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We report a study on axially and reflection symmetric dissipative fluids, just after its departure from
hydrostatic and thermal equilibrium, at the smallest time scale at which the first signs of dynamic evolution
appear. Such a time scale is smaller than the thermal relaxation time, the thermal adjustment time, and the
hydrostatic time. It is obtained that the onset of nonequilibrium will critically depend on a single function
directly related to the time derivative of the vorticity. Among all fluid variables (at the time scale under
consideration), only the tetrad component of the anisotropic tensor in the subspace orthogonal to the four-
velocity and the Killing vector of axial symmetry, shows signs of dynamic evolution. Also, the first step
toward a dissipative regime begins with a nonvanishing time derivative of the heat flux component along
the meridional direction. The magnetic part of the Weyl tensor vanishes (not so its time derivative),
indicating that the emission of gravitational radiation will occur at later times. Finally, the decreasing of the
effective inertial mass density, associated to thermal effects, is clearly illustrated.
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I. INTRODUCTION

Many issues related with the structure of self-gravitating
fluids may be addressed within the static regime. In this
case, the spacetime admits a timelike, hypersurface
orthogonal, Killing vector. Thus, a coordinate system
can always be chosen, such that all metric and physical
variables are independent on the timelike coordinate. The
static case, for axially and reflection symmetric spacetimes,
was studied in [1]. In such a case the fluid is in equilibrium,
implying that the hydrostatic equilibrium equations
(Eqs. (21,22) in [1]) are satisfied.
If, instead, the system evolves with time, we have to

consider the full dynamic case where the system is out of
equilibrium (thermal and dynamic), the general formalism
to analyze this situation, for axially and reflection sym-
metric spacetimes was developed in [2] using a framework
based on the 1þ 3 formalism [3–6].

However, some part of the life of stars (at any stage of
evolution), may be described on the basis of the quasistatic
approximation (slowly evolving regime). This is so,
because many relevant processes in star interiors take place
on time scales that are usually, much larger than the
hydrostatic time scale [7,8]. In this case, the system is
assumed to evolve, although slowly enough, so that the
hydrostatic equilibrium equations (Eqs. (21,22) in [1]) are
assumed to be satisfied, all along the evolution.
This regime has been recently described in detail, within

the context of the 1þ 3 formalism [9].
Nevertheless, during their evolution, self-gravitating

objects may pass through phases of intense dynamical
activity for which the quasistatic approximation is clearly
not reliable (e.g., the quick collapse phase preceding
neutron star formation).
It is worth mentioning that both regimes (“quick” and

“quasistatic”), may be present, at different phases of the
collapse of massive stars. Indeed, after the core bounce,
leading to a supernova, the hydrostatic equilibrium is
reached within few milliseconds, while the subsequent,
Kelvin–Helmholtz phase, lasts for about 20 seconds, during
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which the system is in the quasistatic regime, thereby
satisfying the hydrostatic equilibrium equations [10]. We
recall, that the hydrostatic time for a neutron star is of the
order of 10−3 seconds, while the order of magnitude of the
relaxation time for neutron star matter range from 10−3 to
10−1 seconds.
All these phases of star evolution (“slow” and “quick”)

are generally accompanied by intense dissipative processes,
usually described in the diffusion approximation.
This assumption, in its turn, is justified by the fact that

frequently, the mean free path of particles responsible for
the propagation of energy in stellar interiors is very small as
compared with the typical length of the star.
Here we shall focus on the “quick” phase, with the

inclusion of all the dissipative processes.
However, instead of following the evolution of the

system for a long time after its departure from equilibrium,
we shall analyze its behavior immediately after such
departure.
In this work “immediately” means at the smallest time

scale, at which we can observe the first signs of dynamical
evolution. Such a time scale is assumed to be smaller than
the thermal relaxation time, the hydrostatic time, and the
thermal adjustment time.
Doing so we shall be able to extract important con-

clusions about the very early stages of nonequilibrium,
avoiding the introduction of numerical procedures which
might lead to model dependent conclusions.
The price to pay for such a simplification, is that we shall

describe only the very early stages of the evolution. The
reward is that we shall be able to answer to the following
questions:
(1) what are the first signs of nonequilibrium?
(2) what physical variables do exhibit such signs?
(3) what does control the onset of the dynamic regime,

from an equilibrium initial configuration?
Our approach may be summarized as follows: We

observe a system which is initially static, and leaves the
equilibrium for unknown causes which are not relevant
for the discussion. At this moment we put the clock to
work, and watch the system until the first signs of
nonequilibrium appear. At this very moment, we stop
the clock. It is during this time scale that we describe the
behavior of the system.
As we shall see, a specific function related with the time

derivative of the vorticity vector, appears as the funda-
mental variable, controlling the departure from equilibrium
and the ensuing evolution. By analogy (in its physical
meaning) with the Bondi’s news function [11], we shall
refer to this quantity as the fluid news function.
From the analysis of the transport equation we shall see

that the time derivative of one of the heat flux components
(“radial”) vanishes at the time scale under consideration,
whereas the time derivative of the other (“meridional”)
component, is controlled by the fluid news function.

Also we shall see that, at the time scale under consid-
eration, the only fluid variable which exhibits deviation
from the equilibrium is the tetrad component of the
anisotropic tensor in the subspace spanned by the two
spacelike vectors orthogonal to the four-velocity and the
Killing vector of axial symmetry.
At this same time scale, the magnetic part of the Weyl

tensor vanishes, implying that no emission of gravitational
radiation is produced at this stage of evolution. However,
the time derivative of the magnetic part of the Weyl tensor
does not vanish and depends upon the fluid news function,
in such a way, that the vanishing of the latter imply the
vanishing of the former. In other words the emission of
gravitational process occurs at a time scale larger than the
one considered here, and is tightly related to the fluid news
function.
Finally, by using the transport equations together with

the “conservation” laws, we put in evidence the decreasing
of the effective inertial mass density, associated with
thermal effects.
In this work we shall heavily rely on the formalism

developed in [2], thus in order to avoid the rewriting of
some of the equations we shall frequently refer to [2],
however we warn the reader of some important changes in
the notation.

II. BASIC DEFINITIONS AND NOTATION

In this section we shall deploy all the variables required
for our study, some details of the calculations are given in
[2], and therefore we shall omit them here.

A. The metric, the source, and the kinematical variables

We shall consider, axially (and reflection) symmetric
sources. For such a system the line element may be written
in “Weyl spherical coordinates” as:

ds2 ¼ −A2dt2 þ B2ðdr2 þ r2dθ2Þ þ C2dϕ2 þ 2Gdθdt;

ð1Þ

where A, B, C, G are positive functions of t, r, and θ. We
number the coordinates x0 ¼ t, x1 ¼ r, x2 ¼ θ, x3 ¼ ϕ.
We shall assume that our source is filled with an

anisotropic and dissipative fluid. We are concerned with
either bounded or unbounded configurations. In the former
case we should further assume that the fluid is bounded by a
timelike surface S, and junction (Darmois) conditions
should be imposed there.
The energy momentum tensor may be written in the

“canonical” form, as

Tαβ ¼ ðμþ PÞVαVβ þ Pgαβ þ Παβ þ qαVβ þ qβVα: ð2Þ

The above is the canonical, algebraic decomposition of a
second order symmetric tensor with respect to unit timelike
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vector, which has the standard physical meaning when Tαβ

is the energy-momentum tensor describing some energy
distribution, and Vμ the four-velocity assigned by certain
observer.
With the above definitions it is clear that μ is the energy

density (the eigenvalue of Tαβ for eigenvector Vα), qα is the
heat flux, whereas P is the isotropic pressure, andΠαβ is the
anisotropic tensor. We emphasize that we are considering
an Eckart frame where fluid elements are at rest.
Since we choose the fluid to be comoving in our

coordinates, then

Vα ¼
�
1

A
; 0; 0; 0

�
; Vα ¼

�
−A; 0;

G
A
; 0

�
: ð3Þ

We shall next define a canonical orthonormal tetrad (say

eðaÞα ), by adding to the four–velocity vector eð0Þα ¼ Vα, three
spacelike unitary vectors (these correspond to the vectors
K;L;S in [2])

eð1Þα ¼ ð0; B; 0; 0Þ; eð2Þα ¼
�
0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p

A
; 0

�
;

ð4Þ

eð3Þα ð0; 0; 0; CÞ; ð5Þ

with a ¼ 0, 1, 2, 3 (latin indices labeling different vectors
of the tetrad).
The dual vector tetrad eαðaÞ is easily computed from the

condition

ηðaÞðbÞ ¼ gαβeαðaÞe
β
ðbÞ; eαðaÞe

ðbÞ
α ¼ δðbÞðaÞ; ð6Þ

where ηðaÞðbÞ denotes the Minkowski metric.
In the above, the tetrad vector eαð3Þ ¼ ð1=CÞδαϕ is parallel

to the only admitted Killing vector (it is the unit tangent to
the orbits of the group of 1-dimensional rotations that
defines axial symmetry). The other two basis vectors eαð1Þ,
eαð2Þ define the two unique directions that are orthogonal to

the 4–velocity and to the Killing vector.
For the energy density and the isotropic pressure, we

have

μ ¼ Tαβeαð0Þe
β
ð0Þ; P ¼ 1

3
hαβTαβ; ð7Þ

where

hαβ ¼ δαβ þ VαVβ; ð8Þ

whereas the anisotropic tensor may be expressed through
three scalar functions defined as (see [2], but notice the
change of notation):

Πð2Þð1Þ ¼ eαð2Þe
β
ð1ÞTαβ; ; ð9Þ

Πð1Þð1Þ ¼
1

3

�
2eαð1Þe

β
ð1Þ − eαð2Þe

β
ð2Þ − eαð3Þe

β
ð3Þ
�
Tαβ; ð10Þ

Πð2Þð2Þ ¼
1

3

�
2eαð2Þe

β
ð2Þ − eαð3Þe

β
ð3Þ − eαð1Þe

β
ð1Þ
�
Tαβ: ð11Þ

This specific choice of these scalars is justified by the
fact, that the relevant equations used to carry out this
study, become more compact and easier to handle, when
expressed in terms of them.
Finally, we may write the heat flux vector in terms of the

two tetrad components qð1Þ and qð2Þ:

qμ ¼ qð1Þe
ð1Þ
μ þ qð2Þe

ð2Þ
μ ð12Þ

or, in coordinate components (see [2])

qμ ¼
�

qð2ÞG

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p ;
qð1Þ
B

;
Aqð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2B2r2 þG2
p ; 0

�
; ð13Þ

qμ ¼
�
0; Bqð1Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p
qð2Þ

A
; 0

�
: ð14Þ

Of course, all the above quantities depend, in general, on
t, r, θ.
The expressions for the kinematical variables are

(see [2]).
For the four acceleration we have

aα ¼ VβVα;β ¼ að1Þe
ð1Þ
μ þ að2Þe

ð2Þ
μ ; ð15Þ

with

að1Þ ¼
A0

AB
;

að2Þ ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2B2r2 þ G2
p

�
A;θ

A
þ G
A2

�
_G
G
−

_A
A

��
; ð16Þ

where the dot and the prime denote derivatives with respect
to t and r respectively.
For the expansion scalar

Θ ¼ Vα
;α ¼

1

A

�
2 _B
B

þ
_C
C

�

þ G2

AðA2B2r2 þ G2Þ
�
−
_A
A
−

_B
B
þ

_G
G

�
: ð17Þ

Next, the shear tensor

σαβ ¼ σðaÞðbÞe
ðaÞ
α eðbÞβ ¼ Vðα;βÞ þ aðαVβÞ −

1

3
Θhαβ; ð18Þ
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may be defined through two independent tetrad compo-
nents (scalars) σð1Þð1Þ and σð2Þð2Þ, which may be written
in terms of the metric functions and their derivatives
as (see [2]):

σð1Þð1Þ ¼
1

3A

�
_B
B
−

_C
C

�

þ G2

3AðA2B2r2 þ G2Þ
�
_A
A
þ

_B
B
−

_G
G

�
; ð19Þ

σð2Þð2Þ ¼
1

3A

�
_B
B
−

_C
C

�

þ 2G2

3AðA2B2r2 þ G2Þ
�
−
_A
A
−

_B
B
þ

_G
G

�
: ð20Þ

It is worth noticing that the shear tensor has no projection

in the subspace eð1Þα eð2Þβ .
Finally, for the vorticity tensor

Ωβμ ¼ ΩðaÞðbÞe
ðaÞ
β eðbÞμ ; ð21Þ

we find that it is determined by a single basis component:

Ωð1Þð2Þ ¼ −Ωð2Þð1Þ ¼ −Ω; ð22Þ

where the scalar function Ω is given by

Ω ¼ GðG0
G − 2A0

A Þ
2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p : ð23Þ

Now, from the regularity conditions, necessary to ensure
elementary flatness in the vicinity of the axis of symmetry,
and in particular at the center (see [12–14]), we should
require that as r ≈ 0

Ω ¼
X
n≥1

ΩðnÞðt; θÞrn; ð24Þ

implying, because of (23) that in the neighborhood of the
center

G ¼
X
n≥3

GðnÞðt; θÞrn: ð25Þ

Beside the kinematical variables defined above, it would
be convenient for our discussion to introduce the “specific
velocities”, defined in [9] (with the change of notation
already mentioned):

Vð1Þð1Þ ¼ eαð1Þe
β
ð1Þ

�
σαβ þ

1

3
Θhαβ þ Ωαβ

�
; ð26Þ

Vð2Þð2Þ ¼ eαð2Þe
β
ð2Þ

�
σαβ þ

1

3
Θhαβ þ Ωαβ

�
; ð27Þ

Vð3Þð3Þ ¼ eαð3Þe
β
ð3Þ

�
σαβ þ

1

3
Θhαβ þ Ωαβ

�
; ð28Þ

Vð1Þð2Þ ¼ eαð1Þe
β
ð2Þ

�
σαβ þ

1

3
Θhαβ þ Ωαβ

�
; ð29Þ

which become, using (17), (19), (20), and (22)

Vð1Þð1Þ ¼
1

3
ð3σð1Þð1Þ þ ΘÞ; Vð2Þð2Þ ¼

1

3
ð3σð2Þð2Þ þ ΘÞ;

ð30Þ

Vð3Þð3Þ ¼
1

3
ðΘ − 3σð1Þð1Þ − 3σð2Þð2ÞÞ; Vð1Þð2Þ ¼ −Ω;

ð31Þ

satisfying

Vð1Þð1Þ þ Vð2Þð2Þ þ Vð3Þð3Þ ¼ Θ: ð32Þ

The physical meaning of the above expressions becomes
intelligible when we recall that the tensor σαβ þ 1

3
Θhαβ þ

Ωαβ defines the proper time variation of the infinitesimal
distance δl between two neighboring points on the three-
dimensional hypersurface (say Σ), orthogonal to the four
velocity, divided by δl (see [9] for details).

B. The electric and magnetic part of the Weyl
tensor and the super-Poynting vector

Let us now introduce the electric (Eαβ) and magnetic
(Hαβ) parts of the Weyl tensor (Cαβγδ), defined as usual by

Eαβ ¼ CανβδVνVδ;

Hαβ ¼
1

2
ηανϵρCβδ

ϵρVνVδ: ð33Þ

The electric part of the Weyl tensor has only three
independent nonvanishing components, whereas only two
components define the magnetic part. Thus we may write
these two tensors, in terms of five tetrad components
(Eð1Þð1Þ; Eð2Þð2Þ; Eð1Þð2Þ; Hð1Þð3Þ; Hð3Þð2Þ), respectively as:

Eαβ ¼
�
ð2Eð1Þð1Þ þ Eð2Þð2ÞÞ

�
eð1Þα eð1Þβ −

1

3
hαβ

��

þ
�
ð2Eð2Þð2Þ þ Eð1Þð1ÞÞ

�
eð2Þα eð2Þβ −

1

3
hαβ

��

þ Eð2Þð1Þðeð1Þα eð2Þβ þ eð1Þβ eð2Þα Þ; ð34Þ

and
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Hαβ ¼ Hð1Þð3Þðeð1Þβ eð3Þα þ eð1Þα eð3Þβ Þ
þHð2Þð3Þðeð3Þα eð2Þβ þ eð2Þα eð3Þβ Þ: ð35Þ

Also, from the Riemann tensor we may define three
tensors Yαβ, Xαβ, and Zαβ as

Yαβ ¼ RανβδVνVδ; ð36Þ

Xαβ ¼
1

2
ηαν

ϵρR⋆
ϵρβδV

νVδ; ð37Þ

and

Zαβ ¼
1

2
ϵαϵρRδβ

ϵρVδ; ð38Þ

where R⋆
αβνδ ¼ 1

2
ηϵρνδRαβ

ϵρ and ϵαβρ ¼ ηναβρVν.
The above tensors in turn, may be decomposed, so that

each of them is described through four scalar functions
known as structure scalars [15]. These are (see [2] for details)

YT ¼4πðμþ3PÞ; XT ¼8πμ;

YI ¼3Eð1Þð1Þ−12πΠð1Þð1Þ; XI ¼−3Eð1Þð1Þ−12πΠð1Þð1Þ
YII ¼3Eð2Þð2Þ−12πΠð2Þð2Þ; XII ¼−3Eð2Þð2Þ−12πΠð2Þð2Þ;

YIII ¼Eð2Þð1Þ−4πΠð2Þð1Þ; XIII ¼−Eð2Þð1Þ−4πΠð2Þð1Þ;

ð39Þ

and

ZI ¼ ðHð1Þð3Þ − 4πqð2ÞÞ; ZII ¼ ðHð1Þð3Þ þ 4πqð2ÞÞ;
ZIII ¼ ðHð2Þð3Þ − 4πqð1ÞÞ; ZIV ¼ ðHð2Þð3Þ þ 4πqð1ÞÞ:

ð40Þ

From the above tensors, we may define the super-
Poynting vector by

Pα ¼ ϵαβγðYγ
δZ

βδ − Xγ
δZ

δβÞ; ð41Þ

where ϵαβρ ¼ ηναβρVν.
In our case, we may write:

Pα ¼ Pð1Þe
ð1Þ
α þ Pð2Þe

ð2Þ
α ; ð42Þ

with

Pð1Þ ¼ 2Hð2Þð3Þð2Eð2Þð2Þ þ Eð1Þð1ÞÞ þ 2Hð1Þð3ÞEð2Þð1Þ
þ 32π2qð1Þ½ðμþ PÞ þ Πð1Þð1Þ� þ 32π2qð2ÞΠð2Þð1Þ;

Pð2Þ ¼ −2Hð1Þð3Þð2Eð1Þð1Þ þ Eð2Þð2ÞÞ − 2Hð2Þð3ÞEð2Þð1Þ

þ 32π2qð2Þ½ðμþ PÞ þ Πð2Þð2Þ� þ 32π2qð1ÞΠð2Þð1Þ:

ð43Þ
In the theory of the super-Poynting vector, a state of

gravitational radiation is associated to a nonvanishing
component of the latter (see [16–18]). This is in agreement
with the established link between the super-Poynting vector
and the news functions [19], in the context of the Bondi–
Sachs approach [11,20].
We can identify two different contributions in (43). On

the one hand we have contributions from the heat transport
process. These are in principle independent of the magnetic
part of the Weyl tensor, which explains why they remain in
the spherically symmetric limit. Next we have contributions
related to the gravitational radiation. These require, both,
the electric and the magnetic part of the Weyl tensor to be
different from zero.

III. THE HEAT TRANSPORT EQUATION

In order to avoid the drawbacks generated by the
standard (Landau–Eckart) irreversible thermodynamics
[21,22], (see [23–26] and references therein) we shall need
a transport equation derived from a causal dissipative
theory [27–32]. In this work we shall resort to Müller-
Israel-Stewart second order phenomenological theory for
dissipative fluids [27–30]. However, as we shall see, the
main conclusions generated by our study are not dependent
on the transport equation chosen, as far as it is a causal one,
i.e., that it leads to a Cattaneo type [33] equation, leading
thereby to a hyperbolic equation for the propagation of
thermal perturbations.
Thus, the transport equation for the heat flux reads

[24,28–30],

τhμνqν;βV
β þ qμ ¼ −κhμνðT;ν þ TaνÞ −

1

2
κT2

�
τVα

κT2

�
;α

qμ;

ð44Þ

where τ, κ, T denote the relaxation time, the thermal
conductivity, and the temperature, respectively.

Contracting (44) with eð2Þμ we obtain

τ

A
ð _qð2Þ þ Aqð1ÞΩÞ þ qð2Þ

¼ −
κ

A

�
G _T þ A2T;θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p þ ATað2Þ

�
−
κT2qð2Þ

2

�
τVα

κT2

�
;α

;

ð45Þ

where (23), has been used.
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On the other hand, contracting (44) with eð1Þμ , we find

τ

A
ð _qð1Þ − Aqð2ÞΩÞ þ qð1Þ ¼ −

κ

B
ðT 0 þ BTað1ÞÞ

−
κT2qð1Þ

2

�
τVα

κT2

�
;α

: ð46Þ

It is worth noticing that the two equations above are
coupled through the vorticity.

IV. LEAVING THE EQUILIBRIUM

We shall now take a snapshot of the system, just after it
has abandoned the equilibrium. As mentioned before, by
“just after”we mean on the smallest time scale, at which we
can detect the first signs of dynamical evolution.
The general “philosophy” of our approach consists of

considering a fluid distribution which is in equilibrium (in
the sense exposed in the Introduction), and assume that, for
a reason which is not relevant for the discussion, at some
initial time (say t0) the system abandons such a state. Thus,
at t0 the clock is put to measure time, and we stop it as
soon as we detect the first sign of dynamic evolution. The
scale time under consideration is defined by the time
interval measured by our clock. This is, so to speak, the
“philosophy” of the approach.
However, in practice we shall proceed slightly differ-

ently. Indeed, we are going to choose a given time scale,
which we shall specify below. Two possible results may
then appear:

(i) No signs of dynamic evolution are observed within
the choosen time scale.

(ii) Such signs do appear, at such time scale.
Of course in the case of the first result, we should have to
enlarge our time scale.
Now, in the study of dissipative fluids, there are three

fundamental time scales, each of which are endowed with a
distinct physical meaning, namely: the hydrostatic time
(sometimes also called the hydrodynamic time), the
thermal relaxation time, and the thermal adjustment time
(see [7,8] for details).
The hydrostatic time is the typical time in which a fluid

element reacts on a slight perturbation of hydrostatic
equilibrium, it is basically of the order of magnitude of
the time taken by a sound wave to propagate through the
whole fluid distribution.
The thermal relaxation time is the time taken by the

system to return to the steady state in the heat flux (whether
of thermodynamic equilibrium or not), after it has been
removed from it.
Finally, the thermal adjustment time is the time it takes a

fluid element to adjust thermally to its surroundings. It is,
essentially, of the order of magnitude of the time required
for a significant change in the temperature gradients. From

the above it is evident that the thermal adjustment time is,
generally, larger than the thermal relaxation time.
We shall evaluate the system at a time scale which is

smaller than the three time scales described above. It should
be emphasized that such a time scale is chosen heuristically.
Thus, as mentioned before, if no sign of evolution could be
detected within this time scale, it should be enlarged until
these signs appear. However, as we shall see below, such
signs do appear within the time scale under consideration.
The above comments imply that:
(i) At the time scale at which we are observing the

system, which is smaller than the hydrostatic time
scale, the kinematical quantities ΩðGÞ;Θ; σð1Þð1Þ;
σð2Þð2Þ as well as the “velocities” Vð1Þð1Þ; Vð2Þð2Þ;
Vð3Þð3Þ; Vð1Þð2Þ keep the same values they have in
equilibrium, i.e., they are neglected (of course not so
their time derivatives which are assumed to be small,
say of order OðϵÞ, where ϵ ≪ 1), but nonvanishing.

(ii) From (A5) (A6) (Eqs. B6, B7 in [2]), it follows at
once that the heat flux vector should also be
neglected (once again, not so its time derivative).
The vanishing of the flux vector also follows at once
from the fact that the time scale under consideration
is smaller than the relaxation time.

(iii) From the above conditions it follows at once that
first order time derivatives of the metric variables A,
B, C can be neglected.

Then, we have for the four acceleration

að1Þ ¼
A0

AB
; að2Þ ¼

1

Br

�
A;θ

A
þ

_G
A2

�
: ð47Þ

Also, from the conditions above and (17), (19), (20),
(23), (30), (31), it follows that

_Θ ¼ 1

A

�
2B̈
B

þ C̈
C

�
;

_σð1Þð1Þ ¼ _σð2Þð2Þ ≡ _̄σ ¼ 1

3A

�
B̈
B
−
C̈
C

�
; ð48Þ

_Ω ¼ 1

AB2r

�
_G0

2
−

_GA0

A

�
; ð49Þ

and

Vð1Þð1Þ ¼Vð2Þð2Þ≡V; _V¼ B̈
AB

; _Vð3Þð3Þ ¼
C̈
AC

: ð50Þ

Now, at thermal equilibrium, when the heat flux vanishes,
the Tolman conditions for thermal equilibrium [34]

ðTAÞ0 ¼ ðTAÞ;θ ¼ 0; ð51Þ

are valid.

HERRERA, DI PRISCO, OSPINO, and CAROT PHYSICAL REVIEW D 94, 064072 (2016)

064072-6



Therefore just after the system leaves the equilibrium, at
a time scale which is smaller than the thermal adjustment
time and the thermal relaxation time, the Eqs. (51) are still
valid, even though the system starts to leave the thermal
equilibrium. This is so because of the fact that our time
scale is smaller than the relaxation time, and therefore the
temperature gradients have the same values they had in
equilibrium. However, the fulfillment of (51) is not enough
to ensure the vanishing of _qð2Þ, due to the appearance of a _G
term in (45) (through að2Þ), which eventually would lead to
the breaking of the thermal equilibrium in the meridional
direction (at later time).
Thus, the evaluation of (46) and (45) just after leaving

the equilibrium, produces respectively

_qð1Þ ¼ 0; ð52Þ

and

τ _qð2Þ ¼ −
κAT;θ

Br
− κATað2Þ; ð53Þ

or, using (51)

τ _qð2Þ ¼ −
κT _G
ABr

: ð54Þ

Therefore, at the very beginning of the evolution, the

dissipative process starts with contributions along the eð2Þμ

(meridional) direction.
We shall now turn to fluid variables (μ; P;Πð1Þð1Þ;

Πð2Þð2Þ;Πð2Þð1Þ). Using MAPLE we shall calculate the
components of the Einstein tensor Gαβ and evaluate them
just after the system leaves the equilibrium. At this time
scale, this tensor have three types of terms: On the one
hand, terms with first time derivatives of the metric
functions A, B, C, which are set to zero, next, there are
terms that neither contain G, nor first time derivatives of A,
B, C, these correspond to the expression in equilibrium,
finally, there are terms with first time derivatives of G
and/or second time derivatives of A, B, C, which of course
are not neglected. Then using (7), (9), (10), (11) and the
Einstein equations,

Gαβ ¼ −8πTαβ; ð55Þ

we obtain

8πμ ¼ 8πμðeqÞ; ð56Þ

8πP ¼ 8πPðeqÞ −
2

3A
_Θþ 2

3A2B2r2

�
_G;θ þ _G

C;θ

C

�
;

ð57Þ

8πΠð1Þð1Þ ¼ 8πΠð1Þð1ÞðeqÞ þ
_̄σ

A

þ 1

3A2B2r2

�
_G;θ − _G

�
3B;θ

B
−
C;θ

C

��
;

ð58Þ
8πΠð2Þð2Þ ¼ 8πΠð2Þð2ÞðeqÞ þ

_̄σ

A

þ 1

3A2B2r2

�
−2 _G;θ þ _G

�
3B;θ

B
þ C;θ

C

��
;

ð59Þ

8πΠð2Þð1Þ ¼ 8πΠð1Þð1ÞðeqÞ −
_Ω
A
þ

_G
A2B2r

�ðBrÞ0
Br

−
A0

A

�
;

ð60Þ

where eq stands for the value of the quantity at equilibrium.
Now, from (56) it follows at once that the energy

density, after leaving the equilibrium, at the time scale
considered here, has the same value it had in equilibrium.
Then since there should be a generic equation of state
relating the energy density with the isotropic pressure,
it is reasonable to assume that at the time scale under
consideration we have P ¼ PðeqÞ, and following this line of
arguments it would be also reasonable to assume
Πð1Þð1Þ ¼ Πð1Þð1ÞðeqÞ;Πð2Þð2Þ ¼ Πð2Þð2ÞðeqÞ.
Once again, it is important to remark that such assump-

tions are purely heuristic. Therefore if it would happen that
as a consequence of their imposition, we detect no signs of
evolution (at the time scale under consideration), we should
relax them and enlarge our time scale, until these signs
become observable. However this is not the case. Indeed,
from these latter conditions and (23), (57), (58), (59), it
follows at once that:

_G ¼ B2fðt; rÞ; ð61Þ

_̄σ ¼ −
fðt; rÞ
3Ar2

�
C;θ

C
−
B;θ

B

�
; ð62Þ

_Θ ¼ fðt; rÞ
Ar2

�
2B;θ

B
þ C;θ

C

�
; ð63Þ

_Ω ¼ fðt; rÞ
Ar

�
ln
B

ffiffiffi
f

p
A

�0
; ð64Þ

where fðt; rÞ is an arbitrary function of its arguments.
Two comments are in order at this point:
(i) Because of (25) it is obvious that f ¼ P

n≥3f
ðnÞðtÞrn

in the neighborhood of the center.
(ii) Observe that f controls the evolution of GðΩÞ;Θ

and σ̄.
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The situation is quite different for the scalar Πð2Þð1Þ.
In fact, as we shall see, we cannot assume that
Πð2Þð1Þ ¼ Πð2Þð1ÞðeqÞ.
Indeed, because of (60), to assume that

Πð2Þð1Þ ¼ Πð2Þð1ÞðeqÞ, amounts to impose the condition

_Ω
A
¼

_G
A2B2r

�ðBrÞ0
Br

−
A0

A

�
; ð65Þ

which together with (23) produces

_G ¼ B2r2gðt; θÞ; ð66Þ

where g is an arbitrary function of its arguments. But, (66)
clearly violates the regularity condition (25), close to the
center. Accordingly, at the time scale under consideration
we have Πð2Þð1Þ ≠ Πð2Þð1ÞðeqÞ, more precisely

8πΠð2Þð1Þ ¼ 8πΠð2Þð1ÞðeqÞ þ
fðt; rÞ
2A2r

�
ln
r2

f

�0
: ð67Þ

Thus we see that, after leaving the equilibrium, at the time
scale under consideration, the energy density, the isotropic
pressure and the (1)(1) and (2)(2) tetrad components of the
anisotropic tensor may be assumed to keep the values they
have in equilibrium. However for the transverse tension
Πð2Þð1Þ the situation is different, and the first signs of the
dynamic regime are already present in this tetrad compo-
nent of the anisotropic tensor, at our time scale.
Using MAPLE we can also easily calculate the scalars

defining the electric part of the Weyl tensor, after the
system leaves the equilibrium, we obtain:

Eð1Þð1Þ ¼ Eð1Þð1ÞðeqÞ −
_̄σ

2A

−
1

6A2B2r2

�
_G;θ − _G

�
3B;θ

B
−
C;θ

C

��
; ð68Þ

Eð2Þð2Þ ¼ Eð2Þð2ÞðeqÞ −
_̄σ

2A

þ 1

6A2B2r2

�
2 _G;θ − _G

�
3B;θ

B
þ C;θ

C

��
ð69Þ

Eð2Þð1Þ ¼ Eð2Þð1ÞðeqÞ þ
_Ω
2A

−
_G

2A2B2r

�ðBrÞ0
Br

−
A0

A

�
: ð70Þ

Using (60), (61), and (63) in (68), (69), and (70), it
follows at once that

Eð1Þð1Þ ¼ Eð1Þð1ÞðeqÞ; Eð2Þð2Þ ¼ Eð2Þð2ÞðeqÞ;

Eoeq
ð2Þð1Þ ¼ −4πΠoeq

ð2Þð1Þ; ð71Þ

which imply, because of (39)

XI ¼XIðeqÞ; XII ¼XIIðeqÞ; XIII ¼XIIIðeqÞ; ð72Þ

and

YI ¼YIðeqÞ; YII ¼YIIðeqÞ; Yoeq:
III ¼−8πΠoeq:

ð2Þð1Þ; ð73Þ

where oeq stands for the value of the quantity “out of
equilibrium,” and as it follows at once from (67)

8πΠoeq
ð2Þð1Þ ¼

fðt; rÞ
2A2r

�
ln
r2

f

�0
: ð74Þ

Let us now analyze the “generalized Euler equations”
(A2) (Eq. A7 in [2]), derived from the “conservation laws”
(Tμν

;ν ¼ 0). Evaluated within the time scale under consid-
eration, these are the Eqs. (A3) and (A4) in the Appendix:
Observe that these two equations have the “Newtonian”

form

Massdensity × Acceleration ¼ Force; ð75Þ

and where we can clearly identify the “effective inertial
mass density” as the factors multiplying _V and _Vð3Þð3Þ.
Also, it is worth noticing that the first term in the right-hand
side of (A3), and the first term in the right-hand side of
(A4), represent the “gravitational force.” This is in agree-
ment with the equivalence principle, according to which,
the “effective inertial mass density” equals the “passive
gravitational mass density” [the factor multiplying the
square brackets in (A3) and (A4)].
We observe that, according to (A3) and (A4) there are

two different “effective inertial mass densities”, depending
on the anisotropy of the fluid. This is a clear reminiscence
of the situation appearing in relativistic dynamics, where a
moving particle offers different inertial resistances to the
same force, according to whether it is subjected to that force
longitudinally or transversely.
Finally, replacing _qð2Þ, by its expression from (53), into

(A4) we obtain

ðμþ Pþ Πð2Þð2ÞÞ
�
1 −

κT
τðμþ Pþ Πð2Þð2ÞÞ

�
_Vð3Þð3Þ

¼ −ðμþ Pþ Πð2Þð2ÞÞ
�
1 −

κT
τðμþ Pþ Πð2Þð2ÞÞ

�

×

�
4πAðPþ 2Πð1Þð1Þ þ 2Πð2Þð2ÞÞ −

AC0að1Þ
BC

�

þ force and dissipative terms: ð76Þ

This last equation illustrates the well known decreasing
of the inertial mass density (and consequently, of the
passive gravitational mass density) associated to thermal
effects, which was discovered in [35], and that has been
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shown to appear in a great variety of scenarios (see [36–48]
and references therein).
Next, observe that by evaluating the physical variables

out of equilibrium, we may obtain

_V ¼ B;θ
_G

AB3r2
¼ B;θf

Ar2B
; ð77Þ

_Vð3Þð3Þ ¼
C;θ

_G
ACB2r2

¼ C;θf
Ar2C

; ð78Þ

from where it is apparent that f controls the evolution of the
different “velocities.”
We can now turn to the equations (B1, B3) and (B5) in

[2]. They describe the evolution of Θ, σ̄, and Ω, and using
(62), (63), (64) they become identities. On the other hand
(B4) becomes an identity when using (61), (67), (71).
Next we have the Eqs. (A5), (A6) (B6, B7 in [2]), which

from the all results obtained above become identities,
whereas the Eqs. (B8) and (B9) imply

Hð1Þð3Þ ¼ Hð3Þð2Þ ¼ 0; ð79Þ

of course their time derivatives do not vanish, as we shall
see below.
Equations (B10–B13) in [2] describe the evolution of

the structure scalars XI; XII; XIII . It is a simple matter to
check that within the time scale considered here
_XI ¼ _XII ¼ _XIII ¼ 0. Also, it is a simple matter to see
that Eqs. (B14–B16) in [2] do not provide any additional
information.
Finally, the Eqs. (A7) and (A8) (B17, B18 in [2])

describe the evolution of the magnetic part of the Weyl
tensor in terms of the function fðt; rÞ, more specifically,
these equations become:

_Hð1Þð3Þ ¼
f

4ABr

�
f0

rf
−
f00

f
−
�
2

r
−
f0

f

��
A0

A
−
2B0

B
þ C0

C

��

þ fBð2Eð1Þð1Þ þ Eð2Þð2ÞÞ
Ar

; ð80Þ

_Hð3Þð2Þ ¼
f

4ABr2

�
2

r
−
f0

f

��
A;θ

A
−
2B;θ

B
þ C;θ

C

�

þ fBEð2Þð1ÞðeqÞ
Ar

; ð81Þ

from which it is evident that the evolution of the magnetic
part of the Weyl tensor is fully controlled by the function f.

V. CONCLUSIONS

We have carried out an exhaustive analysis of axially
symmetric fluid distributions, just after its departure from
equilibrium, at the smallest time scale at which we can
detect signs of dynamical evolution.

As our main result, we have found that the evolution of
all variables is controlled by a single function f, which we
call the fluid news function, in analogy with the Bondi’s
news function. Indeed, if anything happens at all at the
source leading to changes in the field, it can only do so
through the function f, and viceversa, exactly as it appears
from the analysis of the spacetime outside the source
(Bondi). However, an important difference between these
two functions must be emphasized, namely: our function f
controls the evolution only within the time scale considered
here, a limitation which does not apply to the Bondi’s news
function (see below for a deeper discussion on this point).
Among all the physical variables, there are two which

play a significant role in the departure from equilibrium. On
the one hand, it is the heat flow along the eμð2Þ direction, the
one which shall appear first. On the other hand, it is also
remarkable that it is the tetrad component of the anisotropic
tensor, in the subspace spanned by the tensor eμð2Þe

ν
ð1Þ, the

one which shows the first indications of the departure from
equilibrium.
It is worth mentioning, that at the time scale used here,

there is not gravitational radiation, as it follows at once
from (43). Thus, the emission of gravitational waves is an
event which occurs at later times. This fact becomes
intelligible in the light of the following comments.
For a second order phenomenological theory for dis-

sipative fluids we obtain from Gibbs equation and con-
servation equations (see [24,43] for details):

TSα;α ¼ −qα
�
hμαðlnTÞ;μ þ Vα;μVμ þ β1qα;μVμ

þ T
2

�
β1
T
Vμ

�
;μ

qα

�
; ð82Þ

where Sα is the entropy four–current, and β1 ¼ τ
κT.

From which it becomes evident that at the time scale
under consideration Sα;α ¼ 0.
We recall that in the above expression, terms involving

couplings of heat flux to the vorticity, vanish at the time
scale under consideration. Also, we have excluded shear
and bulk viscosity contributions in (82). The fact is that
these absent terms are proportional to the shear tensor, the
expansion scalar, terms quadratic in the bulk viscosity
pressure, terms proportional to the bulk viscosity pressure
multiplied by its time derivative, and terms proportional to
the anisotropic stress tensor associated to the shear vis-
cosity multiplied by itself, or by its time derivative (see
Eq. (2.20) in [24]), (we recall that the anisotropic stress
tensor may, but does not need to, be related to viscosity
effects, since it may be sourced by many other physical
phenomena. Thus, for example it may be different from
zero for a static configuration). Of course, within the time
scale used here, all these terms vanish. However, it should
be clear that in the study of any specific astrophysical
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scenario, these dissipative phenomena may be present and
might play an important role in the detailed description of
the structure and evolution of the object (at a time scale
larger than the one considered here).
Thus, within our time scale, our observers do not detect a

real (entropy producing) dissipative process. But as it was
already pointed out in the seminal Bondi’s paper on
gravitational radiation (see Sec. VI in [11]), in the absence
of dissipation, the system is not expected to radiate
(gravitationally) due to the reversibility of the equation
of state, at variance with the fact that radiation is an
irreversible process (see also [49] for a further discussion
on this point).
Therefore, it is obvious that, in the presence of gravi-

tational radiation, an entropy generator factor should also
be present in the description of the source. But as we have
just seen, such a factor does not appear within the time scale
under consideration. Accordingly it is reasonable not to
detect gravitational radiation at that same time scale.
The reversibility of the evolution, at the time scale under

consideration, implied by the above comments, could also
be inferred from a simple inspection of (54), (61), (62),
(63), (64), (77), (78), (80), (81).
Indeed, it results at once from these equations, that if the

function f is different from zero until some time, and
vanishes afterwards (always within the time scale under
consideration), the system will turn back to equilibrium,
without “remembering” to have been out of it previously.
In other words, the fluid news function, unlike the

Bondi’s news function, is the precursor of, (appears before),
the dissipative process related to the emission of gravita-
tional radiation, and should be different from zero until
such emission starts.
In relation with the point above, another comment is in

order: in [19] the link between radiation and vorticity was
put in evidence (see also [50]), more specifically it was
explicitly assumed that such a link was a causal one (the
title of [19] is: “Why does gravitational radiation produce
vorticity?”), i.e., it was assumed that radiation precedes the
appearance of vorticity. However as we have just shown,
both the magnetic part of the Weyl tensor, and Ω vanish at
the time scale under consideration, whereas their first time
derivatives do not vanish at that same time scale, suggesting
that both phenomena (radiation and vorticity) occur essen-
tially simultaneously.
An interesting particular case is represented by the

situation appearing if we impose that the system was
initially spherically symmetric (besides being in equilib-
rium), and assume that it remains spherically symmetric
afterwards. In such a case, it is obvious that we must
have _G ¼ 0, implying that departures from equilibrium
(dynamic and thermal) only occur if Tolman’s conditions
(51), are violated. However, since the system was initially
at equilibrium, such a violation may only happen at time
scales larger that the thermal adjustment time. In other

words, departures from equilibrium, keeping the spherical
symmetry, take place at time scales larger than the
corresponding to the, general, nonspherical case.
Observe that in the purely spherically symmetric case
the assumptions P ¼ PðeqÞ, Πð1Þð1Þ ¼ Πð1Þð1ÞðeqÞ;Πð2Þð2Þ ¼
Πð2Þð2ÞðeqÞ do not hold (since we have to enlarge the time
scale in order to observe the first signs of evolution), and of
course the onset of evolution is not controlled by the
function f as defined by (61).
We would like to emphasize the appearance of the

thermal effect leading to a decreasing of the effective
inertial mass density. In this respect, it is worth stressing
that the first term on the left, and the Taν term on the right,
of (44), are directly responsible for the decreasing in the
effective inertial mass density. The former should be
present in any causal theory of dissipation, whereas the
latter is just an expression of the “inertia” of heat already
pointed out by Tolman [34].
Therefore any hyperbolic, relativistic dissipative theory

yielding a Cattaneo-type equation in the nonrelativistic
limit, is expected to give a result similar to the one obtained
here. The possible consequences of this effect on the
outcome of gravitational collapse have been discussed in
some detail in [40,41]. It is also worth noticing that such an
effect appears already at the earliest stages of the non-
equilibrium (though only along the Vð3Þð3Þ direction).
Finally we would like to conclude with the following

remark: In the stationary case one may have a steady
rotation around the symmetry axis, leading to nonvanishing
(time independent) vorticity Ωμν ≠ 0, which of course may
be compatible with thermal equilibrium. In this case the
spacetime outside the source is described by a metric of the
Lewis-Papapetrou family (e.g., Kerr) which as we know
admits vorticity in the congruence of the world line of
observers (the line element is nondiagonal). The vorticity of
the source produces the vorticity in the exterior spacetime.
However, in the static situation (the one considered
here) you have no vorticity at the outside, which is
described by a metric of the Weyl family (e.g., Curzon,
Erez-Rosen, etc). In this latter case (nonstationary) we must
have Ωμν ¼ G ¼ 0 since the metric is diagonal. Since you
have no vorticity outside (no frame dragging), you should
not expect to have vorticity in the source (see [1] for a
discussion on this case).
This last result may be obtained in a more rigourous way,

by evaluating (A5) and (A6) in the static case and thermal
equilibrium (assumingΩ ≠ 0). Then after some lengthy but
simple calculations, and using the regularity condition (25),
one obtains Ω ¼ 0. Thus there is no vorticity associated to
the static case. This brings out the difference between the
steady vorticity of the stationary case and the vorticity
considered here.
Also, the result above, shows that vorticity and heat flux

are inherently coupled. This fact was already emphasized
in [2].
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APPENDIX: SOME BASIC EQUATIONS

In what follows we shall deploy only those equations of
the formalism which are required for our discussion. The
whole set of the equations can be found in [2].
The conservation law Tα

β;α ¼ 0 leads to the following
equations (Eqs. (A6, A7) in [2]):

μ;αVα þ ðμþ PÞΘþ ð2σð1Þð1Þ þ σð2Þð2ÞÞΠð1Þð1Þ þ ð2σð2Þð2Þ þ σð1Þð1ÞÞΠð2Þð2Þ þ qα;α þ qαaα ¼ 0; ðA1Þ

ðμþ PÞaα þ hβαðP;β þ Πμ
β;μ þ qβ;μVμÞ þ

�
4

3
Θhαβ þ σαβ þ Ωαβ

�
qβ ¼ 0: ðA2Þ

The first of these equations is the “continuity” equation, whereas the second one is the “generalized Euler” equation.
This last equation has two components, which, within the time scale under consideration may be written as:

ðμþ Pþ Πð1Þð1ÞÞ _V ¼ −ðμþ Pþ Πð1Þð1ÞÞ
�
4πAðP − 2Πð1Þð1ÞÞ −

AB;θað2Þ
B2r

�
þ “force terms”; ðA3Þ

and

ðμþ Pþ Πð2Þð2ÞÞ _Vð3Þð3Þ ¼ −ðμþ Pþ Πð2Þð2ÞÞ
�
4πAðPþ 2Πð1Þð1Þ þ 2Πð2Þð2ÞÞ −

AC0að1Þ
BC

�
−
AC;θ

BCr

�
_qð2Þ
A

�
;

þ “force terms”; ðA4Þ

where by “force terms” we denote different terms containing pressure gradients and anisotropic stresses.
Next, from the Ricci identities we have (Eqs. (B6, B7) in [2])

2

3B
Θ;r −Ω;μe

μ
ð2Þ þΩðeð2Þβ;μe

μ
ð1Þe

β
ð1Þ − eμð2Þ;μÞ þ σð1Þð1Það1Þ −Ωað2Þ − σð1Þð1Þ;μe

μ
ð1Þ

− ð2σð1Þð1Þ þ σð2Þð2ÞÞ
�
eμð1Þ;μ −

að1Þ
3

�
− ð2σð2Þð2Þ þ σð1Þð1ÞÞ

�
eð2Þβ;μe

μ
ð2Þe

β
ð1Þ −

að1Þ
3

�
¼ 8πqð1Þ; ðA5Þ

1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p
�
2G
A

Θ;t þ 2AΘ;θ

�
þ að2Þσð2Þð2Þ þ Ω;μe

μ
ð1Þ þΩðeμð1Þ;μ þ eμð2Þe

β
ð1Þe

ð2Þ
β;μÞ þΩað1Þ − σð2Þð2Þ;μe

μ
ð2Þ

þ ð2σð1Þð1Þ þ σð2Þð2ÞÞ
�
eð2Þβ;μe

β
ð1Þe

μ
ð1Þ þ

að2Þ
3

�
− ð2σð2Þð2Þ þ σð1Þð1ÞÞ

�
eμð2Þ;μ −

að2Þ
3

�
¼ 8πqð2Þ: ðA6Þ

Finally, from the Bianchi identities, the following two equations describing the evolution of the magnetic part of the Weyl
tensor, are obtained (Eqs. (B17, B18) in [2]).

− 2að2ÞEð1Þð1Þ þ 2að1ÞEð2Þð1Þ − Eδ
2;δe

2
ð2Þ −

AYI;θ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þG2

p þ YIII;r

B

−
�
1

3
ð2YI þ YIIÞeð1Þβ;δ þ

1

3
ð2YII þ YIÞeνð1Þeð2Þν;δe

ð2Þ
β þ YIIIðeð2Þν;δe

ν
ð1Þe

ð1Þ
β þ eð2Þβ;δÞ

�
ϵγδβeð3Þγ

þHð3Þð1Þ;δVδ þHð3Þð1ÞðΘþ σð2Þð2Þ − σð1Þð1ÞÞ þΩHð2Þð3Þ ¼ −
4π

3
μ;θe2ð2Þ þ 12πΩqð1Þ þ

4πqð2Þ
3

ð3σð1Þð1Þ þ ΘÞ; ðA7Þ

EARLIEST STAGES OF THE NONEQUILIBRIUM IN … PHYSICAL REVIEW D 94, 064072 (2016)

064072-11



2að1ÞEð2Þð2Þ − 2að2ÞEð2Þð1Þ þ Eδ
β;δe

β
ð1Þ þ

YII;r

3B
−

AYIII;θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p

−
�
−
1

3
ð2YI þ YIIÞeð2Þν;δe

ν
ð1Þe

ð1Þ
β þ 1

3
ð2YII þ YIÞeð2Þβ;δ þ YIIIðeð1Þβ;δ − eνð1Þe

ð2Þ
β eð2Þν;δÞ

�
ϵγδβeð3Þγ

þHð2Þð3Þ;δVδ þHð2Þð3ÞðΘþ σð1Þð1Þ − σð2Þð2ÞÞ −ΩHð1Þð3Þ ¼
4π

3
μ;βe

β
ð1Þ −

4πqð1Þ
3

ð3σð2Þð2Þ þ ΘÞ þ 12πΩqð2Þ: ðA8Þ
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