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Perturbations on and off de Sitter brane in anti-de Sitter bulk
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Motivated by holographic models of a (pseudo)conformal Universe, we carry out a complete analysis of

linearized metric perturbations in the time-dependent two-brane setup of the Lykken-Randall type. We

present the equations of motion for the scalar, vector and tensor perturbations and identify light modes in

the spectrum, which are scalar radion and transverse-traceless graviton. We show that there are no other

modes in the discrete part of the spectrum. We pay special attention to properties of light modes and show,

in particular, that the radion has red power spectrum at late times, as anticipated on holographic grounds.

Unlike the graviton, the radion survives in the single-brane limit, when one of the branes is sent to the adS

boundary. These properties imply that potentially observable features characteristic of the 4d (pseudo)

conformal cosmology, such as statistical anisotropy and specific shapes of non-Gaussianity, are inherent

also in holographic conformal models as well as in brane world inflation.
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I. INTRODUCTION

Some time ago it was pointed out that conformal sym-
metry SO(4,2) broken down to de Sitter SO(4,1) in the
early Universe may be responsible for the generation of the
(nearly) flat spectrum of scalar cosmological perturbations
[1-4] (see Ref. [5] for a review). The main ingredient of the
(pseudo)conformal scenarios is the expectation value of a
scalar operator O of nonzero conformal weight A which
depends on time 7 and gives rise to symmetry breaking,

= W

where 7 < 0. It is assumed also that (i) space-time is
effectively Minkowskian during the rolling stage (1);
(ii) there is another scalar field of zero effective conformal
weight in this background, whose perturbations automati-
cally have flat power spectrum'; and (iii) the perturbations of
the latter field are converted into the adiabatic scalar
perturbations at some later stage.

A peculiarity inherent in the (pseudo)conformal mecha-
nism is that the perturbations of O have a red power
spectrum,

Pso « p~2. (2)

This feature leads to potentially observable predictions, such
as specific shapes of non-Gaussianity [7-9] and statistical

'Weak explicit breaking of conformal invariance yields small
tilt in this spectrum [6].
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anisotropy [7,8,10,11]. It is worth emphasizing that many of
these properties are direct consequences of the symmetry
breaking pattern SO(4,2) — SO(4, 1) [8,12].

Further development of the (pseudo)conformal scenario
involves holography. It has been pointed out that conformal
rolling (1) in the boundary theory is dual to motion of a
domain wall in the adSs background [13,14]. This motion
corresponds to a spatially homogeneous transition from a
false vacuum to a true one. One generalizes this construc-
tion further and considers nucleation and subsequent
growth, in adSs, of a bubble of the true scalar field vacuum
surrounded by the false vacuum. From the viewpoint of the
boundary CFT, this process corresponds to the (spatially
inhomogeneous) Fubini-Lipatov tunneling transition and
subsequent real-time development of an instability of a
conformally invariant vacuum [15]. In the holographic
approach the position of the moving domain wall plays the
role of the operator O whose perturbations again have a red
power spectrum (2).

It is worth noting that the analysis of perturbations in
these holographic constructions has not included so far the
effects of dynamical 5d gravity: the backreaction of the
domain wall perturbations on the background adSs has
been neglected. Clearly, it is of interest to understand
whether or not the power spectrum (2) gets modified by the
effects of dynamical 5d gravity; this is one of the issues we
address in this paper (within the thin brane approximation).

In fact, various brane-gravity systems in adSs back-
ground have been studied in the context of brane-world
models with large and infinite extra dimensions (for a
review see, e.g., Ref. [16]). In particular, the linearized
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metric perturbations have been analyzed in the framework
of the static Randall-Sundrum I (RS1) model with S'/Z,
orbifold extra dimension and two 3-branes (one with
positive and another with negative tension) residing at
its boundaries [17]. It has been shown [ 18] that apart from a
massless four-dimensional graviton (whose wave function
is peaked at the positive tension brane) and the correspond-
ing Kaluza-Klein tower, the perturbations contain a massless
four-dimensional scalar field, a radion, which corresponds
to the relative motion of the branes. The radion wave
function is peaked at the negative tension brane. In
Ref. [19] the metric perturbations have been studied in a
more general static setup [20] where the assumption of the
Z, symmetry across the visible brane has been dropped. It
has been shown that the radion becomes a ghost in some
region of the parameter space which, in particular, includes
the setup of Refs. [18,21] where the graviton is quasilo-
calized due to the warped geometry of the bulk. Similar
results were obtained in Ref. [22] where effects of the
induced Einstein term on the brane(s) have been considered.
It is worth recalling that the static brane world setups are
possible only if certain fine tuning relation(s) between the
bulk cosmological constant(s) and the brane tension(s) are
satisfied. If these conditions are not met, the background in
general depends on time. In the simple one-brane setup in a
frame where an observer is at rest with respect to the bulk,
the bulk geometry is (locally) static and anti—de Sitter while
the brane moves along the extra dimension, and the brane
induced metric corresponds to de Sitter space [23-29]. On
the other hand, from the viewpoint of an observer located
on the brane, the induced geometry of the brane is still de
Sitter, while the bulk metric becomes time dependent.
The above discussion suggests that in the dynamical
background, the radion (which is a massless scalar field in
the case of the static background) becomes a scalar field with
ared power spectrum (2). The radion in the RS1 setup with a
slice of adSs bound by two dS, branes (one with positive
tension and another with negative tension) was studied in
Refs. [30-33] (see also Ref. [34]) with the result that the
radion perturbations have a red power spectrum indeed.
In this paper we consider the linearized metric pertur-
bations in a more general spatially homogeneous thin-brane
setup of the Lykken-Randall type [20] with the relaxed
fine-tuning conditions, and hence with a time-dependent
background. Although we consider for completeness the
case when one of the branes has negative tension, our
primary interest is the model with both branes having
positive tensions. This setup is more reminiscent of the
holographic description of the conformal vacuum decay,
albeit it is spatially homogeneous and does not involve a
scalar field in the bulk. We will pay special attention to the
radion and show that its equation of motion indeed leads to
a red power spectrum which has precisely the form (2).
Importantly, there are no other scalar modes bound to any
of the branes: all other modes belong to a continuous

PHYSICAL REVIEW D 94, 064076 (2016)

spectrum. A similar situation occurs in the tensor sector,
which contains one mode bound to the UV brane (which is
essentially the Randall-Sundrum graviton) and modes from
continuum. One of our main purposes is to see what
happens in a model with a single brane, that generalizes
the model of Ref. [14] in the sense that it includes effects of
the 5d gravity. In this context, the Lykken-Randall UV
brane is viewed as a regularization tool, so we send it to the
adSs boundary in the end. We find that the radion
perturbations do not decouple in this limit and still have
the power spectrum (2). Thus, the potentially observable
features of the (pseudo)conformal universe [5] hold for the
de Sitter brane moving in the 5d bulk.

This paper is organized as follows. In Sec. II we describe
the two-brane setup. In Sec. III we consider general metric
perturbations and fix the gauge. We also identify a radion
mode which corresponds to relative brane fluctuation. In
Secs. IV and V we present the linearized Einstein equations
and Israel junction conditions. In Sec. VI we solve the full set
of equations in scalar, vector, and tensor sectors of the metric
perturbations. In Sec. VII we construct effective actions for
the light modes, radion, and graviton. We discuss the
properties of the radion and show that its perturbations
have a red power spectrum. We consider the single brane
limit and show that the radion does not decouple and that the
spectrum of its perturbations remains red. We conclude in
Sec. VIIIL.

II. SETUP AND BACKGROUND

We consider the (d + 2)-dimensional background with
the metric

i
ds? <’7L didx® — d§2> : (3)

e\ 2

where k, and £, are constants, 7 = x° < 0, and hereafter
we use the notations

8, =sinh(§+¢&y), ¢, =cosh(§+¢&,).

This metric is a solution of the (d + 2)-dimensional gravity
with two thin d-brane sources,

S = —Md/dd”X\/HR —A/dd”X\/@
2
= u [ a2, (4)
i=1

where g, is the bulk metric and y,(f,,) is the metric induced
on the ith brane. The (negative) (d + 2)-dimensional
cosmological constants may be different in different
domains of the bulk space, separated by d-branes. We
consider the model of the Lykken-Randall type with two

branes [20]. The first (“hidden,” or UV) brane is placed at
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FIG. 1.
(M) (k, > 0k_ < 0); see the text after Eq. (18).

the fixed point & = —¢;, of the Z, orbifold symmetry
& — —2&, — & The second (“visible”) brane separating
two domains with different A, is at £ =&, = 0. We will
relate the parameters k., £, of the solution to the
parameters of the action in due course. In what follows
the domain between two branes —&;, < & < 0 is referred to
as the “—" region while the domain & > 0 is the “+” region;
see Fig. 1.

As a side remark, it is instructive to consider the
reference frame in which the bulk geometry is (locally)
static. The coordinates in this frame, ¢ and r, are related to =
and & as follows:

= Tc—i <0,
C+
r = _Tkigi'

Hereafter

sy =sinh&,, c. =coshé,.

Due to one of the Israel junction conditions, one has
k_s_ =k,s, = H (see below), where H is the Hubble
parameter on the visible brane given by (16). So, the
coordinates #, r are continuous across the visible brane. In
these coordinates the bulk geometry is described by

1

ds* = e (cLkLdr? — KLdx? — dr?), (5)
+

which is the Poincaré metric in the two patches of adS, ,

with different cosmological constants. In this frame the

branes are moving. Their positions are given by

c_
t)=—-Ht—-—=,
(1) s ¢,

where

boundary
I11)

Two-brane setup. Solid line shows the warp factor (k8)~!. Left and right panels correspond to the cases (I), (I) (k.. > 0), and

sp = sinh(£_ = ¢&;,), ¢, = cosh(é_ = &)
Thus, our setup is similar to Refs. [13,14], where the
domain wall moves along r/t = const in the Poincaré
coordinates. We do not use the coordinates r, ¢t in what
follows.

The components of the unperturbed Ricci tensor, calcu-
lated with the metric (3), are [hereafter we skip (sub-)
superscript “+” where this does not lead to an ambiguity],

(d+1) d+1
Ruw="g"Mw  Rue=0 Reg=-—75—,
and satisfy the Einstein equations in the bulk
Ay 2
Rin=———.—. , 6
AB M d 9daB (6)

provided that the values of the inverse adS radii k, are
related to the cosmological constants,

Ay

ko|= |——®t
e | Mad(d + 1)

(7)

We take k. positive (without loss of generality) and assume
that there is no boundary at £ > 0, which implies

£, >0, k. > 0. (8)
Other sign conventions are that in the case k_ > 0 the
hidden brane screens the adS boundary at £ — —£_, while
for k_ <0 one can push the hidden brane to infinity.
Hence, the two options are
ko >0

& >0,

(and &, <&). (%)

£ <0, k_ <0. (9b)
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To proceed, we make use of the Israel junction conditions
[35] to determine the boundary conditions on the branes. It
is worth recalling the definition of the extrinsic curvature

K,, and the induced metric on the branes (see, e.g.,

Ref. [36]). Let F(X?) =0 be the equation of timelike
hypersurface X and y* be coordinates on it. We introduce
tangent vectors to X

. OxA

€ =7 >
ooy ly

and the normal unit outer vector

OuF

n _77
A /0, FOPF|

which is spacelike. Then the induced metric and the
extrinsic curvature are given by

_ ,ALB
yyv - ey €y gAB|E’
_ ,ALB
K,, = e e;Dangls.
The Israel junction conditions at each of the branes are

Ay,(fy) =0,
_A
2dmd

AKL) =

Hereafter A denotes a jump of the corresponding quantity
across the brane from & > &) to & < &0,

Due to Z, symmetry, the continuity of the induced
metric

w_ 1
Y —Wﬂﬂw

on the hidden brane (¢ = —¢&;) is trivially satisfied. The
jump of the extrinsic curvature is given by

20
KW = —2k_c;8, = 7 (10)

AYDZ _Zde B

(h)

Equation (10) yields a relation between the hidden brane
tension and its position:

M = 4dMk_c,. (11)

On the visible brane the induced metric and the extrinsic
curvature are

(v).£ 1
e "

17 v),t v
y(’;)iK,(,”) = —kycy 8. (13)
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Then the Israel junction conditions become [using the sign
conventions (8) and (9)]

k_s_=k,s, =H, (14)
kyc, —k_c_ =o, (15)
where
A(0)
o= W'

By solving these equations one gets a relation between the
Hubble constant H and the parameters k, and o,

((ky +k_)*—0®)((ks —k_)*—0?)

H? — 122 — ’
4¢6°

(16)
and finds

H
£, = arcsinh—. (17)
ky

Three remarks are in order. First, the fact that the solutions
(17) exist confirms that the metric (3) with constant £, is a
solution to the Einstein equations and Israel junction
conditions. Second, as it follows from (12), the brane is
in the de Sitter regime with the Hubble parameter H > 0
given by (16). Our primary interest is in the case 7 < 0
which corresponds to expanding branes. Most of our
formulas, however, are valid also for contracting branes,
7 > 0. Third, substituting (16), (17) into Eq. (15) one gets,

sign(k,)|k3 — k2 + o?| — sign(k_) k% — k2 — 67|
=2|olo. (18)

For k, > 0 this equation together with the condition H > 0
leads, in general, to the following three cases:
D k. >0,k_>0,6>0=k, 2k_+0,6,E >0;

M k., >0, k. >0, 6<0=0<k, <k_ —|of
. 6->0

) k, >0, k.<0, 6>0=0<k, <o-— k|,
£.>0,E <0,

which is consistent with our sign convention (8), (9).

To conclude this section let us consider the static limit
H — 0. To this end we require that the resulting background
metric takes the form (5) with ¢, — 1, and that the visible
brane is located at r, = 1 while the hidden one is at r;,. In all
three cases (I)—(III) discussed above the limit H — 0 is
approached in the following regime [see (15), (17)]:

H
~ 0’
&t k., -

[ (19)

In the limit (19) the relations between the brane tensions
and their positions, Egs. (11) and (16), (17), reduce to the

ky—k_— o, Hl|z| - 1,
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well-known fine-tuning conditions between the brane ten-
sions and the bulk cosmological constants, A") = 4dM“k_,
A0 = 2aM? (ky —k_).

III. PERTURBATIONS AND GAUGE

Let us consider small perturbations of the metric (3)

h
G T a1z
gap — =

gc_fA + ]:\lc_fA ,

and begin with the coordinate frame (3, &) in which the
visible brane is placed at & = b(%) while the hidden brane is

still at 2 = —¢£,. We do not assume that fAzAB is continuous
across the brane but the induced metric

1 Ci ~
= 1—2%p) 4 h

should be continuous (the first Israel junction condition).
Note that due to the condition (14), the coordinates (3#, E)
continuously cover the whole space.

As an intermediate step, let us demonstrate that there is a
gauge in which the new coordinates (¥, &) cover the whole
space, the visible brane is straight and placed at é =0, the
hidden brane is at & = —&,, and h,p is continuous. The
linear gauge transformation 5h,p(X) = hyp(X) — hyp(X)
of the metric perturbation under coordinate transformation
XA =X+ s

2
Shge = =2 (3C¢)", (20a)

1
Phan = ~0uls = gz O

2
5]1/41/ = _a(MCU) + ;Co’?;w - 2k2(§€§’1/u/' (2Ob)

Hereafter (d 4 1)-dimensional indices are lowered and
raised by 7,,, £-index is lowered and raised by gaz, €.g.,
Ce = geel® = —¢¢/k*8%, prime denotes the derivative with
respect to ¢, and a(,b,) = a,b, + a,b,.

Let us make the following continuous coordinate trans-
formations:

-b-y(&),
o+,

2

Tow
I
o>

where y(£) is yet an arbitrary continuous function satisfy-
ing the conditions

x(=6) =0, x(0)=1.
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Then the visible brane is placed at
E=0,

while the coordinate of the hidden brane is left intact
E=-&) )

In this coordinate frame the jumps of /4 across the
visible brane are

N oo~ 1 X !
- C
A/’l”é:(x, 5) = Ahﬂ[:(x, f) —WA !

&=0
We see that the zero jump equations AizAé =0 can be

satisfied by an appropriate choice of derivatives ), and y’

on the brane. Then one has Aﬁﬂy = ( automatically, due to
the first junction condition.

A. he=0 gauge

As a final step, we make the second continuous gauge
transformation which gets rid of 4, in the whole space.
We write

E=E45 =R (21)

and require i4; = 0. Then, by making use of Eq. (20), one
finds from the condition Az = 0 that

¢
1 ~ ee(x) %) ee(x)
ngg/ghggdf-l- 3 —C,: + 3

0

where &:(x) is in general different in the different regions.
In the “—" region, ¢; cannot vanish and is determined by
the requirement that the hidden brane is left intact:
£8(=¢,) = 0, that is

0

1 ~
=&

The function &; (x) is determined by the continuity of &
across the visible brane,

k_e; = ky€f. (23)
The condition 4, = 0 and Eq. (20b) give

¢
¢, = ke / (e = 0,60)82dE + K220, - (c— ) + &, (x).

0
The continuity of {* requires that ,(x) is continuous.
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Two remarks are in order. First, we note that £, (x) can be
regarded as a residual gauge transformation,

2
hy, — h,, — 8(ﬂ8y) + ;sonw, (24)
which does not touch the branes and is consistent with the
gauge hyy = 0.
Second, arbitrary functions &; (x) (which do not neces-
sarily satisfy the conditions (22), (23)) can be considered as

a gauge transformation,

Ry = by, — (¢ = ¢) - (2k2720,0,8; + 2k*75 00, €

- 2k*tn,,0.e) — 2k* e, e¢, (25)
which is consistent with the gauge & e = = 0. So, the Einstein
equations in the bulk, being written in the gauge h,: = 0,
are invariant under this transformation. However, these
gauge transformations in general shift the branes. In
particular, with the transformations (22), (23) the hidden

brane is left intact while the new position of the visible

brane is determined at £*) = ¢¢(x, 0) or
&V = f(x), (26)
where
f(x) = —k?se;

is nothing but the radion. It follows from its definition that
the radion should be continuous across the brane [and it is
indeed continuous due to (14) and (23)].
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In what follows we use continuous coordinates (x*, &)
[see (21)], work in the gauge h,: = 0, and place the hidden
brane at £ = —¢,,, while the position of the visible brane is
given by (26). Our purpose is to derive the equation of
motion for the radion and study its properties. To this end
we need to find solutions to the perturbed bulk Einstein
equations and Israel junction conditions.

IV. EINSTEIN EQUATIONS

Taking into account (7) we write the bulk FEinstein
equations (6) in the form

Eap=Ryp—K*(d+1)gsp =0. (27)

In what follows we use the standard helicity decomposition
of the metric perturbation,

hoo — 2@,
]’l i — 8Z+ Zi’

hij = =2V6;; + 20,0,E + 0;W + hlT

l]’

where Z;, W, are transverse and is transverse and

traceless

T
n?;

aiZi - 3,~W,~ = 6,h£T - hl];T = 0

In terms of these functions the linearized Einstain equa-
tions (27) are

dd 24P av 2E ) Z 0.9
809 = PO ——+——dV+—+ P _PE gy, 2 e 2 (28a)
T 72 T 2723
d—1 1 1, . 1 .,
5Ey; = 0 — - d—(d- 1)\I/+ ogz +§a (Z,-W,-)+FO§Z,-, (28b)
2d-1) . ) _2d® ogxlf c
8. =600 - W 2(E-7 n
51] lj( T + a ( )+ T 1.2 7,'2 +2’Z'2§
. (d-1)z . (d-1E O:E
+aiai<z—g—(d—z)\p—@—E+(—)+%> (28c¢)
! T T T
1 . (d-1)0uZ; o (d=1)0,W,  0:0,W)
1 (d— 1)kl O:hlT
| TT _ oo ) 2
2( hl, = - ) (28¢)
. O*E 9*Z 4®d . dV\/
5505=<a25—6——6————dx11+—), (28f)
T 2 T T
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Hereafter we use the following notations:

h=hy =2 +2d¥ - 20°E,
P =080, D=0, =0 -
A ¢ 1
04: - 8% - dga(: - §d6¢§8{:,

and dot denotes derivative with respect to z.

A. Scalars

The scalar part of Eqgs. (28) can be significantly sim-
plified by using variables which are invariant under the
residual gauge transformations (24). Let us set ¢; = Oe,
then the scalar functions transform as follows:

6, =—10, (8—0>,
T

8,Z = —ey — £.

There are two independent gauge-invariant variables. It is
convenient to use the following pair:

B=Z-E+7V-9.

Let us introduce the combination,

U dB d(d+1)B
Y _aoatorp-B A4t DB
272 T T
where
N d-1)0 d+1
o —_(@=12%_(@+1)
T T

In terms of these variables, the linearized Einstein equations
in the scalar sector take the form

2dA dB 2dB _ 0% = ¢

5y : OPA — dA + —— — N,
00 72 = T PR 72 +22§
(29a)
d-1), . 0:2
550,’2 —( )(TA+A—B):—2—§2, (29b)
T
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T 2 ¢ 2
05\11 C P
et Sl 2
2 27’8 ", (29¢)
O.E
8€(9,0,): —(d=1)A+B = — iz, (29d)
5&! 1
Td la,,rd—j 53 (U +dn) = (29€)
U O:h c(d+1)
SEL = T W 20f
L 272 2723 ( )
Equations (28h), (29¢), (29f) yield
C
U=-d_H. (30)

Combining Eqs. (29a2)—(29d) and their time derivatives and
taking into account (30) we finally obtain the following set
of equations for A and B:

4B

4B 1 .,
OB+—+ 5> =—5(0;+d-1)B, (31a)
T

B (d-3)B B 1
T 72 d 72

(0:+d-1A.  (31b)

V. LINEARIZED ISRAEL JUNCTION
CONDITIONS

A. Boundary conditions at §= — &,

Due to Z, symmetry, the continuity of the induced
metric at the hidden brane

m_ 1
Yw = kzs—%ﬂ_g (’7/41/ + hﬂu(_éh»

is trivially satisfied. The jump of the perturbed extrinsic
curvature is given by

—A8ly K] = —k_syhil = 0.
Thus, one has

M le=—g, = 0. (32)

This means, in particular, that /| f——g, = 0. Together with
Eq. (28h) this yields

H=0 at —& <&<O. (33)

064076-7



M. LIBANOV and V. RUBAKOV

B. Junction equations at the visible brane

The Israel junction conditions at the visible brane have
the form

AW =0, (34a)

AKY = —oyV). (34b)

The perturbed induced metric on the brane [at & = f(x)] is
given by

(0).£ 1 Cy +
Anp— g R o nt ),
1 = e (e (1-200) )

and the extrinsic curvature is

0K

. hY
= —kctp ks (20,0 =l — 0,0 ) -5 + 1)

The junction conditions (34), are satisfied for the unper-
turbed background. Hence, for the linearized part we have

Aéyly) =0,
NSy Kyl] = 0. (35)
Calculating the trace K = ’(‘%K,(f,) we get

A n
K = —ke(d + 1) + kst? (OTf +F) (36)
T

By making use of the Gauss-Codazzi relation

26 pntn® = k2d(d + 1) =) R — (K5 K™

+(v) Kgl:)’

(37)

where G, is the Einstein tensor, (“tVR is the curvature

scalar on the brane, and K’(‘Z> = y’(‘f)y’(’i)l(éﬁ), one finds

AS(K K — K?) = 0. (38)

Due to the fact that the background extrinsic curvature is
proportional to 7, [cf. (13)], it is straightforward to check
that Eq. (38) takes the form

—A[2dkc - 6K] = 0.
Together with Eq. (35) this leads to the equation

5Ki — 0,
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and, therefore,
0.f =0, (39)

where we have used (33). This is the desired radion
equation of motion.
Besides that, the junction conditions yield

C o
Ahm/ = 2Ag'7;wf = 2ﬁ’]}wfv

Ahy, = 0. (40)
From the latter equation and Eqs. (28h), (29f), (33) we find
n =0, U=0 (41)

in the whole space.
The condition (40) translates into

A@:A\I/:AA:%f, (42)

while other functions characterizing the metric perturba-
tions, as well as all first derivatives of h,, with respect to &
are continuous across the brane.

VI. SOLUTIONS

A. Scalar sector

Now we are ready to solve the linearized FEinstein
equations. We begin with Eq. (31a). The variables separate,
so the modes have the form

By (x.&) = be(x)B(£).
where f, are normalizable (since B is gauge invariant),

[Se]

dé

——|B* < o,
k)4

-/:,,( )

and continuous together with their derivatives across the
brane [see Eq. (42)]:

Ap(0) = AB(0) = 0.

They are solutions to the eigenvalue equation

(O +d = 1) =~ (43)
Explicitly,
0190 d?
a9 29 a5 _
3 8§§d8§ﬂk+<4 K)ﬂK 0 (44)
with
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(d=2)—4v
5 .

We show in the Appendix that there is one constant discrete
mode in the spectrum with k = d/2 (v =1 —d),

Ba(§) = const. (45)
For k_ > 0 it is localized near the hidden brane. However,
as we discuss later on, this mode does not generate a
solution to the complete set of the Einstein equations (29),
so the corresponding metric perturbations are, in fact,
absent. The rest of the spectrum is continuous and starts
from zero: x> <0 (v > (d—2)?/4). The x*-dependent
parts

be(x) = by(z.p)e,
satisfy the following equation:

<63+p2_(d—5)81_(d—32—11)

T T

) b.(z,p)=0. (46)

Let us now consider Eq. (31b). For a nonvanishing left-
hand side this equation immediately yields

Ade0.8) = a (e D)ALE) @)
with
a(e.p) = - (d(d=3) = ded, = )b (D). (43)

There is an important subtlety here. The modes (47) are
continuous across the visible brane and hence contribute to
the continuous part of the function A only. This continuous
part of A satisfies Eq. (42) with a vanishing right hand side.
To satisfy Eq. (42) with a nonvanishing right-hand side, we
note that the operator (A),: +d—1 has yet another zero
mode [in addition to (45)] when it acts in the space of
discontinuous functions. In that case both sides of Eq. (31b)
are equal to zero, and hence the relations (47), (48) are no
longer valid.
Thus, we search for the solution of the form

Ana(x,8) = f(X)pe2(8).  Baz(x,§) =0,  (49)
where the second equality follows from the fact that
Egs. (31) do not admit a nontrivial solution for B in the
case of a vanishing right-hand side of Eq. (31b). The
function fe2(&) must obey Eq. (43) in both “+” and *-”

regions and has the jump at the visible brane

o

iz =5 (50

PHYSICAL REVIEW D 94, 064076 (2016)

The boundary condition at the hidden brane follows
from (32):

Pia(~8) = 0. (51)
To construct the new zero mode we note that two linear

independent solutions to Eq. (44) with x = (d —2)/2
(v =0) are

W) _ ar (8N, 3.d+3 8
ﬁ%—c (c> F 1,2, 57 ) (52a)

B, =r (52b)

2

where F' is the hypergeometric function. At large &, ﬂg
2

grows as e@ D¢ and hence it cannot be used in the “4”
region. In contrast, the second solution 7, is suitable at
2

w9

large &. In the region the following linear combination
of (52) satisfies (51):

(1) ﬂg/(_éh)
Fia(® = O e T

h

(53)

By making use of the boundary condition (50) at £ = 0 we
finally obtain

B0\ !
z S+[:_I_ ;%7(0>]> ¢, até>0,
B2(8) = N XN
i(rof=-55]) hne ae<o
;

(54)

In both of these formulas, $5,(0) and f5,(0) are the
2 2

w9

limiting values in the reéion. To end up with the
analysis of the zero mode, we note that the Wronskian
W(f1. f2) = f1f5 — f1f> of the functions (52) is

W(e. ) = W(e. f5.) = (d + 1)8°.

Z 2

(55)

Note also that the terms proportional to ¢ in (54)
correspond to the gauge transformation that preserves
hee = 0 [cf. Eq. (25)]. In particular, the radion is pure
gauge in the “+” region outside the visible brane, i.e., the
nontrivial part of its wave function is concentrated on and
between the branes.

Let us now come back to the constant mode (45) and
consider Egs. (29b), (29d). These equations can be viewed
as inhomogeneous equations for Z and E, respectively.
Recall that the operator 05 has exactly one zero mode f3,),.
The necessary condition for the existence of solutions to
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Egs. (29b), (29d) is the orthogonality of the inhomogeneity
to this mode, and it cannot be satisfied if A and/or B contain
contributions proportional to f3;/,. Thus, we are forced to
conclude that B contains the continuous part of the
spectrum of (43) only. On the contrary, the (discontinuous)
zero mode fi, contributing to A, is orthogonal to £
Indeed, by making use of (43), (45), integrating by parts
and taking into account the boundary conditions at —&;, and
at infinity, we write

00 dé Oéﬂd— d—( )
(Bulpa2) = P - /( k) 1—d =hy W

=&

The last point to check is that U and A’ vanish, Eq. (41).
Using Eqgs. (46), (48) one directly finds that Eq. (41) indeed
holds for the modes with v # 0. For the zero mode (49),
Eq. (41) is satisfied due to the radion equation of
motion (39).

Explicit expressions for the metric components induced
by the radion can be found by making use of Eqs. (29a)—
(29d). Let Q(&) be a continuous solution to the equation

0:0 = pus(é)
with boundary conditions

2(9)

—dj2

Q'(=¢,) =0
§ -0

Explicitly,

-+ const,

T 1-d +®<_§)H(1—d)

where O is the step function; the last constant term cannot
be fixed and corresponds to the residual gauge trans-
formation (24). Then

® = fhz+ (d=1)(@f +7f)- Q

U= ffu2—(d—1)cf - Q,

E=(d-1)7°f-0,
Z=2d-1)(2f +7f)- 0

B. Vector sector

Let us introduce the following gauge invariant variable:
Vi - Zi - Wi'

Then the Einstein equations in the vector sector are

PHYSICAL REVIEW D 94, 064076 (2016)

d-3)V;, 1
ov, - % = —2(05 +d—-1)V,, (56a)
0:Z,
PV, = - (56b)
<Zl. (d+1)z; 82W,-> =0. (56¢)
T

The situation is reminiscent of that in the scalar sector.
Any solution to Eq. (56a) can be decomposed in eigen-
functions f,(¢). However, the contribution from the local-
ized mode f3,/, vanishes due to the second equation (56b):
V; should be orthogonal to f;/,. Then the validity of the
third equation (56c) can be directly verified. Thus, all
vector modes belong to the continuous part of the spectrum
of the operator (43), and hence they are delocalized.

C. Tensor sector

The only equation in the tensor sector is

(d - )hTT (d-1nf 1
2

T T

Onll — (O +d - 1)hlT.

Therefore, there are no conditions eliminating the discrete
mode f;/, which in the case k_ > 0 is localized near the
hidden brane. By writing
TT _ i
h(K)ij(X) - ﬂK(g) . eij ’ HK(T’ p)esz’
where e;; is a constant transverse-traceless polarization
tensor, one finds the equation for H,/»:

-1
(68 2= 4= 00

which is precisely the equation for the graviton perturba-
tions in the de Sitter (d + 1)-dimensional universe. The
negative frequency solution to this equation at 7 < 0 is

:O’

(ST

Hy = (—pr)2H{) (= p2),
2

where H,(f) is the Hankel function. This solution leads to

the flat power spectrum for the tensor modes.

VII. EFFECTIVE ACTION FOR THE
LIGHT MODES

A. Effective action for the radion

In this section we calculate the quadratic effective action
for the radion and the graviton zero mode. To this end, we
make use of the first variation of the action (4). We begin
with the radion. A subtlety is that in our gauge the action
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depends on the radion not only through the metric
components but also through the visible brane position
& = f(x). To get around this difficulty we perform a gauge
transformation that puts the visible brane at the origin,
straightens it, but does not touch the hidden brane:

=& fx(&), x0)=1,  x(=&)=0,

where y is continuous together with its first derivative at
£ =0. This gauge transformation leads to nonvanishing

components /4, in particular,

- 2f (1)

T8 \8)

On the other hand, one can keep the conditions 135” =0by
making another gauge transformation x* — x* + {# with

¢
Cﬂ = _Tzayf ){dé

(57)

Then the (uv) components of the metric perturbations
become

il;w = h/u/ + 2(726/46uf + Té(uoau)f - 27].[’7;41/)
4
C
< [z =25 1

It is worth noting that fzw is continuous across the visible
brane while the jump of its derivative is

K2 — k2
H2

Now, the quadratic action for the radion is

Al =2 f.

1 7AB 7
where the subscript (f) means that we take into account
only the part of perturbations depending on the (off-shell)
radion, and the tensor 6E 4 is the linear part of the variation
of the action (4),

1
6EAB = Md6<RAB — EgABR -+ kzd(d -+ 1)9AB> .

As in the static case [19,22], the only nonvanishing
component is

e
OEs: = M4 ——3| — 0
& J-1 ( 3 > 0. f
a4 20
= MIEW(e pu2)0. . (59)
where we have used Eq. (43) to obtain the last equality.
Due to Eq. (55), upon substituting Eqs. (57) and (59) into
(58), we find that the £-dependent part of the integrand of
(58) is total derivative:
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1 P\ [\ W(e_, fa2)\’

e (=) (£) =6 -1 l(—j) :
32\ s ) \3 5 [k 8|

Taking into account that we work on the full £ axis with Z,
identification, and introducing a new field

VIPIf (%)

=Y P 60
¢ e (60)
where
M koc.H PB(ON™!
=4 1)— 1)t 2 1
P dw+>H(w+>hL,QJﬂ), (61)

we finally arrive at the radion effective action

S; = sign(P) / dlx (% (0,0)* + %éﬁz).
(62)

The normalization factor (61) is obtained by making use of
Egs. (54), (55). It is worth noting that the radion is a ghost
at o < 0 (see Fig. 2).

In the static limit (19) one has

p—gamd = (R )T
H2 - \ =1 Ak

which, modulo notations, coincides with the result of
Refs. [19,22].

Up to the sign of P, the action (62) coincides with the
action for perturbations about a time-dependent

1T

=30

-40

FIG. 2. Contour plot of PH?/(|6|M?) as a function of k_/s,
k. /o at &, = 0.3. The regions I-III correspond to the allowed
regions in the parameter space discussed in Sec. II. In the region
IT (more dark), which corresponds to the negative visible brane
tension, the radion is a ghost.
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background in a (d 4 1)-dimensional classical conformal
theory. The latter theory is described by the action

1 ([@+DR(d -1
Sy = / d*lxy/=y |57 0,00, g R
2 8d
-2 2(d+1)
]
1 -2
_ / dd+1x{§(a,,¢)2 —(T)(pg} (63)

with y,, = a277,w, P = ad?](p, while the background time-
dependent solution is, at 7 < 0,

_ (d-1\E 1
e =\ )=

Modulo the replacement of the real field ¢ by a complex
one, Eq. (63) is precisely the action considered in the
context of a (pseudo)conformal universe model [1,5].

The equation of motion for the canonically normalized
radion ¢ obtained from the action (62) is

(d+1)(d+3)
—

Its negative frequency solution that tends to a properly
normalized mode of free quantum field as pr — —o0 is

O¢ — ¢ =0.

\/ =T
¢ = 2d+2ﬂd 7 €4 ld- S)H( )( pT) px,
At late times, when —p7 < 1, one has
. i d+2 1
— elkx . GT(dJrl)F ’
¢ 2 ) 2T p T (=0)T

which leads to the red power spectrum (2).

B. Radion-matter coupling

Let T3, and TW, be the energy-momentum tensors of
matter residing in the bulk and on the visible brane,
respectively. T3, does not include contributions from
the bulk cosmological constants and can be, in general,
different in the different regions, while 7,, does not
include the brane tension. We assume that the matter
energy-momentum tensors are small and treat them as
perturbations. For simplicity we also assume that there is no
matter residing on the hidden brane. To derive the radion
equation of motion in the presence of matter we note that in
this case Eqgs. (37) and (34b) take the form

) TAB

IR (KR =KL =KLl 1) =",
1 YT

AK#U = 6},’(4”)+W<T ”TM .
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To the leading order in perturbations about the source-free
background, one has from these equations

H?*TE
DR + d(d + 1)s2 k% — 2dc ko 5K, — Tfs =0,
H*?*T
ASK = ———=
24dM?

where 7 =T ,,. We actually have three equations,
which can be used to find the induced scalar curvature
(@+DR and the values of 6K on both sides of the visible
brane. The result for 6K is
_ 2.2 2

To proceed, we make use of Eq. (36). The quantity 4'(0)
entering that equation can be found by using Eq. (28h)
which takes the following form in the presence of matter:

K\ 1 T
#\s) “wi\"e T aes)

where T = ¢"BT,5. Integrating this equation with the
boundary condition (32) and plugging the result into
Eq. (36) and then into Eq. (64), one finally arrives at the
desired equation of motion for the canonically normalized
radion (60),

(d+1)(d+3)
TR

=t (47
/ (e + )| o)

—&n

U —

T2

This reiterates that the radion has an unsuppressed
coupling to matter residing on the visible brane.
Equation (65) shows also that the radion does not
interact with matter residing in the “4” region outside
the visible brane. The latter property is consistent with
the fact that the nontrivial part of the radion wave
function is concentrated on and between the branes; see
the discussion after Eq. (55).

C. Graviton effective action

In the same way one gets the graviton effective action

_ TT 2
S — Mgl ! dxd+! (aﬂh(dﬂ)ij)
T — 4 |HT|d_1 ’

with (d + 1)-dimensional Planck mass
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[ee]
dé
d-1 __ dpyd—1
My = 2M°H / kTQ’d ,
—En

(66)

where we have set 7 = 1 which is appropriate from the
2

viewpoint of a (d + 1)-dimensional observer localized on
the visible brane (see the discussion in Ref. [17]). In the
static limit (19), the (d + 1)-dimensional Planck mass is

~ 1 Ak
M&l_rf%xd—m<l‘4'%1)

This agrees with Ref. [20].

D. Limit of single visible brane

1. k_>0

In the case k_ > 0, the adS boundary is located at —=&_ <
—&, < 0 and the hidden brane can be pushed to it, &, — &_.
In this limit one has

d kiyc, H

P:4d(d+1)%((d+1)k 2

s_\3 3 d+3 s2\\!
VR0, 425 )
+(c_> (’2’ 2 ’c%))

This is finite and, therefore, the radion does not decouple
from the physical spectrum. The radion-matter coupling
(65) is finite as well. On the other hand, the integral (66)
that yields the effective Planck mass diverges, and hence
the graviton does not interact with matter and decouples.

2.k_<0

In the opposite case k_ < 0 the adS boundary is absent
(é_ < 0) and the single brane limit corresponds to &, — oo.
In that case only the last term in the expression for the
radion wave function in the “—" domain (53) survives. The
radion becomes pure gauge, and hence unphysical, in both
domains. One can also see that in the limit &, — oo, P
vanishes. So, the radion does not couple to matter, as it
should be.

On the contrary, the effective Planck mass (66) is finite
and graviton is the only light physical degree of freedom.

VIII. CONCLUSION

To conclude, in this paper we have performed the
analysis of the linearized metric perturbations in the
dynamical Lykken-Randall type model. We have derived
equations of motion for the scalar, vector, and tensor modes
and have shown that, in general, the radion and graviton are
the only light modes. However, in the single brane regime,
depending on the behavior of the warp factor in the “-”
region, graviton or radion decouples from the physical
spectrum: if the warp factor grows outward the visible
brane (k_ > 0) and there is the adS boundary, only the
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radion is present in the physical spectrum while the
graviton decouples, and vise versa in the opposite case.
We have also shown that if the visible brane has negative
tension, the radion is a ghost. Although these features of the
metric perturbations are interesting by themselves, we think
our main result is the radion equation of motion. This
equation leads to the red power spectrum, as one could have
anticipated from the holographic picture. This means that
the potentially observable features of the (pseudo)con-
formal universe [5] hold also for the de Sitter brane moving
in the adS background.
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APPENDIX: SPECTRUM OF THE
OPERATOR (44)

Let us find the spectrum of eigenvalues x? in Eq. (44).
The eigenfunctions S, and their first derivatives must be
continuous across the visible brane and obey f.(=¢&,) =0
at the hidden brane.

We multiply Eq. (44) by f, integrate the result with the
measure 1/(k8)¢, and, taking into account the boundary
conditions, obtain

T od Tode (&
/<k§§)d|ﬁf<|2_/&(Z_KZ)LHK’Z’

=& —&n

which shows that k> < d?/4. As we will see, the spectrum
is continuous at k2 < 0. At k = d/2, there is the constant
mode (45). We will argue that the latter mode disappears for
k_ >0 and &, — £_, that is, when the hidden brane is
pushed to the adS boundary.

There may exist solutions with

d*/4 > k> > 0.

Our main purpose here is to demonstrate that, in fact, there
are no such solutions. To this end we introduce the wave
function

P& = Bo(&) (ka) /2
and cast Eq. (44) into the form of the Schrédinger equation

M - Eé(f))ﬁx = _KZBK’

432 2H (A1)

~0%p, + <

where the appearance of §(¢) is due to the continuous
matching conditions for S, on the visible brane which

translates to the following conditions for ,BK:
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do ~

The boundary condition on the hidden brane (32) takes the
following form:

Mpe=0,  Dpe=-

dCh ~

B+ =B =0, A3
Pet 5, P (A3)
and S, should be normalizable with unit measure:
[ debip= o0 (A%)
=&

where 6, = 6(k’ — k) for the modes belonging to the
continuous part of the spectrum.

To warm up, let us demonstrate that at k2 <0 the
spectrum is continuous. In general, in the “—” region,
there always exist two linear independent solutions to
Eq. (Al), and hence one can construct a unique solution

(up to an overall constant) ﬁ,f to Eq. (Al) satisfying the
boundary condition (A3) on the hidden brane. At large
& > 0, the potential term in Eq. (A1) can be neglected and
at k2 < 0 there are two oscillating solutions ~e*l<. A
linear combination of them can be chosen to satisfy
Eq. (A2) (at any x> < 0) and to match ﬁ,f Thus, the
spectrum is indeed continuous at k> < 0. This argument
does not apply to the special case x =0 when the
asymptotic behavior of the two solutions at & — oo is
const # 0 and ¢, since only the first one is suitable. In any

case, if Bo exists then it belongs to the continuous part of the
spectrum.

To see that the boundary value problem (A1)—(A4) has
only one discrete solution, we note that the first term in
parentheses in Eq. (A1) is always positive V « 1/8% > 0.
Let us turn off this term. Then we deal with a particle in the
o-function as well. It is straightforward to check that the
spectrum in that case consists of one negative discrete level
and a continuous part starting from zero. Switching on V in
(A1) can only lead to a non-negative addition to each
eigenvalue. Since the continuous parts coincide in both
cases (vanishing and nonvanishing V) this means that
nonzero potential may lead to the disappearance of the
negative discrete level, but it cannot lead to the appearance
of the second negative discrete level. Therefore, the
boundary value problem (A1)-(A4) can have only one
discrete level and, indeed, it has the level with x = d/2.

Let us consider the case of the single visible brane. In
general, there are two different cases: k_ < 0 (,_ < 0) and
k_ > 0 (& > 0). In the first case the boundary condition on
the hidden brane (A3) is replaced by the normalization
condition (A4) with &, — —oo. It is straightforward to see
that all of the above arguments are still in force in that case.
So, the spectrum consists of the discrete level with k = d/2
and a continuous part starting from zero.
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In the case k_ > 0 one replaces &, — &_ and the
boundary condition (A3) becomes

BK<_§—) =0,

that is, the wave functions vanish at the adS boundary, and
the above arguments do not work. Let us argue that there
are no discrete levels in this case.

Suppose that there exists a discrete level. The corre-
sponding wave function, being the wave function of the
ground state, has no nodes and can be chosen to be positive
everywhere. Then, integrating Eq. (Al) and taking into
account the boundary and matching conditions, one obtains
the following inequality:

& Bui0) = 7 oM )b

482
—E_
Todd+2) -

0

Let us consider two extreme cases: (a) £, <1 and
(b) £, > 1. The first case [see (17)] corresponds to a
slowly expanding brane, H/k, <1, and hence
&, = H/k, . In that case the integral in the right-hand side
of Eq. (A5) is saturated near the origin and is proportional

to 1/&,:

do - dd+2) 1~ dd+2)k, -
ﬁﬁk(o) > Tﬂﬂk(o) = Tgﬂx(o)v
or
1> (d+2)ky

2 o

This contradicts the relation k, > ¢ which follows from
(15). Hence, there is no discrete level in that case.

The opposite case £_ > £, > 1 corresponds to a rapidly
expanding brane, H > k., c. In that case

2H
f—g 1 —_— N
é:i o8 < ki )

and the first term in parentheses in Eq. (Al) can be
neglected. Indeed, in the “4” region this approximation
is valid at all £, while in the “—" region the approximation
may only decrease the value of k>. Then, solving Egs. (A1),
(A2) with vanishing potential, one finds

(A6)

_da

do
=—(l-e?=——<«1,
=T =g

P& > 0) = fi(0)e. (A7)

By substituting (A6), (A7) into (AS) one obtains
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(d+2) k% N(d+2)ﬁ>d+2

1> ,
2  Ho(2+«k) 4 Ho 2

where we have used (16) and the inequality
((ky +k-)* =0?)((ky —k_)* = %)
< (ky +k_)*(ky —k_)* < k2.
Thus, we again come to a contradiction and the discrete
level is absent.
Another way to see that the discrete level is absent is to

consider what happens with the mode x = d/2 in the limit
&, — —&_. In this limit the normalized mode has the form

I

k
(ks)

where we have used the fact that the corresponding
normalization integral is saturated at & — &:

P =Vd-1(e—&)T——.  (A)
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[Se]

L
Ny (k8)?  (d—1)ke(E =&)Y

As we have discussed above at any &, # £_ the mode (A8)
is the only discrete mode in the spectrum. It follows from
(A8) that at any given £ > £_ this mode tends to zero in the
limit £, — £_ and, therefore, does not contribute to any
observable in the whole space except for an infinitesimal
region near the adS boundary.

To summarize, we have seen that the spectrum of the
operator (44) defined on the class of continuous functions
in the case of two branes as well as in the case of a single
brane and k_ <0 consists of one discrete level with
k=d/2 (v=1-d) and a continuous part starting from
k=0, v=(d-2)%/4. In the case of a single brane and
k_ > 0O the discrete level is absent, and the spectrum is
continuous and starts from x = 0, v = (d — 2)*/4.
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