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Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. To
incorporate DSR into general relativity, one could use “gravity’s rainbow,” where the spacetime
background felt by a test particle would depend on its energy. In this scenario, one could rewrite the
rainbow metric gμνðEÞ in terms of some orthonormal frame fields and use the modified equivalence
principle to determine the energy dependence of gμνðEÞ. Obviously, the form of gμνðEÞ depends on the
choice of the orthonormal frame. For a static black hole, there are two natural orthonormal frames: the static
one hovering above it and the freely falling one along geodesics. The cases with the static orthonormal
frame have been extensively studied by many authors. The aim of this paper is to investigate properties of
rainbow black holes in the scenario with the free-fall orthonormal frame. We first derive the metric of
rainbow black holes and their Hawking temperatures in this free-fall scenario. Then, the thermodynamics
of a rainbow Schwarzschild black hole is studied. Finally, we use the brick wall model to compute the
thermal entropy of a massless scalar field near the horizon of a Schwarzschild rainbow black hole in this
free-fall scenario.
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I. INTRODUCTION

It is generally believed that the framework of the smooth
manifold and metric of classical general relativity breaks
down at very high energy scales. Although a full theory of
quantum gravity is not yet available, there are various
attempts using effective models to address this problem.
Doubly special relativity (DSR) [1–4] is one of them, where
the nonlinear Lorentz transformation in momentum space-
time is proposed to make the Planck length as a new
invariant scale. One of its predictions is that the trans-
formation laws of special relativity are modified at very
high energies. Thus, the energy-momentum dispersion
relation for a particle of mass m could be modified to

E2f2ðE=mpÞ − p2g2ðE=mpÞ ¼ m2; ð1Þ

where mp is the Planck mass, and fðxÞ and gðxÞ are two
general functions with the following properties:

lim
x→0

fðxÞ ¼ 1 and lim
x→0

gðxÞ ¼ 1: ð2Þ

The modified dispersion relation (MDR) might play an
important role in astronomical and cosmological observa-
tions, such as the threshold anomalies of ultra high-energy
cosmic rays and TeV photons [5–10]. One of the popular
choices for the functions fðxÞ and gðxÞ has been proposed
by Amelino-Camelia et al. [11,12], which gives

fðxÞ ¼ 1 and gðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηxn

p
: ð3Þ

Usually one has n > 0. As shown in Ref. [12], this formula
is compatible with some of the results obtained in the loop
quantum gravity approach and reflects the results obtained
in κ-Minkowski and other noncommutative spacetimes.
Phenomenological implications of this “Amelino-Camelia
(AC) dispersion relation” were also reviewed in Ref. [12].
To incorporate DSR into the framework of general

relativity, Magueijo and Smolin [13] proposed the “grav-
ity’s rainbow,” where the spacetime background felt by a
test particle would depend on its energy. Consequently, the
energy of the test particle deforms the background geom-
etry and hence the dispersion relation. As regards the
metric, it would be replaced by a one-parameter family of
metrics which depends on the energy of the test particle,
forming a “rainbow metric.” Specifically, for the energy-
independent metric given by

d~s2 ¼ ~gμνdxμ ⊗ dxv; ð4Þ
we could rewrite it in terms of a set of energy-independent
orthonormal frame fields ~ea:

d~s2 ¼ ηab ~ea ⊗ ~eb: ð5Þ
Thus, the rainbow modified equivalence principle [13]
implies that the energy-dependent rainbow counterpart for
the energy-independent metric (4) is given by

ds2 ¼ ηabea ⊗ eb; ð6Þ
where the energy-dependent frame fields are
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e0 ¼
~e0

fðE=mpÞ
and ei ¼

~ei
gðE=mpÞ

: ð7Þ

Note that the MDR (1) was considered in Ref. [13]. Let us
see how this works in an example: a static black hole with
the line element

d~s2 ¼ BðrÞdt2 − dr2

BðrÞ − Cðr2ÞhαβðxÞdxαdxβ; ð8Þ

where we assume that the black hole is asymptotically flat
which gives BðrÞ → 1 as r → ∞. There are many choices
for ~ea, but one obvious one is

~e0 ¼
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
dt; ~er ¼

drffiffiffiffiffiffiffiffiffi
BðrÞp ; and ~ej; ð9Þ

where ~ei are some set of one-forms such that δij ~ei ⊗ ~ej ¼
Cðr2ÞhαβðxÞdxαdxβ. Therefore, the corresponding rainbow
metric is

ds2 ¼ ηabea ⊗ eb

¼ BðrÞ
f2ðE=mpÞ

dt2 −
dr2

g2ðE=mpÞBðrÞ

−
Cðr2ÞhαβðxÞdxαdxβ

g2ðE=mpÞ
: ð10Þ

For BðrÞ ¼ 1 − 2GM
r and Cðr2ÞhαβðxÞdxαdxβ ¼ r2dΩ2,

Eq. (10) gives the rainbow Schwarzschild metric, which
was also obtained in Ref. [13] using Birkhoff’s theorem.
The orthonormal frame adopted in Eq. (9) is a static

frame which is anchored to observers hovering above the
black hole. The energy and momentum measured by the
static observers would satisfy the MDR (1) in the rainbow
metric (10). This rainbow metric (10) has received a lot of
attention and some relevant work can be found in
Refs. [14–21]. However, another natural choice for the
orthonormal frame is the one anchored to freely falling
observers along the radial direction. For the energy-
independent metric (8), it is obvious that a different choice
of orthonormal frame could lead to a different form of the
rainbow counterpart. Actually, in Sec. II we will show that
the rainbow black hole obtained using the free-fall ortho-
normal frame is given by

ds2 ¼ dt2p
f2ðE=mpÞ

−
½dr − vðrÞdtp�2

g2ðE=mpÞ
−
Cðr2ÞhαβðxÞdxαdxβ

g2ðE=mpÞ
ð11Þ

where vðrÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BðrÞp

and tp is given in Eq. (15). In
what follows, we will refer to the rainbow black holes (10)
and (11) as static frame (SF) and free-fall frame (FF)
rainbow black holes, respectively.

In this paper, we aim to explore the thermodynamics of
FF rainbow black holes. For the static black hole (8), its SF
and FF rainbow counterparts could lead to quite different
physics. In this paper, we will find the following:

1. For a test particle, the position of the event horizon
of the FF rainbow black hole (11) is always energy
dependent, which can be obtained by solving
Eq. (19). However, for the SF one (10), it is obvious
that the event horizon radius rh is energy indepen-
dent, which is given by BðrhÞ ¼ 0.

2. The effective Hawking temperature of the SF rain-
bow black hole (10) is [22]

Th ¼ T0

gðE=mpÞ
fðE=mpÞ

; ð12Þ

where T0 is the standard Hawking temperature. For
the FF one (11), the effective Hawing temperature is
given by Eq. (26). In such case, due to the compli-
cated expression for rh, the expression for Th is
usually more complex than Eq. (12). However, for a
FF rainbow Schwarzschild black hole, it shows that
the effective Hawking temperature is

Th ¼ T0

g3ðE=mpÞ
f3ðE=mpÞ

: ð13Þ

3. The thermodynamics of SF and FF rainbow black
holes are thus different. Specifically, for the AC
dispersion relation (3), we find that the behaviors of
SF and FF rainbow Schwarzschild black holes
during the final stage of the evaporation process
are dramatically different for η < 0 and 2

3
≤ n ≤ 2.

For example, a remnant exists for the FF black hole
while it does not for the SF one in the case with
η < 0 and n ¼ 2

3
. More discussions can be found

in Sec. V.
The remainder of our paper is organized as follows. In

Sec. II, the metric of a FF rainbow black hole is derived,
and its Hawking temperature is obtained using the
Hamilton-Jacobi method. The temperature and entropy
of a FF rainbow Schwarzschild black hole are computed
in Sec. III. In Sec. IV, we calculate the atmosphere entropy
of a massless scalar field near the horizon of a FF rainbow
Schwarzschild black hole using the brick wall model.
Section V is devoted to our discussion and conclusions.
Throughout the paper we take geometrized units
c ¼ G ¼ 1, where the Planck constant ℏ is the square of
the Planck mass mp.

II. FREE-FALL FRAME RAINBOW BLACK HOLE

The coordinate used in Eq. (8) is the Schwarzschild-like
one, where the line element is diagonal. However, a more
suitable coordinate for describing a specific family of freely
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falling observers is the Painleve-Gullstrand (PG) coordinate
[23,24]. The PG coordinate anchored to the freely falling
observers along the radial direction takes the form

d~s2 ¼ dt2p − ½dr − vðrÞdtp�2 − Cðr2ÞhαβðxÞdxαdxβ; ð14Þ

where vðrÞ is the velocity of the free-fall observers with
respect to the rest observer and tp measures the proper time
along them. We assume v < 0, dv=dr > 0 and v → v0 ≤ 0
as r → ∞. Note that v < 0 means the infalling observers.
For simplicity we specialize to the particular family of
observers with v0 ¼ 0 who start at infinity with a zero
initial velocity. Comparing the vector field of the freely
falling observers in PG and Schwarzschild-like coordi-
nates, we find

tp ¼ tþ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − BðrÞp
BðrÞ dr;

vðrÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BðrÞ

p
: ð15Þ

Requiring ~e0 ¼ dtp, we can easily find that the one-forms
~ea for the free-fall orthonormal frame are given by

~e0 ¼ dtp; ~er ¼ dr − vðrÞdtp; and ~ej; ð16Þ

where δij ~ei ⊗ ~ej ¼ Cðr2ÞhαβðxÞdxαdxβ.
In the context of rainbow gravity, the corresponding

energy-independent metric is

ds2 ¼ ~e0 ⊗ ~e0
f2ðE=mpÞ

−
~er ⊗ ~er þ δij ~ei ⊗ ~ej

g2ðE=mpÞ

¼ dt2p
f2ðE=mpÞ

−
½dr − vðrÞdtp�2

g2ðE=mpÞ
−
Cðr2ÞhαβðxÞdxαdxβ

g2ðE=mpÞ
:

ð17Þ

The event horizon r ¼ rh will be where grr vanishes:

grrðrhÞ ¼ v2ðrhÞf2ðE=mpÞ − g2ðE=mpÞ ¼ 0; ð18Þ

which leads to

BðrhÞ ¼ 1 −
g2ðE=mpÞ
f2ðE=mpÞ

: ð19Þ

It is interesting to note that the position of the event horizon
depends on the energy E for FF rainbow black holes while
it does not for SF ones.
We now use the Hamilton-Jacobi method to calculate the

Hawking temperature of the FF rainbow black hole (11).
Following Hawking’s original derivation, there have been
some other methods proposed to understand Hawking
radiation. Recently, a semiclassical method of modeling
Hawking radiation as a tunneling process has been devel-
oped and attracted a lot of attention. This method was first
proposed by Kraus andWilczek [25,26], which is known as
the null geodesic method. Later, the tunneling behaviors of
particles were investigated using the Hamilton-Jacobi
method [27–29]. In the Hamilton-Jacobi method, one
ignores the self-gravitation of emitted particles and
assumes that their action satisfies the relativistic
Hamilton-Jacobi equation. The tunneling probability for
the classically forbidden trajectory from inside to outside
the horizon is obtained by using the Hamilton-Jacobi
equation to calculate the imaginary part of the action for
the tunneling process.
In Ref. [30], it has been shown that the Hamilton-Jacobi

equations for massless scalars, spin-1=2 fermions and
vector bosons in the rainbow metric ds2 ¼ ~gμνðEÞdxμdxν
are all given by

~gμνðEÞ∂μI∂νI ¼ 0; ð20Þ

where I is the tunneling particle’s action. From Eq. (20),
one finds that the Hamilton-Jacobi equation for a massless
particle in the rainbow metric (11) becomes

f2ðE=mpÞ½∂tpI þ vðrÞ∂rI�2

¼ g2ðE=mpÞ
�
ð∂rIÞ2 þ

hαβðxÞð∂αIÞð∂βIÞ
Cðr2Þ

�
: ð21Þ

To solve the Hamilton-Jacobi equation for the action I, we
can employ the following ansatz:

I ¼ −Etp þWðrÞ þ ΘðxÞ; ð22Þ

where E is the particle’s energy. Plugging the ansatz into
Eq. (21), we have differential equations forWðrÞ and ΘðxÞ:

hαβðxÞ∂αΘðxÞ∂βΘðxÞ ¼ λ;

p�
r ≡ ∂rW�ðrÞ ¼

−Cðr2ÞvðrÞE� Cðr2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 g2ðE=mpÞ

f2ðE=mpÞ þ
λ

Cðr2Þ
h
v2ðrÞ − g2ðE=mpÞ

f2ðE=mpÞ
i
g2ðE=mpÞ
f2ðE=mpÞ

r

Cðr2Þ
h
g2ðE=mpÞ
f2ðE=mpÞ − v2ðrÞ

i ; ð23Þ
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whereþ=− denotes the outgoing/ingoing solutions and λ is
a constant. Using the residue theory for the semicircle
around r ¼ rh, we get

ImWþðrÞ ¼
2π

B0ðrhÞ
gðE=mpÞ
fðE=mpÞ

E;

ImW−ðrÞ ¼ 0: ð24Þ
As shown in Ref. [31], the probability of a particle
tunneling from inside to outside the horizon is

Pemit ∝ exp

�
−
2

ℏ
ðImWþ − ImW−Þ

�
: ð25Þ

There is a Boltzmann factor in Pemit with an effective
Hawking temperature, which is

Th ¼
ℏB0ðrhÞ

4π

fðE=mpÞ
gðE=mpÞ

; ð26Þ

where we take kB ¼ 1.

III. THERMODYNAMICS OF A RAINBOW
SCHWARZSCHILD BLACK HOLE

In this section, for simplicity we consider a FF rainbow
Schwarzschild black hole of massM with BðrÞ ¼ 1 − 2M

r in
Eq. (11). For the FF rainbow Schwarzschild black hole,
Eq. (19) gives the position of the event horizon:

rh ¼ 2M
f2ðE=mpÞ
g2ðE=mpÞ

: ð27Þ

Thus, Eq. (26) leads to the effective Hawking temperature:

Th ¼ T0

g3ðE=mpÞ
f3ðE=mpÞ

; ð28Þ

where T0 ¼ ℏ
8πM.

As in Ref. [30], the Heisenberg uncertainty principle can
be used to estimate the black hole’s temperature. The
Heisenberg uncertainty principle gives a relation between
the momentum p of an emitted particle and the event
horizon radius rh of the black hole [32,33]:

p=mp ∼ δp=mp ∼ ℏ=mpδx ∼mp=rh: ð29Þ
Assuming that the emitted particle is massless, we find that
the modified dispersion relation (1) becomes

E
mp

fðE=mpÞ
gðE=mpÞ

¼ p
mp

: ð30Þ

Substituting Eq. (27) into Eq. (29) and using Eq. (30), we
have for the energy of the particle

x
f3ðxÞ
g3ðxÞ ¼ y; ð31Þ

where x≡ E=mp and y≡ mp

2M. To express the black hole’s
temperature in terms of M, one can solve Eq. (31) for x in
terms of y. In fact, the solution for x can be expressed as

x ¼ yhðyÞ; ð32Þ
where Eq. (31) is inverted to obtain the function hðyÞ and
limy→0hðyÞ ¼ 1. Substituting Eq. (32) into Eq. (28) gives
the black hole’s temperature:

TBH ¼ T0

x
y
¼ T0h

�
mp

2M

�
: ð33Þ

The range of the lhs of Eq. (31) determines the ranges of the
values of M. Specifically, the maximum value of the lhs of
Eq. (31), which is denoted by ycr, gives thatM ≥ mp

2ycr
. If ycr

is finite, it predicts the existence of the black hole’s
remnant. For some functions fðxÞ and gðxÞ, the domain
of the lhs of Eq. (31) might be ½0; xcr�=½0; xcrÞ with xcr
being finite. Thus, it gives that the energy of the particle
E ≤ mpxcr. If the domain is ½0;∞Þ, we simply set xcr ¼ ∞.
For the AC dispersion relation given in Eq. (3), Eq. (30)

becomes

x

ð1 − ηxnÞ32 ¼ y: ð34Þ

If η > 0, one finds that ycr ¼ 0. However, there is an upper
bound xcr ¼ η−1=n on x to make the lhs of Eq. (34) real. If
η < 0, xcr ¼ ∞ and ycr ¼ ∞ for 0 < n < 2

3
, and xcr ¼ ∞

and ycr ¼ jηj−3=2 for n ¼ 2
3
. For the case with η < 0 and

n > 2
3
, the lhs of Eq. (34) has a global maximum value y0 at

x0, where we define

x0 ≡
�
2 − 3n

2
η

�
−1
n

;

y0 ≡
�
3n − 2

3n

�3
2

�
2 − 3n

2
η

�
−1
n

: ð35Þ

Thus, it would appear that y ≤ y0 and x < ∞ since x can go
to infinity. However, as argued in Refs. [30,34], the
“runaway” solution to Eq. (34), which does not exist in
the limit of η → 0, should be discarded. In this case, we
have xcr ¼ x0 instead of xcr ¼ ∞. We list xcr and ycr for
various choices of n and η in Table I. If y ≪ 1, one has
x ≪ 1, and hence Eq. (34) becomes

y ¼ x
�
1þ 3ηxn

2
þOðx2nÞ

�
; ð36Þ

which gives

hðyÞ ¼ 1 −
3ηyn

2
þOðy2nÞ: ð37Þ

Thus for M ≫ mp, we have from Eq. (37) that
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TBH ¼ m2
p

8πM

�
1 −

3η

2nþ1

mn
p

Mn þO
�
m2n

p

M2n

��
: ð38Þ

The minimum mass Mcr of the black hole is given by

Mcr ¼
mp

2ycr
: ð39Þ

When the massM reachesMcr, the final temperature of the
black hole is denoted by Tcr

BH. Equation (33) gives that

Tcr
BH ¼ xcrmp

4π
: ð40Þ

For η < 0 and n ≥ 2
3
, ycr is finite, and hence the black hole

would have a nonvanishing minimum mass Mcr. This
implies the existence of the black hole’s remnant due to
rainbow gravity. By Eq. (40), we find that Tcr

BH is infinite for
n ¼ 2

3
while Tcr

BH is x0mp

4π for n > 2
3
. For η < 0 and 0 < n < 2

3
,

we find that Mcr ¼ 0 and Tcr
BH ¼ ∞. In this case, the black

hole would evaporate completely while its temperature
increases and finally becomes infinity during evaporation,
just like the standard Hawking radiation. For η > 0, the
black hole would also evaporate completely. However, the

temperature of the black hole is a finite value η−1=nmp

4π at
the end of the evaporation process. We list Mcr and Tcr

BH
for all the possible values of η and n in Table I. In Fig. 1, we
plot the temperature TBH=mp against the black hole mass
M=mp, for examples with ðη; nÞ ¼ ð1; 1Þ, ðη; nÞ ¼ ð−1; 1

2
Þ,

ðη; nÞ ¼ ð−1; 2
3
Þ, and ðη; nÞ ¼ ð−1; 1Þ. The standard

Hawking radiation is also plotted as a blue line in Fig. 1.
Using the first law of black hole thermodynamics

dSBH ¼ dM=TBH, we find that the entropy of the black
hole is

SBH ¼
Z

M

Mcr

dM
TBH

¼ 2π

Z
ycr

mp
2M

dy
y3hðyÞ ; ð41Þ

where ycr ¼ mp

2Mcr
. For the usual case, we have hðyÞ ¼ 1 and

ycr ¼ ∞. Thus, Eq. (41) gives the Bekenstein-Hawking
entropy

SBH ¼ 4πM2

m2
p

¼ A
4ℏ

ð42Þ

where A ¼ 4πð2MÞ2 is the horizon area of the usual
Schwarzschild black hole. If M ≫ mp ðA ≫ ℏÞ, Eq. (41)
gives the entropy up to the subleading term

SBH ∼

8<
:

A
4ℏ þ 3πη

2−n

�
A
4πℏ

�2−n
2 n ≠ 2;

A
4ℏ þ 3πη

2
ln A

4πℏ n ¼ 2;
ð43Þ

where we use Eq. (37) for hðyÞ. The leading terms of
Eq. (43) are the familiar Bekenstein-Hawking entropy. For

TABLE I. The values of xcr, ycr, Mcr, and Tcr
BH=mp for a FF

rainbow Schwarzschild black hole.

xcr ycr Mcr Tcr
BH=mp Lines in figures

η ¼ 0 ∞ ∞ 0 ∞ Blue Solid
η > 0 η−1=n ∞ 0 η−1=n

4π Black Solid
η < 0, 0 < n < 2

3
∞ ∞ 0 ∞ Black Dashed

η < 0, n ¼ 2
3

∞ jηj−3
2

mpjηj
3
2

2
∞ Red Dashed

η < 0, n > 2
3

x0 y0
mp

2y0
x0
4π Red Solid

0

1, n 1

1, n 1 2

1, n 2 3

1, n 1

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

M mp

T
B

H
m

p

0.0 0.5 1.0 1.5
0

1

2

3

4

5

FIG. 1. Plot of the temperature TBH=mp against the mass
M=mp for a FF rainbow Schwarzschild black hole. All the lines
asymptotically approach TBH ¼ 0 as M=mp → ∞. The blue line
is the usual case, where TBH blows up as M → 0. The red dot is
the end of the red solid line, where the black hole has a remnant

Mcr ¼ 3
3
2

4
mp. In this case, TBH does not blow up as M → Mcr.

The black dotted line is the asymptotic line of the red dashed line
as M → Mcr ¼ 0.5mp, which is the black hole’s remnant. In this
case, TBH blows up as M → Mcr.

0

1, n 1

1, n 1 2

1, n 2 3

1, n 1

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

M mp

S B
H

FIG. 2. Plot of the entropy SBH against the massM=mp for a FF
rainbow Schwarzschild black hole.
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n ¼ 2, we obtain the logarithmic subleading term. In Fig. 2,
we plot the entropy S against the black hole mass M=mp,
for examples with η ¼ 0, ðη; nÞ ¼ ð1; 1Þ, ðη; nÞ ¼ ð−1; 1

2
Þ,

ðη; nÞ ¼ ð−1; 2
3
Þ, and ðη; nÞ ¼ ð−1; 1Þ.

IV. ENTROPY OF A RAINBOW SCHWARZSCHILD
BLACK HOLE IN THE BRICK WALL MODEL

Although all the evidences suggest that the Bekenstein-
Hawking entropy is the thermodynamic entropy, the
statistical origin of black hole entropy is not yet fully
understood. One candidate for the statistical origin is the
entropy of the thermal atmosphere of black holes. However,
when one attempts to calculate the entropy of the thermal
atmosphere, there are two kinds of potential divergences.
The first one arises from the infinite volume of the system,
which has to do with the contribution from the vacuum

surrounding the system at large distances and is of little
relevance here. The second one is due to the infinite volume
of the deep throat region near the horizon. To regulate the
divergences, ’t Hooft [35] proposed the brick wall model
for a scalar field ϕ, where two brick wall cutoffs are
introduced at some small distance rε from the horizon and
at a large distance L ≫ rh,

ϕ ¼ 0 at r ¼ rh þ rε and r ¼ L: ð44Þ

In this section, we will use the brick wall model to calculate
the entropy of a scalar field for a FF rainbow Schwarzschild
black hole with BðrÞ ¼ 1 − 2M

r in Eq. (11).
For particles emitted in a wave mode with energy E, one

has that

ðProbability for a black hole to emit a particle in this modeÞ

¼ exp

�
−

E
Th

�
× ðProbability for a black hole to absorb a particle in the same modeÞ;

where Th is given by Eq. (28). The above relation was first
obtained by Hartle and Hawking [36] using a semiclassical
analysis. Neglecting backreaction, the detailed balance
condition requires that the ratio of the probability of having
N particles in a particular mode to the probability of having
N − 1 particles in the same mode is exp ð− E

Th
Þ. The

argument in Ref. [31] gives the von Neumann entropy
sE for the mode

sE ¼ s

�
E
Th

�
; ð45Þ

where we define

sðxÞ ¼ ð−1Þϵ exp x
exp x − ð−1Þϵ ln

�
exp x

exp x − ð−1Þϵ
�

þ ln ½exp x − ð−1Þϵ�
exp x − ð−1Þϵ : ð46Þ

Note that ϵ ¼ 0 for bosons and ϵ ¼ 1 for fermions. As
discussed in Sec. III, it is interesting to note that there is an
upper bound mpxcr on the energy E of the particle.
For a Schwarzschild black hole, a wave mode of emitted

scalars can be labeled by the energy E, angular momentum
l, and magnetic quantum number m. Thus, the atmosphere
entropy of a massless scalar field can be expressed in the
form

Srad ¼
Z

ð2lþ 1Þdl
Z

Emax

0

dE
dnðE; lÞ

dE
sE; ð47Þ

where Emax ¼ mpxcr, and nðE; lÞ is the number of one-
particle states not exceeding E with a fixed value of angular
momentum l. To obtain nðE; lÞ, we can define the radial
wave number kðr; l; EÞ by

k�ðr; l;ωÞ ¼ p�
r ; ð48Þ

as long as p�2
r ≥ 0, and k�ðr; l; EÞ ¼ 0 otherwise. Note

that p�
r are given in Eq. (23), and λ ¼ ðlþ 1

2
Þ2ℏ2 there for

the Schwarzschild black hole [31]. With these two Dirichlet
boundaries, one finds [24] that nðE; lÞ is

nðE;lÞ¼ 1

2πℏ

�Z
L

rhþrε

kþðr;l;EÞdrþ
Z

rhþrε

L
k−ðr;l;EÞdr

�
:

ð49Þ

Defining

u≡ E
Th

¼ E
T0

f3ðE=mpÞ
g3ðE=mpÞ

; ð50Þ

we can use Eqs. (31) and (32) to show that

gðE=mpÞ
fðE=mpÞ

¼ h
1
3

�
uT0

mp

�
: ð51Þ

Thus, Eq. (47) becomes
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Srad ¼
1

ℏ2

Z
umax

0

dusðuÞ d
du

�Z
dλnðu; λÞ

�

¼ 2T3
0

3πℏ3

Z
umax

0

dusðuÞ d
du

×

�Z
L

rhþrε

dr
r2u3h

10
3 ðuT0

mp
Þ

½BðrÞ þ h
2
3ðuT0

mp
Þ − 1�2

�
; ð52Þ

where umax ¼ mpycr
T0

and λ ¼ ðlþ 1
2
Þ2ℏ2.

Since the spacetime has a rainbow metric, it is natural
that the position of the brick wall is energy dependent, just
like the radius of the event horizon rh. In this sense, in
Eq. (52) the u derivative acts on not only the integrand of
the integral in the square bracket, but also the lower limit
rh þ rε. Focusing on the possible most divergent parts near
the horizon, we have for the atmosphere entropy

Srad ∼
M

16π4

Z
duu2sðuÞh−2

3

�
uT0

mp

��
1 −

10T0u
9mp

h0
�
uT0

mp

�
h−1

�
uT0

mp

��
1

rε

−
1

24π4

Z
dusðuÞu3 1

rε

drh
du

þ M
48π4

Z
dusðuÞu3h−2

3

�
uT0

mp

�
d
du

�
1

rε

�

−
M

288π5

Z
duu3sðuÞh−7

3

�
uT0

mp

�
h0
�
uT0

mp

�
mp

r2ε
−

M
48π4

Z
dusðuÞu3h−2

3

�
uT0

mp

�
drh
du

1

r2ε
: ð53Þ

It would appear that the most divergent terms are these
proportional to r−2ε . However, it can be shown from
Eq. (27) that the two terms in the last line of Eq. (53)
cancel against each other, leaving only the most divergent
terms proportional to r−1ε .
To determine how rε depends on E, one could introduce

the proper length for rε in the rainbow metric (11):

ε ¼
Z

rhþrε

rh

ffiffiffiffiffiffi
grr

p
dr ¼ rε

gðE=mpÞ
: ð54Þ

Now consider the AC dispersion relation where fðxÞ ¼ 1.
In this case, Eq. (51) gives

ε ¼ rε
fðE=mpÞ
gðE=mpÞ

¼ rεh−
1
3

�
uT0

mp

�
: ð55Þ

One natural assumption is that ε does not depend on E.
Under this assumption, the most divergent part of the
atmosphere entropy near the horizon becomes

Srad ∼
M

16π4ε

Z
umax

0

du
u2sðuÞ
hðuT0

mp
Þ

−
1

384π5
mp

ε

Z
umax

0

d ~u
u3sðuÞh0ðuT0

mp
Þ

h2ðuT0

mp
Þ : ð56Þ

Since ε is assumed to be independent of E, one way to
understand the value of ε is by letting Srad recover the
Bekenstein-Hawking entropy in the usual case, where
hðxÞ ¼ 1 and umax ¼ ∞. Thus, we have for ε

ε ¼ ℏ
720πM

: ð57Þ

In this case, for M ≫ mp Eq. (56) becomes

Srad ∼
A
4ℏ

þ 45ð3þ nÞη
128π5

�
4πA
ℏ

�2−n
2

Z
∞

0

dusðuÞunþ2; ð58Þ

where we use Eq. (37) for hðxÞ. From Eqs. (43) and (58),
we see that the leading rainbow corrections to SBH and Srad
are both proportional to A

2−n
2 in the cases with n ≠ 2.

However, the logarithmic divergence does not appear in
Srad for the n ¼ 2 case, which would imply that the
atmosphere entropy could not solely account for the
entropy of the black hole.

V. DISCUSSION AND CONCLUSION

In Ref. [30], the thermodynamics of a SF rainbow
Schwarzschild black hole was considered. The minimum
masses Mcr and final temperatures Tcr

BH for the AC
dispersion relation with different values of η and n were
listed in Table II. Comparing with Table I, we find that the
behaviors of SF and FF rainbow Schwarzschild black holes
during the final stage of the evaporation process are
different for the scenarios with η < 0 and 2

3
≤ n ≤ 2.

TABLE II. The values of Mcr and Tcr
BH=mp for a SF rainbow

Schwarzschild black hole.

Mcr Tcr
BH=mp

η ¼ 0 0 ∞
η > 0 0 η−1=n

4π
η < 0, 0 < n < 2 0 ∞

η < 0, n ¼ 2
mpjηj

1
2

2
∞

η < 0, n > 2
mp

2~y0
~x0
4π
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Specifically, in the case with η < 0 and n ¼ 2
3
, a remnant

exists for the FF black hole while it does not for the SF one.
In the case with η < 0 and 2

3
< n < 2, Mcr > 0 and Tcr

BH is
finite for the FF black hole while Mcr ¼ 0 and Tcr

BH ¼ ∞
for the SF one. In the case with η < 0 and n ¼ 2, both SF
and FF black holes have remnants in their final stages while
Tcr
BH is finite for the FF one and infinity for the SF one. On

the other hand, Tables I and II show that the behavior of a
FF rainbow black hole appears amazingly similar to that of
a SF one, except for the values of n at which stable
remnants occur. For a SF black hole, the remnant occurs at
somewhat higher values of n. These similarities show that
the black hole thermodynamics in the rainbow gravity is
kind of independent of the frames used to obtain the
rainbow metrics, which hints that the gravity’s rainbow
scenario has some degree of universality.
In this paper, we considered FF rainbow black holes, and

analyzed the effects of rainbow gravity on the temperature,
entropy and atmosphere entropy of a FF rainbow
Schwarzschild black hole. After the metric of a FF rainbow
black hole was proposed, we then used the Hamilton-Jacobi

method to compute the effective Hawking temperature Teff
of the rainbow black hole, which depends on the energy E
of emitted particles. By relating the momentum p of
particles to the event horizon radius rh of the black hole,
the temperature of a FF rainbow Schwarzschild black hole
was obtained. Focusing on the AC dispersion relation, we
computed their minimum masses Mcr and final temper-
atures Tcr

BH for different values of η and n. All the results are
listed in Table I. In addition, a nonvanishing minimummass
indicates the existence of the black hole’s remnant, which
could shed light on the “information paradox.” In Sec. IV,
the atmosphere entropy of a massless scalar field in a FF
rainbow Schwarzschild metric was calculated in the brick
wall model.

ACKNOWLEDGMENTS

We are grateful to HouwenWu and Zheng Sun for useful
discussions. Thiswork is supported in part byNSFC (Grants
No. 11005016, No. 11175039 and No. 11375121) and the
Fundamental Research Funds for the Central Universities.

[1] G. Amelino-Camelia, Testable scenario for relativity with
minimum length, Phys. Lett. B 510, 255 (2001).

[2] G. Amelino-Camelia, Relativity in space-times with
short distance structure governed by an observer indepen-
dent (Planckian) length scale, Int. J. Mod. Phys. D 11, 35
(2002).

[3] J. Magueijo and L. Smolin, Lorentz Invariance with
an Invariant Energy Scale, Phys. Rev. Lett. 88, 190403
(2002).

[4] J. Magueijo and L. Smolin, Generalized Lorentz invariance
with an invariant energy scale, Phys. Rev. D 67, 044017
(2003).

[5] G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, D. V.
Nanopoulos, and S. Sarkar, Tests of quantum gravity from
observations of gamma-ray bursts, Nature (London) 393,
763 (1998).

[6] D. Colladay and V. A. Kostelecky, Lorentz violating ex-
tension of the standard model, Phys. Rev. D 58, 116002
(1998).

[7] S. R. Coleman and S. L. Glashow, High-energy tests of
Lorentz invariance, Phys. Rev. D 59, 116008 (1999).

[8] G. Amelino-Camelia and T. Piran, Planck scale deformation
of Lorentz symmetry as a solution to the UHECR and the
TeV gamma paradoxes, Phys. Rev. D 64, 036005 (2001).

[9] T. Jacobson, S. Liberati, and D. Mattingly, TeVastrophysics
constraints on Planck scale Lorentz violation, Phys. Rev. D
66, 081302 (2002).

[10] T. A. Jacobson, S. Liberati, D. Mattingly, and F. W. Stecker,
New Limits on Planck Scale Lorentz Violation in Qed, Phys.
Rev. Lett. 93, 021101 (2004).

[11] G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, and
D. V. Nanopoulos, Distance measurement and wave
dispersion in a Liouville string approach to quantum gravity,
Int. J. Mod. Phys. A 12, 607 (1997).

[12] G. Amelino-Camelia, Quantum-spacetime phenomenology,
Living Rev. Relativ. 16, 5 (2013).

[13] J. Magueijo and L. Smolin, Gravity’s rainbow, Classical
Quantum Gravity 21, 1725 (2004).

[14] Y. Ling, X. Li, and H. b. Zhang, Thermodynamics of
modified black holes from gravity’s rainbow, Mod. Phys.
Lett. A 22, 2749 (2007).

[15] P. Galan and G. A. Mena Marugan, Entropy and temperature
of black holes in a gravity’s rainbow, Phys. Rev. D 74,
044035 (2006).

[16] H. Li, Y. Ling, and X. Han, Modified (A)dS Schwarzschild
black holes in rainbow spacetime, Classical Quantum
Gravity 26, 065004 (2009).

[17] R. Garattini, Modified dispersion relations and black hole
entropy, Phys. Lett. B 685, 329 (2010).

[18] G. Salesi and E. Di Grezia, Black hole evaporation within a
momentum-dependent metric, Phys. Rev. D 79, 104009
(2009).

[19] S. Esposito and G. Salesi, Black hole dynamical evolution in
a Lorentz-violating spacetime, Phys. Rev. D 83, 084043
(2011).

[20] A. F. Ali, Black hole remnant from gravity’s rainbow, Phys.
Rev. D 89, 104040 (2014).

[21] Y. Gim and W. Kim, Thermodynamic phase transition in the
rainbow Schwarzschild black hole, J. Cosmol. Astropart.
Phys. 10 (2014) 003.

JUN TAO, PENG WANG, and HAITANG YANG PHYSICAL REVIEW D 94, 064068 (2016)

064068-8

http://dx.doi.org/10.1016/S0370-2693(01)00506-8
http://dx.doi.org/10.1142/S0218271802001330
http://dx.doi.org/10.1142/S0218271802001330
http://dx.doi.org/10.1103/PhysRevLett.88.190403
http://dx.doi.org/10.1103/PhysRevLett.88.190403
http://dx.doi.org/10.1103/PhysRevD.67.044017
http://dx.doi.org/10.1103/PhysRevD.67.044017
http://dx.doi.org/10.1038/31647
http://dx.doi.org/10.1038/31647
http://dx.doi.org/10.1103/PhysRevD.58.116002
http://dx.doi.org/10.1103/PhysRevD.58.116002
http://dx.doi.org/10.1103/PhysRevD.59.116008
http://dx.doi.org/10.1103/PhysRevD.64.036005
http://dx.doi.org/10.1103/PhysRevD.66.081302
http://dx.doi.org/10.1103/PhysRevD.66.081302
http://dx.doi.org/10.1103/PhysRevLett.93.021101
http://dx.doi.org/10.1103/PhysRevLett.93.021101
http://dx.doi.org/10.1142/S0217751X97000566
http://dx.doi.org/10.12942/lrr-2013-5
http://dx.doi.org/10.1088/0264-9381/21/7/001
http://dx.doi.org/10.1088/0264-9381/21/7/001
http://dx.doi.org/10.1142/S0217732307022931
http://dx.doi.org/10.1142/S0217732307022931
http://dx.doi.org/10.1103/PhysRevD.74.044035
http://dx.doi.org/10.1103/PhysRevD.74.044035
http://dx.doi.org/10.1088/0264-9381/26/6/065004
http://dx.doi.org/10.1088/0264-9381/26/6/065004
http://dx.doi.org/10.1016/j.physletb.2010.02.012
http://dx.doi.org/10.1103/PhysRevD.79.104009
http://dx.doi.org/10.1103/PhysRevD.79.104009
http://dx.doi.org/10.1103/PhysRevD.83.084043
http://dx.doi.org/10.1103/PhysRevD.83.084043
http://dx.doi.org/10.1103/PhysRevD.89.094021
http://dx.doi.org/10.1103/PhysRevD.89.094021
http://dx.doi.org/10.1088/1475-7516/2014/10/003
http://dx.doi.org/10.1088/1475-7516/2014/10/003


[22] A. F. Ali, M. Faizal, and M.M. Khalil, Remnant for all black
objects due togravity’s rainbow,Nucl. Phys.B894, 341 (2015).

[23] S. Corley and T. Jacobson, Hawking spectrum and high
frequency dispersion, Phys. Rev. D 54, 1568 (1996).

[24] P. Wang, H. Yang, and S. Ying, Black hole radiation
with modified dispersion relation in tunneling paradigm:
Free-fall frame, Eur. Phys. J. C 76, 27 (2016).

[25] P. Kraus and F. Wilczek, Self-interaction correction to black
hole radiance, Nucl. Phys. B433, 403 (1995).

[26] P. Kraus and F. Wilczek, Effect of self-interaction on
charged black hole radiance, Nucl. Phys. B437, 231 (1995).

[27] K. Srinivasan and T. Padmanabhan, Particle production and
complex path analysis, Phys. Rev. D 60, 024007 (1999).

[28] M. Angheben, M. Nadalini, L. Vanzo, and S. Zerbini,
Hawking radiation as tunneling for extremal and rotating
black holes, J. High Energy Phys. 05 (2005) 014.

[29] R. Kerner and R. B. Mann, Tunnelling, temperature and
Taub-NUT black holes, Phys. Rev. D 73, 104010 (2006).

[30] B. Mu, P. Wang, and H. Yang, Thermodynamics and
luminosities of rainbow black holes, J. Cosmol. Astropart.
Phys. 11 (2015) 045.

[31] P. Wang and H. Yang, Black hole radiation with modified
dispersion relation in tunneling paradigm: Static frame,
arXiv:1505.03045.

[32] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7,
2333 (1973).

[33] R. J. Adler, P. Chen, and D. I. Santiago, The generalized
uncertainty principle and black hole remnants, Gen. Relativ.
Gravit. 33, 2101 (2001).

[34] J. Z. Simon, Higher derivative Lagrangians, nonlocality,
problems and solutions, Phys. Rev. D 41, 3720 (1990).

[35] G. ’t Hooft, On the quantum structure of a black ole, Nucl.
Phys. B256, 727 (1985).

[36] J. B. Hartle and S. W. Hawking, Path integral derivation of
black hole radiance, Phys. Rev. D 13, 2188 (1976).

FREE-FALL FRAME BLACK HOLE IN GRAVITY’S RAINBOW PHYSICAL REVIEW D 94, 064068 (2016)

064068-9

http://dx.doi.org/10.1016/j.nuclphysb.2015.03.014
http://dx.doi.org/10.1103/PhysRevD.54.1568
http://dx.doi.org/10.1140/epjc/s10052-015-3858-y
http://dx.doi.org/10.1016/0550-3213(94)00411-7
http://dx.doi.org/10.1016/0550-3213(94)00588-6
http://dx.doi.org/10.1103/PhysRevD.60.024007
http://dx.doi.org/10.1088/1126-6708/2005/05/014
http://dx.doi.org/10.1103/PhysRevD.73.104010
http://dx.doi.org/10.1088/1475-7516/2015/11/045
http://dx.doi.org/10.1088/1475-7516/2015/11/045
http://arXiv.org/abs/1505.03045
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1023/A:1015281430411
http://dx.doi.org/10.1023/A:1015281430411
http://dx.doi.org/10.1103/PhysRevD.41.3720
http://dx.doi.org/10.1016/0550-3213(85)90418-3
http://dx.doi.org/10.1016/0550-3213(85)90418-3
http://dx.doi.org/10.1103/PhysRevD.13.2188

