j;L; 1 ≤ i; j ≤ p ð5:5Þ

can occur. Closely related to this, if N ¼ 2, then the SUðNÞ
and SU(2) gauge interactions can both be written in
vectorial form, so the theory is not a chiral gauge theory.
Therefore, henceforth we shall assume that N ≥ 3 for this
class of theories. In the notation introduced above, the
fermion content of this Model A can be categorized as
being of the form

ffns;ns; fns;sg: ð5:6Þ

The fermion terms in the Lagrangian for this model are

L ¼
Xp
j¼1

ψ̄ j;Li =Dψ j;L þ
X2p
j¼1

χ̄j;Li =Dχj;L; ð5:7Þ

(where we have indicated the sums over flavor indices
explicitly). In connection with the discussions in Secs. III A
and VII, we note that one realization of a Model A theory is
the gauge and quark sector of the generalized Standard
Model with the Higgs field removed, the weak hypercharge
gauge coupling turned off, and with the identifications
N ¼ Nc and p ¼ Ng, where Ng denotes the number of
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fermion generations. In this case, the correspondence of
fermion fields here and in Eqs. (7.2) and (7.3) is as given
below in Eqs. (7.11) and (7.12). This correspondence
motivates the property that the Lagrangian (5.7) is diagonal
in copy indices; if one were to include terms of the form
χ̄j;Li =Dχk;L with j ≠ k, some of these would correspond, in
the generalized SM, to terms of the form ūj0;Li =Ddk0;L that
would violate Uð1ÞY and electromagnetic Uð1Þem gauge
symmetries. Although Model A has no Uð1ÞY factor, we
will restrict the Lagrangian to the form (5.7) which could be
derived from the generalized SM by the reduction process
of Sec. III A.
For this Model A, the condition that the SU(2) gauge

sector should be free of a global anomaly is

Nd ¼ pN is even; ð5:8Þ

and we require that this condition must be satisfied.
From the general result (4.7), we have, for the one-loop

coefficient of the SUðNÞ beta function,

b1;SUðNÞ ¼
1

3
ð11N − 4pÞ: ð5:9Þ

Therefore, the requirement that the SUðNÞ gauge inter-
action should be asymptotically free, expressed by the
inequality (4.8), reads

p <
11N
4

: ð5:10Þ

From the general result (4.9), we find, for the one-loop
coefficient of the SU(2) beta function,

b1;SUð2ÞL ¼ 1

3
ð22 − pNÞ: ð5:11Þ

Hence, the requirement that the SU(2) gauge interaction
should be asymptotically free, given by the inequality
(4.10), is

pN < 22: ð5:12Þ

In Fig. 1 we show the boundaries of the region in the ðN; pÞ
plane satisfying the inequalities (5.10) and (5.12). The
allowed values of N and p are thus the integers N ≥ 3 and
p ≥ 1 in this allowed region that satisfy the conditions
(5.10), (5.12), and (5.8). We list these in Table II. Several
comments are in order concerning these allowed values of
N and p. First, as N increases through the value N ¼ 22,
the maximum value of p allowed by the inequality (5.12)
decreases below 1, so that forN > 22, this inequality (5.12)
has only the trivial (integral) solution p ¼ 0 for which the
theory is a pure gauge theory with no fermions and hence
not of interest here. Second, for odd N, one sees that the

condition (5.8) for the theory to be free from a global SU(2)
anomaly restricts p to even values.
We next analyze the UV to IR evolution and gauge

symmetry breaking in this model. If the SUðNÞ gauge
interaction is sufficiently strong and if it dominates over the
SU(2) gauge interaction, then this SUðNÞ interaction forms
bilinear fermion condensates that break the SU(2) gauge

2

4

6

8

10

12

14

p

2 4 6 8 10
N

FIG. 1. Plot of the region in N and p allowed by the require-
ment of of asymptotic freedom for the SUðNÞ and SU(2) gauge
interactions in the SUðNÞ ⊗ SUð2ÞL Model A chiral gauge
theory. The boundaries of this region are given by the line from
the inequality (5.10) and the hyperbola from the inequality (5.12).
The allowed values of N and p are thus the integers N ≥ 3 and
p ≥ 1 in this allowed region that also satisfy the condition that the
theory must not have any global SU(2) anomaly, Eq. (5.8). See
text for further discussion.

TABLE II. Values of N and p in the Model A SUðNÞ ⊗
SUð2ÞL chiral gauge theory allowed by the inequalities (5.10) and
(5.12) arising from the constraint of asymptotic freedom for the
SUðNÞ and SU(2) gauge interactions, respectively, and the
requirement that the theory must not have any global SU(2)
anomaly, Eq. (5.8). The notation 12 ≤ Neven ≤ 20 denotes the
even values of N in this range. The notation 13 ≤ Nodd ≤ 21
denotes the odd values of N in this range. For N ≥ 22, the
inequality (5.12) has only the trivial solution p ¼ 0 for which the
theory is a pure gauge theory with no fermions and hence is not a
chiral gauge theory.

N Allowed values of p

3 p ¼ 2, 4, 6
4 1 ≤ p ≤ 5
5 p ¼ 2, 4
6 1 ≤ p ≤ 3
7 p ¼ 2
8 p ¼ 1, 2
9 p ¼ 2
10 p ¼ 1, 2
11 no sol. with p ≠ 0
12 ≤ Neven ≤ 20 p ¼ 1
13 ≤ Nodd ≤ 21 no sol. with p ≠ 0
N ≥ 22 no sol. with p ≠ 0
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symmetry. We denote the scale at which this occurs as Λ.
As regards the SUðNÞ gauge interaction, the most attractive
channel for fermion condensation is

SUðNÞ∶ □ ×□ → 1; ð5:13Þ
in terms of Young tableaux, or equivalently, N × N̄ → 1, in
terms of the dimensionalities of the SUðNÞ representations,
with associated condensates�XN

a¼1

ψa;αT
i;L Cχa;j;L

�
; ð5:14Þ

where i ∈ f1;…pg and j ∈ f1;…; 2pg. (Here and below,
when a condensate is given, it is understood that the
Hermitian conjugate condensate is also present.) This
channel has

ΔC2 ¼ 2C2ð□Þ ¼ N2 − 1

N
: ð5:15Þ

Each of the condensates in Eq. (5.14) breaks the SU(2)
gauge symmetry completely [and is invariant under the
SUðNÞ gauge symmetry, as is clear from (5.13)]. The
fermions involved in these condensates, and the SU(2)
gauge bosons, gain dynamical masses of order Λ.
If, on the other hand, the SU(2) interaction is sufficiently

strong and if it dominates over the SUðNÞ interaction, then
this SU(2) interaction produces bilinear fermion conden-
sates in the most attractive SU(2) channel 2 × 2 → 1, with
associated condensates of the form

hϵαβψa;αT
i;L Cψb;β

j;Li: ð5:16Þ
We denote the scale where this occurs as Λ0. The attractive-
ness measure for condensate formation in this channel is
ΔC2 ¼ 2C2ð□Þ ¼ 3=2. From the general symmetry prop-
erty (2.5), it follows that if, as in Eq. (5.16), one contracts
the SU(2) gauge indices α and β antisymmetrically via the
SU(2) ϵαβ tensor, then the combination of SUðNÞ and
generational indices is antisymmetric. That is, in the
operator product (5.16), either the SUðNÞ gauge indices
are antisymmetric and the generational indices are sym-
metric, so the condensate is proportional to

hϵαβðψa;αT
i;L Cψb;β

j;L−ψb;αT
i;L Cψa;β

j;Lþψa;αT
j;L Cψb;β

i;L −ψb;αT
j;L Cψa;β

i;LÞi
ð5:17Þ

or the SUðNÞ gauge indices are symmetric and the genera-
tional indices are antisymmetric, so the condensate is
proportional to

hϵαβðψa;αT
i;L Cψb;β

j;Lþψb;αT
i;L Cψa;β

j;L−ψa;αT
j;L Cψb;β

i;L−ψb;αT
j;L Cψa;β

i;L Þi:
ð5:18Þ

The SUðNÞ gauge interaction, although assumed to be
weaker than the SU(2) gauge interaction, is not assumed to

be negligible, and it prefers the condensation channel that is
the MAC as regards SUðNÞ. Now

ð5:19Þ

whereas

ð5:20Þ

so the channel is the MAC, and indeed, the
channel is repulsive. Therefore, we conclude

that in this case where SU(2) is more strongly coupled than
SUðNÞ, the expected condensation channel is, in an
obvious notation,

ð5:21Þ

with associated condensate (5.17). This condensate, which
is of the form hT ½ab�i, where T ½ab� is a rank-2 antisymmetric
tensor of SUðNÞ, breaks SUðNÞ as follows [30]:

hT ½ab�i∶ SUðNÞ → H ¼
�
SUð2Þ if N ¼ 3

SUðN − 2Þ ⊗ SUð2Þ if N ≥ 4

ð5:22Þ

The fermions involved in the condensate and the gauge
bosons in the coset SUðNÞ=H gain dynamical masses of
order Λ0 and are integrated out of the low-energy effective
field theory that is operative as the reference scale μ
decreases below Λ0. The fermion condensates that form
in both the strong-SUðNÞ and strong-SU(2) situations also
break global flavor symmetries. Since we have already
analyzed this sort of global flavor symmetry breaking in
our previous works [17,18], we will not pursue this here,
instead focusing on the gauge symmetry breaking.

B. Model B

This model, denoted Model B, has the same gauge group
as Model A, but has an enlarged chiral fermion sector
which also contains p1 ≡ p0 copies of the SUðNÞ-singlet,
SU(2)-doublet fermion

ηαj;L; j ¼ 1;…; p0∶ p0ð1; 2Þ: ð5:23Þ

Thus, the fermion content of Model B can be categorized as
being of the form

ffns;ns; fns;s; fs;nsg ð5:24Þ

in the notation of Eq. (5.6). Depending on the value of p0,
these additional fermions may have gauge-invariant bare
mass terms of the form
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ϵαβη
αT
i;LCη

β
j;L; ð5:25Þ

where i ≠ j and 1 ≤ i, j ≤ p0. Using the general symmetry
property (2.5) and taking account of the antisymmetric
contraction of the SU(2) gauge indices α and β with the ϵαβ
tensor, it follows that the fermion operator in (5.25) is
automatically antisymmetrized in the flavor indices i and j,
so if p0 ¼ 1, then it vanishes identically. If p0 ≥ 2, then the
ffs;nsg fermions constitute a vectorlike subsector in the full
chiral gauge theory.
The sector of SUðNÞ-nonsinglet fields in Model B is the

same as in Model A, so the SUðNÞ gauge interaction is
again vectorial and hence is free from any gauge anomaly,
as is the SU(2) gauge interaction. The condition that the
SU(2) part of the theory should be free of any global
anomaly is that the number of SU(2) doublets, denoted Nd,
is even, i.e.,

Nd ¼ pN þ p0 is even; ð5:26Þ

and we require that this condition be satisfied.
The one-loop coefficient of the SUðNÞ beta function,

b1;SUðNÞ, is given by (5.9), as in Model A, so p is subject to
the same upper bound from the requirement that the SUðNÞ
interaction must be asymptotically free, namely (5.10).
The one-loop coefficient of the SU(2) beta function is

b1;SUð2Þ ¼
1

3
½22 − ðpN þ p0Þ�; ð5:27Þ

so the requirement that the SU(2) gauge interaction should
be asymptotically free implies that

pN þ p0 < 22: ð5:28Þ

The allowed values ofN, p, and p0 for Model B are thus the
integers N ≥ 3, p ≥ 1, and p0 ≥ 1 satisfying the conditions
(5.10), (5.28)), and (5.26). There are too many values to
list in a table analogous to Table II, but we mention that
for N ¼ 3, the allowed values of ðp; p0Þ are ð1; 2kþ 1Þ
with 0 ≤ k ≤ 8; ð2; 2kÞ with 1 ≤ k ≤ 7; (3, 2kþ 1)
with 0 ≤ k ≤ 5; ð4; 2kÞ with 1 ≤ k ≤ 4; (5, 2kþ 1) with
0 ≤ k ≤ 2; and the single pair (6,2). As in Model A, as N
increases, the allowed set of values of p and p0 is
progressively reduced, and for sufficiently large N, there
are no nontrivial solutions to the three conditions. For
example, for N ¼ 16, there are only two allowed sets of
ðp; p0Þ, namely (1,2) and (1,4); for N ¼ 17, there are again
two sets, namely (1,1) and (1,3), while for N ¼ 18, there is
only one, (1,2), and forN ¼ 19, there is only one, (1,1). For
N ≥ 20, there are no allowed (nonzero) values of p and p0
in this model.
Since Model B is the same as Model A as regards the

SUðNÞ-nonsinglet fermion content, it follows that if the
SUðNÞ gauge interaction is sufficiently strong and

dominates over the SU(2) interaction, then the resultant
bilinear fermion condensate formation is the same as in
Model A.
However, if the opposite is the case, i.e., if the SU(2)

gauge interaction is strong enough and dominates over the
SUðNÞ interaction, then, depending on the value of p0, two
additional type of fermion condensates may be produced.
These all have the same SU(2) attractiveness measure, as
given before, namely, ΔC2 ¼ 3=2 and hence, if SUðNÞ
interactions are negligible, they are expected to form at
essentially the same Euclidean scale, which we again
denote as Λ. Thus, in addition to the condensate(s)
(5.17), the SU(2) gauge interaction can lead to condensa-
tion in the channel

ð1; 2Þ × ð1; 2Þ → ð1; 1Þ ð5:29Þ

with the associated condensate(s)

hϵαβηαTi;LCηβj;Li; ð5:30Þ

where 1 ≤ i, j ≤ p0. From (2.5), it follows that the bilinear
fermion operator product in (5.30) is antisymmetric in the
copy indices i and j and hence vanishes identically if
p0 ¼ 1. As is evident from (5.29), this condensate (5.30)
preserves the full SUðNÞ ⊗ SUð2Þ gauge symmetry. The
fermions involved in these condensates gain dynamical
masses of order the condensation scale, denoted Λ, and are
integrated out in the low-energy effective field theory that is
operative as the reference scale μ decreases below Λ.
The second possible additional condensation channel is

ðN; 2Þ × ð1; 2Þ → ðN; 1Þ ð5:31Þ

with the associated condensate(s)

hϵαβψa;αT
i;L Cηβj;Li; ð5:32Þ

where 1 ≤ i ≤ p and 1 ≤ j ≤ p0. Consider the condensates
(5.32) with a given i, say i ¼ 1. This set of condensates
(5.32) breaks SUðNÞ to SUðN − p0Þ if 1 ≤ p0 ≤ N − 2
and breaks SUðNÞ completely if p0 ≥ N − 1. To show
this, note that without loss of generality we may pick
a ¼ N and j ¼ 1 for one of these condensates. This
condensate, hϵαβψN;αT

1;L Cηβ1;Li, breaks SUðNÞ to the sub-

group SUðN − 1Þ. The fermions ψN;α
1;L and ηβ1;L involved in

this condensate gain dynamical masses of order the scale at
which this condensate forms. Next, consider the condensate
of the form (5.32), where now only the SUðN − 1Þ gauge
indices a ∈ f1;…; N − 1g are dynamical. Again, by con-
vention, we may pick the SUðN − 1Þ gauge index in this
condensate to be N − 1 and the copy index on the ηβj;L
fermion to be j ¼ 2. This breaks SUðN − 1Þ to SUðN − 2Þ
and the fermions ψN−1;α

1;L and ηβ2;L involved in this
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condensate gain dynamical masses of order the condensa-
tion scale. This process continues until SUðNÞ is broken to
SUðN − p0Þ if N − p0 ≥ 2 or until SUðNÞ is completely
broken if N − p0 ≤ 1. A vacuum alignment argument
suggests that it is plausible that this pattern of breaking
would also hold for other values i ¼ 2;…; p. As noted
above, since the SU(2) attractiveness measure of all of these
condensates, ΔC2 ¼ 3=2 is the same, one expects that they
form at essentially the same scale.

VI. EXAMINATION OF SOME OTHER
SUðNÞ ⊗ SUð2Þ THEORIES

Here we examine some NG ¼ 2 chiral gauge theories
with gauge groups of the form G1 ⊗ G2 ¼ SUðNÞ ⊗
SUð2Þ in which the G1 sector is of Gca type rather than
the Gcav type studied in the previous section. Two of the
simplest cases for the fermion content of the SUðNÞ sector
involve chiral fermions transforming according to sym-
metric and antisymmetric rank-2 tensor representations of
SUðNÞ, denoted S2 and A2, together with the requisite
number of fermions in the conjugate fundamental repre-
sentation. Two minimal anomaly-free SUðNÞ sectors are
the following, which we shall label as S2F̄ and A2F̄:

ð6:1Þ

and

ð6:2Þ

We restrict the S2F̄ theory to haveN ≥ 3, since forN ¼ 2 it
is a vectorial, rather than chiral, gauge theory. Similarly, we
restrict the A2F̄ theory to have N ≥ 5 because for N ¼ 4,
the representation is self-conjugate, so the SU(4) AF̄
theory is a vectorial, rather than chiral, gauge theory.
Given the contributions to the SUðNÞ triangle anomaly
from the fermions in the S2 and A2 representations (see the
Appendix), these respective SUðNÞ theories are anomaly-
free. However, we shall show that neither of these can be
used to construct an NG ¼ 2 direct-product chiral gauge
theory in which the SU(2) gauge interaction is asymptoti-
cally free.
We form the embeddings of the S2F̄ and A2F̄ sectors in

an SUðNÞ ⊗ SUð2Þ chiral gauge theory with the respective
fermion contents

ð6:3Þ

and

ð6:4Þ

We will denote these as the S2F̄ and A2F̄ SUðNÞ ⊗ SUð2Þ
theories respectively, and as the T2F̄ SUðNÞ ⊗ SUð2Þ

theories (where T2 stands for rank-2 tensor) when we refer
to them together, with T2 ¼ S2 or A2. These two respective
direct-product chiral gauge theories are clearly free of any
anomalies in gauged currents. With the respective restric-
tions on N, these theories are of type ðca; rÞ.
The numbers of SU(2)-doublet fermions in these two

respective T2F̄ SUðNÞ ⊗ SUð2Þ theories are

Nd ¼
3NðN � 3Þ

2
; ð6:5Þ

where the upper and lower signs refer to the S2F̄ and A2F̄
SUðNÞ ⊗ SUð2Þ theories respectively. In each case, Nd
must be even in order for the theory to avoid a global SU(2)
anomaly.
The one-loop coefficients in the SUðNÞ beta function in

these respective theories are

b1;SUðNÞ ¼
1

3
ð7N ∓ 12Þ; ð6:6Þ

where again the upper and lower signs refer to the S2F̄ and
A2F̄ SUðNÞ ⊗ SUð2Þ theories respectively. In both cases
this is positive, so the SUðNÞ sector is asymptotically free.
However, the one-loop coefficients in the SU(2) beta

function in the respective theories are

b1;SUð2Þ ¼
1

3

�
22 −

3NðN � 3Þ
2

�
for T2F̄: ð6:7Þ

We find that for the S2F̄ SUðNÞ ⊗ SUð2Þ theory,
b1;SUð2Þ is negative for all relevant N ≥ 3. (with N
extended to the positive real numbers, b1;SUð2Þ < 0 for

N > ½−9þ ffiffiffiffiffiffiffiffi
609

p �=6 ¼ 2.613), so none of these theories
has the required asymptotically free SU(2) gauge inter-
action. Also, many cases are independently excluded by the
fact that Nd is odd. Regarding the A2F̄ SUðNÞ ⊗ SUð2Þ
theory, the N ¼ 5 case has a positive b1;SUð2Þ (equal to 7),
but is excluded because it has an odd value of Nd, namely
Nd ¼ 15. All other values of N for the A2F̄ SUðNÞ ⊗
SUð2Þ theories are excluded because b1;SUð2Þ is negative.
(With N extended to the positive real numbers, b1;SUð2Þ < 0

for N > ½9þ ffiffiffiffiffiffiffiffi
609

p �=6 ¼ 5.613.) Many of these cases are
also excluded independently because they have odd Nd.
Therefore, our examination of these T2F̄ SUðNÞ ⊗ SUð2Þ
theories shows that none of them yields an acceptable chiral
gauge theory for our analysis.

VII. SUðNcÞ ⊗ SUð2ÞL ⊗ Uð1ÞY THEORIES

Here we shall study the nonperturbative behavior of a
chiral gauge theory with a gauge group of the form (1.1)
with NG ¼ 3, namely

GGSM ¼ SUðNcÞ ⊗ SUð2ÞL ⊗ Uð1ÞY; ð7:1Þ
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where the subscript GSM stands for “generalized Standard
Model.” In this section we will follow a traditional
convention in writing some of the fermion fields as
right-handed and, related to this, in denoting the SU(2)
gauge group as SUð2ÞL. The fermion content is (with
i ¼ 1;…; Ng, where Ng ¼ number of generations)

Qaα
i;L ¼

�
uai
dai

�
L
∶ NgðNc; 2ÞYQL

ð7:2Þ

(i.e., Qa1
i;L ¼ uai;L and Qa2

i;L ¼ dai;L),

qai;R; NgðNc; 1ÞYqR
; q ¼ u; d ð7:3Þ

Lα
i;L ¼

�
νli

li

�
L
∶ Ngð1; 2ÞYLL

ð7:4Þ

(i.e., L1
i;L ¼ νli;L and L2

i;L ¼ li;L),

νli;R; Ngð1; 1ÞYνR
; ð7:5Þ

and

li;R∶ Ngð1; 1ÞYlR
: ð7:6Þ

Here, a and α are color and SUð2ÞL gauge indices,
respectively, and i is a generational index. As listed in
Table I, this theory is of type ðcav; r; cÞ. For our discussion,
we will allow the number of colors, Nc, and Ng and to be
arbitrary, subject to the constraints of asymptotic freedom
of the SUðNcÞ and SUð2ÞL gauge interactions and the
absence of an SUð2ÞL global anomaly. The capital L in
Eq. (7.4) stands for “lepton” and the subscript L for the
left-handed chiral component. As in the SM, the (chiral)
SUð2ÞL ⊗ Uð1ÞY gauge group contains a vectorial electro-
magnetic Uð1Þem subgroup, and the electric charge satisfies
Qem ¼ T3L þ ðY=2Þ. Since Qem;fL ¼ Qem;fR ≡Qem;f for
all fermions f, it follows that the hypercharges of the
left-handed and right-handed fermions are related accord-
ing to

YfR ¼ 2T3L;FL
þ YFL

; ð7:7Þ

where here F stands for the left-handed quark or lepton
SUð2ÞL doublets, Q, L.
This theory is a modification of the Standard Model with

the following changes: (i) the color gauge group is changed
from SUð3Þc to SUðNcÞ and (ii) Ng is arbitrary, both being
subject to the three above-mentioned constraints; (iii) the
hypercharge assignments are generalized from their real-
world values, subject to the constraint that there must not be
any gauge anomaly; (iv) two types of SUðNcÞ ⊗ SUð2ÞL-
singlet fermions are present, namely li;R and νli;R, are
present; and (v) the Higgs scalar boson is removed. The

SUðNcÞ subsector of this theory is vectorial and hence is
free of any anomalies in gauged currents. As before, the
SUð2ÞL sector has no pure cubic SUð2ÞL triangle anomaly
in gauged currents. Given the structure of this GSM theory,
the conditions that there be no triangle anomalies in gauged
currents of the form SUðNcÞ2Uð1ÞY and Uð1Þ3Y are the
same. If one imposes the condition that these constraints
should be satisfied for each fermion generation individu-
ally, as we will (and as is the case in the SM), then the
resultant condition is

NcYQL
þ YLL

¼ 0 ð7:8Þ

for each fermion generation. The properties of this theory
were studied for the usual case YLL

¼ −1 in [31] and for
general fermion hypercharge assignments in [32]. Provided
that the hypercharge assignments satisfy Eq. (7.8), they
also yield a vanishing mixed gravitational-gauge anomaly
(for each generation) [32]. The generic classes of hyper-
charge assignments and resultant properties of the theory
were given in [32], together with certain special classes. We
comment on these further below.
The condition that the SUð2ÞL gauge sector should be

free of a global anomaly associated with the homotopy
group π4ðSUð2ÞÞ ¼ Z2 is that the number of SUð2ÞL
doublets,

Nd ¼ NgðNc þ 1Þ ð7:9Þ

is even, i.e.,

NgðNc þ 1Þ is even; ð7:10Þ

and we require that this condition be satisfied. As was noted
in [32], if Ng is even, then this constraint allows arbitrary
Nc, while if Ng is odd, then it allows only odd Nc.
Similarly, if Nc is odd, then this constrain allows any
value of Ng, while if Nc is even, it requires Ng to be even.
We note that if one were to turn off the Uð1ÞY gauge

interaction and set Nc ¼ N, then this model would reduce
to the special case of Model B in Sec. V with p ¼ p0 ¼ Ng

(together with some gauge-singlet fermions). The corre-
spondences between fermion fields in these models is

Qa;α
i;L ↔ ψa;α

i;L ; 1 ≤ i ≤ p; ð7:11Þ

fuai;L;dai;Lg↔ χa;j;L; 1≤ i≤p; 1≤ j≤ 2p ð7:12Þ
and

Lα
i;L ↔ ηαi;L; 1 ≤ i ≤ p0: ð7:13Þ

One reason that we used abstract notation for the fermions
in the Models A, B, and C of Sec. V is that they have a
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different structure than the GSM theory considered here in
several respects: (i) the condition for the absence of
anomalies in gauge currents is different, since they have
no U(1) factor; and (ii) p and p0 need not be equal, whereas
in the GSM p ¼ p0 ¼ Ng. Since the νi;R and li;R fields are
singlets under SUðNcÞ ⊗ SUð2ÞL, they have no (nonsing-
let) corresponding fields in Model B of Sec. V.
We shall require that both the SUðNcÞ and SUð2ÞL gauge

interactions in the GSM must be asymptotically free. The
one-loop coefficient of the SUðNcÞ beta function is

b1;SUðNcÞ;GSM ¼ 1

3
ð11Nc − 4NgÞ; ð7:14Þ

so the requirement that the SUðNcÞ gauge interaction must
be asymptotically free implies that Ng satisfies

Ng <
11Nc

4
: ð7:15Þ

The one-loop coefficient of the SUð2ÞL beta function is
b1;SUð2ÞL;GSM ¼ ð1=3Þð22 − NdÞ, i.e.,

b1;SUð2ÞL;GSM ¼ 1

3
½22 − NgðNc þ 1Þ�; ð7:16Þ

so the requirement that the SUð2ÞL gauge interaction must
be asymptotically free implies that the number of SUð2ÞL
doublets (7.9) is bounded above according to

NgðNc þ 1Þ < 22: ð7:17Þ
The weak hypercharge Uð1ÞY gauge interaction is non-
asymptotically free, and the associated gauge coupling g0
decreases as the Euclidean reference scale μ decreases. If,
as we assume, g0 is weak at a high scale in the UV, then it
remains weak at lower scales. Thus, the possible non-
perturbative behavior in the theory is due to the growth of
the gauge couplings of the non-Abelian gauge interactions.
In our generalized theory, if the SUðNcÞ gauge inter-

action is sufficiently strong and dominates over the SUð2ÞL
interaction, then the former breaks GEW to Uð1Þem, as in
dynamical theories of electroweak symmetry breaking. The
most attractive channel is

ðN̄c; 2Þ × ðNc; 1Þ → ð1; 2Þ ð7:18Þ
with attractiveness measure given by (5.15) with N ¼ Nc.
The associated condensates are

hQ̄a;α;i;Luaj;Ri ð7:19Þ
and

hQ̄a;β;i;Ldaj;Ri ð7:20Þ
(and Hermitian conjugates). With no loss of generality, one
may choose α ¼ 1 in Eq. (7.19), so that this condensate
takes the form hūa;i;Luaj;Ri. Since the fermions are massless,

one can order the flavor basis of the uaj;R fields so that the
condensate is diagonal in flavor and hence has the form

hūa;i;Luai;Ri; i ¼ 1;…; Ng: ð7:21Þ

This condensate thus breaks the electroweak gauge sym-
metry according to SUð2ÞL ⊗ Uð1ÞY → Uð1Þem. As noted
in [14], a vacuum alignment argument implies that the
condensate (7.20) aligns in a manner so as to preserve this
residual Uð1Þem gauge symmetry, so that β ¼ 2 in (7.20).
With an appropriate ordering of the flavor basis of the daj;R,
this condensate thus takes the form

hd̄a;i;Ldai;Ri; i ¼ 1;…; Ng: ð7:22Þ

If, on the other hand, the SUð2ÞL gauge interaction is
sufficiently strong and dominates over the SUðNcÞ gauge
interaction, then the gauge symmetry breaking is different.
The most attractive channel for the SUð2ÞL interaction is, as
before, 2 × 2 → 1. There are three types of condensates
that can form in this channel, which we denote for short as
hQQi, hQLi, and hLLi. These were noted in [2] for the
Standard Model without a Higgs field, corresponding to the
special case of the GSM with Nc ¼ 3 and YLL

¼ 0. Here
we extend this analysis to the full GSM. The simplest
condensate is hLLi, which has the form

hϵαβLαT
i;LCL

β
j;Li: ð7:23Þ

Using the general property (2.5) and taking into account the
contraction with ϵαβ, it follows that the bilinear fermion
operator in (7.23) is antisymmetric in the generation indices
i and j. Hence, if Ng ¼ 1, it is absent. AssumingNg ≥ 2, so
that the condensate (7.23) forms, it preserves the
SUðNcÞ ⊗ SUð2ÞL part of GGSM and, for all but a set of
measure zero of hypercharge assignments, it breaks the
Uð1ÞY weak hypercharge gauge symmetry, transforming as
a ΔY ¼ 2YLL

operator. The only exception is the case
denoted class C2l;sym ¼ C2q;sym in [32] (see Tables I and II
in [32]), for which YLL

¼ 0 ¼ YQL
. The condensate (7.23)

also breaks the (global) lepton family number Uð1ÞLi
and

total lepton number Uð1ÞL symmetries. However, these
global symmetries are already broken by SUð2ÞL instantons
[33], and since we assume that SUð2ÞL is strongly coupled,
these SUð2ÞL instantons are not suppressed as they are
(at zero temperature) in the Standard Model. Note that if
one assumes conventional weak hypercharge assignments,
so that νi;R fermions are GSM-singlets, then νTi;RCνj;R
Majorana mass terms are, in general, present, and explicitly
break both lepton family number and total lepton number.
The second type of condensate, denoted hQLi, has the

form

hϵαβQaαT
i;L CLβ

j;Li; ð7:24Þ
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where 1 ≤ i, j ≤ Ng. This is analogous to the condensate
(5.32) in the SUðNÞ ⊗ SUð2Þ Model B of Sec. V,
with the correspondence N ¼ Nc and p ¼ p0 ¼ Ng, so
our analysis in that section applies here, with these
identifications. In particular, if Ng ≤ Nc − 2, then this set
of condensates breaks SUðNcÞ down to SUðNc − NgÞ,
while if Ng ≥ Nc − 1, then this set of condensates breaks
SUðNc − NgÞ completely. These condensates also break
baryon number and (total and family) lepton number.
The third type of condensate, denoted hQQi, has the

form

hϵαβQaαT
i;L CQbβ

j;Li: ð7:25Þ

The same analysis that we gave above for the condensate
(5.17) in the SUðNÞ ⊗ SUð2Þ gauge theory applies here,
with N ¼ Nc and p ¼ Ng From this analysis we infer that
the condensation channel is Eq. (5.21) with N ¼ Nc, and
the type of hQQi condensate that is produced here is

hϵαβðQα;aT
i;L CQβ;b

j;L −Qα;bT
i;L CQβ;a

j;L

þQα;aT
j;L CQβ;b

i;L −Qα;bT
j;L CQβ;a

i;LÞi: ð7:26Þ

This is invariant under SUð2ÞL and breaks SUðNcÞ accord-
ing to Eq. (5.22) with N ¼ Nc. For all but a set of measure
zero of weak hypercharge assignments, the condensate
(7.26) also breaks Uð1ÞY , transforming as a ΔY ¼ 2YQL

operator. The sole exception is the case where
YQL

¼ 0 ¼ YLL
, denoted as class C2q;sym ¼ C2l;sym in

[32] (see Tables I and II in [32]). The condensate (7.26)
also breaks baryon number, Uð1ÞB, but, as noted, this is
already broken by the SUð2ÞL instantons.

VIII. SUðNcÞ ⊗ Uð1ÞY THEORIES WITH Nc ≥ 3

In this and the next two sections we shall apply the
reduction procedure discussed in Sec. III A to obtain two
(anomaly-free) NG ¼ 2 chiral gauge theories starting with
the generalized Standard Model theory discussed in
Sec. VII. These are obtained by turning off the SUð2ÞL
coupling and the SUðNcÞ coupling, respectively. The third
possibility, namely to turn off the Uð1ÞY coupling, yields a
theory with the group SUðNcÞ ⊗ SUð2ÞL, which was
already analyzed in Sec. V.
We begin by turning off the SUð2ÞL coupling in the

generalized Standard Model, thereby obtaining the gauge
group

G ¼ SUðNcÞ ⊗ Uð1ÞY ð8:1Þ

with the (nonsinglet) fermion content given by Eqs. (7.2)
and (7.3). This theory is of the type ðcav; caÞ in the
classification of Sec. II. As in the GSM itself, because the
SUðNcÞ gauge interaction is vectorial, the SUðNcÞ3

anomaly is zero. In the GSM, YQL
denotes the generalized

weak hypercharge of the left-handed quark doublet in
Eq. (7.2); here, since the theory does not have any
SUð2ÞL, we take it simply to be the common value of Y
for uai;L and dai;L (and the same for all i ¼ 1;…; Ng).
Because the original GSM contains a vectorial
Uð1Þem ⊂ SUð2ÞL ⊗ Uð1ÞY , which yields the relation
(7.7), it follows in the present truncated model that if we
specify YQL

, then the hypercharges YuR and YdR are
determined. Thus, just as was true in the GSM, as discussed
in [32], in this truncated version, there is actually an infinite
one-parameter family of models that depend, here, on YQ.
For any member of this family, as a special case of the
situation in the GSM, it follows that the theory is free of
(i) any SUðNcÞ2Uð1ÞY triangle anomaly, (ii) any Uð1Þ3Y
anomaly, and (iii) any mixed gravitational-gauge anomaly
involving the Uð1ÞY gauge group.
The one-loop coefficient for the SUðNcÞ beta function is

given by Eq. (7.14), so the upper bound on Ng to ensure the
asymptotic freedom of the SUðNcÞ gauge interaction is the
same as in (7.15). As the theory evolves from the UV to
the IR and the SUðNcÞ gauge couplings gets sufficiently
large, the theory forms bilinear quark condensates in the
SUðNcÞ MAC, which is □ ×□ → 1. A priori, these
condensates would be

hūa;i;Luaj;Ri; hd̄a;i;Ldaj;Ri; hūa;i;Ldaj;Ri; hd̄a;i;Luaj;Ri
ð8:2Þ

(and their Hermitian conjugates). However, a vacuum
alignment argument can be used to infer that the condensate
formation is such as to preserve the Uð1Þem subgroup of
the Uð1ÞY gauge symmetry, i.e., only the hūa;i;Luai;Ri and
hd̄a;i;Ldai;Ri condensates (and their Hermitian conjugates)
form. Since the theory has no bare mass terms, for a fixed
ordering of the generational indices of the left-handed
quarks uai;L and dai;L, we can always choose the order
of the generational indices of the uaj;R and daj;R so that the
condensates are diagonal in generation indices. The
hūa;i;Luai;Ri and hd̄a;i;Ldai;Ri condensates each break Uð1ÞY
to Uð1Þem.

IX. SUð2Þ ⊗ Uð1ÞY THEORIES

Here we obtain a chiral gauge theory of the type ðr; caÞ
by starting with with the generalized Standard Model of
Sec. VII and turning off the SUðNcÞ gauge coupling,
thereby obtaining the gauge group

SUð2Þ ⊗ Uð1ÞY: ð9:1Þ

The fermions are given by (7.2) and (7.4) of the GSM, with
the modification that now the color index is a global, rather
than gauge, index. The condition that the SU(2) theory
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must not have any global anomaly is the same as Eq. (7.10),
and, as in the GSM, if one imposes it individually on each
generation, then it is the statement that Nc must be odd.
The one-loop coefficient in the SUð2ÞL beta function is

the same as in Eq. (7.16), and the resultant upper bound on
NgðNc þ 1Þ resulting from the condition that the SUð2ÞL
gauge interaction must be asymptotically free is thus the
same as in (7.17). As the theory evolves from the UV to the
IR and the SU(2) grows, if it becomes sufficiently large, it
can produce condensates in the SU(2) MAC, 2 × 2 → 1, of
the three forms discussed in Sec. VII, denoted for short
as hLLi, hQLi, and hQQi, with associated condensates
(7.23), (7.24), and (7.26). As discussed in Sec. VII,
except for a set of measure zero, namely the case where
YQL

¼ YLL
¼ 0, denoted C2q;sym ¼ C2l;sym in [32], these

condensates break Uð1ÞY .

X. SUðNÞ ⊗ SUð2ÞL ⊗ SUð2ÞR
THEORIES WITH N ≥ 3

In this section we consider another chiral gauge theory
with a gauge group of the form (1.1) with NG ¼ 3, namely

GN22 ¼ SUðNÞ ⊗ SUð2ÞL ⊗ SUð2ÞR ð10:1Þ

with N ≥ 3 and the fermions

ψa;αL
i;L ; i ¼ 1;…; p∶ pð□;□; 1Þ ¼ pðN; 2; 1Þ; ð10:2Þ

ψa;αR
i;R ; i ¼ 1;…; p∶ pð□; 1;□Þ ¼ pðN; 1; 2Þ; ð10:3Þ

χαLj;L; j ¼ 1;…; p0∶ p0ð1;□; 1Þ ¼ p0ð1; 2; 1Þ; ð10:4Þ

and

χαRj;R; j ¼ 1;…; p00∶ p00ð1; 1;□Þ ¼ p00ð1; 1; 2Þ: ð10:5Þ

Here the three representations in the parentheses refer,
respectively, to the three factor groups in Eq. (10.1). As
indicated in Table I, this theory is of type ðcav; r; rÞ. Since
the SUðNÞ gauge interaction is vectorial, it has no gauge
anomaly, and both the SUð2ÞL and SUð2ÞR gauge sectors
are safe (anomaly-free). The conditions that the SUð2ÞL
and SUð2ÞR gauge sectors should be free of a global
anomaly are, respectively,

pN þ p0 is even ð10:6Þ

and

pN þ p00 is even: ð10:7Þ

As with our other models, we shall require that all three
non-Abelian gauge interactions are asymptotically free.
The one-loop coefficient of the SUðNÞ beta function is the
same as in the SUðNÞ ⊗ SUð2ÞL model of Sec. V, Eq. (5.9)

(applicable to both Models A and B of that section) so the
condition that the SUðNÞ gauge interaction should be
asymptotically free is the inequality (5.10). The one-loop
coefficient of the SUð2ÞL beta function is the same as in the
SUðNÞ ⊗ SUð2Þ Model B, Eq. (5.27), so the requirement
that the SUð2ÞL gauge interaction be asymptotically free is
the inequality (5.28). Finally, the one-loop coefficient of the
SUð2ÞR beta function is the same as Eq. (5.27) with p0
replaced by p00, so the requirement that the SUð2ÞR gauge
interaction be asymptotically free is given by the inequality
(5.28) with p0 replaced by p00, namely Npþ p00 < 22.
We denote the gauge couplings as gN , gL, and gR, with

αN ¼ g2N=ð4πÞ, αL ¼ g2L=ð4πÞ, and αR ¼ g2R=ð4πÞ. If the
initial values of these couplings are such that, as the
Euclidean reference scale μ decreases from large values
in the deep UV, the SUðNÞ interaction becomes sufficiently
strong and dominates over the SUð2ÞL and SUð2ÞR gauge
interactions, then it is expected to produce condensation in
the most attractive channel, which is

ðN̄; 2; 1Þ × ðN; 1; 2Þ → ð1; 2; 2Þ; ð10:8Þ
with attractiveness measure (5.15). The associated bilinear
fermion condensate is

hψ̄a;αL;i;Lψ
a;αR
j;R i: ð10:9Þ

This breaks SUð2ÞL ⊗ SUð2ÞR gauge symmetry to the
diagonal (¼ vector) subgroup, SUð2ÞV . That is, if elements
of SUð2ÞL and SUð2ÞR are denoted as UL and UR, then
SUð2ÞV is the subgroup of SUð2ÞL ⊗ SUð2ÞR defined by
the condition UL ¼ UR.
If the SUð2ÞL interaction is sufficiently strong and

dominates over both the SUðNÞ and SUð2ÞR interaction,
then it can produce the three types of condensates and
corresponding symmetry breaking discussed in our analy-
sis of the SUðNÞ ⊗ SUð2Þ Model B above.
Finally, if the SUð2ÞR interaction is sufficiently strong

and dominates over both the SUðNÞ and SUð2ÞL inter-
action, our discussion of the condensate formation in the
SUðNÞ ⊗ SUð2Þ Model B above applies, with all sub-
scripts L changed to R.

XI. SUðNcÞ ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L
THEORIES

Here we analyze the chiral gauge theory with a gauge
group of the form (1.1) with NG ¼ 4, namely

GN221 ¼ SUðNcÞ ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L:
ð11:1Þ

We denote the gauge couplings as gNc
, gL, gR, and gU, with

αNc
¼ g2Nc

=ð4πÞ, and so forth for the other couplings. The
quarks and leptons in this theory are
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Qa;αL
i;L ; i ¼ 1;…; Ng∶Ngð□;□; 1Þ1=Nc

¼ NgðNc; 2; 1Þ1=Nc
;

ð11:2Þ

Qa;αR
i;R ; i ¼ 1;…; Ng∶Ngð□; 1;□Þ1=Nc

¼ NgðNc; 1; 2Þ1=Nc
;

ð11:3Þ

LαL
i;L; i ¼ 1;…; Ng∶Ngð1;□; 1Þ−1 ¼ Ngð1; 2; 1Þ−1; ð11:4Þ

and

LαR
i;R; i ¼ 1;…; Ng∶Ngð1; 1;□Þ−1 ¼ Ngð1; 1; 2Þ−1: ð11:5Þ

Here the three numbers in the parentheses are the
dimensionalities of the SUðNcÞ, SUð2ÞL, and SUð2ÞR
representations, and the subscripts are the value of
B − L, where B and L denote baryon and lepton number.
The capital L in Eqs. (11.4) and (11.5) stands for “lepton”
and the subscripts L and R for left- and right-handed
chiral components, as before. This theory is of type
ðcav; r; r; cavÞ (see Table I) and is a modification of the
model of Ref. [34] in that (i) the number of colors, Nc ≥ 3
and (ii) the number of generations, Ng, is arbitrary,
subject to constraints to be discussed below; and (iii) the
Higgs field is removed. One of the interesting features of
the original model of Ref. [34] is that the B − L operator
applied to the full set of quarks and leptons in each
generation has zero trace. Our generalized model retains
this property, since B ¼ 1=Nc for each quark. A second
interesting feature of the original model is that electric
charge Qem ¼ T3L þ T3R þ ðB − LÞ=2 is quantized, since
T3L, T3R, B, and L are rational (indeed, L is integral).
Again, our generalized model retains this feature.
The SUðNcÞ gauge interaction is vectorial, and hence has

no gauge anomaly, and both the SUð2ÞL and SUð2ÞR gauge
sectors are also free of any pure cubic gauge anomalies. The
theory is also free of SUð2Þ2LUð1ÞB−L, SUð2Þ2RUð1ÞB−L, and
Uð1Þ3B−L triangle gauge anomalies. The theory is also free of
any mixed gravitational-gauge anomaly. The conditions that
the SUð2ÞL and SUð2ÞR gauge sectors are each free of any
global anomaly are the same, namely the condition (7.10).
We shall require that the three non-Abelian gauge

interactions be asymptotically free. The one-loop coeffi-
cient of the SUðNcÞ beta function is the same as in the
generalized Standard Model, Eq. (7.14), so the condition
that the SUðNcÞ gauge interaction must be asymptotically
free is the same as the inequality (7.15). The respective one-
loop coefficients of the SUð2ÞL and SUð2ÞR beta functions
are equal to each other and given by Eq. (7.16), so the
condition that the SUð2ÞL and SUð2ÞR gauge interactions
must be asymptotically free is the same as the inequality
(7.17). The Uð1ÞB−L gauge interaction is non-asymptoti-
cally free, and the associated gauge coupling gU decreases
with decreasing scale μ. If, as we assume, gU is weak at a
high scale in the UV, then it remains weak at lower scales.

Thus, the possible nonperturbative behavior in the theory is
due to the growth of the gauge couplings of the three non-
Abelian gauge interactions.
If the initial values of these couplings are such that, as the

Euclidean reference scale μ decreases from large values in
the deep UV, the SUðNcÞ interaction becomes sufficiently
strong and dominates over the SUð2ÞL and SUð2ÞR gauge
interactions, then it is expected to produce condensation in
the most attractive channel, which is

ðN̄c; 2; 1Þ−1=Nc
× ðNc; 1; 2Þ1=Nc

→ ð1; 2; 2Þ0: ð11:6Þ

The associated bilinear fermion condensate is the same as
the one given in Eq. (10.9). As is evident from (11.6), this
preserves the SUðNcÞ and Uð1ÞB−L gauge symmetries and
breaks SUð2ÞL ⊗ SUð2ÞR to SUð2ÞV .
If the SUð2ÞL interaction is sufficiently strong and

dominates over both the SUðNcÞ and SUð2ÞR interaction,
then it can produce the three types of condensates discussed
in our analysis of the generalized Standard Model above,
with appropriate changes of weak hypercharge to B − L.
The first of these is the condensate denoted (7.23) with the
replacements α, β → αL, βL and our discussion in con-
nection with this condensate applies here. In particular,
assuming Ng ≥ 2, so that this condensate forms, it
preserves the SUðNcÞ ⊗ SUð2ÞL ⊗ SUð2ÞR part of GN221

and breaks the Uð1ÞB−L gauge symmetry, transforming
as jΔLj ¼ 2.
The second type of condensate has the form of (7.24)

with i; j ¼ 1;…; Ng. This condensate is invariant under the
SUð2ÞL ⊗ SUð2ÞR part of GN221 and, for a given i, j, it
breaks SUðNcÞ to SUðNc − 1Þ. Without loss of generality,
we may choose a ¼ Nc, so that the residual subgroup
SUðNc − 1Þ operates on the indices a ∈ f1;…; Nc − 1g. It
also breaks Uð1ÞB−L, since it transforms as an operator
with jB − Lj ¼ jN−1

c − 1j ≠ 0.
The third type of condensate is hQQi, which has the

form of (7.25) with α, β → αL, βL. The same analysis that
we gave above for this condensate in our discussion of the
generalized Standard Model applies here, with the obvious
change of α, β just noted. Thus, again, using MAC and
vacuum alignment arguments, we may infer that the
condensate has the explicit structure of Eq. (7.26). This
is invariant under the SUð2ÞL ⊗ SUð2ÞR part of GN221

and breaks SUðNcÞ according to Eq. (5.22) with N ¼ Nc.
It also breaks Uð1ÞB−L, transforming as a jΔBj ¼ 2=Nc
operator.
Finally, if the SUð2ÞR interaction is sufficiently strong

and dominates over both the SUðNcÞ and SUð2ÞL inter-
action, then it can produce the three types of condensates
discussed directly above, with the obvious changes of
chiralities of fermion fields from L to R and the resultant
changes of symmetry-breaking patterns.

DYNAMICAL SYMMETRY BREAKING IN CHIRAL GAUGE … PHYSICAL REVIEW D 94, 065001 (2016)

065001-15



XII. SUðNc þ 1Þ ⊗ SUð2ÞL ⊗ SUð2ÞR THEORIES

As noted above, in the original model with an
SUð3Þc⊗SUð2ÞL⊗SUð2ÞR⊗Uð1ÞB−L electroweak gauge
group [34], the B − L operator applied to the full set of
quarks and leptons in each generation has zero trace.
Owing to this property, one can embed the Uð1ÞB−L gauge
symmetry together with SUð3Þc in an SU(4) group [35]
such that the B − L operator diagð1=3; 1=3; 1=3;−1Þ is
proportional to the last diagonal generator of the Cartan

subalgebra of suð4Þ. The resultant gauge group is
SUð4Þ ⊗ SUð2ÞL ⊗ SUð2ÞR. We may carry out the same
process for our generalized group and thus consider the
chiral gauge theory with gauge group

G ¼ SUðNc þ 1Þ ⊗ SUð2ÞL ⊗ SUð2ÞR: ð12:1Þ

The fermion content is

FL ¼ ðQa;αL
i ; LαL

i ÞL; i ¼ 1;…; Ng∶ Ngð□;□; 1Þ ¼ NgðNc þ 1; 2; 1Þ; ð12:2Þ

FR ¼ ðQa;αR
i ; LαR

i ÞR; i ¼ 1;…; Ng∶ Ngð□; 1;□Þ ¼ NgðNc þ 1; 1; 2Þ; ð12:3Þ

where, a, αL, and αR are, respectively, SUðNc þ 1Þ,
SUð2ÞL, and SUð2ÞR gauge indices and i is a generation
index. The three numbers in the parentheses are the
dimensionalities of the SUðNcþ1Þ, SUð2ÞL, and SUð2ÞR
representations. The Cartan subalgebra of suðNc þ 1Þ
has dimension Nc þ 1 and its last Cartan matrix is
proportional to a diagonal matrix whose first Nc entries
are 1=Nc and whose Nc þ 1’th entry is −1, i.e.,
diagð1=Nc;…; 1=Nc;−1Þ.
We observe that this model is a special case of the chiral

gauge theory that we analyzed in Sec. X obtained by setting
N ¼ Nc þ 1, p ¼ Ng, p0 ¼ p00 ¼ 0, ψa;αL

i;L ¼ FL, and
ψa;αR
i;R ¼ FR. Thus, this special case of our analysis in

Sec. X applies for the theory of this section.

XIII. SOð4kþ 2Þ ⊗ SUð2Þ THEORIES

It is also of interest to study chiral gauge theories with
direct-product groups group that involve a safe SOðNÞ
group. We recall that ifN is odd or ifN is even andN ¼ 4k,
k ≥ 1, then SOðNÞ has only real representations, while if
N ¼ 4kþ 2 with k ≥ 2, then the theory has complex
representations but is safe (i.e., has no anomaly for any
representation) [22]. With this motivation, we consider
chiral gauge theories with the gauge group

G ¼ SOð4kþ 2Þ ⊗ SUð2Þ with k ≥ 2: ð13:1Þ

These are of the form ðcs; csÞ in the general classification
given in Sec. II. Since N is even, it is also convenient to
introduce an integer r ¼ N=2:

N ¼ 4kþ 2 ¼ 2r; k ≥ 2; ð13:2Þ

so r ¼ 2kþ 1. As before, we write all fermions as left-
handed. We start by considering the general fermion
content

X
R;R0

½nRðR; 1Þ þ pR0 ðR0;□Þ�; ð13:3Þ

where R and R0 are representations of SO(4kþ 2). We
include only complexR andR0 since the use of a realR or
R0 would lead to a vectorlike subsector, so the model would
not be irreducibly chiral.
Using the relevant group invariants, we calculate the

one-loop term in the beta function for the SOðNÞ gauge
coupling with N given by (13.2) to be

bSOð4kþ2Þ;1 ¼
2

3

�
11ðr − 1Þ −

X
f

ðnRTR þ 2pR0TR0 Þ
�
:

ð13:4Þ

We calculate the one-loop term in the SU(2) beta function
to be

bSUð2Þ;1 ¼
1

3

�
22 − 2

X
R0

pR0 dimðR0Þ
�
: ð13:5Þ

Because the first terms in square brackets in Eq. (13.4) and
(13.5) are, respectively, linear in r and a constant, while the
relevant TR, TR0 , and dimðR0Þ grow exponentially rapidly
with r, the asymptotic freedom of the SOð2rÞ and SU(2)
gauge interactions places strong restrictions on the fermion
content and the value of N. For our purposes, it will be
sufficient to consider the simplest models of this type, with
(complex)R ¼ R0. We will consider three specific models,
which we label Models A, B, and C.

A. Model A

We first briefly consider the case where the fermion
sector has the form ffns;sg, i.e, all of the fermions are
singlets under SU(2). In this case, the gauge group
effectively reduces to SOðNÞ, with N given by (13.2).
We choose the minimal complex representation for the
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fermions, namely the spinor representation, denoted S, of
dimension dimðSÞ ¼ 2r−1 ¼ 22k (see the Appendix) and
include n copies of these, so the fermion content is

ωi;L; i ¼ 1.; ; ; n∶ nðS; 1Þ; ð13:6Þ

where the first and second entries in the parentheses here
and below are the representations of SOðNÞ and SU(2),
respectively. The general formula for the one-loop term in
the beta function for the SOðNÞ gauge coupling, Eq. (13.4)
for this Model A reduces to

bSOð2rÞ;1 ¼
2

3
½11ðr − 1Þ − 2r−4n�: ð13:7Þ

The requirement that the SOðNÞ gauge interaction should
be asymptotically free implies that

n <
11ðr − 1Þ

2r−4
: ð13:8Þ

This has only a finite number of solutions for n that are
nontrivial, i.e., have n ≥ 1, and, indeed, also a finite
number of solutions for r.

G1 ¼ SOð10Þ ði:e:; k ¼ 2; r ¼ 5Þ ⇒ n ≤ 21; ð13:9Þ

G1 ¼ SOð14Þ ði:e:; k ¼ 3; r ¼ 7Þ ⇒ n ≤ 8; ð13:10Þ

G1 ¼ SOð18Þ ði:e:; k ¼ 4; r ¼ 9Þ ⇒ n ≤ 2: ð13:11Þ

For k ≥ 5, i.e., r ≥ 11, the upper bound on n is less than
unity, precluding any fermions.
We assume some initial value of the SOð2rÞ gauge

coupling in the deep UV and then evolve the theory
downward in Euclidean scale μ. Recall that the direct
product of two spinor representations of SOðNÞ with N
given by (13.2) is [23]

S × S ¼ 22k × 22k ¼
Xk−1
l¼0

A2lþ1 þ R2kþ1;2; ð13:12Þ

where At denotes the rank-t antisymmetric tensor repre-
sentation and R2kþ1;2 is a certain self-dual representation.
The symmetry of the At with respect to the interchange of
the two spinor representations in the direct product is given
by ð−1Þuðr;tÞ, where uðr; tÞ ¼ ðr − tÞðr − t − 1Þ=2 [23].
Thus, for example, one has, for the lowest relevant value
of k, namely k ¼ 2, i.e., G1 ¼ SOð10Þ,

SOð10Þ∶S × S ¼ 24 × 24 ¼ A1 þ A3 þ R5;2

¼ 10s þ 120a þ 126s; ð13:13Þ

where the subscripts s and a denote the symmetric and
antisymmetric property of these representations under

interchange of the spinors in the direct product. In general,
for SO(2kþ 2), from the form of uðr; tÞ, it follows that A1

is symmetric (resp. antisymmetric) under interchange of the
spinors in the direct product for even k (resp. odd k), while
A3 is antisymmetric (resp. symmetric) under interchange of
these spinors for even k (resp. odd k).
Assuming that the SOðNÞ coupling becomes strong

enough to produce a bilinear fermion condensate, the
MAC is

SOðNÞ MAC∶ S × S → □; ð13:14Þ

with attractiveness measure (written, for convenient refer-
ence, in terms of each of the three related parameters N, r,
and k)

ΔC2 ¼ 2C2ðSÞ − C2ð□Þ ¼ ðN − 1ÞðN − 4Þ
8

¼ ð2r − 1Þðr − 2Þ
4

¼ ð4kþ 1Þð2k − 1Þ
4

: ð13:15Þ

Since r ≥ 5, i.e., k ≥ 2, this is always positive. The
associated condensate is hωT

i;LCωj;Li, where 1 ≤ i; j ≤ n.
From the general result (2.5), it follows that the bilinear
fermion operator ωT

i;LCωj;L in this condensate is (i) sym-
metric under interchange of spinors in the S × S direct
product in (13.14) and hence symmetric in the flavor
indices i, j if k is even; (ii) antisymmetric under interchange
of spinors and hence antisymmetric in the flavor indices i, j
if k is odd. Therefore, explicitly,

k even⇒ hωT
i;LCωj;LþωT

j;LCωi;Li; 1≤ i;j≤ n ð13:16Þ

and

k odd⇒ hωT
i;LCωj;L−ωT

j;LCωi;Li; 1≤ i;j≤ n: ð13:17Þ

In both cases, if this condensate forms, then, since it
transforms as the fundamental (vector) representation of the
gauge group SOð4kþ 2Þ, it breaks this symmetry to
SOð4kþ 1Þ, which is vectorial and does not break further.
However, if n ¼ 1 and k is odd, e.g., for SO(14) (i.e.,

k ¼ 3), then this condensate in the MAC channel vanishes
identically. In this case, we consider the next channel in
Eq. (13.12), namely

S × S → A3 ð13:18Þ

with attractiveness measure

ΔC2 ¼ 2C2ðSÞ − C2ðA3Þ ¼
ðN − 4ÞðN − 9Þ

8

¼ ðr − 2Þð2r − 9Þ
4

¼ ð2k − 1Þð4k − 7Þ
4

: ð13:19Þ
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For the relevant value of k, namely k ¼ 3, this is
ΔC2 ¼ 25=4.

B. Model B

Here we consider a model with the gauge group (13.1)
with (13.2) and fermion content of the form ffns;nsg,
namely

ψα
i;L; i ¼ 1;…; p∶ pðS;□Þ: ð13:20Þ

We denote this as Model B. Since there are an even number
of SU(2) doublets, this theory has no global SUð2ÞL
anomaly.
The general formulas for the one-loop coefficients in the

SOðNÞ beta function [with N given by (13.2)] and in the
SU(2) beta function displayed in Eqs. (13.4) and (13.5)
reduce, for this Model B, to

bSOð2rÞ;1 ¼
2

3
½11ðr − 1Þ − 2r−3p� ð13:21Þ

and

b1;SUð2Þ ¼
2

3
ð11 − 2r−2pÞ: ð13:22Þ

Hence, the respective conditions that the SOð2rÞ and SU(2)
gauge interactions should be asymptotically free are

p <
11ðr − 1Þ

2r−3
ð13:23Þ

and

p <
11

2r−2
: ð13:24Þ

Since we take k ≥ 2, i.e., r ≥ 5, for our theories, the only
possible nontrivial value for p allowed by the constraint
(13.24) is p ¼ 1 and, furthermore, this is only possible
for the lowest value of k, namely k ¼ 2, and thus
G1 ¼ SOð10Þ. No SOð4kþ 2Þ theories of this Model B
type with nonzero fermion content are allowed by the
asymptotic freedom constraint if k ≥ 3.
We note that there is consequently no (continuous)

nonanomalous global flavor symmetry of the Lagrangian
for this theory. Since there is only one copy of the ðS;□Þ
fermion ψα

i;L, we shall henceforth drop the flavor index and
write this field simply as ψα

L.
If the SO(10) gauge interaction is sufficiently strong and

dominates over the SU(2) gauge interaction, then it
produces a condensate in the SO(10) MAC, (13.14),
thereby breaking the SO(10) gauge symmetry to SO(9),
which is vectorial and does not break further. The con-
densate is hψαT

L Cψβ
Li. As noted above in Sec. XIII A, for

SO(4kþ 2), the□ ¼ A1 that occurs in the Clebsch-Gordan
decomposition of the direct product S × S in (13.14) is
symmetric (resp. antisymmetric) under interchange of these

spinors if k is even (resp. odd). Since k ¼ 2 is even here, it
follows that this □ representation is symmetric under
interchange of the spinors in the direct product. From
the property (2.5), it then follows that the SU(2) gauge
indices must also be symmetric, i.e., the SU(2) channel
is 2 × 2 → 3s, so the operator product transforms as
the adjoint (equivalently, the rank-2 symmetric tensor)
representation of SU(2) and hence can be written as
proportional to

hψαT
L Cψβ

L þ ψβ T
L Cψα

Li: ð13:25Þ

Hence, including both factor groups, in this case of a strong
and dominant SO(10) gauge interaction with even k (viz.,
k ¼ 2), the condensation is in the channel

k even⇒ ðS;□Þ× ðS;□Þ→ ð□s; adjsÞ ¼ ðð4kþ 2Þs;3sÞ:
ð13:26Þ

In addition to breaking SO(10) to SO(9), this condensate
breaks SU(2) to a subgroup Uð1Þ ⊂ SUð2Þ.
The 2 × 2 → 3s channel is actually a repulsive channel

for the SU(2) interaction, with ΔC2 ¼ −1=2. If the SU(2)
gauge interaction is weak enough, this does not matter, but
if it is moderately strong, although weaker than the SO(10)
gauge interaction, it might prevent the condensate from
forming. However, we assume that the SO(10) coupling is
sufficiently strong at a given scale μ so that this condensate
does form.
Having analyzed the situation in which the SO(10) gauge

coupling is strong and dominates over the SU(2) gauge
coupling, we next analyze the opposite situation in which
the SU(2) gauge coupling becomes sufficiently strong and
dominates over the SO(10) coupling. The condensate then
forms in the MAC for SU(2), which is 2 × 2 → 1a,
involving an antisymmetric contraction of SU(2) indices
with the ϵαβ tensor.

hϵαβψαT
L Cψβ

Li: ð13:27Þ

The general result (2.5) then implies that the relevant
representation in the Clebsch-Gordan decomposition of
the direct product S × S is antisymmetric, and we therefore
denote it as Ra. As discussed above, given that k is even
here, the representation that would normally be favored as
the MAC in the direct product of two spinors, (13.12),
namely the □ representation, is symmetric rather than
antisymmetric, and hence Ra cannot be □. Instead, the
lowest-dimension representation in the expansion (13.12)
that is odd under interchange of the spinors is A3 with
dimension ð4kþ2

3
Þ, so the condensation channel is

ðS;□Þ × ðS;□Þ → ððA3Þa; 1aÞ: ð13:28Þ
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The measure of attractiveness of this channel is given by the
ΔC2 in Eq. (13.19) and is always positive for k ≥ 2.
Explicitly, for our SO(10) Model B theory, the A3 repre-
sentation has dimension 120. When expressed as a sum of
product representations of various SO(10) subgroups, the
120-dimensional representation has no singlets under either
of the maximal (i.e., rank-5) subgroups SUð5Þ ⊗ Uð1Þ and
SUð4Þ ⊗ SUð2Þ ⊗ SUð2Þ, or the rank-4 subgroup SO(9),
but does contain a singlet under the rank-4 subgroup
SOð7Þ ⊗ SUð2Þ [23]. It therefore breaks SO(10) to
SOð7Þ ⊗ SUð2Þ.

C. Model C

Here we analyze a model, denoted Model C, that has a
fermion sector which is a combination of the fermion
sectors of Model A in Sec. XIII A andModel B in Sec. XIII
B, and thus is of the form ffns;s; fns;nsg. These fermions
consist of n copies of the ðS; 1Þ fermion ωi;L, i ¼ 1;…; n,
as in Eq. (13.6) and a single copy of the ðS;□Þ fermion,
ψα
1;L, as in Eq. (13.20).
The one-loop coefficient in the beta function of the

SU(2) gauge interaction in this Model C is the same as
(13.22) for Model B, and hence the requirement that the
SU(2) gauge interaction must be asymptotically free
restricts p ≤ 1. The case p ¼ 0 reduces to Model A, which
we have already discussed. Therefore, as indicated, we take
p ¼ 1 here. This, in turn, restricts k to be equal to 2,
i.e., G1 ¼ SOð10Þ.
The one-loop coefficient in the SO(10) beta function for

this Model C is

b1;SOð10Þ ¼
2

3
ð20 − nÞ; ð13:29Þ

so the asymptotic freedom of the SO(10) gauge interaction
implies that n < 20.
If the SO(10) gauge interaction is sufficiently strong and

dominates over the SU(2) interaction, then the resultant
condensates include those analyzed for Models A and B
above, together with a new type of condensate. This new
condensate occurs in the channel

ðS; 1Þ × ðS;□Þ → ð□;□Þ ð13:30Þ

with corresponding condensate

hωT
i;LCψ

α
Li; i ∈ f1;…; ng: ð13:31Þ

This condensate breaks SO(10) to SO(9), which is vectorial
and does not break further.
If, on the other hand, the SU(2) gauge interaction is

sufficiently strong and dominates over the SO(10) inter-
action, then the condensate formation and symmetry-
breaking is the same as for Model B, discussed in
Sec. XIII B.

XIV. SOð4kþ 2Þ ⊗ SUðMÞ THEORY

Here we consider a chiral gauge theory with the gauge
group

SOðNÞ⊗ SUðMÞ; with N ¼ 4kþ 2¼ 2r and M ≥ 3:

ð14:1Þ

We will show that the constraint of asymptotic freedom of
both gauge interactions limits k to the single value k ¼ 2,
but in order to show this, we must first keep k ≥ 2 general.
The fermion content is the sum over representations R of

dimðRSUðMÞÞðRSOð4kþ2Þ; 1Þ þ ðR̄SOð4kþ2Þ; R̄SUðMÞÞ
þ dimðRSOð4kþ2ÞÞð1;RSUðMÞÞ: ð14:2Þ

In the classification of Sec. II, this theory is of the ðcs; cavÞ
type. We take M ≥ 3 since the theory with M ¼ 2 has a
vectorlike subsector comprised of the (1,2) fermions and is
therefore not irreducibly chiral. Note that even if M ¼ 2,
this theory does not coincide with any of Models A, B, or C
in Sec. XIII because those models also avoided ð1;□Þ ¼
ð1; 2Þ fermions that would have constituted a vectorlike
subsector. However, if one were to take M ¼ 2, then the
SOð4kþ 2Þ-nonsinglet fermion sector would coincide
with that of Model B in Sec. XIII. We will show below
that M is limited to a finite set of values by the constraint
of asymptotic freedom. For our present purposes, it will
suffice to consider the simplest realization of this theory,
with a single representation R of SOð4kþ 2Þ, namely the
smallest complex one, the spinor, and the smallest non-
singlet representation of SU(2), namely the fundamental.
The resultant fermion content is thus

pðS;□Þ; 2r−1pð1;□Þ: ð14:3Þ

The one-loop coefficient of the SOð4kþ 2Þ beta function
(with 4kþ 2 ¼ 2r) is

bSOð4kþ2Þ ¼
2

3
½11ðr − 1Þ − 2r−4pM�: ð14:4Þ

The requirement that the SOð4kþ 2Þ gauge interaction
must be asymptotically free then yields the upper bound

p <
11ðr − 1Þ
2r−4M

: ð14:5Þ

Although we restrict M ≥ 3, we note that if one were to
take M ¼ 2, then this would be the same as the upper
bound (13.23) on p for Model B in Sec. XIII. The fact that
we take M ≥ 3 here makes this a more stringent upper
bound than (13.23).
We denote the fermion fields for this theory as

ψα
i;L; i ¼ 1;…; p∶ pðS;□Þ ð14:6Þ
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and

ηα;j;L; j ¼ 1;…; 2r−1p∶ 2r−1pð1;□Þ; ð14:7Þ
where α is an SUðMÞ gauge index and i, j are flavor
indices.
The one-loop coefficient of the SUðMÞ beta function is

bSUðMÞ ¼
1

3
ð11M − 2rpÞ: ð14:8Þ

The requirement that the SUðMÞ gauge interaction must be
asymptotically free then yields the upper bound

p <
11M
2r

: ð14:9Þ

For the relevant range M ≥ 3, these two asymptotic free-
dom constraints can only be satisfied for r equal to its
minimal value, r ¼ 5, i.e., k ¼ 2 and G1 ¼ SOð10Þ;
furthermore, given that k ¼ 2, there are only a finite set
of pairs ðM;pÞ that satisfy the constraints. For the two
integer intervals 3 ≤ M ≤ 5 and 11 ≤ M ≤ 21, only the
value p ¼ 1 is allowed, while for 6 ≤ M ≤ 10, p may take
on the values 1 or 2. If M ≥ 22, there are no allowed
solutions for p. Our general construction is thus reduced to
the finite family of chiral gauge theories with the gauge
groups SOð10Þ ⊗ SUðMÞ with 3 ≤ M ≤ 21 and the afore-
mentioned possible values of p as a function of M.
If the SO(10) gauge coupling becomes sufficiently large

and dominates over the SUðMÞ gauge coupling, then the
former can produce condensation in the SO(10) MAC,
namely (13.14). Since the □ is symmetric under inter-
change of the spinors in (13.14) for even k and hence, in
particular, for k ¼ 2, i.e., SO(10), it follows from our
general result (2.5) that the combination of the SUðMÞ and
flavor product Sij must be symmetric. For the values of M,
namely 3 ≤ M ≤ 5 and 11 ≤ M ≤ 21 that allow only
p ¼ 1, it follows that the flavor product must be symmetric,
as Sij ¼ S11 and hence that the channel is, in terms of the
full representations,

ð14:10Þ

with the condensate

hψαT
1;LCψ

β
1;Li: ð14:11Þ

The SO(10) ΔC2 measure of attractiveness for this channel
is given by the N ¼ 10 special case of Eq. (13.15), namely
27=4. However, the SUðMÞ ΔC2 value is negative, as is
evident from Eq. (5.20), setting M ¼ N, so this is a
repulsive channel as regards the SUðMÞ interaction. This
breaks SO(10) to SO(9), which is vectorial, and does not
break further. Using a vacuum alignment argument, one
may infer that α ¼ β so that the condensate (14.11) breaks
SUðMÞ to SUðM − 1Þ.

For the interval 6 ≤ M ≤ 10 where the theory allows
p ¼ 2, the dynamics could instead produce a condensate in
the channel

ð14:12Þ

where the flavor product Sij is antisymmetric, so that the
condensate is

hψαT
1;LCψ

β
2;L − ψαT

2;LCψ
β
1;Li: ð14:13Þ

In addition to being attractive as regards the SO(10)
interaction, the channel (14.12) is also attractive with
respect to the SUðMÞ interaction, with ΔC2 given by
Eq. (5.19) with N ¼ M. Hence, for M in the interval
6 ≤ M ≤ 10 where p ¼ 2 is allowed, we infer that the
preferred condensation channel in the case where SO(10) is
strong is (14.12). This breaks SO(10) to SO(9) and SUðMÞ
to SUðM − 2Þ ⊗ SUð2Þ.

XV. SOð4kþ 2Þ ⊗ SOð4k0 þ 2Þ THEORY

Here we explore a chiral gauge group of the ðcs; csÞ
type, in our classification from Sec. (II). For this purpose,
we choose the gauge group

SOð4kþ 2Þ ⊗ SOð4k0 þ 2Þ; where k; k0 ≥ 2 ð15:1Þ
and fermion content consisting of p copies of the bi-spinor
representation, ðS;SÞ. We set N ¼ 4kþ 2 ¼ 2r and
N0 ¼ 4k0 þ 2 ¼ 2r0. Although this family of theories
ostensibly depends on the three parameters k, k0, and p,
we will show that there is only one allowed choice for these
three parameters.
The one-loop coefficients in the SOð4kþ 2Þ and

SOð4k0 þ 2Þ beta functions are

bSOð4kþ2Þ;1 ¼
2

3
½11ðr − 1Þ − 2rþr0−5p� ð15:2Þ

and

bSOð4k0þ2Þ;1 ¼
2

3
½11ðr0 − 1Þ − 2rþr0−5p�: ð15:3Þ

The requirements that the SOð4kþ 2Þ and SOð4k0 þ 2Þ
gauge interactions must be asymptotically free yield the
upper bounds

p <
11ðr − 1Þ
2rþr0−5 ð15:4Þ

and

p <
11ðr0 − 1Þ
2rþr0−5 : ð15:5Þ

These can only be satisfied by the single set of values r ¼
r0 ¼ 5 and p ¼ 1, i.e., for the group SOð10Þ ⊗ SOð10Þ
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with p ¼ 1 copy of the ðS;SÞ fermion. The structure of this
theory is thus symmetric under interchange of the two
factor groups. If we break this symmetry by setting one αi
to be large and the other small in Eq. (2.3), then we can
obtain situations in which one SO(10) coupling dominates
over the other. However, because of the structural sym-
metry, in contrast to the generic behavior that we have
found for the other direct-product chiral gauge theories that
we have investigated, here the pattern of symmetry break-
ing is the same regardless of which SO(10) gauge coupling
is large and dominant.
If the first SO(10) gauge coupling gets large enough and

dominates over the second SO(10) gauge coupling, or vice
versa, this can produce fermion condensation in the channel

ðS;SÞ × ðS;SÞ → ð□s;□sÞ; i:e:;

ð16; 16Þ × ð16; 16Þ → ð10s; 10sÞ ð15:6Þ

where we have used the fact that k and k0 are even to infer
the symmetry properties of ð□;□Þ in the Clebsch-Gordan
decomposition of the direct product of the spinors. This
condensation breaks the gauge symmetry SOð10Þ ⊗
SOð10Þ to SOð9Þ ⊗ SOð9Þ, which is vectorial and does
not break further.

XVI. SUðNÞ ⊗ SUðMÞ THEORY

A. General formulation

In this section we analyze a chiral gauge theory with a
gauge group

G ¼ SUðNÞ ⊗ SUðMÞ ð16:1Þ

and fermion content consisting of a sum over RSUðNÞ and
RSUðMÞ of

dimðRSUðMÞÞðRSUðNÞ; 1Þ þ ðR̄SUðNÞ; R̄SUðMÞÞ
þ dimðRSUðNÞÞð1;RSUðMÞÞ; ð16:2Þ

whereRSUðNÞ andRSUðMÞ denote representations of SUðNÞ
and SUðMÞ, respectively. This theory is of type ðcav; cavÞ
in the classification of Sec. II. A special case of this theory
with RSUðNÞ and RSUðMÞ both equal to the fundamental
representation was studied before in [5,6], but in both of
these previous works, it was studied as an example of a
preon theory that might confine without spontaneous
symmetry breaking and hence produce massless composite
fermions. Here we consider it in a different way, as a theory
that can self-break with bilinear fermion condensate for-
mation, and we study the generalized theory with fermion
representations higher than the fundamental.
The numbers M ≥ 2 and N ≥ 2, subject to the asymp-

totic freedom constraint (16.9) below. This is an irreducibly
chiral gauge theory, so the chiral gauge invariance

precludes any mass terms in the fundamental Lagrangian
of the theory. One easily checks that this theory is free of
any anomalies in gauged currents. It is also free of any
global anomalies in the case where N orM is equal to 2. To
see this, consider, for example, the case where N ¼ 2 and
the fermions that are nonsinglets under this group transform
as doublets. From Eq. (16.2) one sees that the number of
SU(2) doublets is 2 dimðRSUðMÞÞ and hence is even.
We calculate the one-loop coefficients in the SUðNÞ and

SUðMÞ beta functions to be

b1;SUðNÞ ¼
1

3
½11N − 4 dimðRSUðMÞÞTðRSUðNÞÞ� ð16:3Þ

and

b1;SUðMÞ ¼
1

3
½11M − 4 dimðRSUðNÞÞTðRSUðMÞÞ�: ð16:4Þ

Hence, the requirements that the SUðNÞ and SUðMÞ gauge
interactions should be asymptotically free imply, respec-
tively, that

dimðRSUðMÞÞTðRSUðNÞÞ <
11N
4

ð16:5Þ

and

dimðRSUðNÞÞTðRSUðMÞÞ <
11M
4

: ð16:6Þ

B. Model with fermions ðF;FÞ
Here we consider the version of the general theory of

type (16.1) containing fermions with RSUðNÞ ¼ □ and
RSUðMÞ ¼ □ (an equivalent notation is F ¼ □). Then

b1;SUðNÞ ¼
1

3
ð11N − 2MÞ ð16:7Þ

and

b1;SUðMÞ ¼
1

3
ð11M − 2NÞ; ð16:8Þ

so the inequalities (16.5) and (16.6) read M < 11N=2 and
N < 11M=2, and the range of N and M allowed by these
two constraints is given by

2

11
<

M
N

<
11

2
: ð16:9Þ

We denote the fermion fields as

ωa
i;L; i ¼ 1;…;M∶ MðN; 1Þ; ð16:10Þ

ζa;α;L∶ ðN̄; M̄Þ; ð16:11Þ

and

DYNAMICAL SYMMETRY BREAKING IN CHIRAL GAUGE … PHYSICAL REVIEW D 94, 065001 (2016)

065001-21



ηαj;L; j ¼ 1;…; N∶ Nð1;MÞ; ð16:12Þ

where a and α denote, respectively, SUðNÞ and SUðMÞ
gauge indices and i ∈ f1;…;Mg and j ∈ f1;…; Ng are
copy (flavor) indices.
As noted, one possibility is confinement without any

spontaneous chiral symmetry breaking, leading to massless
composite spin 1=2 fermions that are singlets under
SUðNÞ ⊗ SUðMÞ. We investigate here the alternative
possibility of condensate formation and associated chiral
symmetry breaking. If the SUðNÞ gauge interaction is
sufficiently strong and dominates over the SUðMÞ inter-
action, then this SUðNÞ interaction can produce condensa-
tion in the most attractive channel N × N̄ → 1. For the full
theory, this is the channel

ðN; 1Þ × ðN̄; M̄Þ → ð1; M̄Þ; ð16:13Þ
with attractiveness measure given by ΔC2 ¼ 2C2ðNÞ ¼
ðN2 − 1Þ=N. The associated condensates are of the form

hωa T
i;LCζa;α;Li; i ¼ 1;…;M ð16:14Þ

(where the sum over a here and below is from a ¼ 1 to
a ¼ N). Consider the condensate (16.14) with i ¼ 1. Since
this transforms as a M̄ representation of SUðMÞ, it breaks
this symmetry to SUðM − 1Þ. By convention, we may
use the initial SUðMÞ invariance to pick α ¼ M in this
condensate, so that it is

hωa T
1;LCζa;M;Li: ð16:15Þ

We denote the scale where this condensate forms as Λ. The
fermions ωa

1;L and ζa;M;L with 1 ≤ a ≤ N involved in this
condensate thus gain dynamical masses of order Λ, as do
the 2M − 1 gauge bosons in the coset SUðMÞ=SUðM − 1Þ.
In the resultant SUðNÞ ⊗ SUðM − 1Þ chiral gauge theory,
we consider the condensate (16.14) with i ¼ 2 and
α ∈ f1;…;M − 1g. Again, by convention, we may use the
residual SUðM − 1Þ gauge invariance to pick α ¼ M − 1 in
this condensate, so that it is

hωa T
2;LCζa;M−1;Li: ð16:16Þ

This preserves SUðNÞ and transforms like the conjugate
fundamental representation of SUðM − 1Þ, thereby break-
ing SUðM − 1Þ to SUðM − 2Þ. This fermion condensation
process continues with the formation of the condensates

hωa T
i;LCζa;M−iþ1;Li; i ≤ M; ð16:17Þ

breaking SUðMÞ completely. The last-enumerated conden-
sate is hωaT

M;LCζa;1;Li. Since all of the condensates of the
form (16.14) have the same attractiveness measure, ΔC2,
they are expected to form at approximately the same
scale, Λ. All of the chiral fermions ωa

i;L and ζa;α with
1 ≤ i ≤ M, 1 ≤ a ≤ N, and 1 ≤ α ≤ M are involved in

these condensates and gain dynamical masses of orderΛ, as
do the full set ofM2 − 1 SUðMÞ gauge bosons. This leaves
a theory with an SUðNÞ gauge invariance containing the
N2 − 1 SUðNÞ gauge bosons and a set of MN massless
SUðNÞ-singlet fermions, namely the ηαj;L with 1 ≤ α ≤ M
and 1 ≤ j ≤ N. The SUðNÞ pure gluonic theory then forms
a spectrum of SUðNÞ-singlet glueballs.
Clearly, if the SUðMÞ gauge interaction is sufficiently

strong and dominates over the SUðNÞ gauge interaction,
then the above discussion applies with the replacements
M ↔ N and ωa

i;L → ηαj;L. In this case, the SUðMÞ inter-
action breaks the SUðNÞ gauge symmetry completely,
leaving the MN massless SUðMÞ-singlet fermions ωa

i;L

with 1 ≤ a ≤ N and 1 ≤ i ≤ M. The SUðMÞ pure gluonic
theory then forms a spectrum of SUðMÞ-singlet glueballs.
The version of the general theory with gauge group (16.1)

and fermion representations RSUðNÞ ¼ □ and RSUðMÞ ¼ □

exhibits the same properties as those that we have analyzed,
with obvious changes, so we do not discuss it separately.

C. Model with ðF; A2Þ
We next analyze a model with the gauge group (16.1)

and fermion representations RSUðNÞ ¼ □ and . Since

for SUðMÞ ¼ SUð3Þ, we restrict M ≥ 4. For this
model the general equations (16.3) and (16.4) read

b1;SUðNÞ ¼
1

3
½11N −MðM − 1Þ� ð16:18Þ

and

b1;SUðMÞ ¼
1

3
½11M − 2NðM − 2Þ�: ð16:19Þ

The general inequalities (16.5) and (16.6) guaranteeing the
asymptotic freedom of the SUðNÞ and SUðMÞ gauge
interactions read, respectively,

N >
MðM − 1Þ

11
ð16:20Þ

and

N <
11M

2ðM − 2Þ : ð16:21Þ

In Fig. 2 we show a plot of the corresponding curves, as a
function of M. The lower bound on N from (16.20) is
N > 2 for M ¼ 4 and increases as M increases. The upper
bound on N from (16.21) is N < 11 for M ¼ 4 and
decreases as M increases. The curves for the upper and
lower bounds on N as a function of M cross each other at

M ¼ 3þ 9
ffiffiffi
3

p

2
¼ 9.294 ð16:22Þ

where
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N ¼ 123þ 18
ffiffiffi
3

p

22
¼ 7.008; ð16:23Þ

where the floating point values are given to the indicated
accuracy. The allowed values ofM andN thus lie within the
enclosed region between the upper and lower curves in
Fig. 2. This region has finite area and hence there are only
finitely many allowed values ofM andN. This is in contrast
to the joint asymptotic freedom constraint for the model
with ðF;FÞ fermions, (16.9), which is an infinite wedge-
shaped region in the M, N plane. As is evident, for a given
M ≥ 4, the range of allowed values of N decreases with
increasing M. For M ¼ 4, N may take on values in the
range 2 ≤ N ≤ 10, while for M ¼ 8, the allowed values of
N are N ¼ 6, 7, and for M ¼ 9, there is only one allowed
value ofN, namelyN ¼ 7. IfM ≥ 10, there are no values of
N that satisfy the inequalities (16.20) and (16.21).

XVII. CONCLUSIONS

In summary, in this paper we have analyzed patterns of
dynamical gauge symmetry breaking using a variety of
chiral gauge theories with direct-product gauge groups
containing asymptotically free non-Abelian gauge inter-
actions of both unitary and orthogonal types. Our results on
the strong-coupling behavior of these theories show that
these patterns of symmetry breaking are typically quite
different depending on the structure of the factor groups in
the direct product and on which gauge interaction domi-
nates in the formation of fermion condensates. These
theories provide useful theoretical laboratories demonstrat-
ing explicitly the generic behavior that if the gauge
coupling for one of the factor groups Gi ⊂ G gets suffi-
ciently strong and dominates over the other(s), then it can
produce bilinear fermion condensates that can self-break
the Gi symmetry itself and/or break other gauge

symmetries Gj ⊂ G. If the Gi gauge interaction that is
dominant is vectorial, then it does not self-break, although
it typically still breaks other gauge symmetries in the direct-
product group. The theories that we have studied also yield
useful examples of sequential gauge symmetry breaking.
These results further elucidate the behavior of strongly
coupled chiral gauge theories and are of value in extending
the understanding of nonperturbative behavior of quantum
field theories.
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APPENDIX: SOME RELEVANT GROUP
INVARIANTS

For reference, we list some group invariants here. We
first define some notation. Let us denote the generators of
the associated Lie algebra G as Ta, where a ¼ 1;…; oðGÞ,
where oðGÞ is the order of the group. These generators
satisfy the commutation relation ½Ta; Tb� ¼ icabdTd, where
cabc are the structure constants. For a representationR, the
Casimir invariants C2ðRÞ and TðRÞ are defined as

XdimðRÞ

i;j¼1

DRðTaÞijDRðTbÞji ¼ TðRÞδab ðA1Þ

and

XoðGÞ
a¼1

XdimðRÞ

j¼1

DRðTaÞijDRðTaÞjk ¼ C2ðRÞδik; ðA2Þ

where Ta are the generators of G, and DR is the matrix
representation (Darstellung) of R. These satisfy

TðRÞoðGÞ ¼ C2ðRÞ dimðRÞ; ðA3Þ
where dimðRÞ is the dimension of the representation R.
For an SUðNÞ group, the rank is N − 1 and group

invariants [with the normalization convention TrðTaTbÞ ¼
ð1=2Þδab] include the following (e.g., [23,24])

C2ð□Þ ¼ N2 − 1

2N
; ðA4Þ

ðA5Þ

and

ðA6Þ

The rank of SOðNÞ is the integral part ofN=2. We denote
At the rank-t antisymmetric tensor representation, with

2

4

6

8

10

12

14

16

N

3 4 5 6 7 8 9 10 11
M

FIG. 2. Plot of the region in M and N allowed by the
requirement of of asymptotic freedom for the SUðNÞ and
SUðMÞ gauge interactions in the SUðNÞ ⊗ SUðMÞ Model with
the ðF; A2Þ fermion content. The allowed values of M and N lie
between the two curves. See text for further discussion.
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dimension ðNt Þ, where ðabÞ ¼ a!=½b!ða − bÞ!�. Note that for
SOðNÞ, the adjoint representation is the same as A2 and the
vector, fundamental, and A1 representations are the same.
With an appropriate normalization convention for the
generators of SOðNÞ (which does not affect the physics),
one has [23,24]

TðadjÞ ¼ C2ðadjÞ ¼ N − 2; ðA7Þ
Tð□Þ ¼ 1; ðA8Þ

and

C2ð□Þ ¼ N − 1

2
: ðA9Þ

For SOðNÞ with N ¼ 2r and S the spinor representation,

dimðSÞ ¼ 2r−1 ðA10Þ
TðSÞ ¼ 2r−4 ðA11Þ

C2ðSÞ ¼
rð2r − 1Þ

8
: ðA12Þ

Denoting the antisymmetric rank-t tensor representation of
SOð2rÞ as At, one has

C2ðAtÞ ¼
tð2r − tÞ

2
: ðA13Þ

From the structure of the triangle diagram, it follows that
triangle anomaly in gauged currents is proportional to

TrðDRðTaÞfDRðTbÞ;DRðTcÞgÞ ¼ dabcAR: ðA14Þ
Groups for which AR ¼ 0 include those with real or
pseudoreal representations, SOð4kþ 2Þ for k ≥ 2, and
E6 [22,23]. For the symmetric and antisymmetric rank-t

tensor representations of SUðNÞ, the anomaly is, respec-
tively [22]

AðStÞ ¼
ðN þ tÞ!ðN þ 2tÞ
ðN þ 2Þ!ðt − 1Þ! : ðA15Þ

and, for 1 ≤ t ≤ N − 1,

AðAtÞ ¼
ðN − 3Þ!ðN − 2tÞ

ðN − t − 1Þ!ðt − 1Þ! : ðA16Þ

In particular, AðS2Þ ¼ N þ 4 and AðA2Þ ¼ N − 4.
A gauge theory in d ¼ 4 dimensions with gauge groupG

contains instantons if πd−1ðGÞ ¼ π3ðGÞ is nontrivial. One
has [28]

π3ðSUðNÞÞ ¼ Z ðA17Þ

and

π3ðSOðNÞÞ ¼ Z if N ≥ 5: ðA18Þ

The global anomaly in an SUð2ÞL gauge theory is due to

π4ðSUð2ÞÞ ¼ Z2 ðA19Þ

Further,

π4ðSUðNÞÞ ¼ ∅ if N ≥ 3 ðA20Þ

and

π4ðSOðNÞÞ ¼ ∅ if N ≥ 6: ðA21Þ
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