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We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity
theories, in which modifications of the gravitational dynamics via-d-vis standard general relativity are
described by an effective contribution to the matter energy-momentum tensor. Our results include the
possibility of a variable coupling between the matter sector and the gravitational field and are valid for a
large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff
equations are expressed in terms of the effective mass, density, and pressure, given by the bare values plus
additional contributions from the total energy-momentum tensor, and general theoretical limits for the
maximum and minimum mass-radius ratios are explicitly obtained. As applications of the formalism
developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories
with self-interacting scalar field potentials, and charged compact objects, respectively. For Higgs-type
models, we find that these bounds can be expressed in terms of the value of the potential at the surface of
the compact object. Minimizing the energy with respect to the radius, we obtain explicit upper and lower
bounds on the mass, which admits a Chandrasekhar-type representation. For charged compact objects, we
consider the effects of the Poincaré stresses on the equilibrium structure and obtain bounds on the radial
and tangential stresses. As a possible astrophysical test of our results, we obtain the general bound on the
gravitational redshift for compact objects in extended gravity theories and explicitly compute the redshift
restrictions for objects with nonzero effective surface pressure. General implications of minimum mass
bounds for the gravitational stability of fundamental particles and for the existence of holographic duality

between bulk and boundary degrees of freedom are also considered.
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I. INTRODUCTION

General relativity (GR), given by Einstein’s field equa-
tions, is highly successful at describing gravitational
dynamics at the scale of the Solar System. It is a geometric
theory that establishes a beautiful relation between the
curvature of spacetime and the configuration of matter
fields, and a large number of astronomical observations, as
well as terrestrial experiments, have confirmed its predic-
tions in various scenarios. These include observations in
both the weak gravity regime present at the Solar System
level [1-3] and in the strong gravity regime that describes
gravitational wave emission from binary systems of spin-
ning compact objects, including black holes, as recently
detected by LIGO [4,5]. However, though fully consistent
with the predictions of GR for black holes with masses in
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the range 36" 3M, and 297 M [4.6], the LIGO results
also remain consistent with modified gravity models
(MOG) for smaller black holes with masses of order
M < 10M, [7], leaving a window for alternative gravity
theories [8]. Furthermore, several recent observations
suggest that GR may be unable to describe gravitational
phenomena at very large scales, comparable to the present-
day size of the Universe, motivating the study of MOG to
describe cosmological dynamics. In this paper, we inves-
tigate the implications of MOG theories for the formation
and properties of compact objects, observations of which
represent another key test of gravitational dynamics.

The two most serious challenges faced by canonical GR
are the apparent existence of dark energy and dark matter.
A large number of cosmological observations, obtained
initially from distant type la supernovae, have convincingly
shown that the Universe is currently undergoing late-time
accelerated expansion [9-13]. The “standard” explanation
for this is based on the assumption of the existence of a
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mysterious component, called dark energy, which is
responsible for the observed characteristics of late-time
evolution within GR [14,15]. In this scenario, a second
mysterious component of the Universe, called dark matter,
which was initially introduced to explain the flat rotation
curves of galaxies, as well as the virial mass discrepancy at
the galaxy cluster level, is also required [16,17].

Usually, dark matter is assumed to be nonbaryonic and
nonrelativistic, and can be detected only through its
gravitational interactions at the scale of galaxies or clusters,
or by observations of the motion of massive hydrogen
clouds [18]. However, the particle nature of dark matter
remains unknown. Among the most plausible candidates
are weakly interacting massive particles (WIMPs), whose
presumed properties place them beyond the standard model
of particle physics [19]. Due to their massive nature,
WIMPS are slow-moving and therefore represent a particle
candidate for “cold dark matter” (CDM).

In the simplest model able to account for the current
observational data, the so-called cosmological concordance
or ACDM model, dark energy takes the form of a
cosmological constant, whose experimental value is deter-
mined as A =3 x 107 cm™2 [20-24]. Recent evidence
obtained from galaxy survey data suggests that GR, in the
presence of a cosmological constant, is able to explain
redshift-space distortions up to z ~ 1.4, when the Universe
was approximately 9 billion years old [25]. This represents
one of the most stringent tests of GR yet performed, but still
leaves room for non-ACDM cosmologies at earlier times.
In particular, recent results also suggest that a model with
time-varying vacuum energy gives a better fit to existing
data than standard concordance cosmology [26-29], again
motivating the study of MOG.

Thus, an interesting alternative model of the Universe,
able to explain both the galaxy rotation curves and the
late-time accelerated expansion, contains a mixture of cold
dark matter and “quintessence,” represented by a slowly
varying, spatially inhomogeneous energy density [30].
From a particle physics viewpoint, quintessence can be
implemented by assuming the existence of a scalar field Q
with a self-interaction potential V(Q). When the potential
energy density of the quintessence field is greater than its
kinetic energy density, the pressure p = Q%/2 —V(Q)
associated with the quintessence Q-field becomes nega-
tive, driving cosmological expansion. The properties of
quintessential cosmological models have been extensively
studied in the literature (for a recent review, see [31]).
The existence of a scalar field ¢, minimally coupled to
gravity via a negative kinetic energy, may also explain the
recent acceleration of the Universe, since this gives rise
to an effective equation of state, wpgpppc®> = ppg, With
wpg < —1. Here, ppg denotes the mass density of the field
and ppg denotes the effective pressure. Such fields, known
as phantom fields, were proposed in [32].
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Hence, scalar fields, either real or complex, may play a
fundamental role in the physical processes describing the
evolution of our Universe. If so, the possibility that scalar
fields can condense to form massive astrophysical objects
can not be rejected a priori. Such objects, called boson
stars, may arise as solitonic solutions in canonical GR, in
which gravity is minimally coupled to a massive, free,
complex scalar field [33,34]. Generally, solitons are math-
ematical solutions of strongly nonlinear evolution equa-
tions describing localized (particlelike) objects with finite
energy. Thus, they may be interpreted physically as the
“particles” of the theory under consideration. Nonetheless,
it is important to note that, in many ways, solitons differ
greatly from the elementary particles of quantum field
theories. In particular, they are either dynamical in nature or
have a nontrivial topological structure, which is responsible
for their stability [35].

For free fields, the properties of boson stars are described
by only two parameters (or scales): Newton’s constant G,
which may be expressed equivalently in terms of the Planck
mass or length,

[hc IhG
mp = E Iy = ? (1)

respectively, and the scalar field mass m, which may be
expressed equivalently in terms of the Compton wave-
length [36]

i _ Ipympy

/Ic - (2)

mc m

The maximum mass of a boson star is inversely propor-
tional to the mass of the field, so that the smaller the scalar
field mass, the larger the maximum mass of the star. By
including a quartic self-interaction potential, the maximum
mass of a boson star can be significantly increased,
reaching (or even exceeding), the order of magnitude
values for neutron stars [36,37]. The inclusion of the
rotation further increases the upper mass limit [38]. In
addition, under certain conditions, matter inside compact
general relativistic objects can also form a Bose-Einstein
condensate (BEC). This possibility has been intensively
investigated in the literature (see [39] for a detailed
discussion of the condensation processes in astrophysics),
and the existence of stars with majority matter content in
the form of a BEC cannot be excluded by present
observations [40,41]. The matter inside a BEC star obeys
a polytropic equation of state with polytropic index n = 1,
and stringlike objects composed of polytropic BEC matter,
which resemble dark matter filaments, may also have
formed in the early Universe [42].

For a class of self-gravitating matter models, with
spherically symmetric field configurations, general scaling
arguments were developed in [43,44] and applied to both
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the Einstein-Yang-Mills system and the Einstein sigma
model. In these scenarios, the Schwarzschild mass can be
expressed as a nonlocal functional of the matter variables
only. Furthermore, the behavior of this functional with
respect to the scaling transformations yields important
physical information about the system. For example, by
using scaling properties, one can exclude particlelike
solutions in some cases, whereas, for other models, one
can obtain virial relations that include gravitational effects.

In general, a key parameter used to distinguish between
different types of compact astrophysical objects, such as
white dwarfs, neutron stars, and black holes, as well as in
determining the outcome of many astrophysical processes,
including supernova explosions and the merger of binaries,
is the maximum mass. The theoretical values of the
maximum mass and radius of a white dwarf/neutron star
were derived by Chandrasekhar and Landau, respectively,
and are given by [45]

3 2
m n(m
~ Pl ~ Pl
Mpax ®—5 Ropax ® , (3)
my mc \ mg

where mp is the mass of the baryons, and m is either the
electron mass m, (for white dwarfs) or the neutron mass m,,
(for neutron stars). It is important to note that, in the case of
white dwarfs, even though the star is supported by electron
degeneracy pressure, most of the mass is in the form of
baryons. Thus, with the exception of composition-
dependent numerical factors, the maximum mass of a
degeneracy supported star depends only on fundamental
physical constants. For nonrotating neutron stars with finite
central density p., an upper bound of approximately 3M o,
where M, = 2 x 10** g is the solar mass, has been found
[46]. For quark stars, obeying a linear equation of state of
the form p = a(pc?® — py), where a and p, are constants,
the maximum mass and radius of the star have been
obtained as [47]

Mo 4 R8C3 1
"3 (a4 1)2G /7Gpy
R
Ry = ———2 (4)

Vr(a+1)Gpy

where Ry~ (0.474. In fact, one of the most fundamental
results in GR-based theoretical astrophysics is the existence
of a universal maximum mass-radius ratio for a compact
spherically symmetric object, proved by Buchdahl [48]:

2GM 8
<-.
¢2R —9

(5)

This bound has been generalized to account for compact
objects in Schwarzschild—de Sitter geometry [49], for
charged compact objects [50], and for fluid spheres with
anisotropic pressures [51]. Comparing the quark star
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limits (4) with the universal bound (5), we see that
R2/(a+ 1) < 1/3. Alternative bounds on the mass-radius
ratio for both neutral and charged objects, in the presence
of dark energy in the form of a cosmological constant,
were obtained in [52-55] and [56,57], respectively.
Buchdahl-type inequalities in D-dimensional spacetimes
were derived in [58], for standard GR, and in [59] for five-
dimensional Gauss-Bonnet gravity. The generalization of
the Buchdahl limit for f(R) gravity theories was obtained
in [60]. In such theories, extra-massive stable stars can
exist, with surface redshifts larger than 2. Since this
represents the maximum possible surface redshift for a
stable compact object in GR, this result may provide an
observational test for the validity of f(R)-type generalized
gravity models. In [61] it was pointed out that the
compactness limit of a dense star is also marked by the
gravitational field energy exterior to the star being less
than half its gravitational mass.

A lower bound on the total mass of a static, spherically
symmetric (Schwarzschild) black hole, M < k. A/4x, where
A and « denote the area and surface gravity of the horizon,
respectively, was derived in [62], under the requirement
that matter fields obey the dominant energy condition. By
applying this result to scalar fields, one can recover the
well-known result that the only black hole solution of the
spherically symmetric Einstein-Higgs model, with arbitrary
non-negative potential, is the Schwarzschild spacetime with
constant Higgs field. A stronger bound for the total mass
of a Reissner-Nordstrom-type black hole, involving the
electromagnetic potentials and charges, was also obtained.
These estimates provide a simple but powerful tool to prove
a “no-hair” theorem for matter fields violating the strong
energy condition.

In the cosmological concordance model, the equation of
state for dark energy is pyc? = —p,, where p,c? and py
denote the energy density and effective pressure associated
with the cosmological constant A. This has important
theoretical implications in cosmology and astrophysics,
which have been studied intensively in the literature,
though its possible effects on the microscopic structure
of matter have been less thoroughly investigated. In [63] it
was shown that, in the framework of the classical GR, the
presence of a positive cosmological constant implies the
existence of a minimal mass and of a minimal density in
nature, such that

M Ac?

2GM A B o
T 12R =P S TenG

2 6

(6)

P

These results rigorously follow from the generalized
Buchdahl inequality in the presence of dark energy,
described by A > 0. The astrophysical and cosmological
implications of the existence of a minimum density and
mass due to the presence of the cosmological constant
were considered in [64], where a representation of the
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cosmological constant in terms of “classical” fundamental
constants was also obtained:

n2G*mbc®
xS (7)

Equation (7) closely resembles a remarkably prescient
result originally obtained by Zel’dovich [65-67]. It was
first noticed as a numerical coincidence in [68] and has
been “derived” using minimum length uncertainty relations
(MLURs) [69,70], motivated by phenomenological quan-
tum gravity, in [71], and by analogy with the Kinchin
axioms in information theory in [72,73]. In Sec. VI we
investigate alternative ways of obtaining this correspon-
dence, including those based on the pioneering work on
quantum gravity by Bronstein [74], applied to minimum
mass constraints obtained for a Universe containing dark
energy [75].

The bound (6) was generalized for anisotropic objects in
[51], and for charged objects in [76], where it was shown
that, for charged fluid spheres with anisotropic internal
pressures, in the presence of a positive cosmological
constant A > 0, the inequalities

2GM _ A 30?
>_—R3I4 =,

2 26N IR
2N 90?

> =
) 216G T8 RT

(8)

hold in canonical GR, where (p) is the average density. The
generalized Buchdahl inequalities in arbitrary spacetime
dimensions with A # 0 were obtained in [75], by consid-
ering both the de Sitter and anti—de Sitter cases. The Jeans
instability of barotropic dark energy was also investigated
in the framework of a simple d-dimensional Newtonian
model, both with and without viscous dissipation. The
dispersion relation describing the dark energy—matter con-
densation process was determined, along with estimates of
the corresponding Jeans mass (and radius). The minimum
and maximum mass-radius ratios of a stable, charged,
spherically symmetric compact object in a D-dimensional
spacetime, in the framework of canonical GR in the
presence of dark energy, were obtained in [71]. By
combining the lower bound on the density, in four
spacetime dimensions, with “cubic” MLURs, the limit
(168) was obtained as an upper bound on the charge-mass
ratio of any stable, gravitating, charged quantum mechani-
cal object. In addition, the general minimum charge-mass
relation was found to preserve holography between bulk
and boundary degrees of freedom in arbitrary dimensions
[71]. These results suggest the existence of a deep con-
nection among gravity, the existence of the dark energy, the
stability of fundamental particles, and holography.

In order to explain the observed present-day acceleration
of the Universe, alternatives to “particle physics” models of
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dark energy have also been proposed. In such (MOG)
theories, dark energy is not represented by a specific
physical field but, instead, is induced on cosmological
scales by intrinsic modifications of the gravitational inter-
action. Hence, in this case, one can assume that, at large
astrophysical and cosmological scales, standard GR is
unable to describe the dynamical evolution of the
Universe. Many types of modified gravity theory have
been proposed in the literature. Some important general
classes are f(R) gravity, in which the gravitational action
is an arbitrary function of the Ricci scalar R [77-80];
f(R,L,,) gravity, in which it is an arbitrary function of the
Ricci scalar and the matter Lagrangian L, [81-84]; and
f(R, T) gravity theories, in which T denotes the trace of the
matter energy-momentum tensor 7+ [85,86]; the Weyl-
Cartan-Weitzenbock (WCW) model [87]; hybrid metric-
Palatini f(R,R) gravity theories, where R is the Ricci
scalar formed from a metric-independent connection
[88,89]; f(R.T.R, T")-type models, where R,, is the
Ricci tensor [90]; Eddington-inspired Born-Infeld theory
[91]; and (T, T) gravity, in which a coupling between the
torsion scalar 7 and the trace of the matter energy-
momentum tensor is assumed [92]. For a recent review
of the generalized gravity theories with nonminimal cur-
vature-matter coupling, of f(R, L,,) and f(R, T) types, see
[93]. For a review of hybrid metric-Palatini gravity, see
[94]. Current bounds on modified gravity from binary
pulsar and cosmological observations were discussed in
[95], where the potential of future gravitational wave
measurements to test the behavior of gravity in the
strong-field regime was also emphasized.

Modified gravity models are important because (in
principle), they are able to provide a unified theoretical
framework for understanding both the late-time acceler-
ation of the Universe and the apparent effects of dark
matter. In this scenario, dark matter, like dark energy, is not
the represented by a physical particle or matter field, but by
a fundamental modification of the gravitational interaction.

It is the goal of the present paper to obtain the upper
and lower limits for the fundamental physical parameters
(mass-radius ratio, maximum and minimum mass, and
surface redshift) describing the gravitational structure of
compact objects in a large class of extended gravitational
theories. In particular, we consider theories in which
modifications of the canonical gravitational dynamics
can be described in terms of an effective contribution to
the matter energy-momentum tensor. This extra contribu-
tion can be of geometric origin or due to the presence of a
“real” physical field, such as, for example, a scalar field or
the electromagnetic field generated by the presence of
charge. Moreover, to ensure our results hold as generally as
possible, we include the possibility of a variable coupling
between matter and the gravitational field. We derive the
generalized continuity and Tolman-Oppenheimer-Volkoff
(TOV) equations in terms of the effective mass, density, and
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pressure, given by the sum of the “bare” values, corre-
sponding to the matter sector, and the additional contribu-
tions from the total energy-momentum tensor. In [96] a
stellar structure formalism was constructed, without
adhering to any particular theory of gravity, and which
describes in a simple parametrized form the departure from
general relativistic compact stars. This post-TOV formal-
ism is inspired by the parametrized post-Newtonian theory,
extended to second post-Newtonian order by adding
suitable correction terms to the fully relativistic TOV
equations. The post-TOV formalism was extended to deal
with the stellar exterior in [97], where several potential
astrophysical observables were also computed, including
the surface redshift, the apparent radius, the Eddington
luminosity at infinity, and the orbital frequencies,
respectively.

General limits for the maximum and minimum possible
mass-radius ratios for gravitationally stable, compact
objects are explicitly obtained. As an application of the
formalism developed, we consider the case of compact
bosonic objects, described by scalar-tensor gravitational
theories with self-interacting scalar field potentials, and
compact charged objects, respectively. For the self-
interaction potential we adopt a Higgs-type expression,
with quadratic and quartic terms in the scalar field, and we
derive the maximum and minimum mass bounds in terms
of its surface value. Hence, we propose an expression for
the minimum mass of a gravitationally stable particle,
which takes a form analogous to the Chandrasekhar mass
for white dwarfs/neutron stars. In the case of charged
compact objects, we also consider the effects of the
Poincaré stresses on the equilibrium structure and obtain
bounds on the radial and tangential stresses. As a possible
astrophysical test of our results, we present the general
bound on the gravitational redshift for compact objects in
extended gravity theories, which may be of use in the
observational detection of deviations from standard GR.
The redshift restrictions for objects with nonzero effective
surface pressure are explicitly obtained.

This paper is organized as follows. In Sec. II, we derive
the TOV equation for general extended gravity models,
with variable gravitational coupling. The maximum and
minimum mass limits for this class of theories are obtained
in Sec. Il and the mass limits for scalar-tensor-type
modifications of standard GR are discussed in detail in
Sec. IV, in which the scalar field is assumed to be minimally
coupled to gravity. The mass limits for compact charged
objects are considered in Sec. V, where limits on the
Poincaré stresses are derived. Applications of minimum
mass limits to the case of microscopic objects (i.e.,
fundamental particles) are considered in Sec. VIL
Finally, a brief summary and discussion of our results,
including a discussion of the surface redshift as a test of
generalized gravity theories, and prospects for future work,
are presented in Sec. VI

PHYSICAL REVIEW D 94, 064070 (2016)

II. TOLMAN-OPPENHEIMER-VOLKOFF
EQUATION IN GENERALIZED
GRAVITY THEORIES

In the following analysis, we investigate the mass bounds
for compact objects in extended gravitational theories. As a
first step in our study, we adopt the following representa-
tion for the total energy-momentum tensor of the general
modified gravity model:

T;(ltl?t> = T[<llll/l) + aﬂya (9)

where

T}(III?) - (pCZ + p)uﬂuv - pg/w’ (10)

is the energy-momentum tensor of ordinary matter, whose
thermodynamic properties are determined by the mass
density p and thermodynamic pressure p. The four-velocity
of the matter fluid u, is normalized so that u,u* = 1. The
tensor 6, describes the geometric or physical properties of
any additional term that may arise due to the presence of
extra interactions, such as those generated by the presence
of charge, or other “physical” fields, or because of the
extension of the gravitational model.

In many theoretical extensions of canonical GR, the
gravitational coupling is time, space, or energy dependent.
We therefore allow for the possibility of a varying, or
effective, gravitational coupling G, which is assumed to
have the general form

Go

G = 2,
eff G

(11)
where G, is the present-day gravitational “constant” and G
is a function of the spacetime coordinates. Hence, we
investigate a general class of gravitational theories in which
the gravitational field equations can be written in the form

R/u/__Rg;w - C4 G i

1 872Gy [1 _(m)
_ T,
aton =

+ a,w] . (12)

Equivalent scalar-tensor formulations of the type
described by Eq. (12) can be obtained for several modified
gravity theories. For the case of the f(R) gravity, the field
equations are given by [78,93]

1 Gy .(m
Ry =5 9k = sﬂ?(’T,SJ +6,, (13)
where
1 1
eyv == 5 V(¢)gﬂl/ + E (vﬂvv - gﬂI/D)¢’ (14)
with the scalar field satisfying the Klein-Gordon
equation
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3006 + 2V(9) — gb— = 82GT™ (15)

dg

In the scalar-tensor representation, the field equations of
the f(R) gravity theory can be obtained from a Brans-
Dicke-type gravitational action, with parameter @ = 0,
given by

- 161:G / [#R = V($) + L,]y/=gd*x,  (16)

where V(¢) is the self-interaction potential of the scalar
field. The f(R,L,,) theory with linear curvature matter
coupling can be reformulated as a scalar-tensor theory,
which can be derived from the action [94]

s [dxmE-vi +uwiL,). )

where
Vi) = POBWL=100) g
Uly) = 1+ 1f2[¢(y)], (19)

with f; and f, arbitrary functions, and 1 a coupling
constant. The so-called hybrid metric-Palatini theory
[88,94] belongs to the class of the algebraic family of
scalar-tensor theories and can be derived from the action

0,9 =V (@) | +Su.

(20)

d*x\/=g {(QA+¢)R+ %

where O, is a constant. The corresponding gravitational
and scalar field equations are given by

(Oa + )G, = T + V,V,0V, Vg,
55 VY VitV b
—%Vg,m (21)
09t Lo gg s PRV UV 02,
20 * 3 3

(22)

In all these gravitational theories the total energy-
momentum tensor satisfies the conservation equation

v, [é T 4 95] =0, (23)
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which is a direct consequence of the gravitational field
equation (12).

A. The Tolman-Oppenheimer-Volkoff equation

In the following, we assume a static, spherically sym-
metric spacetime geometry, in which the interior metric
inside a massive fluid sphere takes the standard form
ds*> = e*"d(ct)? — ' dr? — r?(d6? + sin’0d¢?), (24)
where v and 1 are functions of the radial coordinate
r, and the coordinate domains are 0 <r < oo,
0<0<r and 0 < ¢ <2z In the comoving reference

frame with u* = (¢*/2,0,0,0), the components of the

matter energy-momentum tensor are given by T£m>” =

diag(ch, —pP,— D, _p)
For the metric given by Eq. (24), the gravitational field
equations become [98]

1d, . 1 86,
“pa e

(G +90> (25)

(V1 1 872G, p
—e l(7+p)+ﬁz C4 <—5+9%>, (26)

871G p 872G, p
- 640(—G+9§): c4°<—G+9§>, (27)

where a prime denotes the derivative with respect to the
radial coordinate r. In the following we will restrict our
attention to isotropic models. We therefore require that the
tensor ¢ satisfies the condition 63 = 63, and the gravita-
tional coupling function G is assumed to be a function of
only the radial coordinate, so that G = G(r) in Eq. (11).

The conservation of the effective energy-momentum
tensor may be written as

1 m 1 m
<vﬂ 5) T EV”T,(, Hyv,0i =0, (28)

or, equivalently,

I\ my , 1[0 mp , 0 (m)
V7 | g g™ Lk
( ”G) +G[axﬂnv I

@ rmap| 4 7 g /=g —
20 }+8x”n 9o + xel;
_ 1994 o

o 07 =0, (29)

For a static, spherically symmetric system, Eq. (29) gives
the condition
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g +i _l( 2_|_ )’_ / +d_€%
GP TG | TR TP Ty,
Lo vy L 200
+§(91 —Op)v +;(91 —-6;) =0, (30)

from which we immediately obtain

o dE-o)-tel-e

N TR

Equation (25) can be integrated immediately to give

_ 2Gome(r)

ctr

eHr)=1 (32)

where

Megr(7) = 477:/r {p(ﬂ) —|—@} r2dr. (33)
0
Equation (26) yields

. 2Gy E(&—01)r + mey ”
v= 7 2[1 _ 2GOmeff] ’ ( )
c2r

which, together with Eq. (31), gives the generalized
TOV equation for modified gravity theories with space-
dependent gravitational coupling as

d(p 1
5(5‘@

G+ R+ E-0DEE (G- 0D + me]

2

c2 P2 [1 _ ZGCE)zn;leff]
2 1 2
ot-6) 3

Equation (35) can be formulated in a compact form if we
introduce the effective energy density perc> and the
effective pressure p.g, defined as
|

PHYSICAL REVIEW D 94, 064070 (2016)

2
pc 0 p

=—+0, =——
Petf G

G 0. (36)

2
Peff€

The TOV equation can then be reformulated in terms of
the effective quantities in the form

dpesr Gy (Pett€® + Peir) (& et + merr)
dr 2 r2[1 _ Z(igz'ferr]
2

r

(01 = 63). (37)
while / can be expressed as

4z 3
_ 2Gy 2 Pett?” + Mg
C2 72[1 _ 2G?7meff]
C

/

4z 3
_ 2Gy 3 Pefi?” + Megr

2

C rze_l (38)

For the effective mass, we obtain the continuity equation

dmege

dr = Anpegr?. (39)

Finally, subtracting Egs. (25) and (26) gives the important
relation

87Gy (petc® + Pest)r
- -
C

e~

VA - 0. (40)

III. THE BUCHDAHL AND MINIMUM MASS
LIMITS FOR COMPACT OBJECTS IN
EXTENDED GRAVITATIONAL THEORIES

By multiplying Eq. (38) with e*/>**/2/r we obtain the
equation

1d Gy (4n -
eﬂ/Z;Eeu/Z _ ? (? Pett + r_‘;“) el//2+/1/2‘ (41)

Taking the derivative of the above equation, we then have

d 1d G 4n d dm Mg\ V + A
(i) = e [ g (a7 5
Go dm £f vV + N 477.'G0 (p fsz + P ff)r 47 Mg 8
— 0 ujata2 | 4 M _ e e i eff | _ 1 _ g2
2 ¢ [a’r 3 T 3 B e o2 Peit T3 czr(el 03)|. (42)

Hence, with the use of Eq. (40), and by denoting y(r) = e

the following identity:

yd [Xﬁ] _¢

rdr |rdr r

d meff(r)

—HN2 g(r) = /2 and A = (Gy/c*)(65 — 0}), we obtain

: %] . (43)

r r
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The function ¢ satisfies the condition ¢ = ¢/2 >0,
Vr e [0,R], where R is the vacuum boundary of the
compact object. In the following, we assume that inside
a compact object, the condition

d mes(r)
PP <0, (44)
representing a monotonic decrease in mass density as a
function of radial distance, holds independently of both the
gravitational theory and the equation of state governing
the matter. Beginning with Eqgs. (43) and (44), we can now
derive the maximum and minimum mass limits for
compact objects in generalized gravity theories. In the
following analysis, we rescale the effective mass so that
Gomege/c* = my, for the sake of notational simplicity.

A. The Buchdahl limit

We start our derivation of the maximum mass limit by
defining the new function

n(r) = 8x A ry(';i,) { A ’ i((:,/,/)) C(r’:,”) dr”}dr’. (45)

Next, denoting

\I/:é_”v (46)

and introducing the new independent variable

°= /0 y(r') ar 47)

we obtain the condition

v
d—éz < 0, Vr (S [0, R}, (48)

from Eq. (43). This is a fundamental result that holds for all
compact objects in generalized gravity theories. Using the
mean value theorem, it follows that [99]

4V _ ()~ ¥(0)
&= E 3

r A(r/)ey(r’)/Z
) =S

PHYSICAL REVIEW D 94, 064070 (2016)

and, by taking into account that U(0) > 0, we obtain the
inequality

< (50)

ﬁ:\%
ml»—

In terms of our original variables, Eq. (48) may be written as

1 r A(F)e!()/2
yr )( dye” 2 87:%/ 4(r)e dr’)

r \2dr y(r y(r') /
v(r)/2 _ 8 j‘r r (f 7 A(r)e //)d /
¢ 7 Jo 507y \Jo 507 r
< () 3 - y(r ‘ (51)
0 y(r’)

Since, according to our basic assumption for stable
compact objects (44), mqg/r* does not increase outwards,
it follows that the condition

Mege (') Mege (r) L’ : /
p > . o) A (52)

is satisfied at all points inside the compact object [99].
We also assume that the function A(r) >0, Vr € [0, R],
describing the effects of modified gravity inside the
compact object, satisfies the condition

A(r)e > A(r)e@
7 7 r
V' <r <r. (53)

s

Physically, this condition means that A is a monotonically
decreasing function of the radial coordinate r. Therefore,
we can evaluate the denominator in the right-hand side of
Eq. (51) as follows:

/ s / |1 2 2|
0 )7(”) 0 r

:2meff(r)(l_y(r>)’ (54)

The second term in the bracket of the left-hand side of
Eq. (51) can be estimated as follows:

s A(r)e"(r)/z /r {1 ~ 2meg (r) r/z] —1/2dr/
r 0 r

3

2meg(r)

_ A(r)ew)/z{

. ]_1/2 arcsin( W) (55)
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PHYSICAL REVIEW D 94, 064070 (2016)

For the second term in the numerator of the right-hand side of Eq. (51), we find

/r r/ /r’ A(r”)el/(r”)/2 J M J s /r n A(r’)ey(y(r/>r/)/2
r r r
0 y<r/) 0 y(r//)r// - 0 r/

r

Dy ()] 112 2t (7
[ meif,(r )} arcsin( 7me}{f,( )>dr’
> 7A(r)e”(’)/2 /r r? [1 - Zmefgf(r) r?/ 2mef3f(r) I”/Z] o arcsin [ _Zmeg(r_)r/] dr
0 r r r
-3/2 2 2
} { 2mes(r) _ y(r) arcsin[ 7’"6&(}’)} } (56)
r r

_ A(r)ey(r)/zrz Zmeff(r>
r

Note that, in order to obtain Eq. (56), we have also used the monotonic increase property of the function arcsin(x)/x for

x € [0, 1]. Using Egs. (54)—(56), Eq. (51) becomes

. 2meii (1)
2 (1) arcsin| /4]

{1—[1—2md&ﬁ}uz}n%ﬁ0)+4ﬂﬁpﬁdﬁ

r 3,/1 = 2meg (1)

r

r

Equation (57) is valid for all points inside the compact
object and does not depend on the sign of A.

As a simple consistency check, we consider first the case
A =0 and p.s = p. By evaluating (57) for r = R, denot-
ing the total mass of the star by M, and assuming that the
pressure vanishes at the star’s surface, p(R) = 0, we obtain

i -2—M>T. (58)

#32[1_<
|12 R
R

From the above condition, we immediately obtain the well-
known result for canonical GR, the Buchdahl inequality (5)
[77,99]. By introducing the mean density of the compact
object as (pes) (r) = meg(r)/r?, and denoting

A(r) arcsin[ M}
r)=4 -1, 59
f( ) <peff>(r) 2 (1) ( )
and
Peft (60)

") = ) ()

respectively, we obtain the generalized Buchdahl inequality
for extended gravitational theories as

2me;f(r) <1- [1 (61)

2(1+£(r) 172
+1+47rweff(r)] '

For f =0 and w. = 0, we again recover the standard
Buchdahl inequality for GR from the above relation.

IA

+ 87A(r) —1%. (57)

3
r 2mer (1)
r

B. The minimum mass of a compact object
in extended gravity theories

On the vacuum boundary of the compact object, defined
by the condition r = R, Eq. (57) takes the equivalent form

_ 2mesi(R)

21+ fR) 1™
2 .

1
1 + 4ﬂweff (R)

> {1 1 (62)

For small values of the argument x, the function
arcsin(x)/x — 1, which appears in the definition of f, can
be approximated as arcsin(x)/x — 1 ~ x?/6. Moreover,
we denote the total mass of the compact object as
me(R) = M. Hence, at the vacuum boundary of the
compact objects, we can approximate the function f as

FR) ~ %‘;;A(R)RZ. (63)

Therefore, Eq. (62) can be written as

[ _ 2Merr 3(Meit + 4npeieR’) (64)
R T 12zpesR® + My(9 + 87A(R)R?)

By introducing a new variable u = M /R > 0 and by
denoting

a = 4xpy(R)R?, b =9+ 8zR*A(R), (65)

Eq. (64) takes the form

"3, > Jw+a)

, 66
~ bu+3a (66)

which may be rewritten as
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ul6a(3a — b +3) + u(12ab — b*> +9) + 2b*u*] < 0,

(67)

or, equivalently,

(u—uy)(u—uy) <0, (68)
where
—12ab+b* -9+ (b—3)\/24ab+ (b + 3)2
Ujr = .
1.2 4b2

(69)

In order for the inequality (68) to hold, the conditions
u>u, u<uy,, or u<u;, u>u, must be satisfied
simultaneously. These conditions imply the existence of
a minimum mass-radius ratio for any compact object in
modified gravity theory, if p.;(R) #0 or pey #0 and
A # 0. In the first order approximation, we obtain

4 87R> 7
uy ~ (——9> n < ” —|——ﬂR2a>A, (70)

9 6 81 27
1+1 R2A (71)
Uy & | — =+ =
2 > 37f a,
so that
M
u S I;ff S up. (72)

By assuming that the total effective pressure vanishes at
the surface of the compact object, it follows that a = 0, and
we obtain the condition

2b%u—b*+9 <0, (73)

or, equivalently, u < (b> —9)/2b%. This result shows that
the presence of a nonzero anisotropic pressure distribution
at the surface of the compact object does not impose a
lower bound on the mass-radius ratio.

Assuming, instead, that the parameter A, describing the
“direct” effects of the extended gravity theory, vanishes on
the surface of the compact object [A(R) = 0], we obtain
b =9, so that

F(u)=9u*+23B3a—-2)u+(a—2)a<0. (74)

The algebraic equation F(u) =0 has the nontrivial
roots

PHYSICAL REVIEW D 94, 064070 (2016)
1 3
u1:§<2—3a—2 1+5a),

1 3
M2:E<2—3a+2 1"’561)

By assuming that 3a/2 < 1, we can approximate the roots
u; and u, by

1 1 3a
uj :—za, M2—§<4—7>, (75)

allowing us to reformulate the condition (74) as

) fo-b(e-2)] <0 0o

By also assuming that the mass-radius ratio of the compact
objects satisfies the constraint

us$<4—37“), (77)

which, for a = 0, reduces to the standard Buchdahl limit
(5), it follows that the second term in the condition (77) is
always negative. Therefore, in order for this condition to be
satisfied, the first term must be positive. Hence, we obtain
the following bound for the minimum possible mass of a
compact object in alternative gravity theories,

1

Since, for realistic physical objects, # must be a positive
quantity, it follows that such a minimum mass exists only if
a < 0 or pe(R) < 0. We therefore obtain the final lower

bound for the mass-radius ratio M'T" /R for a massive
compact object in extended gravity theories as

(min)

% > 27| pes | R (79)

It is interesting to note, here, that the existence of a minimum
mass-radius ratio is the direct consequence of the presence
of a dominant negative pressure on the objects’ vacuum
boundary. On the other hand, by assuming that a is small
and can be neglected, Eq. (77) gives the restriction
M;/R S4/9 = 0.444, the standard Buchdahl limit from
canonical GR (5). A small value of a, for example
a = —0.20, gives the upper limit M.;/R < 0.4777, which
shows that the presence of negative pressure can signifi-
cantly increase the maximum mass-radius ratio of compact
objects in generalized gravity theories, as compared to their
general relativistic counterparts.
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When the external pressure and density satisfy the
conditions p(r > R) <0 and peg(r > R) = wpe,
respectively, where w = const, for example, for a space-
time filled with dark energy with negative energy density,
such as a negative cosmological constant A < 0, the bulk
spacetime is an asymptotically deformed anti—de Sitter
(AdS) space. From the viewpoint of holographic duality,
the reduction of the maximum mass-radius ratio for
positive a (i.e., for negative w and negligible A) implies
a lower (higher) deconfinement phase transition temper-
ature of the dual gauge matter living on the boundary for

R > (<)+/3/A, with A = 87Gp,s/c?. It is therefore inter-
esting to explore the physical interpretations of p.y and w
from the viewpoint of the dual gauge theory.

For sufficiently large A > 0, the maximum mass-radius
ratio given by Eq. (70) will increase if

N — (80)
27R*(8 + 21a)
Again, for R > (<)+/3/A, this corresponds to an increase
(decrease) in the phase transition temperature for the
deconfinement of the dual gauge matter on the boundary.
The anisotropic stress A can be thought of as a contribution
from the bulk “charge” and is proportional to the square of
the electric charge, O, in the electromagnetic case [71].
In the typical holographic duality “dictionary,” used to
“translate” between differing interpretations of physical
quantities in the bulk and boundary spacetimes, bulk charge
is dual to the number density of the gauge matter on the
boundary. This suggests that, in our model, v/A is also dual
to the number density of the boundary gauge matter.
The minimum mass-radius ratio can be interpreted as the
dual of the minimum density of the boundary gauge matter
before it vaporizes into a “hadron” gas phase [71]. Since A
is always non-negative, Eq. (71) implies that positive a
increases the minimum mass-radius ratio, which is dual to
the higher critical density for the liquid-gas phase transition
in the gauge theory picture.

IV. THE UPPER AND LOWER MASS LIMITS
FOR BOSONIC OBJECTS

In its simplest theoretical form, we can define a bosonic
object as a self-gravitating configuration of a complex
massive scalar field W, described by the Lagrangian [37]

s —/ ¢ Rl gweg
Bo = 872G, 2 *

m’ ) 1 4 4
—7\\IJ| +Z/1\\Il| v—gd'x, (81)

where m is the mass of the field and 1 is a constant. In order
for the gravitational field equations to admit a solution
under the condition of static, spherical symmetry, they must

PHYSICAL REVIEW D 94, 064070 (2016)

be satisfied by a time-harmonic scalar field ansatz of the
form

U(E) = y(r)e, (82)

where y(r) is a real-valued radial amplitude function and
o is the angular frequency eigenvalue of the bosonic object
[37]. Using this representation of the scalar field, explicit
boson star models can be constructed. It is interesting to
note that, because of the compact object’s self-gravity, the
ground state of the bosonic star is not a zero-energy state
[37]. For large values of the parameter A = Am3,/4xm?, the
boson star can be described by an effective equation of state
of the form [37]

4p0 3 p 1/2 2
=—||14+-— 11, 83
plp) == [( +4p0) (83)
where p, = m*/4A. Hence, in the following analysis, we

consider models of bosonic objects that can be constructed
from the general action

ct 1
— - R+- gy — —gd*
Sgo /( 8ﬂG0R+2V”WVW V(l//)+Lm)\/ gd*x,
(84)

where y is a real wave function, related to the complex
scalar wave function U through Eq. (82); V(y) is the
self-interaction potential of the scalar field; and L,, is
the Lagrangian density of the ordinary matter. Due to the
representation (82) of the complex scalar field, bosonic
objects corresponding to the action (84) can always exist,
since the existence of conserved Noether charge associated
with the U(1) symmetry stabilizes the field configuration.
From a physical point of view, in this approach, we neglect
the possible variation of the gravitational constant inside
compact general relativistic objects. Such an approximation
is justified since, according to present-day observations and
experiments, we expect that any significant changes in the
magnitude of the gravitational coupling should take place
over large time or distance intervals. Thus, such a variation
of G would have a minimal impact on the internal structure
of general relativistic stars.

In the following we will first adopt an approximate
description of the compact general relativistic bosonic
objects, in which we ignore the presence of the metric
potential ¢ in the expression of V(y), originating in the
harmonic time dependence contribution, V() ~ g"y>.
However, this is a reasonable approach, which should
work well as long as the metric tensor component
—g,, = e” is not very different from one, and it does not
have strong variations inside the compact object (which is
indeed the case for most boson stars).

Moreover, in Sec. IV C, bosonic configurations
described by the real scalar Higgs potential are also
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explored. Such Higgs-type configurations have finite
energy and can again be represented in the form
U(X,1) = w(X)e". The time-dependent part of the
Higgs field stabilizes the field configuration and, therefore,
such configurations can form stable compact objects.

A. Effective mass, density, and pressure for scalar
field models minimally coupled to gravity

The energy-momentum tensor for a scalar field mini-
mally coupled to gravity is

T = (pc® + puut = 8,p + V., yViy

s B Y,V vom} . (85)

In the static, spherically symmetric metric (24) the gravi-
tational field equations for the scalar field take the form

| 1 8zG 1
_e—ﬁ(z_)Jrz: 7240(pc2+2e_’11//’2+V>,

r r r
(86)
1 vV 1 87G 1
—e* (1’2 + 7) p = A 0 (—p - 6_21///2 + V) s
(87)
_le—/'l I/,/+U7/2+U/_/1/_ﬂ
2 2 r 2
87G 1
= 724 0 (—p + 5(3_’111/2 + V>. (88)

The variation of the action with respect to the scalar field
gives the Klein-Gordon equation as the EOM for v,

2 1
l//”+|: +_ l//—/l/:|l///:€l—. 89
W)W =S (89

r

Equation (86) can be rewritten as

—(re™) =1 7 |3

d 87[G0 I
dr

(mﬂWﬂ+@&+Wﬂ] (90)

By representing e~* as

2Gomeg (1)
_Ofeff’ (91)

cr

et =1

it follows that the effective mass of the scalar-tensor theory
can be obtained as a solution of the differential equation

PHYSICAL REVIEW D 94, 064070 (2016)

dmeff o 4ﬂ'GO
dr A

4 (1
Vl///zmeff + ? <§l///2 + ,06‘2 + V) r.
(92)

The general solution of Eq. (92) is

dr % s,
Megp (1) = C—;Te ,([-4[)[””/2‘1’{/ e ':AOfrv/’zdr

x [(%l//z—l-pcz—l— V> rz} dr}, (93)

where we have set the arbitrary integration constant equal
to zero. By denoting

g(r) = o e, % = —4724G0 ry?g,  (94)
we obtain
4

W= _4:G0rlgji' )

Thus, we can represent the effective mass as

4z et 1d 1

Megr () _?Q(V)/O {mpd—ﬂm
Pl 5V V} r2dr. (96)
g(r)
Equation (92) can be written as

di;:ff = dapegr?, (97)

where we have introduced the effective density defined as

B 1 ldg/’ ¢t 1d 1
V) — — —_—— —_— — —————
Pett 2 \r2dr )y |87Gy ¥ dr g(r)

PG4V oy, ¢ 1d T
g(r) 8nGy rdryg(r)
mw&+V}
+——>. 98
g(r) %)
For the effective pressure, we obtain
1
Pest(r) = p + Ee_ﬁll/z -V
C4 2G0m id 1 dg

=p- 1-— T)—=-V 99
p 871G, < ctr > rgdr (99)

while for the parameter A we have
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4 2 1
A(r) = elyp? = ——C <1— G°2’"eff> 1dg. (100)

471'G0 c°r rgdr

In the regions of spacetime where the spatial variation
of the scalar field potential can be neglected, so that
dV /dy ~ 0, multiplying the Klein-Gordon equation (89)
by y’, we obtain the differential equation

d 4
EW/2+ |:r+(l/—ﬂ/):|l///2 =0. (101)
The general solution of Eq. (101) is
\III
2= r—f e, (102)

where W is an arbitrary constant of integration. The
parameter A(r) then becomes

\Il/
A(r) =—e™.
%

(103)

B. Maximum and minimum masses
for bosonic objects

For minimally coupled, complex, massive scalar fields,
the maximum mass of a bosonic object has been found to
be of the order of the scalar field’s Compton wavelength
[33,36], being given by

2

GeV
M aBS% = aps x 107 x (7>M@, (104)

where apg is a numerical coefficient of the order of unity.
For scalar field masses of the order of those predicted by the
Standard Model of particle physics, the maximum mass is
very small and the corresponding objects are called mini
boson stars. Much higher mass values can be obtained
by including the self-interaction of the scalar field. For
spherically symmetric boson stars, in theories with quartic
self-interaction potentials, it was shown in [37] that the
maximum mass is of the order

GeV?2
MBS % 0.062,/7 P1~0062><\/_x (%) Mo,
(105)

where 7 > 0 is the self-interaction coupling for the quartic
potential V(|¥|) = n|¥[*. The inclusion of rotation can
further increase the maximum mass of a boson star [38]. In
the following, we will restrict our analysis to scalar field
potentials of the Higgs type,

(106)
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where m? > 0 and 57 > 0. Moreover, we may assume that, at
the surface of the compact object r = R, the Higgs potential
reaches its minimum value, so that dV(y)/dy|,_g =0,
giving

2 4
m 1m

_ ::I:H—, % e =———.
wl—r . (W)'rfR 47

When the Higgs field is nonminimally coupled to gravity,
there exists a family of spherically symmetric particlelike
solutions to the field equations [100]. These monopoles are
the only globally regular and asymptotically flat distribu-
tions with finite energy of the Higgs field around compact
objects.

Using the Klein-Gordon equation (89), it is straightfor-
ward to show that the conservation of the total energy-
momentum tensor gives the following relation for the
ordinary matter pressure p:

(107)

dp 1

dv
L)

dr 2 dr’ (108)

1. The maximum mass of a bosonic object
in generalized gravity theories

As a first step in obtaining the mass bounds for
bosonic objects we assume that, near their vacuum boun-
dary, the potential V becomes (approximately) constant,
V(¥)|,e(r-e.r) ~ const., where the scale length e satisfies
the condition ¢/R < 1. In addition, we assume that the
thermodynamic pressure of the bosonic matter p either
vanishes, or takes a constant (nonzero) surface value,
~—r = const. From Eq. (103), it follows that, near
the surface of the bosonic object, the approximations
w? x1/r* ~0and A « 1/r* ~ 0 are valid. It then follows
that the total mass of the boson star can be defined as

dr

R
Mgy = me(R) = ?A (pc* +V)ridr =My +M,,,

(109)

where Mp =4n fo przdr is the baryonic mass, while
= (4n/c*) [EV(w)r’dr is the mass of the scalar
f1e1d The effective pressure near the object’s surface
becomes
Pett(R) = p(R) = V(w)],—g- (110)
Hence, with the use of the above assumptions, the gener-
alized Buchdahl inequality (57) gives the following
expression for the maximum mass of a compact object
in scalar-tensor theories with nonminimally coupled scalar
fields:
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{1 — |:1 — 2Meff:| 1/2} Meff + 471'R3peff(R)

R 2M,
VI-%"

S 2M6ff'

(111)

Equation (111) can be rewritten as

2M o <1- <Meff/R + 4”R22peff(R) )2’ (112)
R 3Mesi/R + 4nR*pesr(R)

which gives the generalized Buchdahl identity for compact
bosonic objects in scalar-tensor gravity in a more familiar
form as

2M, 4
Teff < 5 |:1 - 671’R2peff(R) +4/1+ 67Z'R2peff(R):| .

(113)

Assuming that 6zR?p.;(R) < 1, and explicitly reintro-
ducing the physical constants for the sake of clarity, we
obtain

2G0Meff < 8 |:1 _371'60 2 (114)

CZR —5 2C4 R peff(R):|

in the first order of approximation. By taking into account
the explicit expression for the scalar field potential (106),
we obtain for the upper bound on the mass-radius ratio for
bosonic objects with Higgs-type potentials

2GOMff 8 37TGO m2 n
S0Pl (20 —w2(R)—~y*(R)|R? }.
cr Sol T 2V Ry B

(115)

Assuming, in addition, that at the object’s surface the Higgs
potential has a minimum, we obtain

+—3”G4°m—4R2}.
8c* n

Finally, we can estimate the mass of the scalar field
contribution as

2GoM
M<8{1 (116)

2R "9

47R3
My (R) &2V )y
4zR3 [ m? 5 n
= ——y?*(R) +—y*(R
3 5 v (R) + ,w'(R)
> 0. (117)

Thus, by also assuming that the pressure of the baryonic
matter vanishes at the surface of the compact objects, we
obtain the following restriction on the maximum mass of
the ordinary matter:
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972G, (m? , 1 2
'moa (7‘” ) K
(118)

2. The minimum mass of a bosonic object
in generalized gravity theories

By assuming again that the function A(r) vanishes on
the vacuum boundary, we can use Eq. (79) to estimate the
minimum mass of bosonic objects in generalized gravity
theories. Thus, we obtain

2
moa_ 1
<2l// 4771//>

or, if the Higgs potential has a minimum at the surface,

GoM((;;;»m) > 271'G0

e R2,  (119)

r=R

(min) 4
G()M £f ﬂ'GO m o
— > ————R-. 120
2R T 2 g (120)

Equation (119) gives the following bound on the mean
energy density, em" = pmW 2 = 310 2 /472 R3 of a
bosonic object with minimum mass:

: 3| /m? 1
elm) > ’ (— y? — —W“)

>21(3 i =22 (121)

r=R 8 n

Since the total energy density consists of the sum of
the energy densities of the baryonic matter and of the
scalar field, £ = &i™ 4 &™) we obtain the following

constraint on the baryonic density energy:

i 1 m2 1
e5 25 ’ (71//2 - ZW/4>

4
I
r=R 8 n

By denoting the value of the potential at the surface of
the compact bosonic object by

m? 1
BZZ - 4
o= (5-m)

we obtain the bound

4
= <m_> 2, 123
r=R 4’7 ( )

Meff Z 27TBR3, (124)
yielding the minimum mass of any bosonic object. By
assuming that the effective mass of the bosonic particle is
of the order of the proton mass, Mo = 1.672 x 1072* g, and
that its radius is of the order of the proton radius, R =
0.875 x 10713 cm, we obtain the value B =~ 4 x 10'* g/cm?.
However, one may also obtain an estimate of the radius of a
minimum-mass bosonic object from stability considerations.

We begin by defining the total energy E (including the
gravitational field contribution), corresponding to any
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compact object inside an equipotential surface S of radius
R, as [101,102]

1
E=Ey+Er=g & A[K]dS, (125)

where E,; = fs T’ﬁ&”\/—_gdSﬂ and Ey are the energy of
the matter and of the gravitational field, respectively.
Here & is a Killing vector field of time translation,
while & is its value at S. [K] denotes the jump across
the shell of the trace of the extrinsic curvature of S,
considered as embedded in the 2-space t = const. TV is
the energy-momentum tensor of the matter, as usual.
This definition of the total energy is manifestly coor-
dinate invariant.

By representing the metric on the surface of the compact
object as e™* =1-2GyM/c*R, with the use of
Eq. (124) it follows that the total energy of a bosonic
object with minimum mass inside radius R can be written as

4 AxG 1/2 47G, 1/2
E=——R|[1-(1-"5BR? 1-0BR2)
Gy c c

(126)

For a stable particle configuration, the energy must have
a minimum, JE/OR =0, and this condition gives the
following algebraic equation determining the radius R as
a function of B,

1 471'BG0R2

6‘2

4zBGR? [ . | 42BG,R?
F 0T 3y 1= o =0, (127)
C c

The solution of Eq. (127) is

1-—

R—l 11++vV13 ¢

C
6 2 \/ﬂ'GoB — o \/ﬂGoB ’

where 7y = /(11 ++/13)/2/6 = 0.450. Therefore, we

can represent the lower bound giving the minimum possible
mass of a bosonic object as

(128)

JRCI
My >2——2 . 129
eff = G() \/m ( )

It is interesting to investigate whether the Chandrasekhar
limit (3) also applies to the minimum mass of a bosonic
object, with the baryon mass substituted by an effective
particle mass mggr, representing the minimum mass of the
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particle composing the minimum mass system. If such a
representation is possible, we must have

3
mp; c
~

Mest Go/7GoB’

Equation (130) leads to the following expression of the
effective mass of the “elementary” particle composing the
minimum mass bosonic object:

A\ 3/4
Mgefr ~ <> B4,
C

Alternatively, in terms of the parameters of the Higgs
potential we obtain

n\3* m
Meegt ~ | — —-
qeff c ’11/4

Thus, the effective particle mass forming a minimum
mass bosonic object is determined only by physical con-
stants associated with (nongravitational) elementary par-
ticle physics. In particular, it is independent of the
gravitational constant G. From its mathematical represen-
tation (130)—(131), it follows that mg.; must be relevant
only when the system is quantum mechanical and involves
high velocities and energies.

For B =4 x 10" g/cm?, we obtain the value mges ~
3.63 x 1073 g~ 204 MeV for the minimum “elementary”
particle mass. For B = 1.33 x 10" g/cm?, Eq. (131) gives
Myetr ~4.9 X 1072 g~ 275 MeV. From an elementary
particle physics point of view we can interpret the mass
given by Eq. (131) as the minimum mass of the stable quark
bubble, since it is of the same order of magnitude as the
strange quark mass m, [103]. Hence, the Chandrasekhar
limit also applies to composite elementary particles, if we
take mg as representing the mass of the elementary
constituent of the object. Moreover, the mass of the particle
is generated by the effective value of the Higgs potential at
the particle vacuum boundary, B. With respect to a scaling
of the Higgs-type potential of the form B — kB, the
effective minimum mass mgeg scales as myerr — kK4 mgey.

3 1

(130)

(131)

(132)

C. Dark energy and the general Higgs coupling

In the following section, we investigate the implications
of our results for objects containing a significant amount of
dark energy, assumed to be an ideal fluid satisfying the
equation of state Ppg = wppgc?. Moreover, we consider
that the “matter” inside the compact object consists of a
scalar field, with mass density and pressure given by
pc2 =T, P, =Tl Py=—TYs Py=—T where
T} ¢ denotes the energy-momentum tensor of the scalar
field, whose nontrivial components are given by
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0 ¢ e ”
Tis=Tys=Tys= 74’ +V,

-y 133
rs =5 0V (133)

Note the asymmetric pressures, P, # Py, for the scalar field
with radial profile. The conservation of the energy-momen-
tum tensor V, 7%, = 0 yields

) vV 2
0P = _(plotc + Ptot)z - (Pr - Pe);»
2 v 2y 2
= _(ptotc + Ptot)E - (e_ ¢ );7 (134)

where pio = p + ppgs Piot = P, + Ppg.
For constant ppg, the gravitational field equation (25)
leads immediately to

et=1-——2——=1-2a(r)r, (135)

where a(r) = GoM(r)/c*r* + A/6, and the mass M(r) is
defined as the bare mass, without the dark energy con-
tribution, i.e.,

M(r) = 4ﬂ/p(r)r2dr. (136)

Hence, by setting Py (r = R) = wppgc?, we again obtain
lower and upper bounds on the mass-radius ratio, given by

2 3 2 3
U :§ I—Z(1+WDE)AR2:| :l:§ 1+1WDEAR2’
(137)
where
GoM
= ch . (138)

From the definition of mass M(r) in Eq. (136), the mass
bounds can be translated into the bounds on the average
density of the scalar sphere,

i) = () + i),

(139)

The average density is related to the total mass by
{p) = 3M/4rnR>. Since e < 1 for r < R, we can perform
integration by parts, giving
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M R R /2 R
( )5/ ¢—r2dr—|—/ Vrtdr
47[ 0 2 0

_ /0 ! (V(qﬁ)—(j)‘/;((m) Rdr. (140)

where we have assumed ¢(R) =0, ¢'(R) < oo and used
the flat-space equation of motion

V)L =0V =V (141)

Lets us now consider the scalar potential, for example,
for the Higgs particle, which can be written as follows:

h? m?
?V(qb) =V, + 7¢2 + g + At (142)

Then, by assuming that ¢(r) is a decreasing function with
respect to r, we may write

/ 2

2

<5 {vo () - w(R)“]
C2

<fl2

Vo, (143)

where we set ¢p(R) = 0. The bounds on (p,) thus put
constraints on the parameters m, g, and 4 of the scalar self-

coupling. For the lower bound on the mass-radius ratio,
using (137), (138), (140), and (143), we have

¢t 6 c?

b LSy 144
872G, R2 =m0 (144)

For AR? « 1, this becomes

A 142 & v,
—W; — .
87G, 2 PE) =20

(145)

Hence, a nontrivial bound only exists when A > (<)O0,
w < (>) —2/3. For typical Standard Model (SM) Higgs,
the parameters V,, m, g, and A, at the tree level, are all
related through the electroweak (EW) symmetry breaking
mechanism, i.e.,

2,2
KV Vo
VOZ 4 , m2:—2/,t2:—8?,
m2 m2
w2 146
=72, 8v? (146)

for the vacuum expectation value (VEV) v = 246 GeV,
with 4? < 0. The troublesome fact that the vacuum energy
V, is negative in the SM Higgs model remains an open
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problem in fundamental particle physics. (Though it is at
least stable when all terms, ¢, ¢*, and ¢*, are positive at
the tree level, the top quark contribution at the quantum
level could nevertheless destabilize the potential at high
energy scales; see [104,105] for further details.) Our result,
Eq. (145), simply demands that V, must at least match the
dark energy density at the surface of a stable object,

AN ?
= <=V, 147
PA= T6nGy ~ 02 ° (147)
for wpg = —1 and A > 0. Gravitational stability against the

dark energy repulsion is satisfied by the Higgs particle
provided that its zero-field value V) is normalized to satisfy
the bound (147). In standard EW symmetry breaking,
instead of starting with the potential
V(®) = u|®* + AP, (148)
we can always shift the ground state energy by adding the
constant term AV so that V — V + AV. The value of the

constant V, after the symmetry breaking is thus normal-
izable by the constant AV.

V. MASS AND POINCARE STRESS BOUNDS
FOR ELECTRICALLY CHARGED OBJECTS

The origin of the masses of charged elementary particles,
in particular of the mass of the electron, is a problem that
continues to attract the interest of physicists. The first
attempts to explain the mass of the electron in purely
electromagnetic terms go back to the early works of
Abraham and Lorentz [106,107] who supposed that both
momentum and energy are of a purely electromagnetic
nature. Using the momentum conservation law, they
inferred that, besides the external force acting on the
electron, there must be a self-force given in terms of the

particle charge density p(7, ¢) and current j(7, r). The most
serious defect of this model is related to the (im)possibility
of having a highly localized charge density, which, in order
to guarantee stability, is conditional on the presence of
cohesive nonelectromagnetic forces. This makes it impos-
sible to formulate a purely electromagnetic mass model for
matter, at least in nongravitational theories.

Poincaré [108] later modified the Abraham-Lorentz
model, postulating the existence of nonelectromagnetic
forces, the so-called “Poincaré self-stresses,” which have to
balance the electrostatic repulsion in order to guarantee the
stability of charged particles, reducing the total force
acting on the charge distribution to zero. He defined a
symmetric nonelectromagnetic tensor P}, which has
to be considered in addition to the symmetric electromag-
netic energy-momentum tensor 7%, thus giving a total
energy-momentum tensor S, = T4 + Py. The presence
of P, should not modify the components of the
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electromagnetic momentum. In the particle’s rest frame,
the Poincaré self-stresses can be represented as P, =
diag(pc?, —p,.,—p..—p.), where p, and p, represent
the equivalent radial and perpendicular pressures associated
to the stresses. From a quantum theoretical point of view,
Poincaré stresses were interpreted as a zero-point energy in
[109—111] and a new interpretation of the classical theory
of electromagnetic mass was proposed in [112]. Fermi’s
analysis of the contribution of the electromagnetic field to
the inertial mass of the classical electron within special
relativity was considered [113], while the electromagnetic
contributions to hadron masses were calculated, using the
gauge/gravity duality, in [114]. With the development of
general relativity, the construction of general relativistic
electromagnetic mass models has also become an active
field of research [115-118].

A. Poincaré stress limits for charged objects

For a charged object in the presence of anisotropic
stresses, the Einstein field equations take the form [119]

1 d 4 I ’

—ﬁa(re )—i—pf&rp—i—g, (149)
/
DY ALY DV £, (150
e <r+r2>+r2 zp,+ &, (150)
1 l/2 v =) JN
e N /) - 27 = = _ 2

5¢ [1/ +2+ . 2} 8zp, — & (151)

d , 22,2
d—(ré’):47we re, (152)

,

where o is the electric charge density and £ = |E | is the
electric field intensity. Defining the electric charge as
0(r) = 4x / o) 2ay (153)
0
we obtain £(r) = Q(r)/r>. From Egs. (149)—(151) it
follows that pes = p + /8%, per = p, — E?/8x, and
A =p, —p,+E*/4x, respectively. For the function
f(r), defined in Egs. (59) and (63), respectively, we adopt
the approximation f(R) = (4/3)z(p. — p, + £*/4x)R%.
We define the mass of the charged object as

meff(r) = mB(r> +mem(r)’ (154)

where
mg = 4ﬂ/rp(r’)r’2dr’ (155)
0

is the baryonic component and
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r €2( 4
Mo (1) = 47:/ &) r2dr’ (156)
0 8
is the electromagnetic mass. With the use of the general
equations (70) and (71), we obtain the following bounds
yielding the maximum and minimum masses of a charged
object in the presence of Poincaré stresses:

M ¢ | RPN
<-——R 4n(P, — P
X [21E2R? — 8(212P,R* +2)]
1 4
—R*(&* - 8xP — 1
+12 (&*—8x l)+9, (157)
Mo &
— > 4zR?( P, -
R =" < " 8m

1 (& 1
x {gﬂR (EJFPL—P,) —5], (158)

where we have denoted P, = p,.(R) and P, = p,(R),
respectively.

Let us first consider the case A(r) = 0, which requires
pL = p, +&?/4n. Then, from Eq. (69), we obtain the
following limit for the effective total mass-radius ratio:

&2 M 4 37 &2
(P, - |R2<=M < |1-2(P, - |R?|.
”(’w) _R_9[ 2(’&)}

(159)

It is interesting to note that, even when the Poincaré stresses
vanish, with p, = p, = p = 0, there exist (purely electro-
magnetic) stable minimum and maximum mass limits,
given by

—RP<—m<_[14+—R?

&? M 4 382
em _ . 1
4 = -9 < 16 > (160)

In the presence of the nonelectromagnetic components,
the condition P, < £?/8x must be satisfied in order for a
nontrivial minimum mass to exist. More generally, it
follows that the surface value of the radial nonelectromag-
netic pressure must satisfy the constraints

1 52 Meff 2 9Mff 382
— (= - <P, <——[1-2= 422 g2,
2;:(4 R )= "7 3R IR 16

(161)

Next, we consider the case in which p, = £2/8z, p, # 0,
and A = p, + &£?/8x. We then obtain the mass limits

0<—<=<1-
- { [(8zP, + E*)R* + 9]

<3 } (162)
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giving the following bound on the tangential pressure p | :

3 ER?
87TPL > - 3) .

1
_Rz<\/1 _2Meff/R_ 3

The radius of the charged compact object can be con-
strained from the assumption that its electrostatic energy
Q?/R is of the same order of magnitude as its total mass-
energy M. In this scenario, we obtain the general mass-
charge relation M = (1/ay)E*R?, where ) is a constant.
From Eq. (158), we then obtain the following lower bound,
yielding the minimum mass of a charged object in the
presence of Poincaré stresses:

(163)

52 6(4 - a0)52 + 677:0!0Pr 3/2
ay[dn(P, — P,) + E)(E* —8xP,))
(164)

Equation (161) gives the following constraint for the radial
Poincaré pressure:
ay — 4

P, >
877,'&()

£, (165)
VI. IMPLICATIONS OF MINIMUM MASS

LIMITS FOR MICROSCOPIC OBJECTS
(FUNDAMENTAL PARTICLES)

In [120] Wesson proposed the existence of two new
fundamental mass scales, together with their corresponding
length scales, derived from combinations of A, 7, G, and c.
In this paper, we refer to these as the first and second
Wesson mass (length) scales, given by

, _62\/§
=GR

Y :flG\ﬂ

W AN VeV

respectively. Originally, my was proposed as a fundamen-
tal minimum quantum of mass [120], though an alternative
interpretation was suggested in [75]. The associated
Compton wavelength Iy is of the order of the present-
day horizon size, which is equivalent to the length scale
associated with the cosmological constant. By contrast, my,
is of the order of the total mass of the present-day Universe,
approximately 70% of which is in the form of dark energy.
The associated Compton scale [ is sub-Planckian, so that
its physical meaning is unclear, though we include it in the
definitions (166) for the sake of formal completeness.
Interestingly, using the Wesson scales (166), the identity
(7) can be obtained in at least three different ways.

First, we note that setting myw /R> > p,, where p, is the
minimum possible density of a gravitationally stable

(166)
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particle (in the presence of a positive cosmological con-
stant) given in Eq. (6), or, alternatively, m{,\,/R3 < Prl»
implies

1/3
RS (2l (@) = (Bylw)'",

= (167)

respectively. In other words, requiring the classical density
of a fundamental mass quantum myy to be greater than or
equal to the minimum value given in (6), or for the density
of the Universe to be lower than the Planck density, yields
the same scale, R = (I3,ly)'/3, as either an upper or a lower
bound on the radius of the system under consideration.
Requiring the classical electron radius r, = e*/m, to
satisfy both the lower and upper limits given in (167) then
yields

2

— X (l%nlW)]/S’

(168)

3

which is equivalent to (7) up to numerical factors of
order unity. Evaluating the left-hand side of (168) gives
e?/m, =2.98 x 10715 m, whereas evaluating the right-
hand side using A = 3.0 x 1075® cm™2, the value of the
cosmological constant inferred from observations [20-24],
gives (13,ly)"/? = 2.82 x 107 m. Alternatively, compar-
ing the left- and right-hand sides of (168) using only the
observed values of the classical constants {e,m,,c, G, h}
yields the estimate A = 1.4 x 107 cm™2. This is strik-
ingly close to the “true” value, as first pointed out
in [64,68].

Second, an alternative derivation of Eq. (168), based
on minimizing the total quantum uncertainty for a
charged particle—including canonical and gravitational
contributions—was given in [71]. This led to a “cubic”
MLUR of the form

(Ax)min R (lg’lﬁd)l/?” (169)
where f is a numerical constant (usually assumed to be
of order unity [69,70]) and d denotes a distance being
measured, or “probed,” with the aid of photon emission and
absorption by a charged fundamental particle. The explicit
inclusion of charge in the analysis presented in [71] offers a
possible explanation for the appearance of the fine structure
constant, @ = e?/(hc), as a multiplicative factor on the
right-hand side of (7); this is the main difference between
this relation and the form originally conjectured by
Zel’dovich in [65-67].

A MLUR of the form (169) was also proposed in
[121,122], in which it was argued that (Ax),,, represents
a fundamental limitation to the accuracy of the measure-
ment of the length of a geodesic, due to quantum gravity
effects. However, (169) was not the first cubic MLUR to be
proposed in the context of fundamental limitations induced
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by quantum mechanical fluctuations of the gravitational
field, or, equivalently, the spacetime metric. A similar but
not identical relation,

hc 1/3
(Ax)min ~ 2 ’
Gp°V

(170)

was originally proposed by Bronstein in 1936 [74]. Here, p
and V denote the classical density and volume, respectively,
of a quantum mechanical, self-gravitating particle. Hence,
using p ~ m/R? and V ~ R*, where R denotes the classical
radius, Eq. (170) may be rewritten as [71]

m2\ 1/3
(AX)n ® R <m—l;l> .

(171)

The third “derivation” of Eq. (7), or equivalently (168),
follows from combining the MLUR (171) with the exist-
ence of a minimum density py = Ac?/(16zG), and of
an effective mass m,; and Compton wavelength [, =
n/(myc) for dark energy particles, such that py~m,/13.
This yields [75]

mp = +/Nip vy, ZAN \/lPllW- (172)
Setting m = m, and R = Ip; in (171) then gives
(8%) in ~ (Iylw)'73, (173)

so that, applying this relation to the electron by setting r, ~
(Ax),, vields Eq. (168). In other words, gravitationally
stable minimum mass particles (i.e., those with mass
and associated Compton wavelength /) have classical
radius Ip; but a minimum positional uncertainty of order
r, = e?/m, according to Bronstein’s relation. Furthermore,
we note that this automatically ensures holography via [71]

2]

ly

2
_In

= 107120,
W

(174)

In general, for f~O(1) and R =1Ip, Egs. (169)
and (171) yield the same value of (Ax),;,, when the
effective gravitational mass associated with the length scale
d, here denoted m,;, takes the Chandrasekhar form, i.e.,

ctd md
I __Mpy
mg = G = _m2 .

(175)
Denoting m,; = h/(dc) as the effective quantum mechani-
cal mass (i.e., the “Compton mass”) associated with d,
Eq. (175) may be rewritten as m = ,/mpmy. Setting d =
Iy ~ 1/+/A (its maximum possible value) and m, = my
(its minimum possible value) then gives m = m,, which
recovers Eq. (173).
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Interestingly, the factor (m3,/m3%)'/3

expressed in terms of a new mass scale,

may also be

’”T:(”112>1’”W)1/3 = (mlef\)l/3z(h2\/K/G)l/3, (176)
as
m2\ 13
<—§'> =2 (177)
mA mr

Note that the mass m is independent of ¢ [123]. Based on a
generalized uncertainty principle of the form

)
Ax > —— A [
x_2Ap+ﬁ p+

(178)
a black hole with age comparable to the age of the Universe
will stop radiating when its mass reaches the dual value
mk. = m3,/mr, at which point its Hawking temperature will
be of order Ty ~ myc?/kg. Holography persists for such
remnant black holes, in arbitrary noncompact dimensions
[123]. Finally, we note that, by Eq. (7), m is related to the
electron mass m, via

(179)

m, = amr.
Using (168), this is equivalent to the well-known relation

Fo = Ay, (180)
where 1, = fi/(m,c) is the electron’s Compton wave-
length. This relation may also be derived by modeling
the electron as a gravitationally stable charged fluid sphere
in canonical GR [124] and is valid to first order in
generalized theories, including ACDM cosmology [125].
The general considerations discussed above also have
specific implications for the relationship between dark energy
and the Higgs coupling, as considered in Sec. IV C.
Using the fact that py ~ m, /I3 = m} /(I3;m})) and defining
Vo = mijy/ly = miy/(Ipymp), the bound p, < (c*/h*)V,
(147) may be written as
my X my, In < as (181)
i.e., to ensure gravitational stability, the Higgs mass must be
greater than or equal to the effective mass of a dark energy
particle. It is trivial to show that imposing pp; > (c?/h%)V,
implies my < mpand lyy 2 Ip). For the mass limits on bosonic
objects obtained in Sec. IVB, we find that requiring
pp = B > p, implies the same bounds for mg. In terms
of the parameters of the Higgs potential, the equivalent
bounds on mg, as defined in Eq. (132), then yield
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m* c\* _mt

— =S|z ns—. 182

mglw(h>’7~m?\ (182)
For m ~ m,, this gives

c\3

107120 < <%> n<l, (183)

whereas setting m = mp; implies
c\3
1< <%> n <1012, (184)

Exploring the entire parameter range my < mge < mpy,
my < m < myp, therefore allows us to vary the Higgs field
symmetry breaking parameter (c/#)35 between its maximum
and minimum possible values,

3
107120 < (%) < 1012, (185)

Hence, the so-called “cosmological constant problem,” in
which the naive calculation of the vacuum energy based on
quantum field theory is of order I3, /13, ~ ¢* /(hGA) ~ 10'%°
times larger than the measured value, is of vital importance in
placing bounds on the parameters of the Higgs field in the
presence of dark energy.

VII. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have investigated the maximum
and minimum mass limits for compact objects in general-
ized gravity theories, in which the total energy-momentum

tensor can be expressed in the form T,(,tft) = T,(ff) + 0.,

where Tfff) denotes the ordinary matter energy-momentum

tensor and 6,, represents an additional contribution, com-
ing from the generalization of the standard general rela-
tivistic model. A spatial variation of the gravitational
coupling was also considered. The tensor 6,, may be
either purely physical in origin, as considered in the
example cases of scalar fields nonminimally coupled to
gravity and of charged compact objects in canonical GR, or,
alternatively, it may be interpreted as a geometric effect,
due to the modification of the underlying gravitational
theory.

As a first step in our study, we obtained the generalized
TOV equation and Buchdahl inequalities, yielding general
expressions for the upper and lower bounds on the mass-
radius ratio of a stable compact object. We then used these
results to study two particular cases of physical interest,
namely, scalar-tensor theories with nonminimally coupled
scalar fields and charged objects in canonical GR. For the
scalar-tensor theories, we adopted a Higgs-type potential
for the self-interaction of the scalar field and assumed that
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this takes a nonvanishing but constant value at the vacuum
boundary of the object, B # 0.

We found that the presence of a negative surface
energy density implies the existence of a nonzero minimum
mass and of a minimum density for a compact bosonic
object, given by Eq. (124). In order to obtain an explicit
representation of the minimum mass, rather than the
minimum mass-radius ratio, we investigated the stability
of minimum-mass objects using the condition of energy
minimization to provide an alternative expression for the
radius of the object. Using this procedure, the minimum
mass may be expressed in terms of the gravitational
constant and of the surface density B only. Interestingly,
the minimum mass also admits a Chandrasekhar-type
representation, given by Egs. (130)—(131). In this repre-
sentation, the minimum mass does not depend on the
gravitational constant, and its numerical value is deter-
mined only by A, ¢, and B. It is also interesting to note that,
if B is of the order of the nuclear density, the numerical
value of the minimum mass coincides with the mass of the
strange quark s (in quantum chromodynamics it is usually
assumed that the u# and d quarks have negligible masses
[103]), to within an order of magnitude. In the case of the
electron, with mass m,, the surface density giving its mass,
B = (c/h)*m2, is of order B = 15875.4 g/cm?, while for
the proton B = 1.802 x 10'7 g/cm?.

An important point concerning the results obtained
herein for bosonic objects is their physical validity in light
of various “no go” theorems for static, localized scalar field
configurations. In [126] and [127] it was shown that a static
black hole cannot have any exterior classical scalar or
massive vector fields. (See [128-130] for a detailed
discussion of the no-hair theorems and of black holes
with hair.) This result was obtained for a real scalar field y
with an energy-momentum tensor of the form 7,, =
VoV = (1/2)9, (V' Vo + m?y?), and it follows
from the vanishing of the integral [ (g,, V*V*y +
m?y?),/—gd*x = 0, which requires y to be identically
zero throughout the black hole exterior. On the other hand,
the necessary and sufficient conditions for the existence of
a scalar soliton star were formulated in [131] and [132] as
follows: (i) the scalar field must be invariant under a space-
independent phase transformation y — ey, and (ii) in the
absence of the gravitational field the theory must have
nontopological soliton solutions. For mini soliton stars, the
theory is required to satisfy only (i), and not (ii). From a
physical point of view, satisfying condition (i) implies the
conservation of the generator of the phase transformation
N, a condition which leads to a conserved particle number
in the system. Since, from the beginning of our analysis,
we have considered a complex scalar field that is invariant
under a global phase transformation, condition (i) is
automatically satisfied by our models. Thus, the appli-
cability of our results to at least some classes of boson stars,
or mini soliton stars, is guaranteed by the phase invariance
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of the scalar field. However, if the scalar field is funda-
mental, in order to have a renormalizable theory, one
should consider a second Hermitian scalar field y [131],
with the potential having, for example, the degenerate
vacuum form U(y) = (m*¢?/2)(1 — x/x0)?, where y = y,
gives the false (degenerate) vacuum state. The extension of
our results to the two scalar field and two potential case will
be considered elsewhere.

Furthermore, it is interesting to compare the mass limits
for the scalar field stars and mini soliton stars, as obtained
in [131] and [132], to the results of the present study. The
soliton contains an interior with y & y, = constant and a
vacuum exterior. Since the scalar field is confined to the
interior of the shell with radius R, it carries an energy
E,~ zN/R, where N is the conserved charge (the particle
number). The shell also contains a surface energy
E, = 4nsR?, where the surface tension is s = my3/6.
By minimizing the total energy E = E; + E; we obtain
E,=2E,, M =12zsR?>, N =28sR>, and M ~ N?/3,
respectively [132]. If gravitation is included, the critical
mass for the formation of a black hole can be estimated as
M, ~ (487G3s)~! ~ (Ipym)~*m, which for m =30 GeV
gives numerical values of the order of M.~ 10°M
and R ~ 10? light-years, respectively [131]. These values
exceed by a large margin the global properties of the stellar-
type objects considered in the present paper. On the
other hand, the radius of a mini soliton star is of order
R ~ 6 x 107'% cm, and its mass is of order m ~ 10'" kg, with
a corresponding particle number N ~ 10* and a density
10*! times greater than the density of a neutron star [132].
These numerical values also exceed by many orders of
magnitude the corresponding physical parameters of the
bosonic-type objects considered in our present analysis.

In the case of charged objects, we introduced anisotropic
“Poincaré stresses,” needed to counterbalance electrostatic
repulsion to ensure the stability of the object. After deriving
maximum and minimum mass bounds for the Poincaré
stress model, we used them to obtain constraints on the
anisotropic stresses, modeled as a perfect anisotropic fluid.
Thus, we obtained upper and lower bounds for both the
radial and tangential components of the Poincaré stress
tensor, expressed in terms of the charge and effective mass
of the particle (modeled as a microscopic fluid sphere).

The existence of an upper bound for the mass-radius
ratio of stable compact objects also leads to upper bounds
for other astrophysical quantities of major observational
interest. One of these quantities is the surface red shift z,
which in a static, spherically symmetric geometry can be
defined generally as

2M -1/2
7= (1 _ eff) _ 1’
R

where M. is the total effective mass of the compact object.
For a general relativistic object satisfying the Buchdahl

(186)
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inequality 2M /R < 8/9, we obtain the standard constraint
on the gravitational redshift, z < 2. By contrast, with the
use of Eq. (61), we obtain the following general restriction
for the redshift in extended gravitational theories,

L 2+s®) 187

1 + 47TWeff (R)
where wg; is the effective equation of state parameter for
the matter and the function f(R) can be approximated by
Eq. (63), so that f(R) o« AR?. Therefore the function f
describes the effects of the anisotropic pressure distribution
on the gravitational redshift and also introduces a supple-
mentary dependence of z on the radius of the compact
object.

As an astrophysical application of Eq. (187) we now
consider the case of quark stars, in which quark matter is
described by the MIT “bag model,” with equation of state
Pett = (p — 4B)c?/3, where B denotes the “bag constant”
[133]. Assuming that the surface density at the vacuum
boundary of the star vanishes, p ~ 0, it follows that the
quark star has negative effective pressure at its surface,
Peir(R) = —Bc? < 0, where we have neglected a numerical
factor of the order of unity. Hence, we obtain the following
constraint on the surface redshift,

3

2 < -1, (188)
V1= 122(Gy/c?*)BR?
or, equivalently,
3
2 < -1
V/1-0.279 x (B/10™ g/cm?) x (R/10° cm)?
(189)

For a compact star with surface pressure B = 10'* g/cm?
and radius R = 10 km, we obtain z <2.533. On the
other hand, in the presence of a positive effective surface
pressure, p. = Bc? > 0, corresponding to a nonzero sur-
face quark density of order p(R) ~ 8B, and again setting
R = 10 km, we obtain z < 1.6526. Though the latter bound
is consistent with the surface redshifts obtained for objects
obeying the standard Buchdahl bound (5), the former is not.

Finally, we considered the implications of the existence
of minimum mass limits, in generalized gravity theories,
for the stability of fundamental particles. Reviewing
the existing literature, we found that several phenomeno-
logical approaches to quantum gravity—involving mini-
mum length uncertainty relations together with minimum
mass bounds previously obtained for both charged and
uncharged particles in the context of ACDM cosmology—
suggest a fundamental relation between dark energy and
electroweak scale physics (7). Combining the classical
mass bounds for bosonic objects obtained in Sec. IV, and
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the associated bounds on the Higgs parameters, with the
simple assumption of the existence of a Compton wave-
length, we were able to rewrite bounds on the symmetry
breaking parameter # in terms of the dimensionless con-
stant icA/G ~ 10'2°, which also characterizes the magni-
tude of the cosmological constant problem. This suggests a
potential link among dark energy, the parameters of the
Higgs field, and the gravitational stability of fundamental
particles.

Thus, in this work, we have made the fundamental
assumption that general relativity and other geometric
theories of gravity can be extended, and remain valid, at
the level of elementary particles, whose behavior is
essentially quantum. The problem of the relevance of
general relativity for understanding the structure and
properties of elementary particle is a long-standing and
still unsolved problem in theoretical physics. One approach
to this problem, which assumes that tensor fields play a
fundamental role in the physics of strong interactions, was
proposed in the framework of the so-called “strong gravity”
theory, introduced and developed in [134—137]. This idea
was formulated mathematically in a two-tensor theory of
strong and gravitational interactions, where the strong
tensor fields are governed by equations formally identical
to the Einstein gravitational equations, apart from the
coupling parameter k=~ 1 GeV~!, which replaces the
Newtonian ~ gravitational ~coupling &, ~ 107" GeV~!
[136]. The equations for the strong field f,, and for the
gravitational field g, are obtained from the Lagrangian

L= %\/—_QR(Q) + % V=IR() + Ly + Ls - (190)
9 f

where the first term represents the standard general rela-
tivistic Lagrangian for the gravitational field, while the
second is its strong interaction analog, obtained by
replacing k, by k¢ and g,, by f,,. To give the elementary
particles’” mass (as well as their weak gravitational inter-
action) a mixing term between the f and g fields is needed.
A simple covariant mixing term was proposed in [136], and
is given by

MZ

Efg:—@

V=9 =g ([P = g%
X (grdg/lv - g;ng/l)' (191)

In the limit in which the gravitational field may be
ignored, g, = 1,,, the gravitational equations of the strong
gravity theory can be written as

! :
Ruf) =5 uR(f) = KT, (192)

where
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ka‘Tl(li/) = %MZ (fldL - ’Y'd) (nkuﬂﬂv - ”uygld) \/Q—"; .
Hence, the existence of maximum and minimum mass
limits may be also considered in the framework of the
strong gravity theory, which allows for the possibility of
obtaining a systematic geometric description of both the
gravitational and strong interaction properties of elemen-
tary particles.

However, we note that the current Standard Model
theory of strong interactions, quantum chromodynamics
(QCD), is based on the existence of conserved SU(3)
charge (color charge), whose existence has been exper-
imentally confirmed. Though there is no (explicit) SU(3)

(193)
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gauge symmetry in the strong gravity field equations, these
are meant to describe only the gauge singlet sector of the
strong interaction, mediated by massless and massive spin-
2 particles coupled to the stress tensor, and not the sector
including color charges. Hence, strong gravity is not
expected to replace QCD, but to describe only certain
aspects of strong interactions involving gauge singlet states
within the canonical theory, using a gravitational-type
formalism. It is therefore justified to use strong gravity
theory to explore the stability and confinement of gauge
singlet mesons and baryons, though not the scattering that
requires color charge interactions. Building on the formal-
ism developed in the present work, we will investigate this
problem in a future publication.
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