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A new approach to construct initial data for binary systems with neutron star components is introduced.
The approach is a generalization of the puncture initial data method for binary black holes based on Bowen-
York solutions to the momentum constraint. As with binary black holes, the method allows setting orbital
configurations with direct input from post-Newtonian approximations and involves solving only the
Hamiltonian constraint. The effectiveness of the method is demonstrated with evolutions of double neutron
star and black hole–neutron star binaries in quasicircular orbits.
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I. INTRODUCTION

Compact object binaries with black hole (BH) and
neutron star (NS) components are main targets of gravi-
tational wave (GW) observations. GWs from binary black
holes (BBHs) have been recently detected by the Laser
Interferometer Gravitational Wave Observatory (LIGO),
first detection in the transient event GW150914 [1] and
second detection in the transient event GW151226 [2]. As
advanced LIGO reaches the designed sensitivity, GWs from
double neutron star (DNS) and black hole–neutron star
(BH-NS) binaries will very likely also be detected. Not
surprisingly, numerical relativity (NR) simulations played
an important role in the analysis of the GW150914 and
GW151226 events. Specifically, best fits of a NR waveform
to the data were included in the detection paper [1]. The
papers on parameter estimation [3] and tests of general
relativity [4] mentioned that results from BBH simulations
were involved in the construction of the phenomenological
and effective-one-body waveform models used in the
analysis. The same applies to the paper on the burst-type
analysis of GW150914 [5].
As with GW150914 and GW151226, our ability to

distinguish in future GW observations whether a signal
originated from a BBH, a DNS, or a BH-NS binary will rely
on waveform templates with input from NR. This would be
particularly important during the last orbits and coalescence
of the binary, where strong dynamical gravity is the most
relevant. In this regard, NR simulations of binary systems
with NS companions have experience a boost in accuracy
and sophistication. These days, the simulations routinely
include realistic equations of state, magnetic fields, and
radiation. But the predicting power of simulations not only
hinges on the multiphysics included. The degree to which
the initial data represent an accurate astrophysical setting is
also crucial. Another important aspect connected to the
initial data is the capability to explore a vast range of
scenarios. And for this to happen, one needs initial data
methodologies that are computationally inexpensive. In
BBH simulations, low-cost and efficient methods to

construct astrophysically relevant initial data have been
available for some time [6–8], which is not exactly the case
for binaries with NSs.
A popular method to construct initial data representing a

binary system in a quasicircular orbit is the conformal thin
sandwich approach. The method has been used for BBHs
by Grandclément et al. [9], for DNS by Gourgoulhon et al.
[10], and for BH-NS binaries by Etienne et al. [11]. The
key in those studies was the identification of a helical
Killing vector field, so the initial data are approximately
time symmetric, ensuring that the compact objects are in a
quasicircular orbit. The conformal thin sandwich approach
requires solving a set of five elliptic equations for the
conformal factor, lapse function, and shift vector [12–14].
Many groups have used the Lorene code from the Meudon
group [15,16] for this purpose, and other groups have
developed their own infrastructure [17–23].
This paper introduces a new approach to construct initial

data for binary systems with NS components. The method
is simpler than the thin sandwich one, and it has a
computational cost similar to that of the BBH puncture
method. In the BBH puncture approach [24], one only
solves the Hamiltonian constraint for the conformal factor.
The solution to the momentum constraint is given by the
Bowen-York extrinsic curvature [25]. Each initial data set is
then fully specified by the masses, spins, and momenta of
the BHs, and their separation. All of these parameters are
obtained from integrating the post-Newtonian (PN) equa-
tions of motion. The integration starts at large separations
and ends at the separation where the NR initial data are
constructed. This method is known to yield initial data
suitable for stitching together NR and PN evolutions.
The new initial data proposal in this paper recycle most

of the elements of the puncture BBH initial data, including
the ability to specify masses, spins, and momenta of the
compact objects from PN approximations. The key step is
constructing an extrinsic curvature for NSs similar to the
Bowen-York for BHs. The paper is organized as follows. In
Sec. II, we provide a quick review of York’s initial data
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formulation. Section III reintroduces the Bowen-York
extrinsic curvature for arbitrary, spherically symmetric
momentum sources. Section IV discusses an approach to
specifying the matter source functions for the initial data
equations. Section V summarizes the steps to construct
initial data. Section VI reviews the stellar model we will use
to represent NSs. Section VII presents tests with an isolated
NS. Results of simulations of DNS and BH-NS binaries are
presented in Sec. VIII. The paper ends with conclusions
in Sec. IX.
The numerical simulations in the present work were

carried out with our Maya code [26–31]. The code is
based on the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation of the Einstein equations [32]
and the moving puncture gauge condition [33,34].
Maya is very similar to the Einstein code in the
Einstein Toolkit [35]. That is, it operates under the
Cactus infrastructure [36], with Carpet providing mesh
refinements [37] and thorns (modules) generated by the
package Kranc [38].

II. INITIAL DATA AT A GLANCE

When the Einstein equations of general relativity are
viewed as an initial value problem, the initial data are not
completely freely specifiable. They must satisfy the
Hamiltonian and momentum constraints:

Rþ K2 − KijKij ¼ 16πρH ð1Þ

∇jðKij − γijKÞ ¼ 8πSi: ð2Þ

Above, γij and Kij are the metric and extrinsic curvature
of the spacelike hypersurfaces in the foliation. In addi-
tion, R is the Ricci scalar, and ∇i denotes covariant
differentiation associated with γij. The sources ρH and Si

are obtained from the stress-energy tensor Tab as follows,

ρH ¼ nanbTab ð3Þ

Si ¼ −γibncTbc; ð4Þ

where na is the unit normal to the spacelike hyper-
surfaces. We are using units in which G ¼ c ¼ 1. Latin
indices from the beginning of the alphabet denote
spacetime indices and from the middle of the alphabet
spatial indices. For a perfect fluid, the stress-energy
tensor reads

Tab ¼ ðρþ pÞuaub þ pgab

¼ ρ0huaub þ pgab; ð5Þ

where h ¼ 1þ ϵþ p=ρ0 is the enthalpy, p is the pres-
sure, ua is the 4-velocity of the fluid, ρ0 is the rest-mass
density, ϵ is the specific internal energy density, and

ρ ¼ ρ0ð1þ ϵÞ is the total mass-energy density. In terms
of these quantities, the sources in the Hamiltonian and
momentum constraints read

ρH ¼ ðρþ pÞW2 − p ¼ ρ0hW2 − p ð6Þ

Si ¼ ðρþ pÞWui ¼ ρ0hWui; ð7Þ

where W ¼ −naua is the Lorentz factor between normal
and fluid observers.
Since the initial data consist of the set fγij; Kij; ρH; Sig,

the pressing issue is to identify which “pieces” in these data
are to be fixed by the constraint Eqs. (1) and (2) and which
data are indeed freely specifiable.
Motivated by the work of Lichnerowicz [12], York and

collaborators [39] developed an elegant way of achieving
this task. The basis of this approach is using conformal
transformations and transverse-traceless decompositions to
single out the four quantities fixed by the constraint
equations. One quantity, the conformal factorΦ, is obtained
from the spatial metric by applying the conformal trans-
formation:

γij ¼ Φ4γ̄ij: ð8Þ

The remaining three quantities, the components of the
vector Wi, are obtained by applying to the extrinsic
curvature Kij the following conformal transformations
and decompositions,

Kij ¼ Aij þ
1

3
γijK ð9Þ

Aij ¼ Φ−2Āij ð10Þ

Āij ¼ ĀTT
ij þ ðL̄WÞij; ð11Þ

with K ≡ Ki
i, ðL̄WÞij ≡ ∇̄iWj þ ∇̄jWi − 2

3
γ̄ij∇̄kWk and

∇̄iĀ
ij
TT ¼ 0. The operator ∇̄ denotes covariant differentia-

tion associated with the confomal spatial metric γ̄ij. Notice
that Aij and Āij are traceless, and ĀTT

ij is transverse. With
these transformations, Eqs. (1) and (2) reduce to

8Δ̄Φ − ΦR̄ −
2

3
Φ5K2 þ Φ−7ĀijĀij ¼ −16πΦ5ρH ð12Þ

ðΔ̄LWÞi − 2

3
Φ6∇̄iK ¼ 8πΦ10Si; ð13Þ

respectively, with ðΔ̄LWÞi ≡ ∇̄jðL̄WÞij, Δ̄≡ ∇̄i∇̄i, and R̄
the Ricci scalar of the conformal space.
Given Eqs. (12) and (13), constructing initial

data translates into freely specifying the quantities
fγ̄ij; K; ĀTT

ij ; ρH; S
ig and solving for the conformal factor

Φ and vector theWi. A common choice, which we adopt, is
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to assume conformal flatness (γ̄ij ¼ ηij), maximal slicing
(K ¼ 0), and ĀTT

ij ¼ 0. Under these assumptions, the
constraints (12) and (13) assume the form

Δ̄Φþ 1

8
Φ−7ĀijĀij ¼ −2πΦ5ρH ð14Þ

ðΔ̄LWÞi ¼ 8πΦ10Si ð15Þ

with Āij ¼ ðL̄WÞij. We exploit the freedom to conformally
transform ρH and Si and set

ρ̄H ¼ ρHΦ8; ð16Þ

S̄i ¼ SiΦ10; ð17Þ

and thus Eqs. (14) and (15) read

Δ̄Φþ 1

8
Φ−7ĀijĀij ¼ −2πΦ−3ρ̄H ð18Þ

ðΔ̄LWÞi ¼ 8πS̄i: ð19Þ

The transformations (16) and (17) and the expressions (6)
and (7) suggest setting in the stress-energy tensor ρ̄ ¼ Φ8ρ,
p̄ ¼ Φ8p, and ūi ¼ Φ2ui, and therefore

ρ̄H ¼ ðρ̄þ p̄ÞW2 − p̄; ð20Þ

S̄i ¼ ðρ̄þ p̄ÞWūi: ð21Þ

Notice from uaua ¼ −1 thatW2 − 1 ¼ γijuiuj ¼ γ̄ijūiūj ¼
W̄2 − 1. Then, with the help of Eq. (21),

W2 − 1 ¼ γ̄ijūiūj ¼
S̄2

W2ðρ̄þ p̄Þ2 ; ð22Þ

and thus

W2 ¼ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4S̄2

ðρ̄þ p̄Þ2

s !
; ð23Þ

where S̄2 ¼ γ̄ijS̄iS̄j.
In summary, constructing initial data reduces to first

specifying ρ̄H and S̄i, next solving Eq. (19) for Wi to
construct Āij, and finally solving for Φ from Eq. (18).

III. EXTRINSIC CURVATURE

We now consider solutions to the momentum constraint
equation ðΔ̄LWÞi ¼ 8πS̄i. We will first recall the solution
that represents BHs and next reintroduce the one
suitable to model NSs. For BHs (S̄i ¼ 0), Bowen and

York [25] found that point-source solutions to ðΔ̄LWÞi ¼ 0
are given by

Wi ¼ −
1

4r
½7Pi þ liðP · lÞ� ð24Þ

Wi ¼ 1

r2
ϵijkljJk; ð25Þ

with li ¼ xi=r a unit radial vector and P · l ¼ Pili. In these
solutions, the constant vectors Pi and Ji are, respectively,
interpreted as the linear and angular momentum of the BH.
From Āij ¼ ðL̄WÞij, the extrinsic curvatures associated
with these solutions are

Āij ¼ 3

2r2
½Pilj þ Pjli − ðηij − liljÞðP · lÞ� ð26Þ

Āij ¼ 6

r3
lðiϵjÞklJkll: ð27Þ

Next is to consider solutions to ðΔ̄LWÞi ¼ 8πS̄i

that can be used to build the extrinsic curvature of a
NS. Following Bowen [40], we assume sources of the
form

S̄i ¼ PiσðrÞ ð28Þ

S̄i ¼ ϵijkJjxkκðrÞ: ð29Þ

At this point, Pi and Ji are arbitrary constant vectors, and
σ and κ are radial functions with compact support on
r ≤ r0. The specific form of these functions will be
determined in the next section using the following
conditions.
From the definition of Arnowitt-Deser-Misner (ADM)

linear momentum [41], one has that

Pi
ADM ¼ 1

8π

Z
∂Σ∞

AijdSj

¼ 1

8π

Z
Σ
∇̄jĀij ffiffiffi

η
p

d3x

¼
Z
Σ
S̄i

ffiffiffi
η

p
d3x

¼ Pi

Z
Σ
σ
ffiffiffi
η

p
d3x: ð30Þ

Thus, for Pi
ADM ¼ Pi to hold, σ must satisfy the following

normalization condition:Z
Σ
σ
ffiffiffi
η

p
d3x ¼ 4π

Z
r0

0

σr2dr ¼ 1: ð31Þ

Similarly, from the definition of ADM angular momen-
tum [12], we have that
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JADMi ¼ 1

8π
ϵijk

Z
∂Σ∞

xjAkmdSm

¼ 1

8π
ϵijk

Z
Σ
xj∇̄mĀkm ffiffiffi

η
p

d3x

¼ ϵijk

Z
Σ
xjS̄k

ffiffiffi
η

p
d3x

¼ ϵijkϵ
klm

Z
Σ
xjJlxmκ

ffiffiffi
η

p
d3x

¼
Z
Σ
r2ðJi − liljJjÞκ

ffiffiffi
η

p
d3x: ð32Þ

Adopting Cartesian coordinates and aligning the angular
momentum with the z axis, one gets that

JADMi ¼ Ji

Z
Σ
r2sin2θκ

ffiffiffi
η

p
d3x: ð33Þ

Thus, in order to have JADMi ¼ Ji, the following normali-
zation condition must hold:

2π

Z
r0

0

Z
π

0

sin3 θr4κdθdr ¼ 8π

3

Z
r0

0

κr4dr ¼ 1: ð34Þ

Given the normalization condition Eq. (31) for σ, the
solution to ðΔ̄LWÞi ¼ 8πPiσ reads [40]

Wi ¼ −2PiF þ 1

2
PiH þ 1

2
liðP · lÞrH0; ð35Þ

where primes denote differentiation with respect to the
radial coordinate r. The functions F and H are given,
respectively, by

F ¼ 1

r

Z
r

0

4πσ ~r2d~rþ
Z

r0

r
4πσ ~rd~r; ð36Þ

H ¼ 1

r3

Z
r

0

F~r2d~r: ð37Þ

With the help of ∇̄ir ¼ li and ∇̄ilj ¼ ðηij − liljÞ=r,
substitution of Eq. (35) into Āij ¼ ðL̄WÞij yields

Āij ¼ ð−2F0 þH0ÞðPilj þ PjliÞ
þ ðrH00 −H0ÞðP · lÞlilj

þ 1

3
ð4F0 − rH00 −H0ÞðP · lÞηij: ð38Þ

With the help of

Q ¼
Z

r

0

4πσ ~r2d~r ð39Þ

J ¼
Z

r0

r
4πσ ~rd~r ð40Þ

C ¼
Z

r

0

2

3
πσ ~r4d~r

¼
Z

r

0

�
1

2
Q~r2 þ 1

3
J~r3
�
d~r; ð41Þ

and

F ¼ Q=rþ J ð42Þ

H ¼ Q=2rþ J=3 − C=r3 ð43Þ

F0 ¼ −Q=r2 ð44Þ

H0 ¼ −Q=2r2 þ 3C=r4 ð45Þ

H00 ¼ Q=r3 − 12C=r5; ð46Þ

the expression (38) for the extrinsic curvature can be
rewritten as

Āij ¼ 3Q
2r2

½Pilj þ Pjli − ðηij − liljÞðP · lÞ�

þ 3C
r4

½Pilj þ Pjli þ ðηij − 5liljÞðP · lÞ�: ð47Þ

For r > r0 (exterior solution), Q ¼ 1, and thus the first
term in Eq. (47) becomes the Bowen-York curvature for a
point mass (26). Furthermore, Eq. (47) has the correct point
mass limit since Q ¼ 1 and C ¼ 0 for r0 ¼ 0.
For a spherically symmetric source function κ with

angular momentum Ji, the solution to ðΔ̄LWÞi ¼
8πϵijkJjxkκ is given by [42]

Wi ¼ ϵijkxjJkG; ð48Þ

where

G ¼ 1

r3

Z
r

0

8π

3
r04κdr0 þ

Z
r0

r

8π

3
κr0dr0: ð49Þ

Notice thatG ¼ r−3 for r ≥ r0. Substitution of Eq. (48) into
Āij ¼ ðL̄WÞij yields

Āij ¼ 6

r3
lðiϵjÞklJkllN; ð50Þ

where

N ¼
Z

r

0

8π

3
r04κdr0 ð51Þ
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Exterior to the source, N ¼ 1, and the extrinsic curvature
reduces to the pointlike solution (27).
In summary, Eqs. (26) and (27) are the extrinsic

curvatures for a pointlike source with linear and angular
momentum, respectively. In addition, Eqs. (47) and (50) are
the extrinsic curvatures for a spherically symmetric source
with linear and angular momentum, respectively. To con-
struct initial data for compact object binaries, the extrinsic
curvature for the binary system will be simply given by a
superposition of these solutions, pointlike for the BH and a
spherically symmetric source for the NS. The only input
needed is the locations of the compact objects, their linear
and angular momenta, and the source functions σ and κ. As
with BBHs, the linear and angular momenta of the sources
and their binary separation will be provided by the outcome
of integrating the PN equations of motion. It is very
important to keep in mind that, because of the spherical
symmetry assumption in the source functions σ and κ, the
extrinsic curvature will not be able to account for tidal
deformations of the star. We are currently considering a
generalization that relaxes the spherical symmetry
assumption.

IV. SOURCE FUNCTIONS

The next step is to specify the source functions σ and κ,
as well as the source ρ̄H ¼ ðρ̄þ p̄ÞW2 − p̄ in the
Hamiltonian constraint. The starting point is the density
ρ̄ and pressure p̄ from the stellar model of our choice.
Recall from Eq. (4) that S̄i ¼ ðρ̄þ p̄ÞWūi. Thus, for the
case of linear momentum, we have that

S̄i ¼ ðρ̄þ p̄ÞWūi ¼ Piσ: ð52Þ

We then set

σ ¼ ðρ̄þ p̄Þ=M; ð53Þ

with M a constant determined by the normalization
condition Eq. (31) for σ. That is,

1 ¼ 4π

Z
r0

0

σr2dr ¼ 4π

M

Z
r0

0

ðρ̄þ p̄Þr2dr; ð54Þ

and thus

M ¼ 4π

Z
r0

0

ðρ̄þ p̄Þr2dr: ð55Þ

Notice that Eq. (53) restricts our choice for ρ̄ and p̄ to be
spherically symmetry solutions since by assumption σðrÞ is
spherically symmetric. With this choice for σ, the linear
momentum satisfies Pi ¼ WMūi. Since by construction Pi

andM are constants,Wūi must also be constant within the
source distribution. Finally, notice also from Eqs. (23),
(52), and (53) that the Lorentz factor is then given by

W2 ¼ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4P2

M2

s !
; ð56Þ

where P2 ¼ ηijPiPj.
For a source with angular momentum,

S̄i ¼ ϵijkJjxkκ ¼ ðρ̄þ p̄ÞWūi: ð57Þ

As with the previous case, we set

κ ¼ ðρ̄þ p̄Þ=N : ð58Þ

From the normalization condition Eq. (34), one has that

1 ¼ 8π

3

Z
r0

0

κr4dr ¼ 8π

3N

Z
r0

0

ðρ̄þ p̄Þr4dr; ð59Þ

and thus the constant N is given by

N ¼ 8π

3

Z
r0

0

ðρ̄þ p̄Þr4dr: ð60Þ

The Lorentz factor in this case reads

W2 ¼ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4J2r2sin2θ

N 2

s !
; ð61Þ

where J is the magnitude of the angular momentum and θ
the angle between Ji and li. Notice that in this case the
Lorentz boost factor is not constant within the star.
An important aspect to keep in mind is how the spin

enters for consistency in several ways during the con-
struction of initial data. The spin enters explicitly in the
extrinsic curvature tensor and, as a consequence, in
the source of the momentum constraint. It is also involved
in the normalization condition imposed by the ADM
angular momentum. Finally, the spin appears in the source
of the Hamiltonian constraint through the Lorentz boost
factor.

V. INITIAL DATA PROCEDURE

The centerpiece of our method is solving Eq. (18), or
equivalently

Δ̄Φþ 1

8
Φ−7ĀijĀij ¼ −2πΦ−3½ðρ̄þ p̄ÞW2 − p̄�: ð62Þ

In this equation, the boost factor W for the stellar model is
given by Eq. (56) for linear momentum or Eq. (61) for
angular momentum. In the same equation, Āij is given by
the Bowen-York extrinsic curvatures. For point masses,
Eq. (26) provides the extrinsic curvature with linear
momentum, and Eq. (27) provides the corresponding
extrinsic curvature with angular momentum. Similarly,
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the extrinsic curvature associated with the stellar model is
given by Eq. (47) for linear momentum and Eq. (50) for
angular momentum.
In general terms, the sequence of steps to construct initial

data for binaries with BH and NS components under the
proposed method is as follows:
(1) Choose massesM1;2 of the compact objects and their

initial separation d0 deep in the PN regime, with
M ¼ M1 þM2 the total mass of the binary and q ¼
M1=M2 its mass ratio. Integrate the PN equations of
motion at the highest order available, and stop at a
separation d where the NR evolution will begin.

Read off the linear momentum ~P1;2 and spin ~S1;2 for
each of the binary components.

(2) Identify the mass M1ð2Þ with the ADM mass
MADM

1ð2Þ of a star in isolation if a NS and with the

irreducible mass Mirr
1ð2Þ if a BH, where

MADM ¼ −
1

2π

Z
∂Σ∞

∇̄iΦdSi ð63Þ

and Mirr ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16π

p
for a BH with apparent hori-

zon area A [12].
(3) If object 1(2) is a BH, set its puncture bare mass

m1ð2Þ ¼ M1ð2Þ. If object 1(2) is a NS, construct a
spherically symmetric stellar model with ADMmass
MADM

1ð2Þ . Compute also its rest mass M0
1ð2Þ from

M0 ¼
Z
Σ
ρ0W

ffiffiffi
γ

p
d3x; ð64Þ

and save the ratio ξ1ð2Þ ≡MADM
1ð2Þ =M

0
1ð2Þ.

(4) If the compact object is a NS, calculate the functions
σ and κ from Eqs. (53) and (58), respectively.

(5) Use the ~P and ~S vectors to construct the extrinsic
curvature using Eqs. (26) and (27) if a BH, and
Eqs. (47) and (50) if a NS. The functions σ and κ will
also be needed if a NS. The total extrinsic curvature
is Āij ¼ Āij

1 þ Āij
2 .

(6) Construct the term ½ðρ̄þ p̄ÞW2 − p̄� in the rhs of
Eq. (62) for each NS. Superpose the terms if the
binary involves a DNS.

(7) Solve the Hamiltonian constraint in the form given
by Eq. (62).

(8) If a BH, compute the new irreducible M̂irr
1ð2Þ, and if a

NS, calculate the new rest mass M̂0
1ð2Þ. Using ξ1ð2Þ

from Step 3, estimate the new ADM mass M̂ADM
1ð2Þ ¼

ξ1ð2ÞM̂0
1ð2Þ. Notice that we are assuming that the ratio

ξ1ð2Þ does not change significantly from iteration to
iteration.

(9) Next, identify the new mass M̂1ð2Þ with M̂ADM
1ð2Þ if a

NS and M̂1ð2Þ with M̂irr
1ð2Þ if a BH. Calculate the new

total mass M̂¼M̂1þM̂2 and mass ratio q̂¼M̂1=M̂2.
If the new values differ from the values in Step 1 by
more than a specified tolerance, adjust the bare
masses of the BH or central densities of the NS
according to a 2D secant algorithm [43], and return
to step 3.

For the present work, we solve Eq. (62) using a modified
version of the 2Punctures spectral code. 2Punctures was
originally developed by Ansorg [7] to construct BBH initial
data, that is, to solve Eq. (62) with vanishing rhs and Aij

given by Eq(s). (26) and/or (27).
Once the conformal factor Φ is found from solving

Eq. (62), the spatial metric and extrinsic curvature are
obtained from γij ¼ Φ4ηij and Kij ¼ Φ−2Āij, respectively.
The last step is constructing the hydrodynamical fields ρ, p,
W, and ui. Given Φ, ρ̄H, and S̄i, we have that ρH and Si are
considered as known since ρH ¼ Φ−8ρ̄H and Si ¼ Φ−10S̄i.
On the other hand,

ρH ¼ ðρþ pÞW2 − p ð65Þ

Si ¼ ðρþ pÞWui; ð66Þ

and from the second equation,

γijSiSj ¼ ðρþ pÞ2W2γijuiuj

¼ ðρþ pÞ2W2ðW2 − 1Þ; ð67Þ

where in the last equality we used that γijuiuj ¼ W2 − 1 as
implied by uaua ¼ −1. If we view that p is given by an
equation of state, Eqs. (65) and (67) can be used to solve for
ρ and W. And the last step is to construct ui from Eq. (66).

VI. TOLMAN-OPPENHEIMER-VOLKOFF
MODEL IN ISOTROPIC COORDINATES

For the present work, we use a Tolman-Oppenheimer-
Volkoff (TOV) stellar model to represent a NS, with a
polytropic equation of state p ¼ KρΓ0 . Since we assume
conformal flatness, it is natural to recast the TOV model in
isotropic coordinates. TOV models are commonly con-
structed in coordinates in which the metric takes the form

ds2 ¼ −α2ðr̂Þdt2 þ
�
1 −

2mðr̂Þ
r̂

�
−1
dr̂2 þ r̂2dΩ: ð68Þ

On the other hand, the form of the metric (isotropic)
compatible with our conformal flatness assumption is

ds2 ¼ −α2ðrÞdt2 þ ΦðrÞ4ðdr2 þ r2dΩÞ: ð69Þ

In these coordinates, the equations that one needs to solve
are the so-called “conformal thin sandwich” equations [12],
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∂i∂iΦ ¼ −
1

8
Φ−7ĀijĀij − 2πΦ5ρH ð70Þ

∂j∂jβ
i þ 1

3
∂i∂jβ

j ¼ 2Āij∂jðαΦ−6Þ þ 16παΦ4Si ð71Þ

∂i∂iðαΦÞ ¼ αΦ

�
7

8
Φ−8ĀijĀij þ 2πΦ4ðρH þ 2SÞ

�
; ð72Þ

where βi is the shift vector, ρH is given by Eq. (6), Si is
given by Eq. (7), and S ¼ Sii with Sij ¼ γai γ

b
jTab.

For the metric (69), the conformal thin sandwich
equations reduce to

1

r2
ðr2Φ0Þ0 ¼ −2πΦ5ρ ð73Þ

1

r2
ðr2Θ0Þ0 ¼ 2πΘΦ4ðρþ 6pÞ; ð74Þ

where primes denote differentiation with respect to r and
Θ≡ αΦ. Notice also that in this case βi ¼ 0, Aij ¼ 0,
Si ¼ 0, and ρH ¼ ρ. Finally, from ∇bTab ¼ 0, one obtains

p0 ¼ −ðρþ pÞ α
0

α
¼ −ðρþ pÞ

�
Θ0

Θ
−
Φ0

Φ

�
: ð75Þ

Therefore, together with an equation of state, constructing
TOV stellar models in isotropic coordinates involves
solving Eqs. (73), (74), and (75). Integration constants
are chosen such that in the exterior of the star

Φ ¼ 1þM
2r

ð76Þ

Θ ¼ 1 −
M
2r

; ð77Þ

with

M ¼ 2π

Z
r0

0

r2Φ5ρdr ð78Þ

the total mass of the star. Notice thatM ¼ MADM (the ADM
mass) since Eq. (78) can be rewritten as Eq. (63).
If we denote by Φtov, ρtov, and ptov the TOV solutions in

isotropic coordinates, we then set

ρ̄ ¼ Φ8
tovρtov ð79Þ

p̄ ¼ Φ8
tovptov ð80Þ

and rewrite the Hamiltonian constraint Eq. (62) as

Δ̄Φþ 1

8
Φ−7ĀijĀij

¼ −2πΦ−3Φ8
tov½ðρtov þ ptovÞW2 − ptov�: ð81Þ

Notice that for an isolated TOV stellar model without linear
or angular momentum (Āij ¼ 0, W ¼ 1 and Φ ¼ Φtov)
Eq. (81) reduces to Eq. (73), namely

Δ̄Φtov ¼ −2πΦ5
tovρtov: ð82Þ

VII. SINGLE NEUTRON STAR WITH LINEAR
AND ANGULAR MOMENTUM

We test the proposed method in the simple case of an
isolated NS. We will first consider a star with linear
momentum along the x axis. As mentioned before, we
model the star as a polytrope with equation of state
p ¼ KρΓ0 , setting Γ ¼ 2 and K ¼ 123.641M2⊙. The star
has mass M� ¼ 1.543 M⊙, radius R� ¼ 13.4 km, and
central density ρc ¼ 6.235 × 1014 gr cm−3. We endow
the star with linear momentum within the range
0 ≤ P=M� ≤ 0.4.
Figure 1 depicts with dots the ADM mass MADM as a

function of P=M� and with triangles the rest mass M0.
In the same figure, squares denote the quantity M�W,
where the Lorentz boost factor W is calculated from
Eq. (56). Notice that for small values of the linear
momentum MADM ≈M�W. Also, it is not difficult to
show from Eq. (63) and the Hamiltonian constraint (81)
that MADM ¼ M� þOðP2Þ, consistent with the growth
observed in Fig. 1.
To further understand the changes that the momentum

introduces to the TOV solution, we plot in Fig. 2 the
relative differences with respect to the TOV solution of the
total mass-energy density ρ (top panel) and conformal
factor Φ (bottom panel) along the x axis, after solving the

FIG. 1. ADM mass MADM (dots), rest mass M0 (triangles), and
M�W (squares) as a function of P=M� for a single NS. The solid
line represents a fit to MADM ¼ M� þ cP2.
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Hamiltonian constraint for a star with a linear momentum
P=M� ¼ 0.1. The relative differences are computed as
follows:

δρ ¼ ρ − ρtov
ρtov

ð83Þ

δΦ ¼ Φ − Φtov

Φtov
: ð84Þ

The differences in the mass-energy density are entirely due
to the conformal factor. From ρ ¼ Φ−8ρ̄ and ρ̄ ¼ Φ8

tovρtov,
one has that ρ ¼ ðΦ=ΦtovÞ−8ρtov, and thus from (83),
δρ ¼ ðΦ−8 − Φ−8

tovÞ=Φ−8
tov.

In general terms, the evolutions of the initial data for a
single neutron star with linear momentumwere satisfactory.
The evolutions were carried out with the same gauge
conditions used for puncture BH evolutions [33,34]. We
noticed, however, few percent variations in the size and
internal structure in the star during the course of the
evolution. The changes in the size of the star with linear
momentum ~P=M� ¼ 0.1x̂ are shown in Fig. 3 along the x
axis and in Fig. 4 along the y axis. Notice that the
deformations are more prominent in the leading edge of
the star (i.e. positive x axis). Oscillations reveal themselves
also in the central density of the star. Figure 5 shows the
evolution of the central density in the star for the same case.
Next, we consider a single star with angular momentum.

The TOV model for the star is as in the previous case
(i.e. polytrope with equation of state p ¼ KρΓ0 , Γ ¼ 2, K ¼
123.641 M2⊙, massM� ¼ 1.543 M⊙, radiusR� ¼ 13.4 km,
and central density ρc ¼ 6.235 × 1014 gr cm−3). Figure 6
shows the evolution of the central density, normalized to the
initial central valueρc, for J=M2� ¼ 0, 0.025, 0.05, and 0.075,
with the angular momentum along the z axis. Notice the
presence of oscillations for all cases, including the

nonspinning case. The amplitude of the oscillations increases
with the magnitude of the spin, but the frequency seems to
remain unchanged. Notice also that the frequency of these
spurious oscillations is comparable to the one observed case
with linear momentum (see Fig. 5). Finally, Figs. 7 and 8
show profiles of rest-mass density (ρ) along the x axis and z
axis (the rotation axis) for a TOV star with angular momen-
tum J=M2� ¼ 0.05 at various times throughout the evolution.
The profiles have been normalized to the initial central

FIG. 2. Relative differences along the x axis between the TOV
solution and the corresponding solution for a TOV star with
momentum P=M� ¼ 0.1. The top panel shows the relative
differences δρ in total mass energy, and bottom panel shows
those in the conformal factor δΦ. FIG. 3. Density ρ profiles along the x axis for a TOV star with

P=M� ¼ 0.1 at various times throughout the evolution. The
profiles have been normalized to the initial central density ρc
and shifted to be centered at x ¼ 0.

FIG. 4. Density ρ profiles for the same case as in Fig. 3 but
along the y direction. Because of reflection symmetry, only half
of the profile is shown. The profiles have been normalized to the
initial central density ρc and intersect with the point of maximum
density along the x axis at all times.
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density ρc. Notice that changes are more pronounced along
the x axis.

VIII. COMPACT OBJECT BINARY EVOLUTIONS

Next, we test the performance of our prescription to
construct initial data with evolutions of DNS and BH-NS
binary systems.

A. Nonspinning double neutron star binary

We consider first an equal-mass DNS system. The NSs
have a mass of 1.568 M⊙ and coordinate radius 13.1 km,
and they are initially separated by 54.6 km. The
configuration is similar to the model 1.62-45 in
Baiotti et al. [44]. In their case, the stars have a mass of
1.62 M⊙, and their initial coordinate separation is 45 km.
The results of this simulation were obtained using
seven levels of mesh refinement. The finest mesh had
resolution of 0.150 M⊙ ¼ 0.221 km and an extent of
26.6 km. The wave-zone grid resolution was 9.58 M⊙ ¼
14.1 km.
Figure 9(a) shows the coordinate trajectory of one of the

NS stars, and Fig. 9(b) shows the corresponding coordinate
separation of the binary. The data in both figures end at the
“point-of-contact” (PoC), which occurs at approximately
18 ms after the start of the simulation or at a separation of
approximately 25 km. A hypermassive neutron star
(HMNS) forms 4 ms after the PoC, which collapses to a
BH in approximately 8 ms. The collapse of the HMNS in
Baiotti et al. [44] is 10 ms, a difference that we attribute
primarily to resolution effects.
Figure 9(c) shows the evolution of the central density

normalized to its initial value. For comparison, see Fig. 12
in Baiotti et al. [44]. The oscillations in Fig. 9(c) that occur

FIG. 5. Evolution of the central density of the star in Fig. 3
normalized to the initial central value ρc.

FIG. 6. Evolution of the central density of the spinning star
model for J=M2� ranging from 0 to 0.075, with densities
normalized to the initial central value ρc.

FIG. 7. Density ρ profiles along the z axis (rotation axis) for a
TOV star with J=M2� ¼ 0.05 at various times throughout the
evolution. The profiles have been normalized to the initial central
density ρc.

FIG. 8. Density ρ profiles along the x axis for the TOV star
in Fig. 7.

BOWEN-YORK TYPE INITIAL DATA FOR BINARIES … PHYSICAL REVIEW D 94, 064058 (2016)

064058-9



before 18 ms are similar to, and likely due to the same
cause, as those seen in the case of a single NS with linear
momentum (see Fig. 5). Since the amplitude of the
oscillations decreases by increasing the initial separation
of the binary, we suspect that the origin of the oscillations is
because the TOV star has not been able to adjust to the
linear momentum added and to the gravitational field by its
companion. Similar oscillations have been observed in
other initial data methods, for instance, in the work by
Tsatsin and Marronetti [19]. To mitigate the oscillations,
instead of using a straightforward superposition of the
matter sources of each star, Tsatsin and Marronetti [19]
apply a weighted average of hydrodynamical fields (see
Eq. 9 in Ref. [19]), where the weights are functions of the
lapse of individual stars. We are currently investigating

whether this superposition prescription will also work in
our case.
Figure 9(d) shows the 2,2 mode of the Weyl scalar Ψ4,

extracted at 462 M⊙ from the binary, as a function of
retarded time. At the beginning of the waveform, there is a
small burst. This is the characteristic unphysical burst of
radiation observed in NR simulations that start with
conformally flat initial data. After the burst, Ψ4 shows
the expected chirplike structure, the ringing of the HMNS
during the time interval 18 ms ≤ t ≤ 24 ms, and the quasi-
normal-mode (QNM) ringdown of the final BH.
Next, we analyze the convergence properties of the Weyl

scalarΨ4, focusing only in the time segment before merger.
We were unable to get “clean” convergence estimates
during the HMNS phase since numerical dissipation due

FIG. 9. Nonspinning NS binary system.
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FIG. 10. Amplitude (left panel) and phase (right panel) differences of the Weyl scalarΨ4 for three different resolutions of nonspinning
DNS system simulations. The resolutions in the finest grid are 0.45 km (low), 0.315 km (medium), and 0.225 km (high). The (medium–
high) resolution is also presented in black rescaled with a factor of 2.49, corresponding to second-order convergence.

FIG. 11. Rest-mass density snapshots from the nonspinning DNS binary evolution. Panels (a), (b), and (c) show the xy-plane, and
panel (d) shows the xz-plane All densities are in units of g cm−3, and distances are in units of M ¼ 3.14 M⊙.
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to resolution effects leads to significant differences
in the longevity of the resulting HMNS [45]. Figure 10
shows differences of amplitude and phase from three
simulations with resolutions in the finest grid of
0.45 km (low), 0.315 km (medium), and 0.225 km (high).
The red line shows the difference between the medium and
low resolution runs, and the blue line the difference
between the high and medium resolutions. Assuming
second-order convergence, the three resolutions imply that
(medium–low) ≈2.49 × (high–medium). The black line in
Fig. 10 depicts 2.49 × (high–medium) and thus consis-
tency with second-order convergence. For reference, the
sector of the Maya code handling the geometrical fields is
by design sixth-order convergent. The hydrodynamical
sector, however, is at best third order but near shocks
and local extrema can deteriorate to first order, as seen in

codes similar to ours where convergence order could be as
low as 1.8 [46].
Finally, Fig. 11 depicts snapshots of the rest-mass

density during the evolution. Panels (a), (b), and (c) show
the xy-plane, and panel (d) shows the xz-plane. All
densities are in units of g cm−3, and distances are in units
of M ¼ 3.14 M⊙

B. Spinning double neutron star binary

The second example of the evolution of initial
data with the proposed scheme is again an equal-mass
binary but now with spinning NSs. Both stars have identical
spins, antialigned to the orbital axis. The NSs have a
mass of 1.57 M⊙, coordinate radius 13.1 km, and dimen-
sionless spin parameter χs ¼ −0.05. At the beginning of the

FIG. 12. Spinning NS binary system.
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simulation, the NSs are separated by 61.2 km. With this
choice of parameters, the binary system is similar to the
case Γ−−

050 in Bernuzzi et al. [47]. The grid structure is as
follows: the finest mesh has resolution 0.299 M⊙ ¼
:442 km and extent 26.6 km. The radiation zone has
resolution 19.2 M⊙ ¼ 28.3 km.
Figure 12(a) shows the coordinate trajectory of one of

the NS stars, and Fig. 12(b) shows the corresponding
coordinate separation of the binary. Notice from Fig. 12(a)
that the system performs six full orbits before merger. Also
noticeable is the slight kink or sudden drop in separation
observed in Fig. 12(b) at the beginning of the evolution.
After the drop, the inspiral proceeds very smoothly, with
minimal spurious eccentricity. As with the previous case,
the data in both figures are depicted up to the PoC, which
occurs at approximately 25 ms after the start of the
simulation or at a separation of 26 km.

Figure 12(c) shows the evolution of the central density
normalized to its initial value. Here, again, we observe
oscillations in the central density before merger. The
HMNS forms at 26.2 ms and lasts for 1.3 ms before it
collapses. From the waveform in Fig. 12(d), we notice that
the HMNS undergoes two bursts. Also, the collapse to a
BH is faster than in the nonspinning case. This is expected
since the spins of NS are antialigned with the orbital
angular momentum and thus the HMNS is rotating slower
than the HMNS in the nonspinning DNS. The energy
radiated is estimated to be approximately 0.7% of total
mass energy, and the angular momentum radiated is 16% of
the total angular momentum. These values are slightly
different form those reported by Bernuzzi et al. [47]—
which are 1.2% and 18%, respectively.
Finally, Fig. 13 depicts snapshots of the rest-mass

density during the evolution. Panels (a), (b), and (c) show

FIG. 13. Rest-mass density snapshots from the spinning DNS binary evolution. Panels (a), (b), and (c) show the xy-plane, and panel
(d) shows the xz-plane All densities are in units of g cm−3, and distances are in units of M ¼ 3.14 M⊙.
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the xy-plane, and panel (d) shows the xz-plane. All
densities are in units of g cm−3, and distances are in units
of M ¼ 3.14 M⊙.

C. BH-NS binary

The final example of evolution of initial data is for the
case of a BH-NS binary system. The NS has a mass of
1.54 M⊙ and a coordinate radius of 13.0 km, and the BH
has a mass of 7.7 M⊙ (i.e. 5∶1 mass ratio binary). Both
compact objects are nonspinning. The coordinate separa-
tion between the BH and the NS is 117 km. With these
parameters, the BH-NS binary is similar to the M50.145b
system in Shibata et al. [48]. As with the DNS system,
we cover the star with a single mesh of which the side
length is the diameter of the star. The grid structure
has eight levels of refinement, with finest resolution of

0.303 M⊙ ¼ 0.448 km. The finest mesh around the BH
has extent 9.10 M⊙ ¼ 13.4 km. The radiation zone has a
resolution of 38.8 M⊙ ¼ 57.3 km.
Figure 14(a) shows the trajectories of the BH (solid line)

and NS (dashed line). The orbital separation of the binary is
shown in Fig. 14(b). There is clear indication of spurious
eccentricity. We attribute this eccentricity to the relatively
small initial separation. Figure 14(c) shows the maximum
rest-mass density during the course of the evolution. The
central density fluctuates as in the previous two cases, with
the oscillations decaying at later times. The point atwhich the
central density drops signals the time when the star is
disrupted and swallowed by the BH. This is also clear in
the 2,2 mode of the Weyl scalar Ψ4 [see Fig. 14(d)].
At approximately 36 ms, Ψ4 shows the characteristic
QNM ringing of a BH.

FIG. 14. BH-NS binary system.
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Figure 15 depicts snapshots of the rest-mass density
during the BH-NS binary evolution. Panels (a), (b), and
(c) show the xy-plane, and panel (d) shows the xz-plane.
All densities are in units of g cm−3, and distances are in
units of M ¼ 3.14 M⊙

IX. CONCLUSIONS

We have introduced a new scheme to construct initial
data for compact object binaries with NS companions. The
method is a generalization of the approach to construct
initial data for BBHs in which the BHs are modeled as
punctures and the extrinsic curvature is given by the
Bowen-York solution to the momentum constraint [25].
In the method introduced in the present work, the extrinsic
curvature for the NSs is given by the solution derived by

Bowen for spherically symmetric sources with linear
momentum [40] and angular momentum [42]. Given these
extrinsic curvature solutions, we developed an iterative
prescription to construct compact object binary initial data
of DNSs or BH-NSs. The prescription has a relatively
low computational cost since it only requires solving the
Hamiltonian constraint. As with the BBH case, the method
also allows one to specify the intrinsic and orbital parameters
of the binary with direct input from PN approximations. The
quality of the initial data method was demonstrated with a
few examples of evolutions: an isolated NS with linear
momentum; DNS binaries, including spinning NSs;, and a
BH-NS system. The evolutions showed general agreement
with similar cases found in the literature [44,47,48].
In this initial incarnation, the method was not devoid of

defects. The NSs showed spurious breathing that translated

FIG. 15. Rest-mass density snapshots from the BHNS binary evolution. Panels (a), (b), and (c) show the xy-plane, and panel (d) shows
the xz-plane All densities are in units of g cm−3, and distances are in units of M ¼ 3.14 M⊙.
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into oscillations in their density structure. We are currently
investigating applying the suggestion by Tsatsin and
Marronetti [19] to mitigate the oscillations. In addition,
for BH-NS binaries and DNS binaries with unequal
masses, there is slight drift of the coordinate center of
mass. In extreme cases, the drift complicates waveform
extraction.
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