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Motivated by holographic models of a (pseudo)conformal Universe, we carry out a complete analysis of
linearized metric perturbations in the time-dependent two-brane setup of the Lykken-Randall type. We
present the equations of motion for the scalar, vector and tensor perturbations and identify light modes in
the spectrum, which are scalar radion and transverse-traceless graviton. We show that there are no other
modes in the discrete part of the spectrum. We pay special attention to properties of light modes and show,
in particular, that the radion has red power spectrum at late times, as anticipated on holographic grounds.
Unlike the graviton, the radion survives in the single-brane limit, when one of the branes is sent to the adS
boundary. These properties imply that potentially observable features characteristic of the 4d (pseudo)
conformal cosmology, such as statistical anisotropy and specific shapes of non-Gaussianity, are inherent
also in holographic conformal models as well as in brane world inflation.
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I. INTRODUCTION

Some time ago it was pointed out that conformal sym-
metry SOð4; 2Þ broken down to de Sitter SOð4; 1Þ in the
early Universe may be responsible for the generation of the
(nearly) flat spectrum of scalar cosmological perturbations
[1–4] (see Ref. [5] for a review). The main ingredient of the
(pseudo)conformal scenarios is the expectation value of a
scalar operator O of nonzero conformal weight △ which
depends on time τ and gives rise to symmetry breaking,

hOi ∝ 1

ð−τÞ△ ; ð1Þ

where τ < 0. It is assumed also that (i) space-time is
effectively Minkowskian during the rolling stage (1);
(ii) there is another scalar field of zero effective conformal
weight in this background, whose perturbations automati-
cally have flat power spectrum1; and (iii) the perturbations of
the latter field are converted into the adiabatic scalar
perturbations at some later stage.
A peculiarity inherent in the (pseudo)conformal mecha-

nism is that the perturbations of O have a red power
spectrum,

PδO ∝ p−2: ð2Þ
This feature leads to potentially observable predictions, such
as specific shapes of non-Gaussianity [7–9] and statistical

anisotropy [7,8,10,11]. It is worth emphasizing that many of
these properties are direct consequences of the symmetry
breaking pattern SOð4; 2Þ → SOð4; 1Þ [8,12].
Further development of the (pseudo)conformal scenario

involves holography. It has been pointed out that conformal
rolling (1) in the boundary theory is dual to motion of a
domain wall in the adS5 background [13,14]. This motion
corresponds to a spatially homogeneous transition from a
false vacuum to a true one. One generalizes this construc-
tion further and considers nucleation and subsequent
growth, in adS5, of a bubble of the true scalar field vacuum
surrounded by the false vacuum. From the viewpoint of the
boundary CFT, this process corresponds to the (spatially
inhomogeneous) Fubini-Lipatov tunneling transition and
subsequent real-time development of an instability of a
conformally invariant vacuum [15]. In the holographic
approach the position of the moving domain wall plays the
role of the operatorO whose perturbations again have a red
power spectrum (2).
It is worth noting that the analysis of perturbations in

these holographic constructions has not included so far the
effects of dynamical 5d gravity: the backreaction of the
domain wall perturbations on the background adS5 has
been neglected. Clearly, it is of interest to understand
whether or not the power spectrum (2) gets modified by the
effects of dynamical 5d gravity; this is one of the issues we
address in this paper (within the thin brane approximation).
In fact, various brane-gravity systems in adS5 back-

ground have been studied in the context of brane-world
models with large and infinite extra dimensions (for a
review see, e.g., Ref. [16]). In particular, the linearized

1Weak explicit breaking of conformal invariance yields small
tilt in this spectrum [6].
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metric perturbations have been analyzed in the framework
of the static Randall-Sundrum I (RS1) model with S1=Z2

orbifold extra dimension and two 3-branes (one with
positive and another with negative tension) residing at
its boundaries [17]. It has been shown [18] that apart from a
massless four-dimensional graviton (whose wave function
is peaked at the positive tension brane) and the correspond-
ingKaluza-Klein tower, the perturbations contain amassless
four-dimensional scalar field, a radion, which corresponds
to the relative motion of the branes. The radion wave
function is peaked at the negative tension brane. In
Ref. [19] the metric perturbations have been studied in a
more general static setup [20] where the assumption of the
Z2 symmetry across the visible brane has been dropped. It
has been shown that the radion becomes a ghost in some
region of the parameter space which, in particular, includes
the setup of Refs. [18,21] where the graviton is quasilo-
calized due to the warped geometry of the bulk. Similar
results were obtained in Ref. [22] where effects of the
induced Einstein term on the brane(s) have been considered.
It is worth recalling that the static brane world setups are

possible only if certain fine tuning relation(s) between the
bulk cosmological constant(s) and the brane tension(s) are
satisfied. If these conditions are not met, the background in
general depends on time. In the simple one-brane setup in a
frame where an observer is at rest with respect to the bulk,
the bulk geometry is (locally) static and anti–de Sitter while
the brane moves along the extra dimension, and the brane
induced metric corresponds to de Sitter space [23–29]. On
the other hand, from the viewpoint of an observer located
on the brane, the induced geometry of the brane is still de
Sitter, while the bulk metric becomes time dependent.
The above discussion suggests that in the dynamical

background, the radion (which is a massless scalar field in
the case of the static background) becomes a scalar fieldwith
a red power spectrum (2). The radion in the RS1 setupwith a
slice of adS5 bound by two dS4 branes (one with positive
tension and another with negative tension) was studied in
Refs. [30–33] (see also Ref. [34]) with the result that the
radion perturbations have a red power spectrum indeed.
In this paper we consider the linearized metric pertur-

bations in a more general spatially homogeneous thin-brane
setup of the Lykken-Randall type [20] with the relaxed
fine-tuning conditions, and hence with a time-dependent
background. Although we consider for completeness the
case when one of the branes has negative tension, our
primary interest is the model with both branes having
positive tensions. This setup is more reminiscent of the
holographic description of the conformal vacuum decay,
albeit it is spatially homogeneous and does not involve a
scalar field in the bulk. We will pay special attention to the
radion and show that its equation of motion indeed leads to
a red power spectrum which has precisely the form (2).
Importantly, there are no other scalar modes bound to any
of the branes: all other modes belong to a continuous

spectrum. A similar situation occurs in the tensor sector,
which contains one mode bound to the UV brane (which is
essentially the Randall-Sundrum graviton) and modes from
continuum. One of our main purposes is to see what
happens in a model with a single brane, that generalizes
the model of Ref. [14] in the sense that it includes effects of
the 5d gravity. In this context, the Lykken-Randall UV
brane is viewed as a regularization tool, so we send it to the
adS5 boundary in the end. We find that the radion
perturbations do not decouple in this limit and still have
the power spectrum (2). Thus, the potentially observable
features of the (pseudo)conformal universe [5] hold for the
de Sitter brane moving in the 5d bulk.
This paper is organized as follows. In Sec. II we describe

the two-brane setup. In Sec. III we consider general metric
perturbations and fix the gauge. We also identify a radion
mode which corresponds to relative brane fluctuation. In
Secs. IVand V we present the linearized Einstein equations
and Israel junction conditions. In Sec.VIwe solve the full set
of equations in scalar, vector, and tensor sectors of themetric
perturbations. In Sec. VII we construct effective actions for
the light modes, radion, and graviton. We discuss the
properties of the radion and show that its perturbations
have a red power spectrum. We consider the single brane
limit and show that the radion does not decouple and that the
spectrum of its perturbations remains red. We conclude in
Sec. VIII.

II. SETUP AND BACKGROUND

We consider the (dþ 2)-dimensional background with
the metric

ds2 ¼ 1

k2�s
2
�

�
ημν
τ2

dxμdxν − dξ2
�
; ð3Þ

where k� and ξ� are constants, τ≡ x0 < 0, and hereafter
we use the notations

s� ¼ sinhðξþ ξ�Þ; c� ¼ coshðξþ ξ�Þ:
This metric is a solution of the (dþ 2)-dimensional gravity
with two thin d-brane sources,

S ¼ −Md

Z
ddþ2X

ffiffiffiffiffi
jgj

p
R − Λ

Z
ddþ2X

ffiffiffiffiffi
jgj

p

−
X2
i¼1

λi

Z
ddþ2X

ffiffiffiffiffiffiffiffiffi
jγðiÞj

q
δðξ − ξiÞ; ð4Þ

where gAB is the bulk metric and γðiÞμν is the metric induced
on the ith brane. The (negative) (dþ 2)-dimensional
cosmological constants may be different in different
domains of the bulk space, separated by d-branes. We
consider the model of the Lykken-Randall type with two
branes [20]. The first (“hidden,” or UV) brane is placed at
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the fixed point ξ ¼ −ξh of the Z2 orbifold symmetry
ξ → −2ξh − ξ. The second (“visible”) brane separating
two domains with different Λ� is at ξ ¼ ξv ¼ 0. We will
relate the parameters k�, ξ� of the solution to the
parameters of the action in due course. In what follows
the domain between two branes −ξh < ξ < 0 is referred to
as the “−” region while the domain ξ > 0 is the “þ” region;
see Fig. 1.
As a side remark, it is instructive to consider the

reference frame in which the bulk geometry is (locally)
static. The coordinates in this frame, t and r, are related to τ
and ξ as follows:

t ¼ τ
c�
c�

< 0;

r ¼ −τk�s�:

Hereafter

s� ¼ sinh ξ�; c� ¼ cosh ξ�:

Due to one of the Israel junction conditions, one has
k−s− ¼ kþsþ ≡H (see below), where H is the Hubble
parameter on the visible brane given by (16). So, the
coordinates t, r are continuous across the visible brane. In
these coordinates the bulk geometry is described by

ds2 ¼ 1

k2�r
2
ðc2�k2�dt2 − k2�dx

2 − dr2Þ; ð5Þ

which is the Poincaré metric in the two patches of adSdþ2

with different cosmological constants. In this frame the
branes are moving. Their positions are given by

rvðtÞ ¼ −Ht; rhðtÞ ¼ −Ht
c−
s−

·
sh
ch

;

where

sh ¼ sinhðξ− − ξhÞ; ch ¼ coshðξ− − ξhÞ:

Thus, our setup is similar to Refs. [13,14], where the
domain wall moves along r=t ¼ const in the Poincaré
coordinates. We do not use the coordinates r, t in what
follows.
The components of the unperturbed Ricci tensor, calcu-

lated with the metric (3), are [hereafter we skip (sub-)
superscript “�” where this does not lead to an ambiguity],

Rμν ¼
ðdþ 1Þ
τ2s2

ημν; Rμξ ¼ 0; Rξξ ¼ −
dþ 1

s2
;

and satisfy the Einstein equations in the bulk

RAB ¼ −
Λ�
2Md ·

2

d
· gAB; ð6Þ

provided that the values of the inverse adS radii k� are
related to the cosmological constants,

jk�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

Λ�
Mddðdþ 1Þ

s
: ð7Þ

We take kþ positive (without loss of generality) and assume
that there is no boundary at ξ > 0, which implies

ξþ > 0; kþ > 0: ð8Þ

Other sign conventions are that in the case k− > 0 the
hidden brane screens the adS boundary at ξ → −ξ−, while
for k− < 0 one can push the hidden brane to infinity.
Hence, the two options are

ξ− > 0; k− > 0 ðand ξh < ξ−Þ; ð9aÞ

ξ− < 0; k− < 0: ð9bÞ

FIG. 1. Two-brane setup. Solid line shows the warp factor ðksÞ−1. Left and right panels correspond to the cases (I), (II) (k� > 0), and
(III) (kþ > 0k− < 0); see the text after Eq. (18).
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To proceed, we make use of the Israel junction conditions
[35] to determine the boundary conditions on the branes. It
is worth recalling the definition of the extrinsic curvature
Kμν and the induced metric on the branes (see, e.g.,
Ref. [36]). Let FðXAÞ ¼ 0 be the equation of timelike
hypersurface Σ and yμ be coordinates on it. We introduce
tangent vectors to Σ

eAμ ¼ ∂XA

∂yμ
����
Σ
;

and the normal unit outer vector

nA ¼ −
∂AFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∂BF∂BF
p

j ;

which is spacelike. Then the induced metric and the
extrinsic curvature are given by

γμν ¼ eAμeBν gABjΣ;
Kμν ¼ eAμeBνDAnBjΣ:

The Israel junction conditions at each of the branes are

△γðiÞμν ¼ 0;

△KðiÞ
μν ¼ −

λðiÞ

2dMd γ
ðiÞ
μν :

Hereafter △ denotes a jump of the corresponding quantity
across the brane from ξ > ξðiÞ to ξ < ξðiÞ.
Due to Z2 symmetry, the continuity of the induced

metric

γðhÞμν ¼ 1

k2−s2hτ
2
ημν;

on the hidden brane (ξ ¼ −ξh) is trivially satisfied. The
jump of the extrinsic curvature is given by

△γνρðhÞK
ðhÞ
ρμ ¼ −2k−chδνμ ¼ −

λðhÞ

2dMd δ
ν
μ: ð10Þ

Equation (10) yields a relation between the hidden brane
tension and its position:

λðhÞ ¼ 4dMdk−ch: ð11Þ

On the visible brane the induced metric and the extrinsic
curvature are

γðvÞ;�μν ¼ 1

k2�τ
2s�2

ημν; ð12Þ

γνρðvÞ;�K
ðvÞ;�
ρμ ¼ −k�c�δνμ: ð13Þ

Then the Israel junction conditions become [using the sign
conventions (8) and (9)]

k−s− ¼ kþsþ ≡H; ð14Þ
kþcþ − k−c− ¼ σ; ð15Þ

where

σ ¼ λðvÞ

2dMd :

By solving these equations one gets a relation between the
Hubble constant H and the parameters k� and σ,

H2¼ k2s2¼ððkþþk−Þ2−σ2Þððkþ−k−Þ2−σ2Þ
4σ2

; ð16Þ

and finds

ξ� ¼ arcsinh
H
k�

: ð17Þ

Three remarks are in order. First, the fact that the solutions
(17) exist confirms that the metric (3) with constant ξ� is a
solution to the Einstein equations and Israel junction
conditions. Second, as it follows from (12), the brane is
in the de Sitter regime with the Hubble parameter H ≥ 0
given by (16). Our primary interest is in the case τ < 0
which corresponds to expanding branes. Most of our
formulas, however, are valid also for contracting branes,
τ > 0. Third, substituting (16), (17) into Eq. (15) one gets,

signðkþÞjk2þ − k2− þ σ2j − signðk−Þjk2þ − k2− − σ2j
¼ 2jσjσ: ð18Þ

For kþ > 0 this equation together with the conditionH ≥ 0
leads, in general, to the following three cases:

(I) kþ > 0, k− > 0, σ > 0 ⇒ kþ ≥ k− þ σ, ξþ, ξ− > 0;
(II) kþ > 0, k− > 0, σ < 0 ⇒ 0 < kþ ≤ k− − jσj,

ξþ, ξ− > 0
(III) kþ > 0, k− < 0, σ > 0 ⇒ 0 < kþ ≤ σ − jk−j,

ξþ > 0, ξ− < 0,
which is consistent with our sign convention (8), (9).
To conclude this section let us consider the static limit

H → 0. To this end we require that the resulting background
metric takes the form (5) with c� → 1, and that the visible
brane is located at rv ¼ 1while the hidden one is at rh. In all
three cases (I)–(III) discussed above the limit H → 0 is
approached in the following regime [see (15), (17)]:

ξ� ≃ H
k�

→ 0; kþ − k− → σ; Hjτj → 1;

ξ− − ξh → ξ−rh: ð19Þ
In the limit (19) the relations between the brane tensions
and their positions, Eqs. (11) and (16), (17), reduce to the
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well-known fine-tuning conditions between the brane ten-
sions and the bulk cosmological constants, λðhÞ ¼ 4dMdk−,
λðvÞ ¼ 2dMdðkþ − k−Þ.

III. PERTURBATIONS AND GAUGE

Let us consider small perturbations of the metric (3)

gAB →

8<
: gμν þ ĥμν

k2�s
2
�τ

2

gξA þ ĥξA;

and begin with the coordinate frame ðx̂μ; ξ̂Þ in which the
visible brane is placed at ξ̂ ¼ bðx̂Þwhile the hidden brane is
still at ξ̂ ¼ −ξh. We do not assume that ĥAB is continuous
across the brane but the induced metric

γ̂μν ¼
1

k2�τ̂
2s2�

�
ημν

�
1 − 2

c�
s�

b

�
þ ĥμν

�

should be continuous (the first Israel junction condition).
Note that due to the condition (14), the coordinates ðx̂μ; ξ̂Þ
continuously cover the whole space.
As an intermediate step, let us demonstrate that there is a

gauge in which the new coordinates ð~xμ; ~ξÞ cover the whole
space, the visible brane is straight and placed at ~ξ ¼ 0, the
hidden brane is at ~ξ ¼ −ξh, and ~hAB is continuous. The
linear gauge transformation δhABð ~XÞ ¼ ~hABð ~XÞ − ĥABð ~XÞ
of the metric perturbation under coordinate transformation
~XA ¼ X̂A þ ζA is

δhξξ ¼ −
2

s
ðsζξÞ0; ð20aÞ

δhξμ ¼ −∂μζξ −
1

s2k2τ2
ζ0μ;

δhμν ¼ −∂ðμζνÞ þ
2

τ
ζ0ημν − 2k2csζξημν: ð20bÞ

Hereafter (dþ 1)-dimensional indices are lowered and
raised by ημν, ξ-index is lowered and raised by gAB, e.g.,
ζξ ¼ gξξζξ ¼ −ζξ=k2s2, prime denotes the derivative with
respect to ξ, and aðμbνÞ ¼ aμbν þ aνbμ.
Let us make the following continuous coordinate trans-

formations:

~ξ ¼ ξ̂ − b · χð~ξÞ;
~xμ ¼ x̂μ þ ζμ;

where χð~ξÞ is yet an arbitrary continuous function satisfy-
ing the conditions

χð−ξhÞ ¼ 0; χð0Þ ¼ 1:

Then the visible brane is placed at

~ξ ¼ 0;

while the coordinate of the hidden brane is left intact
~ξ ¼ −ξh.
In this coordinate frame the jumps of ~hAξ across the

visible brane are

△ ~hξξð~x; ~ξÞ ¼ △ĥξξð~x; ~ξÞ − 2b△
1

k2s

�
χ

s

�0����
~ξ¼0

;

△ ~hμξð~x; ~ξÞ ¼ △ĥμξð~x; ~ξÞ −
1

k2s2τ2
△ζ0μ

����
~ξ¼0

:

We see that the zero jump equations △ ~hAξ ¼ 0 can be
satisfied by an appropriate choice of derivatives ζ0μ and χ0

on the brane. Then one has △ ~hμν ¼ 0 automatically, due to
the first junction condition.

A. hAξ = 0 gauge

As a final step, we make the second continuous gauge
transformation which gets rid of hAξ in the whole space.
We write

ξ ¼ ~ξþ ζξ; xμ ¼ ~xμ þ ζμ; ð21Þ
and require hAξ ¼ 0. Then, by making use of Eq. (20), one
finds from the condition hξξ ¼ 0 that

ζξ ¼
1

2s

Zξ
0

s ~hξξdξþ
εξðxÞ
s

≡ ζðIÞξ þ εξðxÞ
s

;

where εξðxÞ is in general different in the different regions.
In the “−” region, ε−ξ cannot vanish and is determined by
the requirement that the hidden brane is left intact:
ζξð−ξhÞ ¼ 0, that is

ε−ξ ðxÞ ¼
1

2

Z0
−ξh

s ~hξξdξ: ð22Þ

The function εþξ ðxÞ is determined by the continuity of ζξ

across the visible brane,

k−ε−ξ ¼ kþεþξ : ð23Þ

The condition hμξ ¼ 0 and Eq. (20b) give

ζμ ¼ k2τ2
Zξ
0

ð ~hμξ−∂μζ
ðIÞ
ξ Þs2dξþk2τ2∂μεξ · ðc− cÞþ εμðxÞ:

The continuity of ζμ requires that εμðxÞ is continuous.
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Two remarks are in order. First, we note that εμðxÞ can be
regarded as a residual gauge transformation,

hμν → hμν − ∂ðμενÞ þ
2

τ
ε0ημν; ð24Þ

which does not touch the branes and is consistent with the
gauge hAξ ¼ 0.
Second, arbitrary functions ε�ξ ðxÞ (which do not neces-

sarily satisfy the conditions (22), (23)) can be considered as
a gauge transformation,

hμν → hμν − ðc − cÞ · ð2k2τ2∂μ∂νεξ þ 2k2τδðμ0∂νÞεξ
− 2k2τημν∂τεξÞ − 2k2cημνεξ; ð25Þ

which is consistent with the gauge hAξ ¼ 0. So, the Einstein
equations in the bulk, being written in the gauge hAξ ¼ 0,
are invariant under this transformation. However, these
gauge transformations in general shift the branes. In
particular, with the transformations (22), (23) the hidden
brane is left intact while the new position of the visible
brane is determined at ξðvÞ ¼ ζξðx; 0Þ or

ξðvÞ ¼ fðxÞ; ð26Þ
where

fðxÞ ¼ −k2sεξ

is nothing but the radion. It follows from its definition that
the radion should be continuous across the brane [and it is
indeed continuous due to (14) and (23)].

In what follows we use continuous coordinates ðxμ; ξÞ
[see (21)], work in the gauge hAξ ¼ 0, and place the hidden
brane at ξ ¼ −ξh, while the position of the visible brane is
given by (26). Our purpose is to derive the equation of
motion for the radion and study its properties. To this end
we need to find solutions to the perturbed bulk Einstein
equations and Israel junction conditions.

IV. EINSTEIN EQUATIONS

Taking into account (7) we write the bulk Einstein
equations (6) in the form

EAB ≡ RAB − k2ðdþ 1ÞgAB ¼ 0: ð27Þ

In what follows we use the standard helicity decomposition
of the metric perturbation,

h00 ¼ 2Φ;

h0i ¼ ∂iZ þ Zi;

hij ¼ −2Ψδij þ 2∂i∂jEþ ∂ðiWjÞ þ hTTij ;

where Zi, Wi are transverse and hTTij is transverse and
traceless

∂iZi ¼ ∂iWi ¼ ∂ihTTij ¼ hTTii ¼ 0:

In terms of these functions the linearized Einstain equa-
tions (27) are

δE00 ¼ ∂2Φ −
d _Φ
τ

þ 2dΦ
τ2

− dΨ̈þ d _Ψ
τ

þ ∂2Ë −
∂2 _E
τ

− ∂2 _Z þ ∂2Z
τ

þ ÔξΦ

τ2
−

c
2τ2s

h0; ð28aÞ

δE0i ¼ ∂i

�
−
d − 1

τ
Φ − ðd − 1Þ _Ψþ 1

2τ2
ÔξZ

�
þ 1

2
∂2ðZi − _WiÞ þ

1

2τ2
ÔξZi; ð28bÞ

δEij ¼ δij

�
□Ψ −

ð2d − 1Þ
τ

_Ψþ 1

τ2
∂2ð _E − ZÞ þ

_Φ
τ
−
2dΦ
τ2

−
ÔξΨ

τ2
þ c
2τ2s

h0
�

þ ∂i∂j

�
_Z −

ðd − 1ÞZ
τ

− ðd − 2ÞΨ − Φ − Ëþ ðd − 1Þ _E
τ

þ ÔξE

τ2

�
ð28cÞ

þ 1

2

�
∂ði _ZjÞ −

ðd − 1Þ∂ðiZjÞ
τ

− ∂ðiẄjÞ þ
ðd − 1Þ∂ði _WjÞ

τ
þ Ôξ∂ðiWjÞ

τ2

�
ð28dÞ

−
1

2

�
□hTTij −

ðd − 1Þ _hTTij
τ

−
ÔξhTTij
τ2

�
; ð28eÞ

δE0ξ ¼
�
∂2 _E −

∂2E
τ

−
∂2Z
2

−
dΦ
τ

− d _Ψþ dΨ
τ

�0
; ð28fÞ
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δEiξ ¼ ∂i

�
_Z
2
−
ðdþ 1ÞZ

2τ
− Φ − ðd − 1ÞΨ

�0

þ 1

2

�
_Zi −

ðdþ 1ÞZi

τ
− ∂2Wi

�0
; ð28gÞ

δEξξ ¼ −s
�
h0

2s

�0
: ð28hÞ

Hereafter we use the following notations:

h ¼ hμμ ¼ 2Φþ 2dΨ − 2∂2E;

∂2 ¼ ∂i∂i; □ ¼ ∂μ∂μ ¼ ∂2
0 − ∂2;

Ôξ ¼ ∂2
ξ − d

c
s
∂ξ ¼ sd∂ξ

1

sd
∂ξ;

and dot denotes derivative with respect to τ.

A. Scalars

The scalar part of Eqs. (28) can be significantly sim-
plified by using variables which are invariant under the
residual gauge transformations (24). Let us set εi ¼ ∂iε,
then the scalar functions transform as follows:

δεΦ ¼ −τ∂τ

�
ε0
τ

�
; δεΨ ¼ ε0

τ
; δεE ¼ −ε;

δεZ ¼ −ε0 − _ε:

There are two independent gauge-invariant variables. It is
convenient to use the following pair:

A ¼ Z − _E
τ

þΨ; B ¼ _Z − ËþΨ − Φ:

Let us introduce the combination,

U
2τ2

¼ dÔτAþ ∂2B −
d _B
τ

þ dðdþ 1ÞB
τ2

;

where

Ôτ ¼ □ −
ðd − 1Þ∂τ

τ
−
ðdþ 1Þ

τ2
:

In terms of these variables, the linearized Einstein equations
in the scalar sector take the form

δE00∶ ∂2A − dÄþ 2dA
τ2

þ d _B
τ

−
2dB
τ2

¼ −
ÔξΦ

τ2
þ c
2τ2s

h0;

ð29aÞ

δE0i∶ −
ðd − 1Þ

τ
ðτ _Aþ A − BÞ ¼ −

ÔξZ

2τ2
; ð29bÞ

δEijðδijÞ∶ □A −
2ðd − 1Þ _A

τ
−
2dA
τ2

−
_B
τ
þ 2dB

τ2

¼ ÔξΨ

τ2
−

c
2τ2s

h0; ð29cÞ

δEijð∂i∂jÞ∶ − ðd − 1ÞAþ B ¼ −
ÔξE

τ2
; ð29dÞ

τd−1∂μ

δEμ
ξ

τd−1
∶

1

2τ2
ðU þ dhÞ0 ¼ 0; ð29eÞ

δEμ
μ∶

U
τ2

¼ Ôξh

2τ2
−
cðdþ 1Þ
2τ2s

h0: ð29fÞ

Equations (28h), (29e), (29f) yield

U ¼ −d
c
s
h0: ð30Þ

Combining Eqs. (29a)–(29d) and their time derivatives and
taking into account (30) we finally obtain the following set
of equations for A and B:

ÔτBþ 4 _B
τ

þ 4B
τ2

¼ 1

τ2
ðÔξ þ d − 1ÞB; ð31aÞ

_B
τ
−
ðd − 3ÞB

τ2
−
∂2B
d

¼ 1

τ2
ðÔξ þ d − 1ÞA: ð31bÞ

V. LINEARIZED ISRAEL JUNCTION
CONDITIONS

A. Boundary conditions at ξ = − ξh
Due to Z2 symmetry, the continuity of the induced

metric at the hidden brane

γðhÞμν ¼ 1

k2−s2hτ
2
ðημν þ hμνð−ξhÞÞ

is trivially satisfied. The jump of the perturbed extrinsic
curvature is given by

−△δ½γνρðhÞKðhÞ
ρμ � ¼ −k−shhν

0
μ ¼ 0:

Thus, one has

h0μνjξ¼−ξh ¼ 0: ð32Þ

This means, in particular, that h0jξ¼−ξh ¼ 0. Together with
Eq. (28h) this yields

h0 ¼ 0 at − ξh ≤ ξ ≤ 0: ð33Þ
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B. Junction equations at the visible brane

The Israel junction conditions at the visible brane have
the form

△γðvÞμν ¼ 0; ð34aÞ

△KðvÞ
μν ¼ −σγðvÞμν : ð34bÞ

The perturbed induced metric on the brane [at ξ ¼ fðxÞ] is
given by

γðvÞ;�μν ¼ 1

k2�τ
2s�2

�
ημν

�
1 − 2

c�
s�

f

�
þ h�μν

�
;

and the extrinsic curvature is

γνρðvÞK
ðvÞ
ρμ

¼−kcδνμþks

�
τ2∂μ∂νf− τðδνμ _f−δðμ0∂νÞfÞ−δνμfþ

hν
0
μ

2

�
:

The junction conditions (34), are satisfied for the unper-
turbed background. Hence, for the linearized part we have

△δγðvÞμν ¼ 0;

△δ½γνρðvÞKðvÞ
ρμ � ¼ 0: ð35Þ

Calculating the trace K ¼ γμρðvÞK
ðvÞ
μρ we get

K ¼ −kcðdþ 1Þ þ ksτ2
�
Ôτf þ h0

2τ2

�
: ð36Þ

By making use of the Gauss-Codazzi relation

2GABnAnB ¼ k2�dðdþ 1Þ ¼ðdþ1Þ R − ðK�ðvÞ
μν Kμν

�ðvÞ − K2
�Þ;
ð37Þ

where GAB is the Einstein tensor, ðdþ1ÞR is the curvature

scalar on the brane, and Kμν
ðvÞ ≡ γμρðvÞγ

νλ
ðvÞK

ðvÞ
ρλ , one finds

△δðKðvÞ
μν K

μν
ðvÞ − K2Þ ¼ 0: ð38Þ

Due to the fact that the background extrinsic curvature is
proportional to ημν [cf. (13)], it is straightforward to check
that Eq. (38) takes the form

−△½2dkc · δK� ¼ 0:

Together with Eq. (35) this leads to the equation

δK� ¼ 0;

and, therefore,

Ôτf ¼ 0; ð39Þ

where we have used (33). This is the desired radion
equation of motion.
Besides that, the junction conditions yield

△hμν ¼ 2△
c
s
ημνf ¼ 2

σ

H
ημνf;

△h0μν ¼ 0: ð40Þ

From the latter equation and Eqs. (28h), (29f), (33) we find

h0 ¼ 0; U ¼ 0 ð41Þ

in the whole space.
The condition (40) translates into

△Φ ¼ △Ψ ¼ △A ¼ σ

H
f; ð42Þ

while other functions characterizing the metric perturba-
tions, as well as all first derivatives of hμν with respect to ξ
are continuous across the brane.

VI. SOLUTIONS

A. Scalar sector

Now we are ready to solve the linearized Einstein
equations. We begin with Eq. (31a). The variables separate,
so the modes have the form

Bκðx; ξÞ ¼ bκðxÞβκðξÞ;

where βκ are normalizable (since B is gauge invariant),

Z∞
−ξh

dξ
ðksÞd jβκj

2 < ∞;

and continuous together with their derivatives across the
brane [see Eq. (42)]:

△βκð0Þ ¼ △β0κð0Þ ¼ 0:

They are solutions to the eigenvalue equation

ðÔξ þ d − 1Þβκ ¼ −νβκ: ð43Þ

Explicitly,

sd
∂
∂ξ

1

sd
∂
∂ξ βκ þ

�
d2

4
− κ2

�
βκ ¼ 0 ð44Þ

with
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κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þ2 − 4ν

p
2

:

We show in the Appendix that there is one constant discrete
mode in the spectrum with κ ¼ d=2 (ν ¼ 1 − d),

βd
2
ðξÞ ¼ const: ð45Þ

For k− > 0 it is localized near the hidden brane. However,
as we discuss later on, this mode does not generate a
solution to the complete set of the Einstein equations (29),
so the corresponding metric perturbations are, in fact,
absent. The rest of the spectrum is continuous and starts
from zero: κ2 ≤ 0 (ν ≥ ðd − 2Þ2=4). The xμ-dependent
parts

bκðxÞ ¼ bκðτ;pÞeipx;

satisfy the following equation:

�
∂2
τ þp2−

ðd−5Þ∂τ

τ
−
ðd−3−νÞ

τ2

�
bκðτ;pÞ¼ 0: ð46Þ

Let us now consider Eq. (31b). For a nonvanishing left-
hand side this equation immediately yields

Aκðτ;p; ξÞ ¼ aκðτ;pÞβκðξÞ; ð47Þ

with

aκðτ;pÞ ¼
1

dν
ðdðd − 3Þ − dτ∂τ − p2Þbκðτ;pÞ: ð48Þ

There is an important subtlety here. The modes (47) are
continuous across the visible brane and hence contribute to
the continuous part of the function A only. This continuous
part of A satisfies Eq. (42) with a vanishing right hand side.
To satisfy Eq. (42) with a nonvanishing right-hand side, we
note that the operator Ôξ þ d − 1 has yet another zero
mode [in addition to (45)] when it acts in the space of
discontinuous functions. In that case both sides of Eq. (31b)
are equal to zero, and hence the relations (47), (48) are no
longer valid.
Thus, we search for the solution of the form

Ad−2
2
ðx; ξÞ ¼ fðxÞβd−2

2
ðξÞ; Bd−2

2
ðx; ξÞ ¼ 0; ð49Þ

where the second equality follows from the fact that
Eqs. (31) do not admit a nontrivial solution for B in the
case of a vanishing right-hand side of Eq. (31b). The
function βd−2

2
ðξÞ must obey Eq. (43) in both “þ” and “−”

regions and has the jump at the visible brane

△βd−2
2
¼ σ

H
: ð50Þ

The boundary condition at the hidden brane follows
from (32):

β0d−2
2

ð−ξhÞ ¼ 0: ð51Þ

To construct the new zero mode we note that two linear
independent solutions to Eq. (44) with κ ¼ ðd − 2Þ=2
(ν ¼ 0) are

βð1Þd−2
2

¼ cd−1
�
s
c

�
dþ1

F

�
1;
3

2
;
dþ 3

2
;
s2

c2

�
; ð52aÞ

β>d−2
2

¼ c; ð52bÞ

where F is the hypergeometric function. At large ξ, βð1Þd−2
2

grows as eðd−1Þξ and hence it cannot be used in the “þ”
region. In contrast, the second solution β>d−2

2

is suitable at

large ξ. In the “−” region the following linear combination
of (52) satisfies (51):

β<d−2
2

ðξÞ ¼ βð1Þd−2
2

ðξÞ − c−
βð1Þ

0
d−2
2

ð−ξhÞ
sh

: ð53Þ

By making use of the boundary condition (50) at ξ ¼ 0 we
finally obtain

βd−2
2
ðξÞ ¼

8>>>>><
>>>>>:

σ
H

�
sþ

�
cþ
sþ
−

β<d−2
2

ð0Þ

β<
0

d−2
2

ð0Þ

��−1
cþ at ξ > 0;

σ
H

�
β<

0
d−2
2

ð0Þ
�
cþ
sþ
−

β<d−2
2

ð0Þ

β<
0

d−2
2

ð0Þ

��−1
β<d−2

2

ðξÞ at ξ < 0:

ð54Þ

In both of these formulas, β<d−2
2

ð0Þ and β<
0

d−2
2

ð0Þ are the

limiting values in the “−” region. To end up with the
analysis of the zero mode, we note that the Wronskian
Wðf1; f2Þ ¼ f1f02 − f01f2 of the functions (52) is

Wðc; βð1Þd−2
2

Þ ¼ Wðc; β<d−2
2

Þ ¼ ðdþ 1Þsd: ð55Þ

Note also that the terms proportional to c� in (54)
correspond to the gauge transformation that preserves
hξξ ¼ 0 [cf. Eq. (25)]. In particular, the radion is pure
gauge in the “þ” region outside the visible brane, i.e., the
nontrivial part of its wave function is concentrated on and
between the branes.
Let us now come back to the constant mode (45) and

consider Eqs. (29b), (29d). These equations can be viewed
as inhomogeneous equations for Z and E, respectively.
Recall that the operator Ôξ has exactly one zero mode βd=2.
The necessary condition for the existence of solutions to
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Eqs. (29b), (29d) is the orthogonality of the inhomogeneity
to this mode, and it cannot be satisfied if A and/or B contain
contributions proportional to βd=2. Thus, we are forced to
conclude that B contains the continuous part of the
spectrum of (43) only. On the contrary, the (discontinuous)
zero mode βd−2

2
, contributing to A, is orthogonal to βd=2.

Indeed, by making use of (43), (45), integrating by parts
and taking into account the boundary conditions at −ξh and
at infinity, we write

hβd
2
jβd−2

2
i ¼ βd

2
·
Z∞
−ξh

dξ
ðksÞd

Ôξβd−2
2

1 − d
¼ βd

2
·
△β0d−2

2

ð0Þ
ksðd − 1Þ ¼ 0:

The last point to check is that U and h0 vanish, Eq. (41).
Using Eqs. (46), (48) one directly finds that Eq. (41) indeed
holds for the modes with ν ≠ 0. For the zero mode (49),
Eq. (41) is satisfied due to the radion equation of
motion (39).
Explicit expressions for the metric components induced

by the radion can be found by making use of Eqs. (29a)–
(29d). Let QðξÞ be a continuous solution to the equation

ÔξQ ¼ βd−2
2
ðξÞ

with boundary conditions

Q0ð−ξhÞ ¼ 0;
QðξÞ
sd=2þ

����
ξ→∞

→ 0:

Explicitly,

QðξÞ ¼
βd−2

2
ðξÞ

1 − d
þ Θð−ξÞ σ

Hð1 − dÞ þ const;

where Θ is the step function; the last constant term cannot
be fixed and corresponds to the residual gauge trans-
formation (24). Then

Φ ¼ fβd−2
2
þ ðd − 1Þðτ2f̈ þ τ _fÞ ·Q;

Ψ ¼ fβd−2
2
− ðd − 1Þτ _f ·Q;

E ¼ ðd − 1Þτ2f ·Q;

Z ¼ 2ðd − 1Þðτ2 _f þ τfÞ ·Q:

B. Vector sector

Let us introduce the following gauge invariant variable:

Vi ¼ Zi − _Wi:

Then the Einstein equations in the vector sector are

□Vi −
ðd − 3Þ _Vi

τ
¼ 1

τ2
ðÔξ þ d − 1ÞVi; ð56aÞ

∂2Vi ¼ −
ÔξZi

τ2
; ð56bÞ

�
_Zi −

ðdþ 1ÞZi

τ
− ∂2Wi

�0
¼ 0: ð56cÞ

The situation is reminiscent of that in the scalar sector.
Any solution to Eq. (56a) can be decomposed in eigen-
functions βκðξÞ. However, the contribution from the local-
ized mode βd=2 vanishes due to the second equation (56b):
Vi should be orthogonal to βd=2. Then the validity of the
third equation (56c) can be directly verified. Thus, all
vector modes belong to the continuous part of the spectrum
of the operator (43), and hence they are delocalized.

C. Tensor sector

The only equation in the tensor sector is

□hTTij −
ðd − 1Þ _hTTij

τ
þ ðd − 1ÞhTTij

τ2
¼ 1

τ2
ðÔξ þ d − 1ÞhTTij :

Therefore, there are no conditions eliminating the discrete
mode βd=2 which in the case k− > 0 is localized near the
hidden brane. By writing

hTTðκÞijðXÞ ¼ βκðξÞ · eij ·Hκðτ;pÞeipx;

where eij is a constant transverse-traceless polarization
tensor, one finds the equation for Hd=2:�

∂2
τ þ p2 −

ðd − 1Þ∂τ

τ

�
Hd

2
¼ 0;

which is precisely the equation for the graviton perturba-
tions in the de Sitter (dþ 1)-dimensional universe. The
negative frequency solution to this equation at τ < 0 is

Hd
2
¼ ð−pτÞd=2Hð1Þ

d
2

ð−pτÞ;

where Hð1Þ
κ is the Hankel function. This solution leads to

the flat power spectrum for the tensor modes.

VII. EFFECTIVE ACTION FOR THE
LIGHT MODES

A. Effective action for the radion

In this section we calculate the quadratic effective action
for the radion and the graviton zero mode. To this end, we
make use of the first variation of the action (4). We begin
with the radion. A subtlety is that in our gauge the action
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depends on the radion not only through the metric
components but also through the visible brane position
ξ ¼ fðxÞ. To get around this difficulty we perform a gauge
transformation that puts the visible brane at the origin,
straightens it, but does not touch the hidden brane:

ξ → ξ − fðxÞχðξÞ; χð0Þ ¼ 1; χð−ξhÞ ¼ 0;

where χ is continuous together with its first derivative at
ξ ¼ 0. This gauge transformation leads to nonvanishing
components ~hξA, in particular,

~hξξ ¼ −
2f
k2s

�
χ

s

�0
: ð57Þ

On the other hand, one can keep the conditions ~hξμ ¼ 0 by
making another gauge transformation xμ → xμ þ ζμ with

ζμ ¼ −τ2∂μf
Zξ

χdξ:

Then the ðμνÞ components of the metric perturbations
become

~hμν ¼ hμν þ 2ðτ2∂μ∂νf þ τδðμ0∂νÞf − 2τ _fημνÞ

×
Zξ

χdξ − 2
c
s
fχημν:

It is worth noting that ~hμν is continuous across the visible
brane while the jump of its derivative is

△ ~h0μν ¼ 2
k2þ − k2−

H2
f:

Now, the quadratic action for the radion is

Sf ¼ −
1

2

Z
dXdþ2 ffiffiffi

g
p ~hABðfÞδEAB½ ~hðfÞ�; ð58Þ

where the subscript (f) means that we take into account
only the part of perturbations depending on the (off-shell)
radion, and the tensor δEAB is the linear part of the variation
of the action (4),

δEAB ¼ Mdδ

�
RAB −

1

2
gABRþ k2dðdþ 1ÞgAB

�
:

As in the static case [19,22], the only nonvanishing
component is

δEξξ ¼ Md d
d − 1

s

�β0d−2
2

s

�0
τ2Ôτf

¼ Md d
s
Wðc; βd−2

2
Þτ2Ôτf; ð59Þ

where we have used Eq. (43) to obtain the last equality.
Due to Eq. (55), upon substituting Eqs. (57) and (59) into

(58), we find that the ξ-dependent part of the integrand of
(58) is total derivative:

1

jkdsd−2j
�β0d−2

2

s

�0�
χ

s

�0
¼ Θð−ξÞðd − 1Þ

�
χ

s−

Wðc−; βd−2
2
Þ

jk−s−jd
�0
:

Taking into account that we work on the full ξ axis with Z2

identification, and introducing a new field

ϕ ¼
ffiffiffiffiffiffiffijPjp

fðxÞ
jHτjd−12 ; ð60Þ

where

P¼ 4dðdþ1ÞM
d

H

�
ðdþ1ÞkþcþH

k−c−σ
þ
β<d−2

2

ð0Þ
c−sd−2−

�−1

; ð61Þ

we finally arrive at the radion effective action

Sf ¼ signðPÞ
Z

ddþ1x

�
1

2
ð∂μϕÞ2 þ

ðdþ 1Þðdþ 3Þ
8τ2

ϕ2

�
:

ð62Þ
The normalization factor (61) is obtained by making use of
Eqs. (54), (55). It is worth noting that the radion is a ghost
at σ < 0 (see Fig. 2).
In the static limit (19) one has

P ¼ 4dMd k−
H2rd−1h

�
kþ

rd−1h △k
− 1

�
−1
;

which, modulo notations, coincides with the result of
Refs. [19,22].
Up to the sign of P, the action (62) coincides with the

action for perturbations about a time-dependent

3 2 1 0 1 2
2

1

0

1

2

3

40

30

20

10

0

10

FIG. 2. Contour plot of PH2=ðjσjMdÞ as a function of k−=σ,
kþ=σ at ξh ¼ 0.3. The regions I–III correspond to the allowed
regions in the parameter space discussed in Sec. II. In the region
II (more dark), which corresponds to the negative visible brane
tension, the radion is a ghost.
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background in a (dþ 1)-dimensional classical conformal
theory. The latter theory is described by the action

Sφ ¼
Z

ddþ1x
ffiffiffiffiffiffi
−γ

p �
1

2
γμν∂μφ∂νφþ

ðdþ1ÞRðd − 1Þ
8d

φ2

−
ð−λ2Þ
2

φ
2ðdþ1Þ
d−1

�

¼
Z

ddþ1x
�
1

2
ð∂μ ~φÞ2 −

ð−λ2Þ
2

~φ
2ðdþ1Þ
d−1

�
; ð63Þ

with γμν ¼ a2ημν, ~φ ¼ a
d−1
2 φ, while the background time-

dependent solution is, at τ < 0,

~φc ¼
�
d − 1

2λ

�d−1
2 1

ð−τÞd−12 :

Modulo the replacement of the real field φ by a complex
one, Eq. (63) is precisely the action considered in the
context of a (pseudo)conformal universe model [1,5].
The equation of motion for the canonically normalized

radion ϕ obtained from the action (62) is

□ϕ −
ðdþ 1Þðdþ 3Þ

4τ2
ϕ ¼ 0:

Its negative frequency solution that tends to a properly
normalized mode of free quantum field as pτ → −∞ is

ϕ ¼
ffiffiffiffiffiffi
−τ

p

2
dþ2
2 π

d−1
2

e
iπ
4
ðd−5ÞHð1Þ

dþ2
2

ð−pτÞeipx:

At late times, when −pτ ≪ 1, one has

ϕ ¼ eikx · e
iπ
4
ðdþ1ÞΓ

�
dþ 2

2

�
1

π
dþ1
2 p

dþ2
2 ð−τÞdþ1

2

;

which leads to the red power spectrum (2).

B. Radion-matter coupling

Let T�
AB and T μν be the energy-momentum tensors of

matter residing in the bulk and on the visible brane,
respectively. T�

AB does not include contributions from
the bulk cosmological constants and can be, in general,
different in the different regions, while T μν does not
include the brane tension. We assume that the matter
energy-momentum tensors are small and treat them as
perturbations. For simplicity we also assume that there is no
matter residing on the hidden brane. To derive the radion
equation of motion in the presence of matter we note that in
this case Eqs. (37) and (34b) take the form

ðdþ1ÞR− ðK�ðvÞ
μν Kμν

�ðvÞ−K2
�Þ−k2�dðdþ1Þ−nAnBTAB

�
Md ¼ 0;

△KðvÞ
μν ¼−σγðvÞμν þ 1

2Md

�
T μν−

γμνγ
λρT λρ

d

�
:

To the leading order in perturbations about the source-free
background, one has from these equations

ðdþ1ÞRþ dðdþ 1Þs2�k2� − 2dc�k�δK� −
H2T�

ξξ

Md ¼ 0;

△δK ¼ −
H2τ2T
2dM2

;

where T ≡ ημνT μν. We actually have three equations,
which can be used to find the induced scalar curvature
ðdþ1ÞR and the values of δK� on both sides of the visible
brane. The result for δK� is

δK� ¼ 1

2dMdσ
ðc∓k∓H2τ2T −H2△TξξÞ: ð64Þ

To proceed, we make use of Eq. (36). The quantity h0ð0Þ
entering that equation can be found by using Eq. (28h)
which takes the following form in the presence of matter:

−s
�
h0

s

�0
¼ 1

Md

�
Tξξ þ

T
dk2s2

�
;

where T ≡ gABTAB. Integrating this equation with the
boundary condition (32) and plugging the result into
Eq. (36) and then into Eq. (64), one finally arrives at the
desired equation of motion for the canonically normalized
radion (60),

□ϕ −
ðdþ 1Þðdþ 3Þ

4τ2
ϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jPjH2

4M2djHτjd−1

s �
1

dσ

�
cþkþT −

△Tξξ

τ2

�

þ 1

τ2

Z0
−ξh

dξ
s−k−

�
T−
ξξ þ

T−

dk2−s2−

��
: ð65Þ

This reiterates that the radion has an unsuppressed
coupling to matter residing on the visible brane.
Equation (65) shows also that the radion does not
interact with matter residing in the “þ” region outside
the visible brane. The latter property is consistent with
the fact that the nontrivial part of the radion wave
function is concentrated on and between the branes; see
the discussion after Eq. (55).

C. Graviton effective action

In the same way one gets the graviton effective action

STT ¼ Md−1
Pl

4

Z
dxdþ1

ð∂μhTTðd=2ÞijÞ2
jHτjd−1 ;

with (dþ 1)-dimensional Planck mass
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Md−1
Pl ¼ 2MdHd−1

Z∞
−ξh

dξ
kdsd

; ð66Þ

where we have set β2d
2

¼ 1 which is appropriate from the

viewpoint of a (dþ 1)-dimensional observer localized on
the visible brane (see the discussion in Ref. [17]). In the
static limit (19), the (dþ 1)-dimensional Planck mass is

Md−1
Pl ¼ 1

rd−1h k−ðd − 1Þ
�
1 − rd−1h

△k
kþ

�
:

This agrees with Ref. [20].

D. Limit of single visible brane

1. k− > 0

In the case k− > 0, the adS boundary is located at −ξ− <
−ξh < 0 and the hidden brane can be pushed to it, ξh → ξ−.
In this limit one has

P ¼ 4dðdþ 1ÞM
d

H

�
ðdþ 1Þ kþcþ

k−c−

H
σ

þ
�
s−
c−

�
3

F

�
1;
3

2
;
dþ 3

2
;
s2−
c2−

��
−1
:

This is finite and, therefore, the radion does not decouple
from the physical spectrum. The radion-matter coupling
(65) is finite as well. On the other hand, the integral (66)
that yields the effective Planck mass diverges, and hence
the graviton does not interact with matter and decouples.

2. k− < 0

In the opposite case k− < 0 the adS boundary is absent
(ξ− < 0) and the single brane limit corresponds to ξh → ∞.
In that case only the last term in the expression for the
radion wave function in the “−” domain (53) survives. The
radion becomes pure gauge, and hence unphysical, in both
domains. One can also see that in the limit ξh → ∞, P
vanishes. So, the radion does not couple to matter, as it
should be.
On the contrary, the effective Planck mass (66) is finite

and graviton is the only light physical degree of freedom.

VIII. CONCLUSION

To conclude, in this paper we have performed the
analysis of the linearized metric perturbations in the
dynamical Lykken-Randall type model. We have derived
equations of motion for the scalar, vector, and tensor modes
and have shown that, in general, the radion and graviton are
the only light modes. However, in the single brane regime,
depending on the behavior of the warp factor in the “−”
region, graviton or radion decouples from the physical
spectrum: if the warp factor grows outward the visible
brane (k− > 0) and there is the adS boundary, only the

radion is present in the physical spectrum while the
graviton decouples, and vise versa in the opposite case.
We have also shown that if the visible brane has negative
tension, the radion is a ghost. Although these features of the
metric perturbations are interesting by themselves, we think
our main result is the radion equation of motion. This
equation leads to the red power spectrum, as one could have
anticipated from the holographic picture. This means that
the potentially observable features of the (pseudo)con-
formal universe [5] hold also for the de Sitter brane moving
in the adS background.
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APPENDIX: SPECTRUM OF THE
OPERATOR (44)

Let us find the spectrum of eigenvalues κ2 in Eq. (44).
The eigenfunctions βκ and their first derivatives must be
continuous across the visible brane and obey β0κð−ξhÞ ¼ 0
at the hidden brane.
We multiply Eq. (44) by β�κ, integrate the result with the

measure 1=ðksÞd, and, taking into account the boundary
conditions, obtain

Z∞
−ξh

dξ
ðksÞd jβ

0
κj2 ¼

Z∞
−ξh

dξ
ðksÞd

�
d2

4
− κ2

�
jβκj2;

which shows that κ2 ≤ d2=4. As we will see, the spectrum
is continuous at κ2 ≤ 0. At κ ¼ d=2, there is the constant
mode (45). Wewill argue that the latter mode disappears for
k− > 0 and ξh → ξ−, that is, when the hidden brane is
pushed to the adS boundary.
There may exist solutions with

d2=4 > κ2 > 0:

Our main purpose here is to demonstrate that, in fact, there
are no such solutions. To this end we introduce the wave
function

~βκðξÞ ¼ βκðξÞðksÞ−d=2

and cast Eq. (44) into the form of the Schrödinger equation

−∂2
ξ
~βκ þ

�
dðdþ 2Þ

4s2
−

dσ
2H

δðξÞ
�
~βκ ¼ −κ2 ~βκ; ðA1Þ

where the appearance of δðξÞ is due to the continuous
matching conditions for βκ on the visible brane which
translates to the following conditions for ~βκ:
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△~βκ ¼ 0; △~β0κ ¼ −
dσ
2H

~βκ: ðA2Þ

The boundary condition on the hidden brane (32) takes the
following form:

~β0κ þ
dch
2sh

~βκ ¼ 0; ðA3Þ

and ~βκ should be normalizable with unit measure:

Z∞
−ξh

dξ ~β�κ0 ~βκ ¼ δκ0;κ; ðA4Þ

where δκ0;κ ¼ δðκ0 − κÞ for the modes belonging to the
continuous part of the spectrum.
To warm up, let us demonstrate that at κ2 < 0 the

spectrum is continuous. In general, in the “−” region,
there always exist two linear independent solutions to
Eq. (A1), and hence one can construct a unique solution
(up to an overall constant) ~β<κ to Eq. (A1) satisfying the
boundary condition (A3) on the hidden brane. At large
ξ > 0, the potential term in Eq. (A1) can be neglected and
at κ2 < 0 there are two oscillating solutions ∼e�ijκjξ. A
linear combination of them can be chosen to satisfy
Eq. (A2) (at any κ2 < 0) and to match ~β<κ . Thus, the
spectrum is indeed continuous at κ2 < 0. This argument
does not apply to the special case κ ¼ 0 when the
asymptotic behavior of the two solutions at ξ → ∞ is
const ≠ 0 and ξ, since only the first one is suitable. In any
case, if ~β0 exists then it belongs to the continuous part of the
spectrum.
To see that the boundary value problem (A1)–(A4) has

only one discrete solution, we note that the first term in
parentheses in Eq. (A1) is always positive V ∝ 1=s2 > 0.
Let us turn off this term. Then we deal with a particle in the
δ-function as well. It is straightforward to check that the
spectrum in that case consists of one negative discrete level
and a continuous part starting from zero. Switching on V in
(A1) can only lead to a non-negative addition to each
eigenvalue. Since the continuous parts coincide in both
cases (vanishing and nonvanishing V) this means that
nonzero potential may lead to the disappearance of the
negative discrete level, but it cannot lead to the appearance
of the second negative discrete level. Therefore, the
boundary value problem (A1)–(A4) can have only one
discrete level and, indeed, it has the level with κ ¼ d=2.
Let us consider the case of the single visible brane. In

general, there are two different cases: k− ≤ 0 (ξ− ≤ 0) and
k− > 0 (ξ− > 0). In the first case the boundary condition on
the hidden brane (A3) is replaced by the normalization
condition (A4) with ξh → −∞. It is straightforward to see
that all of the above arguments are still in force in that case.
So, the spectrum consists of the discrete level with κ ¼ d=2
and a continuous part starting from zero.

In the case k− > 0 one replaces ξh → ξ− and the
boundary condition (A3) becomes

~βκð−ξ−Þ ¼ 0;

that is, the wave functions vanish at the adS boundary, and
the above arguments do not work. Let us argue that there
are no discrete levels in this case.
Suppose that there exists a discrete level. The corre-

sponding wave function, being the wave function of the
ground state, has no nodes and can be chosen to be positive
everywhere. Then, integrating Eq. (A1) and taking into
account the boundary and matching conditions, one obtains
the following inequality:

dσ
2H

~βκð0Þ ¼
Z∞
−ξ−

dξ

�
dðdþ 2Þ

4s2
þ κ2

�
~βκ

>
Z∞
0

dξ
dðdþ 2Þ
4s2þ

~βκ: ðA5Þ

Let us consider two extreme cases: (a) ξþ ≪ 1 and
(b) ξþ ≫ 1. The first case [see (17)] corresponds to a
slowly expanding brane, H=kþ ≪ 1, and hence
ξþ ≃H=kþ. In that case the integral in the right-hand side
of Eq. (A5) is saturated near the origin and is proportional
to 1=ξþ:

dσ
2H

~βκð0Þ >
dðdþ 2Þ

4

1

ξþ
~βκð0Þ ¼

dðdþ 2Þ
4

kþ
H

~βκð0Þ;

or

1 >
ðdþ 2Þ

2

kþ
σ
:

This contradicts the relation kþ > σ which follows from
(15). Hence, there is no discrete level in that case.
The opposite case ξ− > ξþ ≫ 1 corresponds to a rapidly

expanding brane, H ≫ k�; σ. In that case

ξ� ≃ log

�
2H
k�

�
; ðA6Þ

and the first term in parentheses in Eq. (A1) can be
neglected. Indeed, in the “þ” region this approximation
is valid at all ξ, while in the “−” region the approximation
may only decrease the value of κ2. Then, solving Eqs. (A1),
(A2) with vanishing potential, one finds

κ ¼ dσ
4H

ð1 − e−2ξ−κÞ≃ dσ
4H

≪ 1;

~βκðξ > 0Þ ¼ ~βκð0Þe−κξ: ðA7Þ

By substituting (A6), (A7) into (A5) one obtains
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1 >
ðdþ 2Þ

2

k2þ
Hσð2þ κÞ≃

ðdþ 2Þ
4

k2þ
Hσ

>
dþ 2

2
;

where we have used (16) and the inequality

ððkþ þ k−Þ2 − σ2Þððkþ − k−Þ2 − σ2Þ
< ðkþ þ k−Þ2ðkþ − k−Þ2 ≤ k4þ:

Thus, we again come to a contradiction and the discrete
level is absent.
Another way to see that the discrete level is absent is to

consider what happens with the mode κ ¼ d=2 in the limit
ξh → −ξ−. In this limit the normalized mode has the form

~βd
2
ðξÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
ðξ− − ξhÞd−12

k
d
2−

ðksÞd2 ; ðA8Þ

where we have used the fact that the corresponding
normalization integral is saturated at ξ → ξh:

Z∞
−ξh→−ξ−

dξ
ðksÞd ≃

1

ðd − 1Þkd−ðξ− − ξhÞd−1
:

As we have discussed above at any ξh ≠ ξ− the mode (A8)
is the only discrete mode in the spectrum. It follows from
(A8) that at any given ξ > ξ− this mode tends to zero in the
limit ξh → ξ− and, therefore, does not contribute to any
observable in the whole space except for an infinitesimal
region near the adS boundary.
To summarize, we have seen that the spectrum of the

operator (44) defined on the class of continuous functions
in the case of two branes as well as in the case of a single
brane and k− ≤ 0 consists of one discrete level with
κ ¼ d=2 (ν ¼ 1 − d) and a continuous part starting from
κ ¼ 0, ν ¼ ðd − 2Þ2=4. In the case of a single brane and
k− > 0 the discrete level is absent, and the spectrum is
continuous and starts from κ ¼ 0, ν ¼ ðd − 2Þ2=4.
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