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A set of novel derivative terms for spin-2 fields are proposed. They are the wedge products of curvature
two-forms and vielbeins. In this work, we investigate the properties of novel two-derivative terms in the
context of bigravity. Based on a minisuperspace analysis, we identify a large class of bigravity models
where the Boulware-Deser ghost could be absent. We give a new perspective that Weyl gravity and new
massive gravity belong to this class of bigravity models involving novel derivative terms. This is related to
the fact that this class of models contains spin-2 ghosts. In addition, we discuss the UV cutoff scales,
dynamical symmetric conditions, and novel higher-derivative terms.
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I. INTRODUCTION

In the pursuit of going beyond Einstein, extensive efforts
have been devoted to constructing gravitational theories
that are different from general relativity. It is believed that
the Einstein-Hilbert action with a cosmological constant is
the only consistent nonlinear action for a single massless
spin-2 field, so additional ingredients are necessary: Fierz-
Pauli theory gives the graviton a mass term [1], Brans-
Dicke theory introduces a scalar degree of freedom [2], and
Lovelock theory involves higher spacetime dimensions and
higher-derivative terms [3].
Motivated by the unexpected accelerating expansion of

the present Universe [4], more models were constructed in
recent attempts, such as high-derivative scalar theories [5]
and nonlinear massive gravity [6]. One of the guiding
principles is that a consistent model should be free of
Ostrogradsky’s ghost arising from higher-order equations
of motion.
Antisymmetrization is a universal element in these new

models. Based on this ingredient, a general framework was
developed for ghost-free,1 Lorentz-invariant, Lagrangian
field theories [7,8]. In this framework, a set of novel kinetic
terms for spin-2 fields were proposed:

Lkin ¼ RðEð1ÞÞ ∧ Eð2Þ ∧ � � � ∧ Eðd−1Þ; ð1Þ
where d is the number of spacetime dimensions. They are
the wedge products of geometric differential forms: a

curvature two-form and several vielbeins. The vielbeins
EðkÞ can be the same or different.2 Geometric intuition was
used to construct these nonlinear terms.
Along the lines of Lovelock theory, we can build novel

higher-derivative terms for spin-2 fields by introducing
more curvature two-forms into the wedge products,

RðEð1ÞÞ ∧ � � � ∧ RðEð1ÞÞ ∧ Eð2Þ ∧ � � � ∧ EðnÞ; ð2Þ

which is possible when spacetime has more than four
dimensions. Lovelock terms correspond to the cases where
all the vielbeins are the same.
If the wedge products do not involve derivative terms,

they are nonlinear potential terms for spin-2 fields,

Lpot ¼ Eð1Þ ∧ � � � ∧ EðdÞ; ð3Þ

which include the cosmological constant term and other
interacting potentials for spin-2 fields [6,9–11] in the
vielbein formulation [10].3 These potential terms are
usually free of the Boulware-Deser (BD) ghost.4 For
simplicity, they are denoted by de Rham–Gabadadze–
Tolley (dRGT) terms.5

*lii.wenliang@gmail.com
1Let us clarify that “ghost-free” in this framework means the

building blocks are potentially free of Ostrogradsky’s scalar
ghost. In other words, the corresponding equations of motion for
the scalar modes could be at most of second order. The scalar
modes may come from the Helmholtz-Hodge decomposition of
tensor fields.

2If all the vielbeins coincide, we have the standard Einstein-
Hilbert kinetic term.

3In 1970, Wess and Zumino proposed using vielbeins, rather
than metrics, as the building blocks of the low energy effective
potentials for spin-2 fields [12]. However, it is still not fully clear
why the vielbein formulation is more efficient in eliminating the
Boulware-Deser ghost.

4In a concrete model, the BD ghost may be present even if the
building blocks themselves are free of it. For example, the BD
ghost is excited if loop-type interactions are introduced in the
metric formulation [10]. Analogously, we find constraints on
novel derivative terms.

5We refer to [13] for reviews of this subject.
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The search for new derivative interactions was initiated
in [14], where a new BD-ghost-free term in 4d was
discovered and it reads

hμ½μhνν∂ρ∂ρhσσ�: ð4Þ

This cubic term can be thought of as a generalization of
the perturbative Lovelock and dRGT terms and there are
more possible terms in higher dimensions [15]. It was also
conjectured that they should admit nonlinear completions
in parallel to the dRGT terms in the context of massive
gravity [15].
Some of the novel kinetic terms in (1) are nonlinear,

multigravity completions of this cubic term in terms of
differential forms. If we consider two spin-2 fields, impose
the symmetric condition [16], and fix the second metric to
Minkowski, the novel kinetic terms reduce to the two-
derivative terms proposed in [17], which are nonlinear
derivative terms for a massive graviton around a
Minkowski background. They can also be obtained by
dimensionally deconstructing the Gauss-Bonnet term [18].
In the discussions of [17,18], only one metric is

dynamical and the Boulware-Deser ghost was shown to
be present. In this work, we will not make the single
dynamical metric assumption, and the conclusion is differ-
ent concerning the fate of the Boulware-Deser ghost.
In [18], new kinetic interactions in 4d with a dynamical

metric and a fixed Minkowski metric were investigated in
detail. In the minisuperspace approximation, problematic
N−2 terms were found in the Lagrangians and the corre-
sponding Hamiltonians are nonlinear in the lapse function
N. This indicates the secondary constraint from the time
derivative of πN ¼ 0 is an equation for N.6 Then the
dangerous, sixth degree of freedom remains dynamical.
In 4d massive gravity, the sixth degree of freedom is
ghostlike. It plagues a generic nonlinear completion of
Fierz-Pauli theory and is known as the Boulware-Deser
ghost [19].7 This ghostlike degree of freedom is eliminated
in nonlinear massive gravity [6] thanks to the existence of a
secondary constraint and an associated tertiary constraint
[20]. Besides the minisuperspace discussion, an impressive
no-go theorem was established in [18] on new kinetic
interactions for single dynamical metric models that are
Lorentz invariant and free of the BD ghost.
Inspired by the successful extensions of massive gravity

[6] to bigravity [9] and multigravity [10], we would like to
examine the bigravity models involving the novel deriva-
tive terms (1). Given that pathologies were found in single
dynamical metric models, it is very likely that the bigravity

theories are sick as well. In fact, more recently, bigravity
models with new kinetic interactions were studied in the
first-order formulation [21], where negative results were
presented again.8 Other obstructions were discussed in [22]
as well.
Contrary to the single dynamical metric models, our

analysis in Sec. III shows that the sixth degree of freedom
could be absent in some bigravity models constructed
from (1). But the price to pay is that one of the linearized
kinetic terms has a wrong sign or at least one of them
vanishes. In the former case, we encounter spin-2 ghosts,
which can lead to tree-level nonunitarity upon quantization.
In the latter case, the bigravity theories are strongly coupled
due to the absence of kinetic terms.
The presence of a spin-2 ghost is a well-known feature

of a generic model of higher-derivative gravity. In this
work, we propose a new viewpoint that, when the couplings
to matter are not introduced, many types of bigravity
models are equivalent to higher-derivative gravity without
Ostrogradsky’s scalar ghost. They include Weyl gravity, 3d
new massive gravity, and some of their generalizations.
At the classical level, a spin-0 ghost is more dangerous

than a spin-2 ghost. Usually, the Hamiltonian of a
scalar ghost is unbounded from below, while that of a
massless spin-2 field may simply vanish. In this sense, it is
more crucial to eliminate the Boulware-Deser ghost.
Furthermore, the Boulware-Deser ghost should be removed
if a massive spin-2 field contains a correct number of
dynamical degrees of freedom, which is at most five in four
dimensions.
Upon quantization, a spin-2 ghost will lead to tree-level

nonunitarity when coupled to matter. Let us remind that a
notorious problem in quantizing gravity is that the Einstein-
Hilbert action is nonrenormalizable [23], which is very
different from the other fundamental forces. By introducing
higher-order curvature terms (thus unitarity is sacrificed),
one can improve the short-distance behavior of the propa-
gators and obtain a perturbative renormalizable theory for
gravity [24]. Roughly speaking, the improved high energy
behavior is due to the relatively negative contributions from
the ghostlike modes.
From a different perspective, we can consider a metric as

an effective description of some microscopic physics. In an
effective field theory (EFT) of gravity, higher-order curva-
ture terms are expected in a low energy expansion, because
they are compatible with the symmetries [25]. Even if
gravity itself is not quantized, they can be generated by
quantum corrections from the matter. Therefore, some
bigravity models with novel kinetic terms belong to a

6The absence of an additional constraint was already found in
[17], which should be present after a change of variables.

7By an abuse of terminology, the sixth degree of freedom of a
massless spin-2 field in 4d is also denoted as the Boulware-Deser
ghost.

8To avoid confusion, let us emphasize that we consider second-
order formulation in this work, so spin connections are not
independent. In other words, we assume the torsion-free
condition.
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special class of effective field theories of gravity where
Ostrogradsky’s scalar ghost is removed.
The cutoff scale of an EFT of gravity is usually

associated with the Planck mass. However, if some of
the high-order curvature terms have unnaturally large
coefficients, then the cutoff scale will be lowered. By
eliminating the BD ghost, we could increase the cutoff
scale set by large high-order curvature corrections.
This paper is organized as follows. In Sec. II, we give the

precise formulation of the novel kinetic terms for 4d
bigravity models. In Sec. III, we carry out a minisuperspace
analysis to identify the candidate theories that are free of
the dangerous, sixth degree of freedom. In Sec. IV, we
perform a field redefinition to obtain more explicit expres-
sions of the novel kinetic terms. In Sec. V, we focus on the
novel kinetic term L2

kin and discuss its relation to higher-
curvature gravity. In Sec. VI, we linearize the nonlinear
models and diagonalize the quadratic actions. In Sec. VII,
the issue of the spin-2 ghost is discussed. In Sec. VIII, we
examine the cutoff scales of the effective field theories of
gravity involving novel kinetic terms. In Sec. IX, we
explain how to obtain the symmetric condition from the
equations of motion. In Sec. X, higher-derivative general-
izations are discussed and a general argument for the
absence of the BD ghost is presented. In Sec. XI, we
summarize our results and discuss their implications.

II. NOVEL KINETIC TERMS FOR BIGRAVITY

To be more specific, we mainly consider four-
dimensional spacetime and models with two vielbeins/
metrics. There are six possible nonlinear kinetic terms:

L1
kin ¼ RðEÞ ∧ E ∧ E; ð5Þ

L2
kin ¼ RðEÞ ∧ E ∧ F; ð6Þ

L3
kin ¼ RðEÞ ∧ F ∧ F; ð7Þ

L4
kin ¼ RðFÞ ∧ F ∧ F; ð8Þ

L5
kin ¼ RðFÞ ∧ F ∧ E; ð9Þ

L6
kin ¼ RðFÞ ∧ E ∧ E; ð10Þ

where RðEÞ, RðFÞ are curvature two-forms,

RðEÞ ¼ dωE þ ωE ∧ ωE; ð11Þ

RðFÞ ¼ dωF þ ωF ∧ ωF: ð12Þ

Both E and F are dynamical vielbeins. ωE and ωF are the
spin connections compatible with E and F, respectively:

DEE ¼ dEþ ωE ∧ E ¼ 0; ð13Þ

DFF ¼ dF þ ωF ∧ F ¼ 0: ð14Þ

Notice that one of the vielbeins in L2
kin and L4

kin is a
Lagrange multiplier. Another interesting observation is that
L3

kin andL6
kin can be thought of as the Palatini formulation

of the Einstein-Hilbert term, where the spin connections are
expressed in terms of the associated vielbeins.9

We also have five potential terms:

L1
pot ¼ E ∧ E ∧ E ∧ E; ð15Þ

L2
pot ¼ E ∧ E ∧ E ∧ F; ð16Þ

L3
pot ¼ E ∧ E ∧ F ∧ F; ð17Þ

L4
pot ¼ E ∧ F ∧ F ∧ F; ð18Þ

L5
pot ¼ F ∧ F ∧ F ∧ F: ð19Þ

When we discuss other dimensions, the subscripts n in
Ln means that the number of F vielbeins in a wedge
product is (n − 1). The two vielbeins Eμ

A and Fμ
A are

related to two metrics gμν and fμν:

gμν ¼ Eμ
AEν

BηAB; fμν ¼ Fμ
AFν

BηAB: ð20Þ

The nonlinear kinetic terms L1 and L4 are the standard
Einstein-Hilbert kinetic terms, while L2, L3, L5, L6 are
novel kinetic terms for spin-2 fields.
To simplify our notation, the Levi-Cività symbol ϵABCD

is not written explicitly in a wedge product. In terms of the
components, the bigravity kinetic terms (5)–(10) and the
bigravity potential terms (15)–(19) are

L1
kin ¼ δμνρσABCDRðEÞμνABEρ

CEσ
Dd4x; ð21Þ

L2
kin ¼ δμνρσABCDRðEÞμνABEρ

CFσ
Dd4x; ð22Þ

L3
kin ¼ δμνρσABCDRðEÞμνABFρ

CFσ
Dd4x; ð23Þ

L4
kin ¼ δμνρσABCDRðFÞμνABFρ

CFσ
Dd4x; ð24Þ

L5
kin ¼ δμνρσABCDRðFÞμνABFρ

CEσ
Dd4x; ð25Þ

L6
kin ¼ δμνρσABCDRðFÞμνABEρ

CEσ
Dd4x; ð26Þ

and

9The difference is that varying the action with respect to the
vielbein in the curvature two-form will give rise to second-order
equations. “Torsion-free condition” is not the only solution, so E
and F are not necessarily proportional to each other.
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L1
pot ¼ δμνρσABCDEμ

AEν
BEρ

CEσ
Dd4x; ð27Þ

L2
pot ¼ δμνρσABCDEμ

AEν
BEρ

CFσ
Dd4x; ð28Þ

L3
pot ¼ δμνρσABCDEμ

AEν
BFρ

CFσ
Dd4x; ð29Þ

L4
pot ¼ δμνρσABCDEμ

AFν
BFρ

CFσ
Dd4x; ð30Þ

L5
pot ¼ δμνρσABCDFμ

AFν
BFρ

CFσ
Dd4x; ð31Þ

where Rμν
AB are the components of the curvature two-

forms. The antisymmetric Kronecker delta or the general-
ized Kronecker delta is an antisymmetric product of the
Kronecker deltas,

δμνρσABCD ¼ δA
½μδBνδCρδD

σ�; ð32Þ

where the antisymmetrization ½…� is not normalized.
The Planck mass is not written explicitly. Greek letters
μ; ν; ρ; σ;… indicate external spacetime indices and capital
latin letters A; B;C;D;… denote internal Lorentz indices.
To minimalize the numbers of dynamical degrees of

freedom, we impose the symmetric condition or the Deser–
van Nieuwenhuizen condition [16]. In Sec. IX, we discuss
how the symmetric condition originates in equations of
motion.

III. MINISUPERSPACE ANALYSIS

In this section, we study the minisuperspace approxi-
mation of the bigravity models constructed from (5)–(10).
The minisuperspace analysis is a simple test of the ghost-
free condition before investigating the fully nonlinear
structure. Although it is not sufficient to prove healthiness,
it is very efficient in detecting pathologies and gives the
necessary conditions for the absence of ghostlike degrees
of freedom. For example, it was used in [26] to show that
loop-type interactions of multigravity in the metric formu-
lation can excite the BD ghost.
In [18], new kinetic interactions with a single dynamical

metric were ruled out, because their Hamiltonians are not
linear in the lapse function in the minisuperspace approxi-
mation, which indicates the presence of the BD ghost.
Despite the failure of single dynamical metric models, a
large class of bigravity theories does satisfy the criterion
that the minisuperspace Hamiltonians are linear in lapse
functions, as we discuss below.
Now we start the minisuperspace analysis. The two

metrics in the minisuperspace approximation are diagonal:

ds21 ¼ gEμνdxμdxν ¼ −ðN1Þ2dt2 þ e2Adx2; ð33Þ

ds22 ¼ gFμνdxμdxν ¼ −ðN2Þ2dt2 þ e2Bdx2; ð34Þ

where the metric components are functions of time,

N1 ¼ N1ðtÞ; N2 ¼ N2ðtÞ;
A ¼ AðtÞ; B ¼ BðtÞ: ð35Þ

The corresponding symmetric vielbeins are

Eμ
A ¼

�
N1 0

0 eAδij

�
;

Fμ
A ¼

�
N2 0

0 eBδij

�
: ð36Þ

Let us consider a linear combination of L1
kin;…;L6

kin,
so the Lagrangian reads

L ¼ a1L1
kin þ a2L2

kin þ a3L3
kin

þ b1L4
kin þ b2L5

kin þ b3L6
kin: ð37Þ

In the minisuperspace approximation, it becomes

Lmini ¼ a1
1

N1

ð _AÞ2e3A þ b1
1

N2

ð _BÞ2e3B

þ a2
1

N1

�
_A2 þ 2 _A _B−

N2

N1

_A2eA−B
�
e2AþB

þ a3
1

N1

�
2 _A _B−

N2

N1

_A2eA−B
�
eAþ2B

þ b2
1

N2

�
_B2 þ 2 _A _B−

N1

N2

_B2eB−A
�
eAþ2B

þ b3
1

N2

�
2 _A _B−

N1

N2

_B2eB−A
�
e2AþB; ð38Þ

where some normalization factors are inserted to simplify
the expression of Lmini. Time derivatives are denoted by
dots:

d
dt

A ¼ _A;
d
dt

B ¼ _B: ð39Þ

Integration by parts is performed in order to eliminate

_N1; _N2; Ä; B̈: ð40Þ

The conjugate momenta can be derived from the min-
isuperspace Lagrangian:

PA ¼ ∂Lmini

∂ _A ; PB ¼ ∂Lmini

∂ _B ; ð41Þ

PN1
¼ PN2

¼ 0; ð42Þ

where the Eq. (42) are primary constraints. Then we derive
the minisuperspace Hamiltonian by the Legendre transform
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Hmini ¼ _APA þ _BPB − Lmini: ð43Þ

Using the relations between momenta and velocities, one
can express the Hamiltonian Hmini in terms of

N1; N2; A; B; PA; PB: ð44Þ

The explicit expression of Hmini is a fraction,

Hmini ¼
Hn

4Hd
; ð45Þ

where the numerator Hn and the denominator Hd are

Hn ¼ ðb3eA þ b2eBÞe−2AP2
AðN1Þ3

þ ða2eA þ a3eBÞe−2BP2
BðN2Þ3

þ 2ðb3eA þ b2eBÞe−ðAþBÞPAPBðN1Þ2N2

þ 2ða2eA þ a3eBÞe−ðAþBÞPAPBN1ðN2Þ2
− ðb2eA þ b1eBÞe−2AP2

AðN1Þ2N2

− ða1eA þ a2eBÞe−2BP2
BN1ðN2Þ2; ð46Þ

Hd ¼ ðb3eA þ b2eBÞ½ða1 þ b3ÞeA þ ða2 þ b2ÞeB�ðN1Þ2
þ ða2eA þ a3eBÞ½ða2 þ b2ÞeA þ ða3 þ b1ÞeB�ðN2Þ2
− ½ða1b2 − a2b3Þe2A þ ða2b1 − a3b2Þe2B
þ ða1b1 − a3b3ÞeAþB�N1N2: ð47Þ

We requireHmini to be linear in N1 andN2, soN1 andN2

are Lagrange multipliers. Then the secondary constraints

_PN1
¼ fPN1

;Hminig ≈ 0; ð48Þ

_PN2
¼ fPN2

;Hminig ≈ 0 ð49Þ

are equations for the canonical variables and could remove
the scalar modes related to the BD ghost.10 The Poisson
bracket is defined as

fα; βg ¼
X

q¼A;B;N1;N2

�∂α
∂q

∂β
∂Pq

−
∂α
∂Pq

∂β
∂q

�
: ð50Þ

The numerator Hn and the denominator Hd are poly-
nomials of degree 3 and 2 in N1 and N2. To satisfy the
requirement that lapse functions are Lagrange multipliers,
Hd should be a factor of Hn. This is true when only one of
the three monomials inHd has a nonzero coefficient, which
indicates two classes of bigravity models:

(i) The first class is

a2 ¼ a3 ¼ b2 ¼ b3 ¼ 0; ð51Þ

where the Lagrangian contains two Einstein-Hilbert
terms and the minisuperspace Hamiltonian reads

HI
mini ¼ N1

�
e−3A

4a1
P2
A

�
þ N2

�
e−3B

4b1
P2
B

�
: ð52Þ

One can introduce the cosmological constant terms
(15) and (19). The interactions between the two
metrics are through the nonlinear potential terms
(16)–(18). The minisuperspace Hamiltonian is still
linear in the lapse functions.
Since we have two Planck masses in front of

two Einstein-Hilbert terms, one can take the limit
where one of them goes to infinity. In this decou-
pling limit, a bigravity model reduces to that of a
single dynamical metric with a fixed metric.

(ii) The second class is

a1 ¼ a2 ¼ a3 ¼ 0 ð53Þ

or

b1 ¼ b2 ¼ b3 ¼ 0: ð54Þ

The bigravity models in the second class contain at
most one Einstein-Hilbert (EH) kinetic term (no
EH term if a1 ¼ b1 ¼ 0), so one cannot take the
decoupling limit that fixes one of the metrics.11,12,13

Therefore, they are not ruled out by the no-go
theorems in [18]. We focus on the case of (54) in
the discussions below.
The minisuperspace Hamiltonian with (54) reads

HII
mini ¼ N1

�
e−ðAþBÞ

2ða2eA þ a3eBÞ
PAPB

−
ða1eA þ a2eBÞe−2B
4ða2eA þ a3eBÞ2

P2
B

�

þ N2

�
e−2B

4ða2eA þ a3eBÞ
P2
B

�
; ð56Þ

10Strictly speaking, we should use the total Hamiltonian that
contains the primary constraints to compute the time derivative.

11There exists another single metric limit

E − F ¼ H=λ; λ → ∞; ð55Þ
where the novel kinetic terms reduce to the Einstein-Hilbert term.

12The failure of obtaining nonlinear partially massless gravity
from a consistent truncation of conformal gravity [27] is related to
the absence of this decoupling limit.

13The fact that only certain combinations of kinetic terms are
allowed is analogous to the scalar-tensor theories discussed in
[28], where the degeneracy conditions can break down for some
combinations of degenerate Lagrangians.
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where we assume a2 and a3 are not zero at the
same time.
We can introduce the potential terms

L1
pot;…;L5

pot. The lapse functions will still be
Lagrange multipliers in the Hamiltonians.
From the holographic point of view, the diagonal

diffeomorphism invariance is fundamental in bi-
gravity and multigravity theories [29]. In the context
of the AdS/CFT correspondence, a conformal field
theory with conserved stress tensor is dual to a
diffeomorphism invariant theory. The massive grav-
itons (or more generally the spin-2 fields without
gauge invariance) correspond to spin-2 operators
that are not conserved. From this perspective, a
massive gravity theory should always admit en-
hancement to a diffeomorphism invariant theory
by turning on the conserved stress tensor in the
boundary field theory. However, the converse is less
justified. A bigravity or a multigravity theory may
not have a decoupling limit that breaks the diagonal
diffeomorphism symmetry, which indicates that the
conserved stress tensor decouples.

According to the minisuperspace Hamiltonians, there
are two classes of bigravity models that are potentially free
of the Boulware-Deser ghost. The first class of bigravity
theories was proposed in [9] by promoting the fixed metric
in consistent nonlinear massive gravity [6]. Only the
standard Einstein-Hilbert kinetic terms are used. The
absence of the BD ghost was proved in [20].
The second class of bigravity models (54) is in a different

region of the parameter space, where novel kinetic terms
are used. Let us investigate them in more detail. We can
compute the Poisson bracket of the two constraints asso-
ciated with N1 and N2:

�∂HII
mini

∂N1

;
∂HII

mini

∂N2

�
¼ a3e−2BP2

B

8ða2eA þ a3eBÞ4
½a1eA−BPB

− a3e−ðA−BÞPA − a2ðPA − PBÞ�:
ð57Þ

If a2 ≠ 0 and a3 ¼ 0, the Poisson bracket (57) vanishes.
It seems that the two constraints are first-class constraints,
which could be associated with two sets of gauge sym-
metries. If a2 ≠ 0 and a3 ≠ 0, an independent constraint
is generated by the stability of secondary constraints, which
involves cubic momentum terms according to (57).
This constraint eliminates one more dynamical variable,
which signals the complete absence of the sixth degree of
freedom.
Note that it is not justified to take the minisuperspace

approximation before computing Poisson brackets. But this
simple computation does capture the essential features of
the Hamiltonian structure:

1. when a3 ¼ 0, the Poisson brackets of secondary
constraints vanish on the constraint surface;

2. when a3 ≠ 0, an independent tertiary constraint is
generated, rendering absent the sixth degree of
freedom.

At this point, it is not clear whether the minisuperspace
results can be extended to the full theories. To verify this,
we need to examine the Hamiltonian structure of the full
theories, which is highly technical.
In the first class of bigravity models (51), the kinetic terms

are the standard Einstein-Hilbert terms. The secondary
constraints are those in general relativity supplemented by
the contribution from the potential terms (16)–(18), which do
not involve momenta and spatial derivatives. To compute the
Poisson brackets of the constraints, one can use Dirac’s
hypersurface deformation algebra.
However, in the second class of bigravity models (54),

the kinetic parts of the Lagrangians are modified by the
novel kinetic terms. To obtain the Hamiltonians already
requires some work. The constraints have more involved
dependence on momenta and spatial derivative terms.
Dirac’s algebra is not applicable. The computations of
constraint brackets are considerably more challenging. We
leave the technical analysis of the Hamiltonian structure to
a separate work [30] in which we verify that the sixth
degree of freedom is indeed eliminated, and the case
a2 ≠ 0, a3 ¼ 0 does describe two interacting massless
spin-2 fields.

IV. FIELD REDEFINITIONS

Let us derive the explicit expressions of the novel kinetic
terms. It is difficult to achieve this step directly because
the components of a curvature two-form are complicated
functions of the associated vielbein. To circumvent this
difficulty, we make use of a mathematical identity for
tensors in d dimensions14

T ½μ1…μd�
… ¼ detðEÞTν1…νd

… ðE−1Þν1 ½μ1…ðE−1Þνdμd�; ð58Þ

where the antisymmetrized product of E−1 gives detðE−1Þ
and cancels detðEÞ out. For example, in two dimensions we
have

T01−T10¼detðEÞT01½ðE−1Þ00ðE−1Þ11−ðE−1Þ01ðE−1Þ10�
þdetðEÞT10½ðE−1Þ10ðE−1Þ01−ðE−1Þ11ðE−1Þ00�:

We notice the minisuperspace Lagrangian (38) contains
the ratio of two lapse functions. From the mathematical
identity (58), it is natural to introduce a new tensor field as
the “ratio” of two vielbeins

14By an abuse of notation, the local Lorentz indices are
denoted by Greek letters as well.
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eμν ¼ Fμ
AðE−1ÞνA; ð59Þ

where μ and ν are external spacetime indices and A is an
internal Lorentz index.
Using the identity (58), the novel kinetic terms become

L2
kin ¼ d4x

ffiffiffiffiffiffi
−g

p
RðgÞabμνδμ½aδνbδρρeσσ�;

L3
kin ¼ d4x

ffiffiffiffiffiffi
−g

p
RðgÞabμνδμ½aδνbeρρeσσ�: ð60Þ

After simple manipulations, we have

L2
kin ¼ ð−Þ 1

4

ffiffiffiffiffiffi
−g

p
RðgÞμν½μνeρρ�d4x; ð61Þ

L3
kin ¼ 1

4

ffiffiffiffiffiffi
−g

p
RðgÞμν½μνeρρeσσ�d4x; ð62Þ

where the antisymmetrization ½…� is not normalized. The
normalization factors in (61) and (62) are made precise.
These choices simplify the expressions below. More
explicitly, L2

kin and L3
kin are functions of the metric gμν

and the new tensor field eμν:

L2
kin ¼ ffiffiffiffiffiffi

−g
p �

Rμ
ν −

1

2
Rδμν

�
eνμd4x; ð63Þ

L3
kin ¼ ffiffiffiffiffiffi

−g
p ½Rμν

ρσeρμeσν − 2Rμ
νðeνμeρρ − eνρeρμÞ

þ 1

2
Rðeμμeνν − eμνeνμÞ�d4x: ð64Þ

In terms of the new tensor field eμν, the potential terms
(15)–(19)are

L1
pot ¼ ffiffiffiffiffiffi

−g
p

; ð65Þ

L2
pot ¼ ffiffiffiffiffiffi

−g
p

eμμ; ð66Þ

L3
pot ¼ ffiffiffiffiffiffi

−g
p

eμ½μeνν�; ð67Þ

L4
pot ¼ ffiffiffiffiffiffi

−g
p

eμ½μeννeρρ�; ð68Þ

L5
pot ¼ ffiffiffiffiffiffi

−g
p

eμ½μeννeρρeσσ�: ð69Þ

We can lower and raise the indices of eμν by the metric
gμν and its inverse gμν. For example, we have

eμν ¼ eμρgρν ¼ Fμ
AEν

BηAB: ð70Þ

The symmetric condition then translates into

eμν ¼ Fμ
AEν

BηAB ¼ Fν
AEμ

BηAB ¼ eνμ ð71Þ

and we have

eμρeρν ¼ gμαeαβgβρeρν ¼ gμαfαν: ð72Þ

When eμν is symmetric, eμν is the square root of g−1f with
gμν; fμν defined in (20).

V. L2
kin AND QUADRATIC

CURVATURE GRAVITY

In this section, we focus on the novel kinetic term L2
kin

and explain its connections to the models of quadratic
curvature gravity.

A. Gauge symmetries of L2
kin

As anticipated in the minisuperspace analysis, the case of
a3 ¼ 0, a2 ≠ 0 seems to be related to bigravity models with
two sets of gauge symmetries. Let us emphasize that the
coefficient a1 of the Einstein-Hilbert term is not fixed.
From the explicit form of L2

kin, we can see that the linear
combination of L1

kin and L2
kin is invariant under several

gauge transformations:
(i) Standard diffeomorphism invariance:

δgμν ¼ £ξgμν; δeμν ¼ £ξeμν; ð73Þ

where ξμ is a four-vector. This symmetry is expected
in a covariant bigravity theory.

(ii) Additional diffeomorphismlike invariance:

δeμν ¼ £ξ0gμν ¼ ∇μξ
0
ν þ∇νξ

0
μ; ð74Þ

where ξμ is a four-vector. The Lagrangians are
invariant because L2

kin is the product of the Einstein
tensor and the new tensor eμν. After integrating by
parts, the covariant derivative acts on the Einstein
tensor and the changes in the Lagrangians vanish
due to the second Bianchi identity.

(iii) Local Lorentz invariance:

Eμ
A → ΛB

AEμ
B; Fμ

A → ΛB
AFμ

B: ð75Þ

For an infinitesimal transformation, we have

δEμ
A ¼ ωB

AEμ
B; δFμ

A ¼ ωB
AFμ

B; ð76Þ

where

ΛB
A ¼ δB

A þ ωB
A þOðω2Þ: ð77Þ

From the definition (59), we know that eμν is
invariant under a diagonal local Lorentz transforma-
tion, so the Lagrangians are invariant as well.

(iv) Additional local-Lorentz-like invariance:

δeμν ¼ tμν; tμν ¼ −tνμ ð78Þ
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or in the infinitesimal form

δFμ
A ¼ ω0

B
AEμ

B; ω0
AB ¼ −ω0

BA: ð79Þ

The antisymmetric part of eμν is projected out by
the symmetric Einstein tensor, so the Lagrangians
are invariant under a change in the antisymmetric
part of eμν.
Since the antisymmetric part drops out when

a3 ¼ 0, we can identify the symmetric part of eμν
with the square root of a metric product gμρf0ρν.

15

These gauge symmetries persist even if we turn on the
potential terms L1

pot and L2
pot, which are related to the

cosmological constant. However, the “additional” gauge
symmetries will be broken when L3

kin, L3
pot, L4

pot, and
L5

pot are introduced.
If we substitute δeμν on the left-hand side of (74) with

δgμν and δFμ
A on the left-hand side of (79) with δEμ

A, they
are the off-diagonal gauge transformations.

B. New massive gravity

One may suspect that the bigravity models with a3 ¼ 0
can be transformed into two Einstein-Hilbert terms after
some field redefinitions. It is not clear what field redefi-
nition can make this connection. Nevertheless, it was
shown in [31] that L2

kin in (63) can be obtained by taking
a scaling limit of two Einstein-Hilbert terms,16

λ½
ffiffiffiffiffiffi
−f

p
RðfÞ − ffiffiffiffiffiffi

−g
p

RðgÞ� → ffiffiffiffiffiffi
−g

p �
Rμν −

1

2
Rgμν

�
eμν

¼ L2
kin; ð80Þ

where eμν is defined as

fμν ¼ gμν þ eμν=λ ð81Þ

with

λ → ∞: ð82Þ

In fact, L2
kin in the form of (63) already appeared in the

auxiliary field representation of 3d new massive gravity
[32,33], which is a theory of quadratic curvature gravity.
In the language of vielbeins [34], the Lagrangian of 3d

new massive gravity reads17

LNMG ¼ σLEH þ L2
kin þ c1L1

pot þ c3L3
pot; ð83Þ

LEH ¼ RðEÞ ∧ E; ð84Þ

L2
kin ¼ RðEÞ ∧ F; ð85Þ

L1
pot ¼ E ∧ E ∧ E; ð86Þ

L3
pot ¼ E ∧ F ∧ F; ð87Þ

where σ ¼ �1 is the sign of the Einstein-Hilbert term, c1 is
proportional to the cosmological constant, and c3 corre-
sponds to the mass squared m2. The usual auxiliary field is
identified with the second tensor field

eμν ¼ eμρgρν ¼ Fμ
AEν

BηAB: ð88Þ

Note that the symmetric condition

eμν ¼ eνμ ð89Þ

is imposed dynamically by the equations of motion.18

Therefore, new massive gravity is an example of 3d
bigravity models in the second class. It is known that 3d
new massive gravity does not contain the Boulware-Deser
ghost [35], which furnishes evidence that the second class
of bigravity models is free of the BD ghost.
A straightforward generalization of 3d new massive

gravity is to introduce other potential terms L2
pot and

L4
pot [31]:

L2
pot ¼ E ∧ E ∧ F; ð90Þ

L4
pot ¼ F ∧ F ∧ F: ð91Þ

Note that, if L4
pot is considered, the Lagrangian does not

reduce to that of quadratic curvature gravity when eμν is
integrated out. Instead, it contains infinitely many higher-
order curvature corrections.
In 3d new massive gravity, the Einstein-Hilbert term is

always present. One of the reasons may be that the second
spin-2 field eμν is usually considered to be an auxiliary
field, which seems to have no dynamics. We want to
emphasize that L2

kin is a kinetic term as well, and the use of
the Einstein-Hilbert term is not necessary.19 Therefore, the

15Note that the metric f0μν is different from fμν defined in (20)
and they coincide only when the antisymmetric part of eμν
vanishes.

16This scaling limit can also be achieved in the vielbein
formulation [11].

17In this representation, we can see that one of the BD-ghost-
free potentials has already appeared in the context of new massive
gravity.

18In Sec. IX, we discuss how to generalize this example of a
dynamical symmetric condition.

19To eliminate the second-order time-derivative terms due to
the curvature tensor in L2

kin, we need to supplement the action by
boundary terms analogous to the York-Gibbons-Hawking term.
Then L2

kin generates a time-derivative term ∂teμν in the La-
grangian, so both gμν and eμν have dynamical degrees of freedom.
Furthermore, if we expand the Lagrangian around a Minkowski
background and diagonalize the quadratic kinetic terms, L2

kin

will give rise to two linearized Einstein-Hilbert terms.
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Einstein-Hilbert term could be absent, and then the 3d
bigravity Lagrangian reads

L ¼ a2L2
kin þ

X4
i¼1

ciLi
pot; a2 ≠ 0: ð92Þ

The number of dynamical degrees of freedom should be the
same as that of new massive gravity and the Boulware-
Deser ghost should not be propagating. The cases without
the Einstein-Hilbert term are related to the generalized new
massive gravity in [31] by a field redefinition

eμν → eμν þ cgμν; ð93Þ

where c depends on the coefficients of LEH and L2
kin.

In 3d, L2
kin is the only novel kinetic term from (1) due

to the limited number of spacetime indices. Since a
massless graviton in 3d has no dynamical degree of
freedom, we can choose a2 such that the kinetic term
of the massive graviton has a correct sign. Then (92) is a
unitary theory of 3d massive gravity. The special case of
c1 ¼ c2 ¼ c4 ¼ 0 was discussed in [36] and that of
c1 ≠ 0, c2 ¼ c4 ¼ 0 in [37].

C. Critical gravity

There exists a continuous family of critical points [38] in
the parameter space of 3d new massive gravity (83) and its
higher-dimensional generalization [39],

L ¼ RðEÞ ∧ E ∧ � � � ∧ ðEþ FÞ
þ E ∧ � � � ∧ E ∧ ðΛE ∧ Eþm2F ∧ FÞ; ð94Þ

which are known as critical gravity. At these critical
points, the cosmological constant Λ is proportional to
the mass squared m2 with dimension-dependent coeffi-
cients. Integrating out the auxiliary field, the linearized
fourth-order equations of motion contain two massless
spin-2 modes.20

Here we want to point out that

L2
kin ¼ RðEÞ ∧ F ð95Þ

and its higher-dimensional version

L2
kin ¼ RðEÞ ∧ E ∧ � � � ∧ E ∧ F ð96Þ

can be thought of as a special limit of critical gravity in the
bigravity formulation.21 Note that in this limit, eμν cannot
be integrated out because it is a Lagrange multiplier.
It is shown in the Hamiltonian analysis of [30] that L2

kin

in 4d has two sets of first-class constraints, corresponding
to two sets of gauge symmetries. More generally, the
Lagrangian

L ¼ a1L1
kin þ a2L2

kin þ c1L1
pot þ c2L2

pot; ð97Þ

with

a2 ≠ 0; ð98Þ

is a theory of two interacting, massless gravitons in various
dimensions (d > 2), where c1 and c2 are related to the
cosmological constant.22

The same gauge symmetries are also realized in higher-
derivative counterparts of the two-derivative term L2

kin

RðEÞ ∧ � � � ∧ RðEÞ ∧ E ∧ � � � ∧ E ∧ F; ð99Þ

where one of the E-vielbeins in the Lovelock terms [3] is
replaced by an F-vielbein. The additional symmetries are
due to the fact that Lovelock tensors are both symmetric
and divergence free.
Along the lines of the second-class bigravity theories

(54), we propose a general Lagrangian describing two
interacting, massless, gauge-invariant gravitons, which is a
linear combination of Lovelock terms, the novel derivative
terms (96), (99) and two potential terms

L1
pot ¼ E ∧ … ∧ E;

L2
pot ¼ E ∧ … ∧ E ∧ F; ð100Þ

where at least one of the novel derivative terms is
present.23

20However, the total number of dynamical degrees of freedom
should be the same as that of one massless and one massive
graviton. The second massless graviton seems to be an artifact of
the linearized equation of motion at the critical points, as there is
no symmetry enhancement. For example, logarithmic modes are
allowed if we do not assume the Brown-Henneaux boundary
conditions [40]. They were claimed to be dual to logarithmic
conformal field theories [37,41–43].

21The Einstein-Hilbert term is absorbed into L2
kin by

redefining F.
22There is a no-go theorem for interacting theories of massless,

gauge-invariant, spin-2 fields if the Lagrangian has at most two
derivatives [44]. This is not in contradiction to the present work,
because one of the linearized kinetic terms has a wrong sign,
which violates one of the assumptions in the no-go theorem. The
details of the linearized actions are discussed in Sec. VI. A recent
construction of color-decorated gravity [45] evades this no-go
theorem by including extra fields.

23Deforming these massless models by other potential terms
with two vielbeins, one obtains the generalizations of new
massive gravity proposed in [31].
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D. Weyl gravity

Weyl gravity is a well-known theory of quadratic
curvature gravity in 4d, which is both diffeomorphism
and conformal invariant. Interestingly, the Lagrangian of
Weyl gravity can be reformulated as24

LWeyl ¼ RðEÞ ∧ E ∧ F þ E ∧ E ∧ F ∧ F; ð101Þ

where F has dimension 2.
Then the absence of Ostrogradsky’s scalar ghost is trans-

lated into the absence of the BD ghost. Ostrogradsky’s
spin-2 ghost in the four-derivative formulation now
becomes a basic spin-2 ghost due to a wrong sign
kinetic term.
In this representation, Weyl gravity is built from a novel

kinetic term and a dRGT potential term. Despite the
presence of a spin-2 ghost, Weyl gravity is the first example
of nonlinear completions of Fierz-Pauli massive gravity
that are free of the BD ghost, where the nonlinear theory
was proposed 20 years before the linear one.
Furthermore, Weyl gravity is a special bigravity model in

the second class (54) with an emergent gauge symmetry
(conformal symmetry). This gauge symmetry is a nonlinear
completion of the additional gauge symmetry of a massive
spin-2 field around a de Sitter background at the partially
massless point [27]. To make this connection more clear,
we linearize (101) around the de Sitter background and
diagonalize the quadratic Lagrangian in the next section.

VI. LINEARIZED LAGRANGIANS

In the previous section, we show that some of the
bigravity models with novel kinetic terms are equivalent
to higher-derivative gravity models. It is well known that
higher-derivative gravity models usually contain spin-2
ghosts, which could lead to the problem of nonunitarity.
In this section, we derive the quadratic actions of the novel
kinetic terms and examine whether this is a general feature
of the bigravity theories in the second class (54).

A. Minkowski background

Consider a bigravity model in 4d whose Lagrangian
reads

L ¼ a1LEH þ a2L2
kin þ a3L3

kin; ð102Þ

where LEH is the Einstein-Hilbert kinetic term

LEH ¼ ffiffiffiffiffiffi
−g

p
RðgÞ; ð103Þ

and L2
kin and L3

kin are the novel nonlinear kinetic terms
defined in (61)–(62).
Let us expand the metric field gμν and the symmetric

tensor field eμν around the Minkowski background

gμν ¼ ημν þ δgμν; ð104Þ

eμν ¼ ημν þ δeμν; ð105Þ

where we assume there is no numerical factors in front of
ημν. These factors can always be absorbed into a1, a2, a3 by
redefining gμν and eμν.
Note that eμν simply vanishes in a different kind of

background solutions. The two kinds of background
solutions are related by a redefinition of Fμ

A:

F0 ¼ F þ E: ð106Þ

To the quadratic order, the linearized Lagrangian reads

L̄ ¼ c1δgμ½μ∂ν∂νδgρρ� þ c2δgμ½μ∂ν∂νδeρρ�; ð107Þ

where the first term is the linearized Einstein-Hilbert term
and the coefficients are

c1 ¼
1

4
ð−a1 þ a2 − a3Þ; c2 ¼

1

2
a2 − a3: ð108Þ

Now we can diagonalize the quadratic Lagrangian

L̄ ¼ c1ðhμ½μ∂ν∂νhρρ� −Hμ
½μ∂ν∂νHρ

ρ�Þ; ð109Þ

where we assume c1 ≠ 0 and the diagonalized spin-2 fields
are

hμν ¼ δgμν þ
c2
2c1

δeμν;

Hμν ¼
c2
2c1

δeμν: ð110Þ

If c1 ¼ 0 and c2 ≠ 0, then the first term in (107) vanishes
and the diagonalized Lagrangian is

L̄ ¼ c2ðhμ½μ∂ν∂νhρρ� −Hμ
½μ∂ν∂νHρ

ρ�Þ; ð111Þ

and the diagonalized fields are

hμν¼
1

2
ðδgμνþδeμνÞ;

Hμν¼
1

2
ðδgμν−δeμνÞ: ð112Þ

The linearized Lagrangian after diagonalization is a
linear combination of two linearized Einstein-Hilbert

24By redefining F ¼ F0 þ E, one has the auxiliary field
reformulation of Weyl gravity with an Einstein-Hilbert term
and a cosmological constant term, where the second spin-2 field
eμν can be thought of as a matter field that couples to the Einstein
tensor.
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terms25 except in some special cases. The diagonalized
kinetic terms always have opposite signs due to the absence
of the quadratic term of eμν, which can be traced back to the
absence of RðFÞ.
The special cases are

c2 ¼ 0; or
1

2
a2 ¼ a3; ð114Þ

then Hμν ¼ 0 and the second diagonalized kinetic term
vanishes. The first kinetic term has a right sign when

c1 ¼
1

4
ð−a1 þ a3Þ < 0: ð115Þ

A more extreme case is

c1 ¼ c2 ¼ 0; or a1 ¼
1

2
a2 ¼ a3; ð116Þ

then the linearized Lagrangian is empty. In these special
cases, the bigravity models are strongly coupled due to the
absence of some linearized kinetic terms.
Note that the Lagrangians of these special cases can be

schematically written as

L ¼ ða1 − a3ÞR ∧ E ∧ Eþ a3R ∧ ðF − EÞ ∧ ðF − EÞ:
ð117Þ

If we consider the other kind of background solutions
where ēμν vanishes, both of the linearized kinetic terms are
present and there is no issue of strong coupling. So the
problem of strong coupling depends on the choice of
background solutions.26 The existence of these strongly
coupled backgrounds is related to the presence of spin-2
ghosts.
The potential terms (65)–(69) can generate linear terms

around a Minkowski background, which signals a wrong
choice of vacuum. In the next subsection, we discuss the
linearized actions around general maximally symmetric
backgrounds.

B. Constant curvature background

Let us introduce nonlinear potential terms to the 4d
Lagrangian,

L ¼ a1LEH þ a2L2
kin þ a3L3

kin

þ b1L1
pot þ b2L2

pot þ b3L3
pot

þ b4L4
pot þ b5L5

pot; ð118Þ

where the potential terms are defined in (65)–(69).
The spin-2 fields gμν and eμν are expanded around a

cosmological background ḡμν,

gμν ¼ ḡμν þ δgμν;

eμν ¼ δeμν; ð119Þ

where the background spacetime has constant curvature

R̄μνρσ ¼
Λ
3
ðḡμρḡνσ − ḡμσ ḡνρÞ: ð120Þ

We assume the background value of eμν vanishes, which
is not necessary. However, if the background solution of eμν
is proportional to the background metric ḡμν, then we can
always set it to zero by a shift in Fμ

A.27

To avoid the strong coupling problem, we require

a2 ≠ 0; ð121Þ

otherwise we should consider a different background
solution.
Around a background solution, the linear terms in the

perturbative Lagrangian should vanish, which indicates

b1 ¼ −2a1Λ; b2 ¼ a2Λ: ð122Þ

Before the shift in F, the two equations correspond to the
solution of the background metric ḡμν and the ratio between
two background spin-2 fields.
The linearized Lagrangian is

L̄ ¼ ffiffiffiffiffiffi
−ḡ

p
c1ðδgμ½μ∇̄ν∇̄νδgρρ� þ δgμν½∇̄ρ; ∇̄μ�δgνρÞ

þ ffiffiffiffiffiffi
−ḡ

p
c2ðδeμ½μ∇̄ν∇̄νδgρρ� þ δeμν½∇̄ρ; ∇̄μ�δgνρÞ

þ ffiffiffiffiffiffi
−ḡ

p �
2a1Λ − a1Λ

�
1

4
δgμμδgνν −

1

2
δgμνδgνμ

�

þ a2Λ

�
1

2
δgμμδeνν − δgμνδeνμ

�

þ b3ðδeμμδeνν − δeμνδeνμÞ
�
; ð123Þ

where the coefficients

25The diagonalized form is invariant under a continuous family
of field redefinitions

hμν ¼ coshðθÞh0μν þ sinhðθÞH0
μν;

Hμν ¼ sinhðθÞh0μν þ coshðθÞH0
μν: ð113Þ

26Around a background where eμν vanishes, L3
kin does not

contribute to the linearized Lagrangian. We will encounter the
strong coupling problem when a2 ¼ 0.

27The definitions of fluctuating fields are modified
accordingly.
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c1 ¼ −
1

4
a1; c2 ¼

1

2
a2 ð124Þ

are simplified due to a shift in F. Total derivative terms are
neglected.
If a1 ≠ 0, the diagonalized fields are

hμν¼δgμν−
a2
a1

δeμν; Hμν¼
a2
a1

δeμν; ð125Þ

and the linearized Lagrangian becomes

L̄ ¼ −
1

4
a1

ffiffiffiffiffiffi
−ḡ

p ðhμ½μ∇̄ν∇̄νhρρ� þ hμν½∇̄ρ; ∇̄μ�hνρÞ

þ 1

4
a1

ffiffiffiffiffiffi
−ḡ

p ðHμ
½μ∇̄ν∇̄νHρ

ρ� þHμ
ν½∇̄ρ; ∇̄μ�Hν

ρÞ

þ ffiffiffiffiffiffi
−ḡ

p �
−a1Λ

�
1

4
hμμhνν −

1

2
hμνhνμ

�

þ a1Λ

�
1

4
Hμ

μHν
ν −

1

2
Hμ

νHν
μ

�

þ b3

�
a1
a2

�
2

ðHμ
μHν

ν −Hμ
νHν

μÞ
�
; ð126Þ

where the constant term is neglected. The first four lines are
the linearized Einstein-Hilbert terms with cosmological
constantΛ around the background solutions. The last line is
the Fierz-Pauli mass term for Hμν. The coefficient of the
massless spin-2 field hμν is a1, while that of Hμν is −a1.
One of them is a spin-2 ghost. The mass squared of Hμν is
determined by b3.
If a1 ¼ 0, the diagonalized fields are

hμν ¼
1

2
ðδgμν þ δeμνÞ; Hμν ¼

1

2
ðδgμν − δeμνÞ: ð127Þ

In addition, b3 should vanish in order to be consistent with
our choice of background solution ēμν ¼ 0, so the mass
terms vanish. The linearized Lagrangian is

L̄ ¼ 1

2
a2

ffiffiffiffiffiffi
−ḡ

p ðhμ½μ∇̄ν∇̄νhρρ� þ hμν½∇̄ρ; ∇̄μ�hνρÞ

−
1

2
a2

ffiffiffiffiffiffi
−ḡ

p ðHμ
½μ∇̄ν∇̄νHρ

ρ� þHμ
ν½∇̄ρ; ∇̄μ�Hν

ρÞ

þ ffiffiffiffiffiffi
−ḡ

p �
2a2Λ

�
1

4
hμμhνν −

1

2
hμνhνμ

�

− 2a2Λ

�
1

4
Hμ

μHν
ν −

1

2
Hμ

νHν
μ

��
; ð128Þ

which corresponds to two interacting massless gravitons.

C. Linearized Weyl gravity

In this subsection, we would like to discuss the linearized
action of Weyl gravity (101) around the de Sitter

background. As shown in [27], the conformal transforma-
tion in Weyl gravity can be recast into a nonlinear partially
massless transformation for a spin-2 matter field after some
field redefinitions. So we expect that after diagonalization
the massive spin-2 field has linear partially massless gauge
symmetry.
The explicit expression of (101) is

LWeyl ¼ L2
kin þ L3

pot

¼ ffiffiffiffiffiffi
−g

p ��
Rμν −

1

2
Rgμν

�
eμν þ eμμeνν − eμνeμν

�
;

ð129Þ

where the equations of motion for eμν are

eμν ¼
1

2
Rμν −

1

12
Rgμν: ð130Þ

The nonlinear gauge symmetry transformations are
(i) conformal invariance,

gμν → ð1þ 2ϕÞgμν;
eμν → eμν −∇μ∂νϕ; ð131Þ

(ii) and diffeomorphism invariance,

gμν → gμν þ £ξgμν; eμν → eμν þ £ξeμν: ð132Þ

Let us consider the de Sitter background solution

ḡμν ¼ gdSμν ; ēμν ¼
Λ
6
gdSμν ; ð133Þ

where we keep the nonzero background value of eμν.
The fluctuations around the de Sitter vacuum are

δgμν ¼ gμν − ḡμν; δeμν ¼ eμν − ēμν: ð134Þ

Then we can expand the full action to the quadratic
order

L̄Weyl ¼
ffiffiffiffiffiffi
−ḡ

p �
−
Λ2

3
þ ðδe2 − δeμνδeμνÞ

þ Λ
6
ðδeδg − 4δeμνδgμνÞ −

Λ2

72
ðδg2 − 4δgμνδgμνÞ

�

þ 1

2

ffiffiffiffiffiffi
−ḡ

p ðδeμ½μ∇̄ν∇̄νδgρρ� þ δeμν½∇̄ρ; ∇̄μ�δgνρÞ

−
Λ
24

ffiffiffiffiffiffi
−ḡ

p ðδgμ½μ∇̄ν∇̄νδgρρ� þ δgμν½∇̄ρ; ∇̄μ�δgνρÞ;
ð135Þ
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where total derivative terms are neglected, the covariant
derivative ∇̄ is compatible with the background metric
ḡμν, and

δg ¼ δgμμ; δe ¼ δeμμ: ð136Þ
The diagonalized fields are

hμν ¼
6

Λ
δeμν;

Hμν ¼ δgμν −
6

Λ
δeμν: ð137Þ

The quadratic Lagrangian in terms of hμν, Hμν reads

L̄Weyl ¼
Λ
24

ffiffiffiffiffiffi
−ḡ

p ðhμ½μ∇̄ν∇̄νhρρ� þ hμν½∇̄ρ; ∇̄μ�hνρÞ

−
Λ2

48

ffiffiffiffiffiffi
−ḡ

p �
hμνhμν −

1

2
h2
�

−
Λ
24

ffiffiffiffiffiffi
−ḡ

p ðHμ
½μ∇̄ν∇̄νHρ

ρ� þHμ
ν½∇̄ρ; ∇̄μ�Hν

ρÞ

þ Λ2

18

ffiffiffiffiffiffi
−ḡ

p �
HμνHμν −

1

4
H2

�
; ð138Þ

where we neglect the constant term. We can see that h is a
massless spin-2 field with a negative Planck mass, while H
is a massive spin-2 field with a positive Planck mass. The
signs of the kinetic terms are opposite.
We can further examine the gauge symmetries at the

linearized level:
(i) linearized conformal symmetry,

δgμν → δgμν þ 2ϕḡμν; ð139Þ

δeμν → δeμν − ∇̄μ∂νϕ; ð140Þ

and

hμν → hμν −
6

Λ
∇̄μ∂νϕ; ð141Þ

Hμν → Hμν þ
�
∇̄μ∂ν þ

Λ
3
ḡμν

��
6

Λ
ϕ

�
: ð142Þ

(ii) and linearized diffeomorphism symmetry,

δgμν → δgμν þ ∇̄μξν þ ∇̄νξμ; ð143Þ

δeμν → δeμν þ
Λ
6
ð∇̄μξν þ ∇̄νξμÞ; ð144Þ

and

hμν → hμν þ ∇̄μξν þ ∇̄νξμ; ð145Þ

Hμν → Hμν: ð146Þ

Therefore, the linear partially massless gauge trans-
formation

Hμν → Hμν þ
�
∇̄μ∂ν þ

Λ
3
ḡμν

�
α ð147Þ

is a combination of linearized conformal and diffeomor-
phism transformations.
Interestingly, only the massless spin-2 field h transforms

under a change of coordinate. The massive spin-2 field
cannot transform because the Lagrangian of the massive
mode is not invariant.
In this way, we provide a different perspective of Weyl

gravity by using a novel kinetic term and a dRGT term. In
this representation, one may understand better why unitary
partially massless gravity in 4d is not found [46].28 Along
the lines of dRGT massive gravity, there have been many
recent investigations on nonlinear partially massless gravity
[47–49]. In 4d, a promising candidate was identified in
dRGT massive gravity [47], which makes use of precisely
the same potential term

E ∧ E ∧ F ∧ F; ð148Þ

but the kinetic term is assumed to be the Einstein-Hilbert
term and the F vielbein is fixed to be de Sitter. Partially
massless gauge symmetry is only an artifact of the
perturbative Lagrangian at low orders. We also confirm
the suspicion in [48] that a new kinetic term is required in
order to extend the partially massless symmetry to the
nonlinear level, which becomes trivial from our bigravity
reformulation of Weyl gravity.
The fact that the novel kinetic terms have no nontrivial

single dynamical metric limit indicates that we cannot
truncate Weyl gravity in a consistent manner to obtain a
nonlinear theory of partially massless gravity with a single
dynamical metric and a fixed de Sitter metric.
In addition, partially massless gauge symmetry in 4d can

be thought of as an emergent gauge symmetry of the 4d
bigravity models constructed from novel kinetic terms and
dRGT potential terms. It is tempting to consider the case of
three dimensions, where a massless spin-2 field has no
dynamical degree of freedom and we do not need to worry
about the sign of its kinetic term. However, there is only
one new kinetic term in 3d, and these bigravity models
were well investigated along the lines of 3d new massive
gravity. In particular, the 3d version of Weyl gravity
proposed in [36] is an example of the conflict between
diffeomorphism and conformal invariances in three

28To be more precise, we require the off-shell action to be
gauge invariant.
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dimensions. Partially massless symmetry has no nonlinear
extension in 3d to date.

VII. SPIN-2 GHOST

In the previous section, we show that, generically,
the two linearized kinetic terms have opposite signs. A kinetic
term with a wrong sign usually results in an unbounded
Hamiltonian and nonunitarity. If we associate the
Hamiltonian with the energy, then we could extract infinite
energy from a systemwhose Hamiltonian is unbounded from
below, which leads to classical instability. Nonunitarity in
a quantum theory means unphysical negative probability.
Therefore, when a kinetic term has a wrong sign, the
corresponding degree of freedom is considered to be an
unwanted “ghost.”
From the classical point of view, it is not clear which is

the correct sign for a massless spin-2 kinetic term, as
the Hamiltonian simply vanishes on shell. Naively, the
Einstein-Hilbert term seems to have a wrong sign in the
minisuperspace approximation (33),

ffiffiffiffiffiffi
−g

p
RðgÞ → −

12

N
ð _AÞ2e3A; N > 0; ð149Þ

but the Hamiltonian is still bounded because it vanishes. If
we modify the sign of the Einstein-Hilbert term, Newton’s
constant will become negative and gravity will be a
repulsive force. Certainly, this contradicts our physical
world, but this is not ruled out as a theoretical possibility.
We know the Coulomb force is repulsive for like charges.
The Hamiltonian of novel kinetic terms vanishes on shell

as well [30], which is expected in covariant theories, so a
bounded Hamiltonian is not strong evidence for classical
stability.29 One might need to examine other definitions of
energy. As the local definition of gravitational energy is
controversial, it may be more sensible to consider global
energies (masses) according to the isometries of asymptotic
spacetime. They are the conserved charges associated
with the global symmetries of the vacuum where the
infinite-dimensional diffeomorphism group is spontane-
ously broken to a finite-dimensional global symmetry
group. In critical gravity models, the Abbott-Deser-Tekin
mass [50] of black hole solutions was shown to be zero

[39]. As discussed before, the novel kinetic term L2
kin can

be considered as a special limit of critical gravity, and we
expect it to have the same property.
From the quantum perspective, the correct sign for spin-2

kinetic terms has a more definite answer. Unitarity requires
particle poles to have positive residues. A propagator can
be derived from the quadratic action, so the correct signs of
the kinetic term and the mass term are determined.
The residue of a spin-2 propagator depends on the

coupling to matter. It vanishes if the spin-2 field is not
coupled to the energy-momentum tensor. So one can avoid
negative residues by identifying the physical metric with
the spin-2 field whose kinetic term has a correct sign.
Using the effective metric [51], we can escape the problem
of tree-level nonunitarity.
Furthermore, to obtain the solutions of a model we

need boundary conditions. When the Lagrangian allows for
ghostlike excitations, they can still be avoided by proper
boundary conditions. In this way, we could eliminate the
ghostlike modes whose kinetic terms have wrong signs;
then the bigravity models should reduce to healthy vector-
tensor theories when the mass squared has a correct sign.

VIII. CUTOFF SCALE

Ghosts are ubiquitous in the framework of effective field
theories. Their presence does not disqualify the models
from describing nature. They just tell us when the theories
stop providing consistent descriptions and microscopic
details become important.
As an effective field theory, Einstein’s gravity has a

cutoff scale set by the Planck mass. Higher-curvature terms
are also compatible with diffeomorphism invariance, so
they should be present. The natural values of their coef-
ficients are of order unity in terms of the Planck mass, and
the cutoff scale remains the same. Ostrogradsky’s ghosts
due to higher-derivative equations of motion are not excited
below the Planck scale because their masses are around the
Planck value. The corrections due to higher-curvature terms
are negligible at a low energy scale.
However, if for some unknown reasons, the coefficients

of some correction terms are considerably larger than their
natural values, then we need to worry about Ostrogradsky’s
instability even below the Planck scale. The cutoff scale of
an effective field theory of gravity is lowered by the
ghost modes.
Let us consider an example in 4d that admits a bigravity

reformulation

L ¼ M2
p

ffiffiffiffiffiffi
−g

p ½Rþ Rðeþ eeþ � � �Þ
þ Λð1þ eÞ þm2ðeeþ eeeþ � � �Þ�; ð150Þ

where the tensor structures are not written explicitly, and
the two spin-2 fields gμν, eμν are dimensionless. After
linearization and diagonalization, m2 corresponds to the

29Since the on-shell Hamiltonian is zero, one of the spin-2
fields has negative energy if the other spin-2 field has positive
energy. The spin-2 field with negative energy seems as prob-
lematic as the BD ghost. But the presence of negative energy
modes is a general feature of covariant theories. For example,
consider Einstein’s gravity coupled to healthy matter: if matter
has positive energies, the massless graviton will have negative
energy even if its kinetic term has a correct sign. In this sense, the
gravitational sector, which we identify with the spin-2 fields, with
negative energy may still be acceptable. In contrast, the BD ghost
is an additional degree of freedom that does not belong to spin-2
fields, so it behaves as ghostlike matter and is more troublesome.
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mass of the massive spin-2 field, which is ghostlike.30 In
principle, higher-curvature terms are also allowed.
Integrating out the auxiliary field eμν, we have a

Lagrangian of higher-curvature gravity, which schemati-
cally reads

L ¼ ffiffiffiffiffiffi
−g

p �
M2

pΛþM2
pRþM2

p

m2
RRþ � � �

�
: ð151Þ

We can see that a small mass in the bigravity formulation
translates into large higher-curvature terms.
To be more precise, there are two kinds of

Ostrogradsky’s ghosts in a model of higher-curvature
gravity, which can be rephased more transparently in the
bigravity formulation. In the bigravity representation, the
massive modes contain two kinds of ghostlike degrees
of freedom. The first one is the ghostlike spin-2 mode
due to a wrong sign kinetic term.31 The second one is
Ostrogradsky’s scalar ghost or the Boulware-Deser ghost in
a generic theory of massive spin-2 field.
For simplicity, let us assume Minkowski spacetime is the

background solution. We also assume, after linearization
and diagonalization, the kinetic terms of (150) are given by
the linearized Einstein-Hilbert terms to avoid more ghosts.
These assumptions already constrain the possible terms in
(150). The scale of the quadratic potential terms is set by
the mass squared m2. Then both the spin-2 ghost and the
scalar ghost are excited and interact with the healthy modes
at a low scale,

Λ ¼ m: ð152Þ

By requiring that the quadratic term of the linearized
Lagrangian take the form of the Fierz-Pauli mass term, the
scalar ghost is absent in the quadratic action. But it can still
appear in the interaction terms, which is known as the BD
ghost. If we assume the effective Lagrangian is given by the
bigravity models in the second class (54), this scalar ghost
can be eliminated completely. Then we can focus on the
problem of spin-2 ghosts.
To increase the cutoff scale, let us first examine the

quadratic action in detail. The massive spin-2 field is
denoted by Hμν. According to Sec. VI, its linearized action
is given by the Fierz-Pauli theory:

L̄ ¼ M2
pðHμ

½μ∂ν∂νHρ
ρ� þ αm2Hμ

½μHν
ν�Þ; ð153Þ

where the kinetic term has a wrong sign and α is a model-
dependent numerical factor.

Let us decompose Hμν à la Helmholtz,

Hμν ¼
1

Mp
HT

μν þ
1

Mpm
ð∂μAν þ ∂νAμÞ þ

1

Mpm2
∂μ∂νϕ;

ð154Þ

∂μHT
μν ¼ 0; ∂μAμ ¼ 0; ð155Þ

where the dimensions ofHT
μν, Aμ, and ϕ are 1 and the use of

Mp, m is to canonically normalize the kinetic terms of the
decomposed fields.32

In terms of the decomposed modes, the Fierz-Pauli
Lagrangian becomes

L ¼ ∂μðHTÞνρ∂μðHTÞνρ − ∂μðHTÞνν∂μðHTÞρρ
þ αm2½ðHTÞμμðHTÞνν − ðHTÞμνðHTÞμν�
− 2α∂μAν∂μAν þ 2αðHTÞμμð□ΦÞ; ð158Þ

where the total derivative terms are neglected. The last term
is a cross term, so we introduce

H̄μν ¼ HT
μν þ

α

3
ϕημν ð159Þ

to diagonalize the kinetic terms. After diagonalization, the
Lagrangian becomes

L ¼ ∂μH̄νρ∂μH̄νρ − ∂μH̄ρ
ρ∂μH̄ν

ν

þ αm2ðH̄μ
μH̄ν

ν − H̄μνH̄μνÞ þ 4

3
α2∂μϕ∂μϕ

þ 2α2m2H̄μ
μϕþ 4

3
α3m2ϕ2 − 2α∂μAν∂μAν: ð160Þ

The kinetic terms of H̄μν and ϕ have wrong signs. If α > 0,
then the helicity-1 modes Aμ are healthy modes. Although
the ghostlike modes can be excited at scale Λ ¼ m, they are
harmless before healthy degrees of freedom are coupled to
them. The cutoff scales are then determined by the lowest
scale of the interaction terms that involve both the ghosts
and the healthy modes.
By considering nonlinear redefinitions, we can always

make the massless spin-2 field transverse:

30It is assumed that the coefficients of the potential terms are of
the same order, which is not a necessary assumption. When their
magnitude are different, the smallest one is the most important.

31The kinetic term of the helicity-1 mode is from the mass
terms, so they are ghosts when the spin-2 ghost is also a tachyon.
Let us assume the mass squared is positive.

32Another natural decomposition is with respect to the covar-
iant derivative of the massless spin-2 field hμν:

Hμν ¼
1

Mp
HT

μν þ
1

Mpm
ð∇ðhÞ

μ Aν þ∇ðhÞ
ν AμÞ þ

1

Mpm2
∇ðhÞ

μ ∂νϕ

ð156Þ

∇ðhÞμHT
μν ¼ 0; ∇ðhÞμAμ ¼ 0: ð157Þ
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hμν ¼ ημν þ
1

Mp
hTμν: ð161Þ

Then we perform a general power counting of the
possible perturbative terms without using the specific
structures of the nonlinear terms. From the two derivative
terms, we have

M2−i−2j−k−l
p m−2j−2k∂2ðHTÞið∂AÞ2jð∂∂ϕÞkðhTÞl: ð162Þ

Assuming the coefficients of the potential terms in (150)
are of the same order, we have

M2−i−2j−k−l
p m2−2j−2kðHTÞið∂AÞ2jð∂∂ϕÞkðhTÞl: ð163Þ

The interaction terms start from the cubic order

iþ 2jþ kþ l ¼ 3; 4; 5;…; ð164Þ

and a perturbative term

M−a
p m−b∂mðHTÞiðAÞ2jðϕÞkðhTÞl ð165Þ

becomes important at the energy scale

Λ ¼ ðMa
pmbÞ1=ðaþbÞ: ð166Þ

The lowest scales of the interaction terms involving both
the ghostlike modes ðHT;ϕÞ and the healthy modes ðhT; AÞ
can be found33:

(i) The lowest scale of the two-derivative terms is

Λ5 ¼ ðMpm4Þ1=5; ð167Þ

where the cubic terms

j ¼ k ¼ 1; i ¼ l ¼ 0; ð168Þ

and

k¼2; l¼1; i¼ j¼0 ð169Þ

become important.
(ii) The lowest scale of the potential terms is

Λ3 ¼ ðMpm2Þ1=3; ð170Þ

where infinitely many terms

j ¼ 1; k ¼ 1þ n; i ¼ l ¼ 0 ð171Þ

and

k ¼ 2þ n; l ¼ 1; i ¼ j ¼ 0 ð172Þ

n ¼ 0; 1; 2;… ð173Þ

become important.
The cutoff scale of the two-derivative terms is lower than

that of the potential terms, so a generic bigravity model in
the second class (54) is a consistent effective field theory at
least up to Λ5.

34

We can further improve this by turning off Lkin
3 ; then the

kinetic terms have more gauge symmetries. The kinetic
terms contain only helicity-2 modes whose interaction scale
is set by the Planck mass. In this way, we are able to increase
the cutoff scale to Λ3 or some higher energy35

Λ → Λ3 ≡ ðMpm2Þ1=3: ð174Þ
It should be noted that we need to make sure the

spin-2 ghost does not couple to the matter below the cutoff
scale. This indicates that we should consider an effective
metric [51].36

In a different region of parameter space, it is possible that
the massless spin-2 field has a wrong sign, while the
massive one is healthy. By eliminating the BD ghost and
using the gauge-invariant kinetic terms, the cutoff scale is
set by the interaction terms k ¼ 2þ n, l ¼ 1, i ¼ j ¼ 0
from the potentials, which is Λ3 again. When the mass
squared has a correct sign, these effective field theories
contain a ghost-free massive graviton and a decoupled,
ghostlike, massless spin-2 field below the cutoff scale.
Here we want to give one possible reason for “naturally”

large coefficients of the higher-curvature terms. In the
bigravity formulation, the gauge symmetries are enhanced
when

m2 ¼ 0; a3 ¼ 0; ð175Þ
so small values of m2 and a3 are technically natural, which
is analogous to the mass of the electron. Quantum correc-
tions to these parameters should be multiplicative, rather
than additive.

33If α < 0, then the helicity-1 mode Aμ becomes a ghost due to
a wrong sign kinetic term. If a ¼ 0, the helicity-1 mode is
strongly coupled. In addition, Aμ could be Ostrogradsky’s vector
ghost if the equations of motion involve higher-order time-
derivative terms of Aμ. But from the constraint analysis [30],
we can count the numbers of dynamical degrees of freedom, and
we know the novel kinetic terms do not contain Ostrogradsky’s
vector ghost.

34If the potential terms are modified, then Ostrogradsky’s
scalar ghost is eliminated only at the linear level. If the massive
spin-2 field has a correct sign kinetic term, then the cutoff scale
set by the Boulware-Deser ghost is Λ5 as well.

35In [52], it was shown that the Λ3 interaction terms vanish in
some cases that are equivalent to quadratic curvature gravity. This
indicates that the cutoff scale may be higher than Λ336But the BD ghost will be revived at some scale above Λ3 due
to the use of an effective metric.
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IX. SYMMETRIC CONDITION

In the above sections, we impose the symmetric con-
dition or the Deser–van Nieuwenhuizen condition [16] to
minimalize the numbers of dynamical degrees of freedom.
In this section, we present a general way to derive the
symmetric condition from the equations of motion.
Let us decompose the rank-2 tensor eμν into two parts,

eμν ¼ Fμ
AEν

BηAB ¼ esμν þ easμν; ð176Þ

where esμν is the symmetric part and easμν is the antisym-
metric part:

esμν ¼ esνμ; easμν ¼ −easνμ: ð177Þ

In the Lagrangians, an antisymmetric product vanishes if
it contains an odd number of easμν. In 4d bigravity models,
the antisymmetric part of eμν only appears in the terms
below:

Rμν
½μνðeasÞρρðeasÞσσ�; ð178Þ

ðeasÞμ½μðeasÞνν�;
ðeasÞμ½μðeasÞννðesÞρρ�; ð179Þ

ðeasÞμ½μðeasÞννðesÞρρðesÞσσ�; ð180Þ

ðeasÞμ½μðeasÞννðeasÞρρðeasÞσσ�: ð181Þ

We argue that the equations of motion for easμν generally
lead to the symmetric condition

δ

δeasμν

Z
L ¼ 0 ⇒ easμν ¼ 0; ð182Þ

because the equations for easμν can be written in a matrix
form,

Aμν;ρσðeasÞρσ ¼ 0; ð183Þ

which gives the symmetric condition if A is invertible.
An important point is that the Lagrangians do not contain
linear terms, so the equations of motion for eas are
homogeneous.37

The argument is clear if (181) is not considered. When
the Lagrangian contains (181), the equations of motion
contain cubic terms of easμν. Then we can write the cubic

terms as products of quadratic terms and linear terms, and
think of the quadratic terms as part of the matrix A.38

We do not have a proof that the above argument works
in general, but we check several examples and always
find that

detA ≠ 0: ð184Þ

The spirit is close to [10], where the symmetric condition
is derived from a local Lorentz transformation. In addition,
we do not rule out the possibility that A could be
degenerate at some singular points of the phase space.

X. HIGHER-DERIVATIVE GENERALIZATIONS

Along the lines of Lovelock terms, the novel kinetic
terms can be generalized to novel higher-derivative
terms [7],39

RðEÞ∧ � ��∧RðEÞ∧E∧ � � �∧E∧F∧ � � �∧F; ð185Þ

which might be inconsistent with terms involving RðFÞ.
In Sec. V, we discuss the special cases with only one F

vielbein,

RðEÞ ∧ � � � ∧ RðEÞ ∧ E ∧ � � � ∧ E ∧ F; ð186Þ

which have the same gauge symmetries as RðEÞ ∧ E ∧ F.
They describe the derivative interactions between two
massless, gauge-invariant spin-2 fields, where the
Boulware-Deser ghost is absent. We expect that other
higher-derivative terms in (185) do not contain the BD
ghost as well.
For the extension to multigravity, we have

RðEð1ÞÞ ∧ � � � ∧ RðEð1ÞÞ ∧ Eð2Þ ∧ � � � ∧ Eðd−nÞ; ð187Þ

where n is the number of curvature two-forms and EðkÞ
vielbeins can be the same or different. Lovelock terms and
dRGT terms are unified in (187).
In the end, we would like to connect with some results

in the literature. The bigravity models with (186) in the
metric formulation were already proposed in [31] as
generalizations of new massive gravity. The BD ghost
was argued to be absent by counting the degrees of
freedom using symmetries [31,53]. The antisymmetric
structure guarantees that the equations of motion for the
decomposed fields

eμν ¼ ~eμν þ∇μAν þ∇νAμ þ∇μ∂νϕ ð188Þ

37We assume that the matter does not couple to the antisym-
metric part of eμν linearly. For example, if the physical vielbein is
a linear combination of Eμ

A and Fμ
B, the corresponding physical

metric will contain a quadratic term easμρe
as ρ
ν , so the equations of

motion for easμν are homogeneous.

38Note thatA can be degenerate for special values of easμν if they
are not the solutions of the equations of motion at the same time.

39If we impose the symmetric condition and fix the second
metric to be Minkowski, they are equivalent to the higher-
derivative interactions proposed in [17].
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are of second order, so additional degrees of freedom are
avoided.40 Then one can count the dynamical degrees of
freedom in the bigravity models and show that the total
number is at most (d2 − 2d − 1), which is that of a
massless and a massive spin-2 field. Therefore, the
Boulware-Deser ghost is absent.41

From this argument, we can see why the curvature
tensors should be associated with the same spin-2 field
gμν. If a curvature tensor contains the second spin-2 field
eμν, then the equations of motion for the decomposed
modes will usually be of higher order, because they are not
gauge modes in a curvature tensor and no apparent
antisymmetric structure is protecting them.42

The decomposed field argument concerning (186) is based
on the fact that Lovelock tensors are divergence free. For the
other novel derivative terms in (187), we can generalize this
argument by using the second Bianchi identity,

∇½μRνρ�αβ ¼ 0: ð189Þ
The covariant derivatives in front of the decomposed
fields will not act on the Riemann tensor after integrat-
ing by parts, so the equations of motion for the
decomposed fields will not contain fourth-order deriva-
tive terms of the metric. The variation of a Riemann
tensor Rμν

ρσ contains some second covariant derivative
terms of δgμν that are antisymmetrized, so the equations
of motion for the metric will not contain fourth-order
derivative terms of ϕ.
In the vielbein formulation, the second Bianchi identity

stems from a basic identity of the exterior derivative,

d2 ¼ 0; ð190Þ
which is the key element of the unifying framework [7,8].

XI. CONCLUSION

In summary, we present evidence that

RðEð1ÞÞ ∧ � � � ∧ RðEð1ÞÞ ∧ Eð2Þ ∧ � � � ∧ EðnÞ ð191Þ

are basic building blocks for the actions of interacting
spin-2 fields that are free of the Boulware-Deser ghost.43

Models that can be constructed from these building blocks
include Einstein gravity, Weyl gravity, Lovelock gravity,
new massive gravity, dRGT massive gravity, and some of
their generalizations. The parameter space is further
extended by novel derivative terms.
Curiously, the building blocks (191) can be obtained

from Lovelock terms by replacing some of the vielbeins in
the wedge products with other vielbeins.
The novel two-derivative terms in 4d are studied in

detail:
(i) Based on a minisuperspace analysis, a large class

of bigravity models (54) is identified, which are
potentially free of the Boulware-Deser ghost.

(ii) The bigravity models in this class (54) do not
have the usual single dynamical metric limit with
a fixed metric, which is in accordance with the no-go
theorem for a new kinetic interaction for the single
dynamical metric in [18].

(iii) We reformulate some well-understood models of
higher-curvature gravity as bigravity models in this
class (54), Their spectra are known to contain one
massless and one massive spin-2 field without the
BD ghost.

(iv) The argument that new massive gravity is free of
the BD ghost is extended to other bigravity models
in this class (54), which applies to novel higher-
derivative terms as well.44

This class of bigravity models is interesting despite
the issue of spin-2 ghosts. Firstly, as toy models of
quantum gravity, they have a better chance to be
perturbatively renormalizable and there are fewer neg-
ative norm states because the BD ghost is absent.
Secondly, as effective field theories of gravity, they
can increase the cutoff scale set by higher-derivative
terms with large coefficients.45

In general, we can avoid the ghost modes by reducing the
number of dynamical degrees of freedom. A useful strategy
of eliminating ghost modes is to impose specific boundary
conditions. Another method to remove the spin-2 ghosts is
done simply by setting the decomposed helicity-2 modes
~eμν in (188) to zero. They may give rise to healthy vector-
tensor theories.46

40This argument is dangerous. The equation of motion for the
decomposed field ϕ contains third-order derivative terms of the
metric, in the form of covariant derivatives of curvature tensors. In
addition, if one varies the action with respect to the metric after the
substitution, the equations of motion will contain third-
order derivative terms of ϕ due to the variations of covariant
derivatives. But it is possible that the third-order time-derivative
terms can be removed by the time derivatives of some second-order
equations [54]; then the counting of the degrees of freedom is correct.

41When there are additional gauge symmetries, the number of
dynamical degrees of freedom is reduced.

42In [55], an Einstein-Hilbert term for eμν was introduced to
obtain unitary models. However, we suspect that the absence of
ghostlike degrees of freedom is an artifact of linearization. For
example, in the minisuperspace approximation, the Hamiltonians
are not linear in the lapse functions.

43Parity is assumed to be preserved; otherwise there are more
possible terms. For example, in 3d, one could introduce a
gravitational Chern-Simons term that violates parity [56]. The
critical points of higher-derivative gravity theories were first
investigated in this context [57].

44The absence of the BD ghost in 4d novel kinetic terms is
proved by the constraint analyses in [30].

45An important question is whether the special structure
of BD-ghost-free building blocks is detuned by quantum
corrections.

46We refer to [58] for recent developments on vector-tensor
models.
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In light of the AdS/CFT correspondence [59], the large
class of nonunitary bigravity models may be dual to nonuni-
tary conformal field theories. It is interesting to explore
nonunitary holography in the extended parameter space.
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