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The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is
analyzed, and the precession angular velocity of the gyro’s parallel transported spin vector and the
increment in the precession angle after one orbital period is evaluated. The parallel transported Marck
frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the
electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.
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I. INTRODUCTION

The precession of the spin of a test gyroscope in a given
gravitational field has been studied in great depth in order
to open new windows into viable tests of general relativity.
First considered in the pioneering work of Schiff [1], this
effect has been popularized by the well-known NASA
Gravity Probe B (GP-B) experiment inspired by Schiff.
This satellite-based space mission was finally launched in
2004 (with a space-flight phase of about one year) after a
preparation of more than 40 years. Two independent
contributions are responsible for the gyro precession in
geodesic motion, the geodetic effect and the frame-
dragging effect. The final reported analysis of the data
in the GP-B experiment resulted in a geodetic drift rate of
−6601.8� 18.3 mas=yr and a frame-dragging drift rate of
−37.2� 7.2 mas=yr, in good agreement with the general
relativistic predictions of −6606.10� 0.28 mas=yr and
−39.20� 0.19 mas=yr, respectively [2,3].
Theoretical investigations of the test gyroscope spin

precession have involved mainly black hole spacetimes
(Schwarzschild and Kerr) and gyroscopes in circular orbits
confined to motion in either geodesic or accelerated orbits,
primarily in the equatorial plane [4–7], the acceleration
contributing a Thomas precession term to the total spin
precession [8,9]. However, there is considerable research
on binary systems consisting of two spinning bodies,
treated using all the various general relativistic approxi-
mation schemes available today, namely post-Newtonian
theory [10,11], perturbation theory [12], effective field
theories [13], effective-one-body formalism [14–17], etc.
Spinning bodies in general relativity can be treated either as
pointlike test particles or as extended bodies. In the former
case, the spin direction of a test gyroscope is well known to
undergo Fermi-Walker transport along its world line, which
for geodesic motion reduces to parallel transport. In the
latter case one has instead the so-called Mathisson-
Papapetrou-Dixon model [18–20] for the evolution of

the both the “central” world line and spin direction which
reduces to the test gyroscope case in the test particle limit
when the spin of the object is very small in comparison with
its mass.
Here we consider the case of a test gyroscope in geodesic

motion along a periodic bound equatorial orbit in the Kerr
spacetime, essentially a “precessing ellipse.” These orbits
allow the generalization of well known results for circular
orbits in black hole spacetimes to planar orbits of nonzero
eccentricity. Indeed, in a stationary, axisymmetric, asymp-
totically flat spacetime one has a local coordinate grid
which is rigidly connected to radial infinity and provides a
way to measure the local precession of the spin direction
with respect to some fixed Cartesian frame at infinity. By
considering planar motion in the equatorial plane of a black
hole spacetime, the situation is much simpler to discuss,
since the precession is confined to a single angle in two
spatial dimensions.
The natural spherical orthonormal frame associated with

the static Killing observers moving along the Boyer-
Lindquist coordinate time lines in the Kerr spacetime
has axes which are tied to the directions of incoming
photons from the distant stars at fixed angular locations at
spatial infinity in the Boyer-Lindquist coordinate grid. A
test gyroscope moves relative to these observers causing a
kinematical deformation of its static observer measured
spin vector due to stellar aberration. This can be eliminated
by boosting the static observer axes to the local rest space
of the gyro along its orbit, leading to a formula for the spin
precession angular velocity relative to these boosted axes
which has a nice geometrical interpretation in terms of the
gravitoelectromagnetic (threading “1þ 3”) decomposition
of the gravitational field [8].
The key to the evaluation of this precession is the Carter

observer orthonormal frame [21] which is intimately
associated with the Killing vector and tensor constants
of the geodesic motion which in turn lead to the effective
potential description of geodesic motion. Starting from the
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Carter frame, Marck [22,23] discovered a parallel trans-
ported frame adapted to the local rest space of timelike
geodesics in the Kerr spacetime which allows the preces-
sion to be evaluated simply in terms of the constants of the
motion, modulo a generalized Wigner rotation effect [24]
associated with the motion relative to the static observers
that, like stellar aberration, does not contribute to the
average precession. This “spin aberration” effect due to
the generalized Wigner rotation is the result of three
successive boosts required to pass through the Carter frame
on the way to the local rest space of the gyroscope starting
from the static observer frame, and naturally emerges from
the geometry underlying the Marck frame. Although this
discussion applies to general geodesic motion, we only
investigate it here for equatorial plane orbits, providing
explicit expressions for frames, precession frequencies, and
the accumulated spin rotation angle after an azimuthal
period of the motion.

II. BOUND EQUATORIAL PLANE ORBITS
AROUND A KERR BLACK HOLE

Consider the Kerr metric written in standard Boyer-
Lindquist coordinates ðxαÞ ¼ ðt; r; θ;ϕÞ

ds2 ¼ gαβdxαdxβ

¼ −dt2 þ Σ
Δ
dr2 þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2

þ 2Mr
Σ

ðdt − asin2θdϕÞ2; ð1Þ

where a ¼ J=M is the specific angular momentum of the
source (with â ¼ a=M dimensionless) and

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð2Þ

The outer horizon radius is at rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. Units

are chosen here such that G ¼ c ¼ 1. The static observers
move along the time coordinate lines with 4-velocity m ¼
ð−gttÞ−1=2∂t aligned with the Killing vector field ∂t and
play a fundamental role in the spin precession as seen by
observers far from the black hole.
Timelike geodesic world lines in this metric xα ¼ xαðτÞ

parametrized by the proper time τ have a 4-velocity Uα ¼
dxα=dτ whose coordinate components satisfy

dt
dτ

¼ 1

Σ

�
aBþ ðr2 þ a2Þ

Δ
P

�
;

dr
dτ

¼ ϵr
1

Σ
ffiffiffiffi
R

p
;

dθ
dτ

¼ ϵθ
1

Σ
ffiffiffiffi
Θ

p
;

dϕ
dτ

¼ 1

Σ

�
B

sin2θ
þ a
Δ
P

�
; ð3Þ

where ϵr and ϵθ are sign indicators, and

P ¼ Eðr2 þ a2Þ − La;

B ¼ L − aEsin2θ;

R ¼ P2 − Δðr2 þ KÞ;

Θ ¼ K − a2cos2θ −
B2

sin2θ
; ð4Þ

where K is Carter’s constant associated with the symmetric
Killing 2-tensor of the Kerr spacetime [22,23] and E and L
are the conserved energy and angular momentum per unit
mass associated with the Killing vector fields ∂ϕ and ∂t of a
test particle in geodesic motion. Note that E and L=M are
dimensionless.
We are interested here in equatorial orbits, i.e., orbits at

θ ¼ π=2 with K ¼ ðL − aEÞ2 ¼ x2 (with x̂ ¼ x=M dimen-
sionless) so that

Δr2
dt
dτ

¼ ðEr2 − axÞðr2 þ a2Þ þ Δax; ð5Þ

r4
�
dr
dτ

�
2

¼ ðEr2 − axÞ2 − Δðr2 þ x2Þ; ð6Þ

Δr
dϕ
dτ

¼ rL − 2Mx: ð7Þ

The vertical direction along ∂θ at the equatorial plane is
covariant constant there, and the precession of a test
gyroscope in such an orbit only undergoes a rotation in
the 2-plane of the radial and azimuthal directions. These
directions are locked to the observers at rest at spatial
infinity, and so provide a natural way to measure the spin
precession as seen by distant observers, modulo the boost
between the local rest space of the gyro and that of the static
observers tied to the coordinate grid.
We limit our considerations to bound orbits (0 < E < 1)

which oscillate between a minimum radius rper (periastron)
and a maximum radius rapo (apastron), namely periodic
motion at the period of the radial motion. The points on
such an orbit corresponding to these extremal radii precess
since the period of the azimuthal motion is distinct from
that of the radial motion. For nonzero eccentricity, the
radial variable along these precessing ellipses can be
expressed in the form

r ¼ Mp
1þ e cos χ

; ð8Þ

where χ is a new function of the proper time along world
line of the gyro. The extremal values of the radii are then

rper ¼
Mp
1þ e

; rapo ¼
Mp
1 − e

; ð9Þ
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in terms of which one can express the eccentricity
0 ≤ e < 1 and semi-latus rectum Mp of these precessing
ellipses

e ¼ rapo − rper
rapo þ rper

; Mp ¼ 2rperrapo
rper þ rapo

: ð10Þ

Note that p is dimensionless, as is its reciprocal up ¼ 1=p.
We assume a ≥ 0 in order to define prograde (corotating)

and retrograde (counterrotating) orbits by the signs þ and
−, respectively, of the nonzero azimuthal angular velocity
dϕ=dτ or, equivalently, of the angular momentum L.
Formulas valid for retrograde orbits can be obtained from
those for prograde orbits by a → −a and L → −L, under
which x → −x.
Equation (6) can be rewritten in factorized form,

�
dr
dτ

�
2

¼ −
ð1 − E2Þ

r3
ðr − r3Þðr − rapoÞðr − rperÞ; ð11Þ

where

r3
M

¼ 2x̂2ð1 − e2Þ
p2ð1 − E2Þ : ð12Þ

The motion is confined to rper ≤ r ≤ rapo, which therefore
requires the third root to satisfy r3 < rper. In fact when
r3 ¼ rper, the effective potential for radial motion has a
critical point with a negative second derivative at the
periastron corresponding to an unstable circular orbit radius
rc, making the eccentric orbit at that energy marginally
stable [25]. This condition on allowed values of ðe; pÞ
determines the “separatrix” of the bound orbits, whose
parametric equations are given by [26]

esep ¼ −
r2c − 6Mrc − 3a2 � 8a

ffiffiffiffiffiffiffiffiffi
Mrc

p
Δc

;

psep ¼ 4rc
Δc

ð
ffiffiffiffiffiffiffiffiffi
Mrc

p ∓ aÞ2; ð13Þ

with Δc ¼ ΔðrcÞ. These may be re-expressed in terms of
the parameter up ¼ 1=p using upð1þ eÞ ¼ M=rc follow-
ing from (10) with rper ¼ rc to get the terminal values
needed below of functions of up at the marginally stable
bound orbits.
Using (9) which expresses ðrper; rapoÞ in terms of ðe; pÞ,

the two conditions

�
dr
dτ

�����
rper

¼ 0 ¼
�
dr
dτ

�����
rapo

; ð14Þ

can be imposed on Eq. (6) to solve them for E ¼ Eðp; eÞ
and L ¼ Lðp; eÞ as follows. Then expand the extremal
conditions (14) as functions of p, e and subtract them to
identify E2 as

E2 ¼ 1

p

�ð1 − e2Þ2x̂2
p2

þ p − ð1 − e2Þ
�
: ð15Þ

Backsubstituting this into either of these conditions leads to
the quadratic equation

x̂2 þ 2âEp
ðp − 3 − e2Þ x̂ −

pðp − â2Þ
ðp − 3 − e2Þ ¼ 0: ð16Þ

Solving this final equation for E as a function of x̂

E ¼ −
p − 3 − e2

2âp
x̂ −

ðâ2 − pÞ
2â

1

x̂
; ð17Þ

and then substituting this expression for E into Eq. (15),
one obtains a quartic equation for x̂,

Fx̂4 þ Nx̂2 þ C ¼ 0; ð18Þ

with dimensionless coefficients F, N, and C given by [25]

F ¼
�
1 −

3þ e2

p

�
2

−
4â2ð1 − e2Þ2

p3
;

−
N
2
¼

�
p − 3 − e2Þ þ â2

�
1þ 1þ 3e2

p

�
;

C ¼
�
â2 − pÞ2: ð19Þ

The solution is then

x̂2 ¼ −N ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 4CF

p

2F
; ð20Þ

where the upper (lower) sign corresponds to prograde
(retrograde) motion and

N2 − 4CF ¼ 16â2

p3
f½p2 − 2pþ â2ð1þ e2Þ�2

− 4e2ðp − â2Þ2�g: ð21Þ

To understand this last sign correlation, consider the
absolute value jxj ¼ jL − aEj. If L and a are both the same
(opposite) sign, we have a prograde (retrograde) orbit, and
so clearly jxproj < jxretroj. Assuming a > 0, this requires
that xpro > 0 and xretro < 0. Stable circular orbits have
N < 0, so the minus sign in Eq. (20) gives the smaller root
in absolute value and must correspond to the prograde orbit,
so the positive square root is relevant and must be chosen.
Similarly, the positive sign gives the larger root in absolute
value so must correspond to the retrograde orbit, so the
negative square root value is relevant and must be chosen,
resulting in equations with ∓ to distinguish the prograde
and retrograde orbits, respectively. This sign is directly
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correlated with the sign ∓¼ −sgnðaÞ, so formally one can
make this replacement and combine it with the overall factor
of jâj, then one can factor out â2 from the discriminant (21)
inside the square root of (20) to have a factor of â in front of

that square root, and changing the sign of a will then
correctly interchange these two physical roots.
The explicit expressions for E;L; x̂ expanded in a series

in e2 up to first order for prograde orbits are

E ¼ 1 − 2up þ âu3=2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3up þ 2âu3=2p

q
�
1þ −2â4u4p þ 3â3u7=2p þ u2pð−1þ 10upÞâ2 − u3=2p ð−7þ 26upÞâþ ð4up − 1Þ2

2ð1 − 2up þ âu3=2p Þð1 − 3up þ 2âu3=2p Þð1 − 2up þ â2u2pÞ
upe2

�
;

L
M

¼ 1 − 2âu3=2p þ â2u2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
upð1 − 3up þ 2âu3=2p Þ

q
�
1 −

�
1

2
þ âu1=2p ð1þ upÞ
1 − 2up þ â2u2p

þ 1 − 4up
2ð1 − 3up þ 2âu3=2p Þ

−
1þ âu1=2p ð1 − upÞ
1 − 2âu3=2p þ â2u2p

�
e2
	
;

x̂ ¼ 1 − âu1=2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
upð1 − 3up þ 2âu3=2p Þ

q
�
1 −

�
−
1

2
þ 2âu3=2p

1 − 2up þ â2u2p
þ 1 − 4up
2ð1 − 3up þ 2âu3=2p Þ

�
e2
	
: ð22Þ

Consider now the radial equation (6) and use the relation (8) to introduce the angular variable χ in place of r along a given
orbit (for e > 0). One finds

M
dχ
dτ

¼ u3=2p ð1þ e cos χÞ2½1þ u2px̂2ðe2 − 2e cos χ − 3Þ�1=2; ð23Þ

together with

dt
dχ

¼ M

u3=2p

Eþ Eâ2u2pð1þ e cos χÞ2 − 2âu3px̂ð1þ e cos χÞ3
ð1þ e cos χÞ2½1þ u2px̂2ðe2 − 2e cos χ − 3Þ�1=2½1 − 2upð1þ e cos χÞ þ a2u2pð1þ e cos χÞ2� ; ð24Þ

dϕ
dχ

¼ u1=2p
x̂þ âE − 2upx̂ð1þ e cos χÞ

½1þ u2px̂2ðe2 − 2e cos χ − 3Þ�1=2½1 − 2upð1þ e cos χÞ þ a2u2pð1þ e cos χÞ2� : ð25Þ

Similar relations for expressing derivatives of related
quantities as functions of χ are easily found.
Note that in the limit of zero eccentricity, Eq. (25)

becomes for prograde orbits

dϕ
dχ

����
e¼0

¼ ð1 − 6up þ 8au3=2p − 3a2u2pÞ−1=2; ð26Þ

which is the Kerr ratio of the azimuthal and radial epicyclic
frequencies determining the precession of the almost
circular orbits during one coordinate time period of the
radial motion, i.e., the rotation of the periastron of the orbit.
Indeed, the integral of Eq. (25) gives the increment of
precession of the periastron in azimuthal angle for any
eccentricity during one radial period (modulo 2π),

Δϕorb ¼
Z

2π

0

dϕ
dχ

dχ − 2πsgn

�
dϕ
dχ

�
; ð27Þ

where the radial period and corresponding radial
frequency are

Tr ¼
Z

2π

0

dt
dχ

dχ; Ωr ¼
2π

Tr
: ð28Þ

The constant rate of precession of the periastron is then the
ratio Δϕorb=Tr. Similarly, the azimuthal frequency is

Ωϕ ¼ 1

Tr

Z
2π

0

dϕ
dχ

dχ: ð29Þ

Both frequencies can be expressed in terms of elliptic
integrals. Explicitly, the (dimensionless) coordinate time
orbital frequencies of the radial and azimuthal motions are,
respectively, up to order Oðe2Þ given by
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MΩr ¼
u3=2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6up þ 8âu3=2p − 3â2u2p

q

1þ âu3=2p

�
1 −

3

4

1

ð1þ âu3=2p Þð1 − 2up þ â2u2pÞð1 − 6up þ 8âu3=2p − 3â2u2pÞ2

× ½2 − 266u3p − 32up þ 165u2p − u3=2p ð376up − 841u2p þ 2u3p − 38Þâ − u2pð12 − 314up þ 999u2p þ 16u3pÞâ2

þ u7=2p ð−108þ 466up þ 93u2pÞâ3 − u4pð−11 − 32up þ 176u2pÞâ4 þ u11=2p ð−101þ 160upÞâ5

−u6pð−25þ 72upÞâ6 þ 13u15=2p â7�e2
	
þOðe3Þ;

MΩϕ ¼ u3=2p

1þ âu3=2p

�
1 − 3

1þ 2upð−5þ 11upÞ − u3=2p ð−11þ 42upÞâþ 3u2pð−1þ 8upÞâ2 − u7=2p â3 − 2u4pâ4

2ð1þ âu3=2p Þð1 − 2up þ â2u2pÞð1 − 6up þ 8âu3=2p − 3â2u2pÞ
e2
�

þOðe3Þ: ð30Þ

Figure 1 plots these expressions using the exact formulas and not approximate ones expanded in terms of the eccentricity.
Finally, the equations of motion can be fully integrated in terms of special functions, but the corresponding expressions

are not very illuminating. For simplicity following [25], we discuss the eccentricity corrections to circular motion up to
order e2. Using the coordinate time as a parameter, we find explicitly

rðtÞ
M

¼ R0 þ eR1ðcosðΩrtÞ − 1Þ þ e2R2ðcosð2ΩrtÞ − 1Þ þOðe3Þ; ð31Þ

ϕðtÞ ¼ Ωϕtþ eΦ1 sinðΩrtÞ þ e2Φ2 sinð2ΩrtÞ þOðe3Þ; ð32Þ
where

R0 ¼
1þ eþ e2

up
; R1 ¼

1

up
;

R2

R1

¼ −
2

3
þ upð1þ 3upÞ
ð1þ âu3=2p Þð1þ up − 2u2pÞ

þ 2u5=2p ½2u1=2p − âð1þ upÞ�
ð1 − 2up þ â2u2pÞð1þ 2upÞð1 − upÞ

þ 1

6

1 − 3up þ 2âu3=2p

1 − 6up þ 8âu3=2p − 3â2u2p
;

Φ1 ¼ −2
1 − 3up þ 2âu3=2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6up þ 8âu3=2p − 3â2u2p

q
ð1þ âu3=2p Þð1 − 2up þ â2u2pÞ

;

FIG. 1. The behavior of the dimensionless orbital frequenciesMΩr andMΩϕ versus each other (left panel) and their ratio versusMΩϕ

(right panel) is shown for a ¼ 0.5M and selected values of the eccentricity e. The plots are made parametrically in up ranging from
up ¼ 0 (at the left end points corresponding to radial infinity where both frequencies approach each other and zero) to the eccentricity-
dependent values of u corresponding to the marginally stable orbits for corotating geodesics. Only the circular orbit case (e ¼ 0) reaches
the horizontal axis.
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Φ2

Φ1

¼ −
19

48
þ upð1þ 3upÞ
ð1þ âu3=2p Þð1þ up − 2u2pÞ

−
1

2

1 − 3u2pð1þ 2upÞ þ 4âu3=2p ð1þ upÞ
ð1 − 2up þ â2u2pÞð1þ 2upÞð1 − upÞ

þ 3

16

1þ up
1 − 3up þ 2âu3=2p

þ 1

12

1 − 3up þ 2âu3=2p

1 − 6up þ 8âu3=2p − 3â2u2p
: ð33Þ

III. MARCK’S PARALLEL PROPAGATED
FRAME AS A FRENET-SERRET FRAME

Marck constructed an orthonormal frame containing the
gyro 4-velocity U ¼ e0 which is parallel transported along
an arbitrary geodesic in the Kerr spacetime [23] using
Kerr’s Killing-Yano tensor 2-form f whose nonvanishing
(coordinate) components are given by

ftr ¼ −a cos θ; ftθ ¼ ar sin θ;

frϕ ¼ −a2 cos θsin2θ; fθϕ ¼ ðr2 þ a2Þr sin θ; ð34Þ

and which satisfies ∇ðρfνÞμ ¼ 0. The Killing tensor
Kαβ ¼ fαγfγβ leads to Carter’s constant of the motion
K ¼ KαβUαUβ. In the equatorial plane, the second frame
vector is then obtained by forming the unit spacelike
1-form,

eμ2 ¼
1

x
fμνUν ¼ rδθμ; ð35Þ

which is orthogonal to e0 and is parallel propagated along
the geodesic orbit. Marck then completed these first two
vector fields to an orthonormal frame by adding the two
vector fields whose corresponding 1-forms (indicated by ♭)
at the equatorial plane are [27]

~e1♭ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ r2
p

�
−r_rðdt − adϕÞ þ r

Δ
ðr2E − axÞdr

�
;

~e3♭ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ r2
p

�
r2

Δ
_rdr −

ðr2E − axÞ
r2

ðdt − adϕÞ
�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2

p

r2
½adt − ðr2 þ a2Þdϕ�; ð36Þ

where _r ¼ dr=dτ is given by (6).

This frame is a degenerate Frenet-Serret frame along the
geodesic

De0
dτ

¼ 0;
De2
dτ

¼ 0;

D~e1
dτ

¼ T ~e3;
D~e3
dτ

¼ −T ~e1; ð37Þ

with Frenet-Serret rotation vector ωðFSÞ ¼ −T e2.
Appendix A discusses how these last two frame vector
fields come about, corresponding, respectively, to the radial
and azimuthal directions in the local rest space of the
geodesic. Rotating them by a clockwise rotation angle Ψ in
the ~e1 − ~e3 plane to get a parallel propagated frame,

�
e1
e3

�
¼RðΨÞ

�
~e1
~e3

�
≡
�
cosΨ −sinΨ

sinΨ cosΨ

��
~e1
~e3

�
; ð38Þ

one finds the angular velocity T of the gyro-fixed axes with
respect to the preliminary Marck axes (in the clockwise
direction) [22,23]:

T ¼ dΨ
dτ

¼ aþ Ex
r2 þ x2

: ð39Þ

For a circular orbit at constant r, this is then a constant
leading to a uniform rotation of the spin vector.
A direct evaluation of T expanded to second order in the

eccentricity e yields

MT ¼ u3=2p

�
1þ 2

1 − 3up þ 2âu3=2p

1 − 2up þ â2u2p
e cos χ

þ
�ð1 − 3up þ 2âu3=2p Þð1 − 6up þ 8âu3=2p − 3â2u2pÞcos2χ

ð1 − 2up þ â2u2pÞ2
þ upð1 − âu1=2p Þ2ð1 − 4up þ 4âu3=2p − â2u2pÞ

ð1 − 2up þ â2u2pÞ2
�
e2
	

þOðe3Þ: ð40Þ
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This corrects the Kerr circular orbit value for small
eccentricity, recalling up ¼ M=rc for circular orbits.

IV. THE BOOSTED SPHERICAL FRAME

The fact that the motion is planar makes it easier to
understand the precession of the two planar gyro-fixed axes
(radial and azimuthal directions) along a geodesic com-
pared to such axes in a fixed Cartesian frame at spatial
infinity, since the tilting in time to map to the local rest
space is irrelevant to the rotation of these two directions,
apart from proper time considerations and some deviational
rotational behavior which averages to zero over a radial
period of the motion. The spherical coordinate grid is seen
by observers at radial infinity as nonrotating so by
measuring the spin relative to this grid, we can evaluate
how an observer at radial infinity sees the spin direction
change. The directions of incoming photons from the
“fixed stars” are locked to the axes associated with the
static observers, and boosting these axes to the local rest
space of the orbiting gyroscope removes the effect of stellar
aberration which does not contribute to the average
precession. If at an initial point on an orbit we fix an
orthonormal triad of vectors aligned with the static observer
axes boosted into the local rest space of the gyroscope
along the azimuthal direction, we can simply rotate them by
the opposite signed increment of the azimuthal coordinate
ϕ with respect to the static observer axes along the orbit to
keep their direction “fixed” with respect to radial infinity.
This defines a “nonrotating” static frame whose axes then
realign with the static observer spherical axes each time the
orbit returns to the same value of the coordinate ϕ [8].
The spin vector along the orbit projected onto the

sequence of static observer axes does not rotate simply
with respect to any orthonormal triad adapted to the static
observer local rest spaces along the orbit but undergoes a
periodic distortion away from a simple rotation both in
magnitude and direction due its projection onto the static
observer axes along its orbit [8], similar to the spin vector of
a classical electron in a circular orbit undergoing Thomas
precession [28,29]. On the other hand, by boosting the spin
vector from the local rest frame of the geodesic to the static
observer local rest space along the geodesic, these periodic
distortions due to the relative motion are removed. This
allows the definition of a simple rotation with respect to the
static observer spherical frame with a definite angular
velocity of precession, from which one must subtract the
angular velocity due to orbital rotation of the spherical
frame fixed with respect to spatial infinity. Alternatively,
one can boost this “nonrotating” static frame into the local
rest space of the orbit to compare with the spin vector and
evaluate an angular velocity of precession as seen from
spatial infinity.
The complication comes from the fact that the Marck

frame also undergoes a periodic rotation with respect to
such a boosted nonrotating static frame, but one which

averages out to the identity, in the same way that the
distortions in the measured spin vector by the sequence of
static observers is not relevant to the spin precession. This
rotation can be calculated (see Appendix C), but over a
radial period of the motion it does not contribute to the net
precession of the spin vector and will be ignored here.
The Marck frame vector ~e1 is locked to the radial

direction er̂ in the spherical grid of the static observers
following the time lines, differing only but a boost due to
the radial motion of the gyro alone, not to the boost of the
relative motion (see Appendix C). This grid does not rotate
with respect to observers at rest at spatial infinity. Along the
geodesics, er̂ rotates with respect to fixed Cartesian axes at
radial infinity by a rate determined by the orbital angular
velocity dϕ=dτ measuring the rate of rotation of these axes
in the counterclockwise direction of the increasing ϕ
coordinate. Subtracting the angular velocity T of the gyro
axes in the clockwise direction gives the total coordinate
time angular velocity of the gyro spin relative to axes whose
directions are fixed with respect to radial infinity as

Ωprec ¼
dτ
dt

�
dϕ
dτ

− T

�
¼ d

dt
ðϕ −ΨÞ: ð41Þ

This corresponds to the clockwise rotation by ϕ of some
initial spherical axes in the rest frame of the orbit, choosing
Ψ ¼ 0 at ϕ ¼ 0 to align them with the spherical frame
vectors initially at τ ¼ 0, which are then rotated counter-
clockwise by the angle Ψ to keep them “parallel” to the
original axes (in the sense of parallel transport):

�
e1
e3

�
¼

�
cosðϕ −ΨÞ sinðϕ −ΨÞ
− sinðϕ −ΨÞ cosðϕ −ΨÞ

��
e1ð0Þ
e3ð0Þ

�
: ð42Þ

It is the difference between these two opposing angles
which leads to a net precession after one azimuthal
revolution ϕ∶ 0 → �2π, by an increment

ΔΦ ¼ Δðϕ −ΨÞ ¼ �2π −Ψjϕ¼�2π; ð43Þ

which represents the advance of the precession angle with
respect to the direction of the azimuthal motion, with the �
sign correlated with increasing and decreasing values of ϕ
along the orbit.
Note that the proper time precession angular velocity

has the following simple representation in terms of the
constants of the motion:

Ωprec
dt
dτ

¼ L − 2Mx=r
Δ

−
aþ Ex
r2 þ x2

: ð44Þ

In the limit a → 0, the above expression reduces to

Ωprec
dt
dτ

����
a¼0

¼ L
r2

�
1 −

E
1þ L2=r2

�
; ð45Þ
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which has the same sign as L and asymptotically
(M=r → 0) behaves as ð1 − EÞL=r2, corresponding to
the advance of the spin with respect to the orbital motion
in the large radius limit of a slowly rotating black hole.
Indeed, this is always the case for all allowed radii and all
values of the orbital parameters for stable bound orbits.

The spin precession angular velocity Ωprec will be a
periodic function of t having the period of the radial
motion, and a periodic function of χ with period 2π.
Taking the average value of this quantity over a coordinate
time radial period gives

hΩpreci ¼
1

Tr

Z
Tr

0

Ωprecdt ¼ −
1

Tr

Z
2π

0

dτ
dχ

T dχ þ 1

Tr

Z
2π

0

dϕ
dχ

dχ

¼ −
ðâþ Ex̂Þu1=2p

Tr

Z
2π

0

dχ

½1þ x̂2u2pðe2 − 2e cos χ − 3Þ�1=2½1þ x̂2u2pð1þ e cos χÞ2� þ
1

Tr

Z
2π

0

dϕ
dχ

dχ; ð46Þ

where the last term is Ωϕ. Fig. 2 plots the average precession frequency for â ¼ 0.5 and selected values of the eccentricity
for stable bound orbits. The net average precession angle per azimuthal revolution for prograde orbits is then

ΔΦ ¼ hΩpreciTϕ ¼ 2π
hΩpreci
Ωϕ

≡ 2πð1 − δÞ: ð47Þ

To second order in eccentricity, we find

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3up þ 2âu3=2p

q �
1 −

3

2

u2pð1 − 2â3u5=2p þ 3â2u2p þ 2âu3=2p − 4upÞð1 − âu1=2p Þ2
ð1 − 3up þ 2âu3=2p Þð1 − 6up þ 8âu3=2p − 3â2u2pÞðâ2u2p − 2up þ 1Þ

e2
�
þOðe3Þ

≡ δð0Þ þ e2δð2Þ þOðe3Þ: ð48Þ

The first term δð0Þ is the circular orbit limit which gives the number of revolutions in the angle Ψ for one prograde
revolution, so that

ΔΦð0Þ ¼ 2πð1 − δð0ÞÞ > 0 ð49Þ

gives the net advance [4,5].
In terms of the dimensionless (gauge-invariant) variable y ¼ ðMΩϕÞ2=3 related to up by

up ¼ y0
�
1þ

�
2

3
−

1 − 3y0 − 2ây03=2

6ð1 − 6y0 þ 8ây03=2 − 3â2y02Þ þ
1 − 5y0 þ 4ây03=2

2ð1 − 2y0 þ â2y02Þ
�
e2
�
þOðe3Þ; ð50Þ

where y0 ¼ yð1 − ây3=2Þ−2=3, we find (expanding in series of y up to Oðy7Þ)

δð0Þ ¼ 1 −
3

2
y

�
1þ 3

4
yþ 9

8
y2 þ 135

64
y3 þ 567

128
y4 þ 5103

512
y5
�
þ ây3=2

�
1þ 1

2
yþ 15

8
y2 þ 81

16
y3 þ 1755

128
y4 þ 9639

256
y5
�

þ 1

2
â2y3

�
1 −

7

6
y −

37

8
y2 −

297

16
y3
�
þOðâ3; e3; y7Þ; ð51Þ

and

δð2Þ ¼ −
3

2
y

�
1þ 1

2
y −

1

8
y2 −

31

16
y3 −

901

128
y4 −

5305

256
y5
�
þ 3

2
ây3=2

�
1 −

7

6
y −

103

24
y2 −

193

16
y3 −

11927

384
y4 −

59737

768
y5
�

þ 9

2
â2y3

�
1þ 46

27
yþ 667

216
y2 þ 41

8
y3
�
þOðâ3; e3; y7Þ: ð52Þ
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V. CONCLUDING REMARKS

To the best of our knowledge, past analytical inves-
tigations of gyroscope precession have been limited to
either geodesic or accelerated circular orbits in stationary
axisymmetric spacetimes, or general discussion using the
language of relative observer analysis. Noticeably, numeri-
cal approaches have recently succeeded in computing spin
precession along general geodesic orbits in a Kerr space-
time in the frequency domain [30].
We have extended previous analytical results to the

case of gyroscopes moving along bound equatorial plane
geodesic orbits in the Kerr spacetime. In this case, it is
natural and meaningful to consider an averaged preces-
sion frequency over a full (temporal) period of the
motion. We have shown how to identify natural axes
in the local rest space of the gyro which are useful to
measure the gyroscope precession and have shown how
they differ only by a generalized Wigner rotation from
those found “by inspection” by Marck in his construction
of a parallel propagated frame along a general geodesic
in Kerr. We have explained the Lorentz geometry under-
lying the relationship between these two sets of axes—
one tied to observations with respect to the distant stars,
and the other to the Killing symmetries of the geodesic
motion. Moreover, we have provided exact expressions
for both the precession frequency and its average over a
radial period of the motion, as well as the net rotation
angle after one such period. We expect that these
expressions will be fundamental to any (forthcoming)
generalization of the present results for application to
gravitational self-force corrections, namely, when the
backreaction of the particle on the background can no
longer be neglected.
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APPENDIX A: MARCK FRAME GEOMETRY

The Marck frame found by “inspection” for general
values of θ can be explained by some orthogonal projection
geometry together with the Carter frame alignment of the
electric and magnetic parts of the Killing-Yano tensor 2-
form. The Carter family of fiducial observers has 4-velocity
uðcarÞ and orthogonal spatial unit vector EðuðcarÞÞϕ̂ in the
Killing 2-plane of t and ϕ given by

uðcarÞ ¼
r2 þ a2ffiffiffiffiffiffiffi

ΔΣ
p

�
∂t þ

a
r2 þ a2

∂ϕ

�
;

u♭ðcarÞ ¼
ffiffiffiffi
Δ
Σ

r
½−dtþ asin2θdϕ�;

EðuðcarÞÞϕ̂ ¼ a sin θffiffiffi
Σ

p
�
∂t þ

1

asin2θ
∂ϕ

�
;

EðuðcarÞÞ♭ϕ̂ ¼ sin θffiffiffi
Σ

p ½−adtþ ðr2 þ a2Þdϕ�; ðA1Þ

respectively. Note that uðcarÞ and EðuðcarÞÞϕ̂ are, respec-
tively, future oriented and rotating with positive angular
velocity assuming a > 0. The vectors,

EðuðcarÞÞr̂ ¼ er̂ ¼
1ffiffiffiffiffiffi
grr

p ∂r; EðuðcarÞÞθ̂ ¼ eθ̂ ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ;

ðA2Þ

together with EðuðcarÞÞϕ̂ form an orthonormal spatial triad
with dual

Wr̂ ¼ ffiffiffiffiffiffi
grr

p
dr; Wθ̂ ¼ ffiffiffiffiffiffi

gθθ
p

dθ; Wϕ̂ ¼ EðuðcarÞÞ♭ϕ̂;
ðA3Þ

adapted to Carter observers uðcarÞ ¼ E0 (with dual
W0 ¼ −u♭ðcarÞ).
The unit tangent vector U to the timelike geodesics (3)

has the following covariant and contravariant forms with
respect to the Carter frame:

FIG. 2. The behavior of the average dimensionless precession
frequency hMΩpreci versus the dimensionless azimuthal orbital
frequencyMΩϕ is shown for a ¼ 0.5M and selected values of the
eccentricity e for corotating orbits, as in Fig. 1.
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U♭ ¼ −Edtþ ϵr

ffiffiffiffiffiffiffiffiffi
RðrÞp
Δ

drþ ϵθ
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
dθ þ Ldϕ;

U ¼ Pffiffiffiffiffiffiffi
ΔΣ

p uðcarÞ þ
ϵr

ffiffiffiffiffiffiffiffiffi
RðrÞp
ffiffiffiffiffiffiffi
ΔΣ

p EðuðcarÞÞr̂

þ ϵθ
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp
ffiffiffi
Σ

p EðuðcarÞÞθ̂ þ
B

sin θ
ffiffiffi
Σ

p EðuðcarÞÞϕ̂: ðA4Þ

The covariant components are separable functions of the
Boyer-Lindquist coordinates. Introducing the Carter rela-
tive velocity and associated gamma factor of U,

U ¼ γðcarÞ½uðcarÞ þ νaðcarÞEðuðcarÞÞa�; ðA5Þ

we then have explicitly

γðcarÞ ¼
Pffiffiffiffiffiffiffi
ΔΣ

p ;

νaðcarÞEðuðcarÞÞa ¼
ffiffiffiffi
Δ

p

P

�
ϵr

ffiffiffiffiffiffiffiffiffi
RðrÞp
ffiffiffiffi
Δ

p EðuðcarÞÞr̂

þϵθ
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
EðuðcarÞÞθ̂ þ

B
sin θ

EðuðcarÞÞϕ̂
�
:

ðA6Þ

Now we further decompose this Carter relative velocity
vector parallel and perpendicular to the Carter radial
direction [31],

ν∥ðcarÞ ¼ νr̂ðcarÞEðuðcarÞÞr̂;
ν⊥ðcarÞ ¼ νθ̂ðcarÞEðuðcarÞÞθ̂ þ νϕ̂ðcarÞEðuðcarÞÞϕ̂

¼ jjν⊥ðcarÞjjν̂⊥ðcarÞ; ðA7Þ

and the useful cross product quantity (90 degree rotation of
ν⊥ðcarÞ),

ν×ðcarÞ ¼ EðuðcarÞÞr̂ ×uðcarÞ νðcarÞ

¼ νϕ̂ðcarÞEðuðcarÞÞθ̂ − νθ̂ðcarÞEðuðcarÞÞϕ̂
¼ jjν×ðcarÞjjν̂×ðcarÞ; ðA8Þ

which is orthogonal to νðcarÞ (and hence U) in the local rest
space of uðcarÞ.
Consider the Killing-Yano tensor with its electromagne-

ticlike decomposition in the Carter frame:

f ¼ a cos θ½u♭ðcarÞ∧Wr̂� þ r½W θ̂ ϕ̂�
¼ u♭ðcarÞ∧EðuðcarÞÞ þ� ½u♭ðcarÞ∧BðuðcarÞÞ�; ðA9Þ

using the notation Wαβ ¼ Wα∧Wβ. Then f and its dual f�
can be written as follows:

f ¼ −a cos θW0r̂ þ rW θ̂ ϕ̂; f� ¼ a cos θW θ̂ ϕ̂ þ rW0r̂:

ðA10Þ

Carter’s frame is very special because it aligns both the
parallel electric and magnetic fields EðuðcarÞÞ and BðuðcarÞÞ
with the radial direction,

EðuðcarÞÞ ¼ a cos θEðuðcarÞÞr̂ ≡ EEðuðcarÞÞr̂;
BðuðcarÞÞ ¼ rEðuðcarÞÞr̂ ≡ BEðuðcarÞÞr̂; ðA11Þ

having introduced the more compact notation:

jjEðuðcarÞÞjj ¼ aj cos θj≡ jEj; jjBðuðcarÞÞjj ¼ r≡ B:

ðA12Þ

The invariants of this field I1 ¼ 1
2
Tr½f2� ¼ B2 − E2, I2 ¼

1
2
Tr½ff�� ¼ 2EB are both nonzero, showing that the field is

nonsingular.
Marck [22,23] takes the electric part of the Killing-Yano

tensor with respect to the geodesic 4-velocity as a spacelike
vector orthogonal to U and parallelly transported along U,
given by

e2 ∝ EðUÞ ¼ f ∟ U

¼ Eðνr̂ðcarÞuðcarÞ þ EðuðcarÞÞr̂Þ þ Bν×ðcarÞ: ðA13Þ

This only needs to be normalized to a unit vector. Both of
these two parts of e2 are orthogonal to each other and to U,
so by taking their corresponding unit vectors,

P̂ ¼ γðradÞ½νr̂ðcarÞuðcarÞ þ EðuðcarÞÞr̂�; Q̂ ¼ ν̂×ðcarÞ; ðA14Þ

where γðradÞ ¼ ð1 − ðνr̂ðcarÞÞ2Þ−1=2 is the “partial” gamma

factor associated with the radial motion alone needed to
boost the radial direction into the local rest space of
the gyro.
Let us introduce the following spherical component

representation of the velocity components νaðcarÞ:

νr̂ðcarÞ ¼ νðcarÞ cos α; νθ̂ðcarÞ ¼ νðcarÞ sin α cos β;

νϕ̂ðcarÞ ¼ νðcarÞ sin α sin β: ðA15Þ

We have then

γðradÞ ¼ ð1 − ðνðcarÞÞ2cos2αÞ−1=2;
jjν×ðcarÞjj2 ¼ ν2ðcarÞsin

2α ðA16Þ

and
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½sinΘ; cosΘ� ¼ ½E;BγðradÞνðcarÞ sin α�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ B2γ2ðradÞν

2
ðcarÞsin

2α
q : ðA17Þ

The final form of e2 is

e2 ¼ sinΘP̂þ cosΘQ̂; ðA18Þ

with

sinΘ ¼ ðE=γðradÞÞ½ðE=γðradÞÞ2 þ B2jjν×ðcarÞjj2�−1=2; ðA19Þ

from which one easily obtains the third vector in this
procedure up to a choice of sign

~e1 ¼ cosΘP̂ − sinΘQ̂; ðA20Þ

which is orthogonal to the previous one and toU since both
P̂ and Q̂ are orthogonal to U. The last vector of the Marck
frame follows from orthogonality to ~e1 and e2 in the local
rest space of U, namely ~e3 ¼ ~e1 ×U e2 ¼ P̂ ×U Q̂. This
discussion holds in general off the equatorial plane,
completing the explanation of Ref. [31].
The relation (A13) of Marck has a simple interpretation

as the transformation law for an electric field given as
Eq. (4.14)a in [8] with ðu;UÞ → ðU; uðcarÞÞ,

EðUÞ ¼ γðU; uðcarÞÞPðuðcarÞ; UÞ−1ðEðuðcarÞÞ
þ νðU; uðcarÞÞ ×uðcarÞ BðuðcarÞÞÞ; ðA21Þ

where PðuðcarÞ; UÞ−1 is the inverse of the projection from
the local rest space of uðcarÞ to that ofU. Since these electric
and magnetic vectors are parallel and radial in the Carter
frame, this implies

EðUÞ ¼ γðU; uðcarÞÞPðuðcarÞ; UÞ−1½EEðuðcarÞÞr̂
þ BνðU; uðcarÞÞ ×uðcarÞ EðuðcarÞÞr̂�: ðA22Þ

The first term using Eq. (4.7) of [8] evaluates to

PðuðcarÞ; UÞ−1EðuðcarÞÞr̂ ¼ 1=γðradÞEðuðradÞÞr̂; ðA23Þ

while the second term is unchanged by the projection,
giving finally

EðUÞ ¼ γðU; uðcarÞÞ
�

E
γðradÞ

EðuðradÞÞr̂

þBνðU; uðcarÞÞ ×uðcarÞ EðuðcarÞÞr̂
�
: ðA24Þ

These two terms are orthogonal and so define the two unit
vectors P̂ and Q̂, respectively, and normalizing their sum
defines e2 and the angle Θ needed to get ~e1. Thus, the

Lorentz geometry of the Killing-Yano form underlies this
previously unexplained Marck procedure.
We now specialize the discussion to equatorial plane

orbits where E ¼ 0 ¼ νθ̂ðcarÞ, so Θ ¼ 0, and e2 is aligned

with the θ direction while ~e1 is aligned with a boost of the
radial direction into the local rest space of the geodesic,
leaving ~e3 along the boosted azimuthal direction.
Explicitly,

~e1 ¼ P̂; e2 ¼ Q̂; ~e3 ¼ P̂ ×U Q̂: ðA25Þ

These two vectors can be understood as the result of three
successive relative observer boosts from the local rest space
of the static observer m [8]. The first is an azimuthal boost
BðuðcarÞ; mÞ from m to uðcarÞ, the second is BðuðradÞ; uðcarÞÞ
from Carter along the radial direction, followed by the third
BðU; uðradÞÞ to the local rest space of the gyro, where

uðradÞ ¼ γðradÞðuðcarÞ þ νr̂ðcarÞEðuðcarÞÞr̂Þ;
EðmÞr̂ ¼ EðuðcarÞÞr̂ ðA26Þ

is the result of boosting the Carter observer in the radial
direction to comove radially with the gyro, leaving the
azimuthal direction invariant. In this intermediate frame,
the gyro relative velocity only has an angular component,
which in the equatorial plane case reduces to the azimuthal
frame component

U ¼ γðU; uðradÞÞ½uðradÞ þ νðU; uðradÞÞϕ̂EðuðradÞÞϕ̂�;
EðuðradÞÞϕ̂ ¼ EðuðcarÞÞϕ̂; ðA27Þ

where γðU; uðradÞÞ ¼ γðcarÞ=γðradÞ and the final boost
BðU; uðradÞÞ leaves the radial direction invariant. This
sequence of boosts is

�
~e1
~e3

�
¼BðU;uðradÞÞBðuðradÞ;uðcarÞÞBðuðcarÞ;mÞ

�EðmÞr̂
EðmÞϕ̂

�
:

ðA28Þ

Note that the radial boost BðuðradÞ; uðcarÞÞ leaves invariant
the unit area 2-form,

uðradÞ∧~e1 ¼ uðcarÞ∧EðmÞr̂; ðA29Þ

in the uðcarÞ − EðuðcarÞÞr̂ subspace of the tangent space, as
well as the orthogonal 2-form, thus leaving the electric and
magnetic 2-form parts of the Killing-Yano 2-form invariant.
We need to compare these axes to the direct boost

BðU;mÞ from the static observers to the geodesic:

GYROSCOPE PRECESSION ALONG BOUND EQUATORIAL … PHYSICAL REVIEW D 94, 064066 (2016)

064066-11



� EðUÞr̂
EðUÞϕ̂

�
¼ BðU;mÞ

� EðmÞr̂
EðmÞϕ̂

�
: ðA30Þ

Note that the overall boost BðU;mÞ has the effect of
removing the stellar aberration of the incoming light rays
from the “fixed stars” at radial infinity whose unit relative
velocities (direction vectors) are aligned with the static
observer local rest space directions.
The three successive boosts lead to a generalized Wigner

rotation compared to the direct boost, a kinematical effect
which only depends on the relative velocity with respect to
the static observers much like the stellar aberration effect
which instead is due to the projection of a unit relative
velocity between two local rest frames,

BðU; uðradÞÞBðuðradÞ; uðcarÞÞBðuðcarÞ; mÞ
¼ RðwigÞðU; uðradÞ; uðcarÞ; mÞBðU;mÞ; ðA31Þ

where RðwigÞðU; uðradÞ; uðcarÞ; mÞ is the product of two
ordinary Wigner rotations:

RðwigÞðU; uðradÞ; uðcarÞ; mÞ
¼ RðwigÞðU; uðradÞ; uðcarÞÞRðwigÞðU; uðcarÞ; mÞ: ðA32Þ

This same boost discussion applies to the general case of
nonequatorial plane motion as well, taking into account the
full angular relative velocity, thus explaining the geometric
origin of Marck’s choice of frame in that context as well.
We calculate the generalized Wigner rotation in
Appendix C for equatorial plane motion, but it does not
contribute to the average precession per radial period.
Curiously this interesting geometry has never been
explored before. The intermediate relative observer uðradÞ
is the key to this calculation, coming from Marck’s
derivation making use of the Killing-Yano 2-form, but
the rest is straightforward though nontrivial Lorentz
geometry.
Note that one could have reversed the order of the radial

and angular boosts from the Carter frame to boost first in
the angular direction from the Carter observer to

uðangÞ ¼ γðangÞ½uðcarÞ þ νϕ̂ðcarÞEðuðcarÞÞϕ̂�;
EðuðangÞÞϕ̂ ¼ γðangÞ½νϕ̂ðcarÞuðcarÞ þ EðuðcarÞÞϕ̂�; ðA33Þ

where γðangÞ ¼ ð1 − jjνϕ̂ðcarÞjj2Þ−1=2. The new angular vector

in this transition has a formula analogous to (C14) with
(C5) backsubstituted. This boost combines additively with
the boost from the static observer to the Carter observer
since they are both in the same plane,

BðuðangÞ; uðcarÞÞBðuðcarÞ; mÞ ¼ BðuðangÞ; mÞ; ðA34Þ

which is then followed by the final boost in the radial
direction to U. The resulting rotation relative to the direct
boost would be a true Wigner rotation:

BðU; uðangÞÞBðuðangÞ; mÞ ¼ RðwigÞðU; uðangÞ; mÞBðU;mÞ:
ðA35Þ

However, the construction starting first with the radial
boost is preferred because of the common radial direction
of the electric and magnetic vector fields associated with
the Killing-Yano 2-form.

APPENDIX B: TRANSFORMATION LAW FOR
THE CROSS PRODUCT BETWEEN DIFFERENT

LOCAL REST SPACES

The final vector in the Marck frame must be calculated
with the local rest space cross product, for which a useful
evaluation formula can be derived using the projection
formalism of Refs. [8,32]. Let LRSU and LRSu the local
rest spaces associated with the two unit timelike vector
fields U and u, related by the boost

U ¼ γðU; uÞ½uþ νðU; uÞ�: ðB1Þ

The cross product,

½X ×U Y�α ¼ ηðUÞαβγXβYγ; ðB2Þ

in LRSU is defined for generic vectors X and Y using
ηðUÞαβγ ¼ Uση

σαβγ with similar defining relations in LRSu.
ησαβγ is the unit volume 4-form, whose components in an
oriented orthonormal frame are fixed to be η0123 ¼ 1. This
leads to the relation

½X ×U Y� ¼ γðU; uÞf½X ×u Y� þ uðνðU; uÞ · ½X ×u Y�Þ
þ ðX · uÞ½νðU; uÞ ×u Y�
− ðY · uÞ½νðU; uÞ ×u X�g; ðB3Þ

which in the special case of X; Y ∈ LRSu reduces to

½X ×U Y� ¼ γðU; uÞf½X ×u Y� þ uðνðU; uÞ · ½X ×u Y�Þg:
ðB4Þ

Recall the definition of the projector PðUÞ orthogonal to
the timelike unit vector U; ÞðPðUÞ♭ ¼ gþU♭ ⊗ U♭Þ, and
we see that the vectors X and Y in the cross product in the
local rest space of U, ×U, can be equivalently replaced by
PðUÞX and PðUÞY; similarly, the vectors X and Y in the
cross product in the local rest space of u, ×u, can be
equivalently replaced by PðuÞX and PðuÞY.
To study an application of Eq. (B3), let us write U ¼

γðuþ νaEðuÞaÞ with the abbreviations γðU; uÞ → γ,
νðU; uÞ → ν and introduce also the three vectors
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ν∥ ¼ ν1EðuÞ1;
ν⊥ ¼ ν2EðuÞ2 þ ν3EðuÞ3 ¼ jjν⊥jjν̂⊥;
ν× ¼ ν3EðuÞ2 − ν2EðuÞ3 ¼ jjν×jjν̂×; ðB5Þ

in the local rest space of u. Let us consider the two vectors
in the local rest space of U,

X ¼ ν1uþ EðuÞ1; Y ¼ ν× ðB6Þ

satisfying u · X ¼ −ν1 and u · Y ¼ 0. We have then

X ×U Y ¼ γjjν⊥jjfðjjν⊥jjuþ ν̂⊥Þ
þν1ðjjν⊥jjEðuÞ1 − ν1ν̂⊥Þg; ðB7Þ

with each of the two vectors jjν⊥jjuþ ν̂⊥ and jjν⊥jjEðuÞ1 −
ν1ν̂⊥ orthogonal to U. Then the direction formula is

X ×U Y
jjX ×U Yjj ¼

γ1
γ
ðjjν⊥jjγU þ ν̂⊥Þ ¼ PðUÞν̂⊥

jjPðUÞν̂⊥jj ; ðB8Þ

with γ1 ¼ ð1 − ðν1Þ2Þ−1=2 and jjPðUÞν̂⊥jj ¼ γ=γ1.
This formula will easily allow for the computation of

terms like P̂ ×U Q̂, as introduced in the previous sections,
where u ¼ uðcarÞ and U is the geodesic 4-velocity:

P̂ ×U Q̂ ¼ γðradÞ
γðcarÞ

ðjjνϕ̂ðcarÞjjγðcarÞU þ EðuðcarÞÞϕ̂Þ: ðB9Þ

APPENDIX C: WIGNER ROTATION

The Carter observers play a key role in the geodesic
motion and parallel transport along those orbits, while the
static observers are key to defining spin precession as seen
from radial infinity. We compare the Marck frame vectors
with the boosted static observer frame vectors to see the
relative rotation between them for equatorial plane motion.
The geodesic 4-velocity can be decomposed into relative

motion with respect to the static observers with 4-velocity
m and the Carter observers with 4-velocity uðcarÞ, whose
distinct frame vectors are

m ¼ 1

N
∂t; EðmÞϕ̂ ¼ −

2aM

rN
ffiffiffiffi
Δ

p ∂t þ
Nffiffiffiffi
Δ

p ∂ϕ; ðC1Þ

with N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
and

uðcarÞ ¼
r2 þ a2

r
ffiffiffiffi
Δ

p
�
∂t þ

a
r2 þ a2

∂ϕ

�
;

EðuðcarÞÞϕ̂ ¼ a
r

�
∂t þ

1

a
∂ϕ

�
; ðC2Þ

and whose common frame vectors are

EðuðcarÞÞr̂ ¼ EðmÞr̂ ≡ er̂ ¼
ffiffiffiffi
Δ

p

r
∂r;

EðuðcarÞÞθ̂ ¼ EðmÞθ̂ ≡ eθ̂ ¼
1

r
∂θ; ðC3Þ

leading to relative velocities and gamma factors such that

U ¼ γ½mþ νr̂er̂ þ νϕ̂EðmÞϕ̂�
¼ γðcarÞ½uðcarÞ þ νr̂ðcarÞer̂ þ νϕ̂ðcarÞEðuðcarÞÞϕ̂�; ðC4Þ

with equal radial components

γνr̂ ¼ γðcarÞνr̂ðcarÞ ¼
r_rffiffiffiffi
Δ

p ; ðC5Þ

and

γ ¼ E
N
; γνϕ̂ ¼ Lr − 2Mx

rN
ffiffiffiffi
Δ

p ;

γðcarÞ ¼
Er2 − ax

r
ffiffiffiffi
Δ

p ; γðcarÞν
ϕ̂
ðcarÞ ¼

x
r
: ðC6Þ

In turn, we can decompose the Carter 4-velocity,

uðcarÞ ¼ γc;m½mþ νϕ̂c;mEðmÞϕ̂�; ðC7Þ

with

γc;m ¼
ffiffiffiffi
Δ

p

rN
; νϕ̂c;m ¼ affiffiffiffi

Δ
p ðC8Þ

and

γ ¼ γðcarÞγc;mð1þ νϕ̂ðcarÞν
ϕ̂
c;mÞ; νϕ̂ ¼

νϕ̂c;m þ νϕ̂ðcarÞ

1þ νϕ̂c;mν
ϕ̂
ðcarÞ

:

ðC9Þ

We recall the notation for the general relative observer
boost map between two different local rest spaces [8], one
orthogonal to U and the other to u, with U ¼ γðU; uÞ½uþ
νðU; uÞ� and the reciprocal relation u ¼ γðu;UÞ½U þ
νðu;UÞ� with γðU; uÞ ¼ γðu;UÞ≡ γ. For a vector
X ∈ LRSu, the vector boosted into LRSU in the plane of
u andU is given by the right contraction with the projection
PðUÞ from LRSu to LRSU acting on X:

BðU; uÞX

¼
�
PðUÞ þ γ

γ þ 1
νðu;UÞ ⊗ νðu;UÞ♭

�
∟ ðPðUÞXÞ

¼ X þ γ

γ þ 1
ðνðU; uÞ · XÞðuþ UÞ: ðC10Þ
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For example, by using Eq. (C10), it is easy to show that

BðuðcarÞ; mÞEðmÞϕ̂ ¼ EðuðcarÞÞϕ̂: ðC11Þ
In fact,

BðuðcarÞ; mÞEðmÞϕ̂
¼ EðmÞϕ̂ þ

γc;m
γc;m þ 1

νϕ̂c;mðuðcarÞ þmÞ

¼ γc;mν
ϕ̂
c;mmþ

�
1þ γ2c;mðνϕ̂c;mÞ2

γc;m þ 1

�
EðmÞϕ̂

¼ γc;m½νϕ̂c;mmþ EðmÞϕ̂�

¼ a
r

�
∂t þ

1

a
∂ϕ

�
: ðC12Þ

Next we consider the static observer frame vectors
boosted to the local rest space of U,

EðUÞr̂ ¼ BðU;mÞEðmÞr̂ ¼ er̂ þ
γνr̂

γ þ 1
ðmþUÞ;

EðUÞϕ̂ ¼ BðU;mÞEðmÞϕ̂ ¼ EðmÞϕ̂ þ
γνϕ̂

γ þ 1
ðmþ UÞ;

ðC13Þ
which must be compared to the Marck frame vectors,

~e1 ¼ P̂ ¼ γðradÞ

�
γνr̂

γðcarÞ
uðcarÞ þ er̂

�
;

~e3 ¼ P̂ ×U Q̂ ¼ γðradÞ
γðcarÞ

ðνϕ̂ðcarÞγðcarÞU þ EðuðcarÞÞϕ̂Þ; ðC14Þ

where Q̂ ¼ eθ̂.
The boosted axes are rotated with respect to the Marck

axes by a counterclockwise rotation by an angle Λ:

� EðUÞr̂
EðUÞϕ̂

�
¼ Rð−ΛÞ

�
~e1
~e3

�
¼

�
cosΛ sinΛ

− sinΛ cosΛ

��
~e1
~e3

�
:

ðC15Þ
One finds

cosΛ ¼ P̂ · EðUÞr̂ ¼ γðradÞ

�
1 −

γc;m
γðcarÞ

γ2ðνr̂Þ2
γ þ 1

�

¼
�
1 −

r4 _r2

ðEr2 − axÞ2
�−1=2�

1 −
r2 _r2

ðEr2 þ axÞðE − NÞ
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðr2 þ x2Þ

p
�
r2N þ ax −

ða − Nx2Þ2
Eþ N

�
: ðC16Þ

Similarly,

sinΛ ¼ ðP̂ ×U Q̂Þ · EðUÞr̂
¼ fPðUÞ½ðP̂ ×U Q̂Þ�g · EðUÞr̂
¼ γðradÞ

γðcarÞ
EðuðcarÞÞϕ̂ · EðUÞr̂

¼ νr̂
γγðradÞγc;m

γðcarÞ

�
γνϕ̂

γ þ 1
− νϕ̂c;m

�
: ðC17Þ

Note that at either the periastron or apastron, the radial
relative velocity vanishes so Λ ¼ 0, aligning the two sets of
orthonormal vectors there.
Then we have the sequence of rotations and boost:

�
e1
e3

�
¼ RðΨÞRðΛÞBðU;mÞ

� er̂
EðmÞϕ̂

�
: ðC18Þ

If we introduce the Cartesian-like axes which are rotated
clockwise by the angle ϕ relative to ϕ ¼ 0 along the orbit,
to remove the counterclockwise rotation associated with the
increasing variable ϕ,

�
Ex̂

Eŷ

�
¼ RðϕÞ

� er̂
EðmÞϕ̂

�
; ðC19Þ

we get finally

�
e1
e3

�
¼ RðΨÞRðΛÞBðU;mÞRð−ϕÞ

�
Ex̂

Eŷ

�

¼ RðΨ − ϕþ ΛÞBðU;mÞ
�
Ex̂

Eŷ

�
; ðC20Þ

since the rotation of the orthonormal pair of vectors in the
equatorial plane commutes with the boost which fixes the
radial direction. Thus, one only needs to add the term
dΛ=dt to the precession formula (41) to get the instanta-
neous precession formula but this does not contribute to the
average over one radial period.
Since the angleΛ of theMarck axes is just a function of the

relative velocitywhich is odd in the radial component, it starts
at zero at the periastron and is positive during the half orbit
from periastron to aphelion returning to zero at the aphelion,
and then is negative on the return to the periastron where it
again returns to zero (so that at the extreme radii the axes are
aligned with the spherical axes). This is similar to stellar
aberration in some sense, where the direction of a fixed star
around an orbit has a similar periodic oscillation with respect
to the simple rotation. Indeed, one can verify that

Z
2π

0

dΛ
dτ

dτ
dχ

dχ ¼ 0: ðC21Þ
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