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The topological terms of the bulk effective action for the integer quantum Hall effect, capturing the
dynamics of gauge and gravitational fluctuations, reveal a curiosity, namely, the Abelian potential for the
magnetic field appears in a particular combination with the Abelian spin connection. This seems to hold for
the quantum Hall effect on complex projective spaces of arbitrary dimensions. An interpretation of this in
terms of the algebra of symplectic transformations is given. This can also be viewed in terms of the
metaplectic correction in geometric quantization.
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I. INTRODUCTION

There has recently been a lot of research elucidating the
effective action for the quantum Hall effect on manifolds of
different geometries and topologies [1–6]. This was partly
motivated by the fact that, even though from the exper-
imental point of view, we may only be interested in spaces
of trivial topology, nontrivial geometry and topology can
shed light on various physical quantities such as transport
coefficients. The mathematical structures involved have
also been of interest in their own right. In two dimensions,
the effective action under discussion is best represented as
an expansion in powers of the derivatives of external fields,
such as the electromagnetic and gravitational fields. The
leading terms of such a series are topological in character,
expressed as a sum of Chern-Simons type terms in the
fields. The term involving just the electromagnetic field and
the mixed term involving both electromagnetic and gravi-
tational fields have been known for a long time [2,3]. The
addition of the purely gravitational part and the generali-
zation to include higher Landau levels revealed an inter-
esting curiosity [4–6]. Apart from the gravitational framing
anomaly, the electromagnetic field and the spin connection
of the manifold combine in a particular way [4]. It is
possible to understand the way this combination comes
about, both in terms of isolating the framing anomaly and in
terms of the gravitational anomaly due to possible edge
modes in the case of a droplet. But a more general point of
view, based on ideas of geometric quantization, is the
subject of this paper.
The quantum Hall effect has also been generalized to

higher dimensions [7–13] for a number of different spaces
such as the four-sphere [7] and complex projective spaces
[8]. Unlike the two-dimensional case, the background
gauge fields, the analogue of the electromagnetic field,

can be Abelian or non-Abelian. It is useful to characterize
the dynamics of a quantum Hall state by an effective action.
The part of this effective action which describes the
boundary excitations was obtained in Refs. [10,11] as a
Wess-Zumino-Witten theory, gauged with respect to the
fixed background gauge field. If fluctuations in the gauge
field are possible, there is also nontrivial bulk dynamics.
The leading terms of the bulk part of the effective action in
this case are topological, being of the Chern-Simons type.
These bulk terms involving the gauge field were given in
Refs. [12,13], and the general boundary action allowing for
fluctuations of the gauge field was given in Ref. [12].
Cancellation of anomalies occurs between the bulk and
boundary terms. More recently, we have obtained a general
form of the topological terms of the bulk effective action
valid in all dimensions [14], including fluctuations in the
gravitational and gauge fields. This is done by using the
index density in the Dolbeault index theorem as an effective
expression for the charge density and then integrating up to
obtain the action. The purely gravitational terms can also be
added via the standard descent procedure. In expanding out
the various terms for the complex projective spaces, one
again notices the same curiosity mentioned above: the
Abelian part of the gauge field and the Abelian part of
the spin connection appear in a particular combination. The
recurrence of this combination in this generalized context
sharpens the need for a deeper explanation.
It is possible to view the lowest Landau level of a

quantum Hall system on a Kähler manifold as the Hilbert
space obtained by the geometric quantization of a sym-
plectic form which is a suitable multiple of the Kähler form.
One of the subtleties of geometric quantization is the
appearance of the metaplectic structure [15–17]. This arises
because we need a quantization procedure which can
accommodate changes of polarization, since physical
results should not depend on the polarization one uses.
This leads to the introduction of half-forms. The effect of
this augmented formalism is that the operator expressions
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for certain classical functions get corrections, the so-called
metaplectic correction. One can also understand this
correction in terms of the realization, at the quantum level,
of the algebra of symplectic transformations. We show that
the particular combination of the Abelian part of the gauge
field and the spin connection arises in this way. These are
the main results of this paper.
In the next section, we review the effective action and

formulate in more precise terms the problem we are
addressing. In Sec. III, we consider the lowest Landau
level using geometric quantization and show the role of the
symplectic transformations and how the metaplectic cor-
rection emerges.

II. THE EFFECTIVE ACTION AND THE
STATEMENT OF THE PROBLEM

We start by recalling some of the essential features of the
problem. We will consider the quantum Hall effect on a
complex Kähler manifold K of complex dimension k (so
that the relevant spacetime is R × K). The background
gauge fields are valued in the algebra of UðkÞ (which is the
holonomy group for K). The Abelian part of the back-
ground gauge field will be a multiple of the Kähler form Ω
on K. (We are interested in the response of the system to
fluctuations of all gauge fields and gravitational fields
around the background values). The standard approach is to
set up the Hamiltonian for a single particle (corresponding
to a field of given spin and charges) and solve the Landau
problem, construct multiparticle wave functions, etc.
However, if we are only interested in the lowest Landau
level, the wave functions can be obtained by the geometric
quantization of a certain symplectic form. We will consider
these two aspects of the Hall effect here.
The single particle Hamiltonian, apart from any addi-

tional potential energy which may be needed for confine-
ment of the particles to a droplet, will be proportional to the
Laplace operator on K,

HΨ ¼ −
1

4m
ðDþiD−i þD−iDþiÞΨ ð1Þ

where D�i are (holomorphic/antiholomorphic) derivatives
on K, suitably covariantized in terms of their action on Ψ.
The eigenstates of this Hamiltonian fall into distinct
Landau levels. The lowest Landau level will obey a
holomorphicity condition,

D−iΨLLL ¼ 0: ð2Þ

The number of solutions to this condition, and therefore the
degeneracy of the lowest Landau level, is given by the
Dolbeault index theorem [18]. Thus, for the case of a
completely filled lowest Landau level, where all the
available states are occupied by (spinless) electrons, each
carrying a unit charge, the index density is identical to the

charge density, except for terms which can integrate to zero.
In the case of manifolds which are group cosets, such as for
CPk ¼ SUðkþ 1Þ=UðkÞ, the solutions to Eq. (2) can be
constructed from group representation theory [10].
While most of the discussion will be of general validity,

it is useful to focus on a specific family of manifolds to see
how details work out. We will use CPk for most of what we
do. This manifold has constant Riemannian curvatures
valued in the algebra of UðkÞ, and the background values
for the gauge fields are taken to be proportional to the
curvatures. This means also that we can have an Abelian
part for the background gauge field [corresponding to the
Uð1Þ part of UðkÞ ∼ SUðkÞ ×Uð1Þ] and non-Abelian
gauge fields valued in SUðkÞ. The Landau problem of
particles in a constant background gauge field is thus
obtained.
Points on the manifold CPk can be parametrized by an

element g of SUðkþ 1Þ, with the identification g ∼ gh,
h ∈ UðkÞ ⊂ SUðkþ 1Þ, so that wave functions can be
viewed as functions on SUðkþ 1Þ with specified
transformation properties under UðkÞ. Let tA,
A ¼ 1; 2;…; k2 þ 2k, denote a basis of Hermitian ðkþ 1Þ×
ðkþ 1Þ matrices viewed as the fundamental representation
of the Lie algebra of SUðkþ 1Þ, with the normalization
TrðtAtBÞ ¼ 1

2
δAB. The commutation rules of the Lie algebra

are of the form ½tA; tB� ¼ ifABCtC, with structure constants
fABC. The generators tA can be split into a set of generators
for the SUðkÞ part of UðkÞ ⊂ SUðkþ 1Þ (denoted by ta,
a ¼ 1; 2;…; k2 − 1) and the generator for the Uð1Þ direc-
tion in UðkÞ (denoted by tk2þ2k). The coset generators split
into conjugate sets t�i, i ¼ 1; 2;…; k.
The matrix elements of g for all the finite-dimensional

representations form a basis for functions on the group
SUðkþ 1Þ. These are the Wigner D functions, which are
defined as

DðJÞ
l;r ðgÞ ¼ hJ; ljgjJ; ri ð3Þ

where l, r stand for two sets of quantum numbers
specifying the states within the representation. Further,
we can define the left and right translation operators on g by

L̂Ag ¼ TAg; R̂Ag ¼ gTA ð4Þ

where TA are the SUðkþ 1Þ generators in the representa-
tion to which g belongs.
We identify the covariant derivatives on CPk in terms of

the right translation operators on g as

D�i ¼ i
R̂�i

r
ð5Þ

where r is a parameter with the dimensions of length,
defining the scale of the manifold. The commutator
½R̂þi; R̂−j� is in the algebra of UðkÞ. Since this is
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proportional to the commutator of the derivatives, we can
specify the constant background fields by the conditions

R̂aΨJ
m;αðgÞ ¼ ðTaÞαβΨJ

m;βðgÞ; ð6Þ

R̂k2þ2kΨ
J
m;αðgÞ ¼ −

nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðkþ 1Þp ΨJ

m;αðgÞ ð7Þ

wherem ¼ 1;…; dim J gives the degeneracy of the Landau
level. The wave functions ΨJ

m;α transform on the right as a
representation ~J of SUðkÞ, with ðTaÞαβ being the repre-
sentation matrices. Likewise, Eq. (7) shows that ΨJ

m;α carry
a particular charge forUð1Þ ⊂ UðkÞ; n is the strength of the
Abelian part of the background gauge field. (The corre-
sponding field strength is nΩ, where Ω is the Kähler form
and n is an integer by the Dirac quantization condition.) α,
β label states within the SUðkÞ representation ~J [which is
itself contained in the representation J of SUðkþ 1Þ]. The
index α carried by the wave functions ΨJ

m;αðgÞ is basically
the gauge index. The wave functions are sections of a UðkÞ
bundle on CPk. By virtue of Eqs. (5), (6), and (7), we can
write

HΨ ¼ 1

2mr2

�
R̂þiR̂−i þ

i
2
f−i;þi;aTa

þ i
2
f−i;þi;k2þ2k

�
−

nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðkþ 1Þp

��
Ψ: ð8Þ

The Hamiltonian H is proportional to
P

iR̂þiR̂−i, apart
from additive constants. The lowest Landau level evidently
satisfies

R̂−iΨ ¼ 0: ð9Þ

This is the holomorphicity condition (2) in terms
of the group translation operators. Writing ΨJ

m;αðgÞ∼
hJ;mjgjJ; α; wi, the conditions (9), (6), and (7) become

R̂−ijJ; α; wi ¼ 0; ð10Þ

R̂ajJ; α; wi ¼ ðTaÞαβjJ; β; wi;

R̂k2þ2kjJ; α; wi ¼ −
nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kðkþ 1Þp jJ; α; wi: ð11Þ

According to Eq. (10), for the lowest Landau level, the state
jJ; α; wi must be a lowest weight state in the representation
J, with weight w ¼ −nkffiffiffiffiffiffiffiffiffiffiffiffi

2kðkþ1Þ
p , specified by Eq. (11). The

representation J is completely fixed by Eqs. (10) and (11).
We now recapitulate the essential features of the effective

action from Ref. [14]. In that paper, we argued that higher
Landau levels for spinless electrons, say the sth level, could
be viewed for the purpose of the effective action, as the

lowest Landau level for higher-spin fields. For the case of
CPk, these higher-spin fields couple to the constant back-
ground field of the form

F̄ ¼ −iðnΩ1þ sR̄01þ R̄aTaÞ ¼ F̄ þ R̄s ð12Þ

where R̄0, R̄a are the curvature components for CPk

corresponding to the Uð1Þ and SUðkÞ subgroups of the
holonomy group SUðkþ 1Þ and Ta, 1 are UðkÞ matrices in
the appropriate spin representation, with s being the Uð1Þ
spin. We will also include fluctuations around these back-
ground values in what follows. The strategy in Ref. [14]
was to consider the number of solutions to the holomor-
phicity condition (2) as given by the Dolbeault index
theorem [18],

Indexð∂̄VÞ ¼
Z
K
tdðTcKÞ ∧ chðS ⊗ VÞ ð13Þ

where ch denotes the Chern character given by

chðS ⊗ VÞ ¼ TrðeiðRsþFÞ=2πÞ ¼ chðSÞ ∧ chðVÞ: ð14Þ

In this equation, Rs is the curvature in the representation
appropriate to the chosen spin and F is in the representation
for the (gauge) charge rotations of the particles under
consideration. Further, in Eq. (13), tdðTcKÞ denotes the
Todd class for the complex tangent bundle of the phase
space, given explicitly by traces of products of curvatures.
Explicit formulas are given in many places, including
Refs. [18] and [14]. Taking the index density as the charge
density we can derive the effective action for a completely
filled lowest Landau level by “integrating” the index
density with respect to the time component of the
Abelian gauge field A0 and making the result covariant
[14]. The effective action is then given by

SðsÞ2kþ1 ¼
Z �

tdðTcKÞ ∧ X
p

ðCSÞ2pþ1ðωs þ AÞ
�
2kþ1

þ 2π

Z
Ωgrav

2kþ1 þ ~S: ð15Þ

Here ωs is the spin connection corresponding to Rs and A
is the connection for the gauge field F. Ωgrav

2kþ1 is defined by

½tdðTcKÞ ∧ chðSÞ�2kþ2

¼ dΩgrav
2kþ1 þ

1

2π
d

�
tdðTcKÞ ∧ X

p

ðCSÞ2pþ1ðωsÞ
�
2kþ1

:

ð16Þ

Thus dΩgrav
2kþ1 gives the (2kþ 2)-form in tdðTcKÞ. Further,

we note that the Chern-Simons term is related to the
curvatures by
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1

2π
dðCSÞ2pþ1ðAÞ ¼

1

ðpþ 1Þ!Tr
�
iF
2π

�
pþ1

: ð17Þ

Also, ~S in Eq. (15) refers to nontopological terms including
those due to the fact that the charge density could differ
from the index density as given by the integrand in Eq. (13)
by terms which are total derivatives integrating to zero.
These terms are expected to be of higher order in a
derivative expansion for the external fields.
Various special cases of this action have been discussed

in Ref. [14]. For the present discussion, we will consider
CPk, k ¼ 1, 2, 3. For simplicity, we will consider only the
spinless case so that s ¼ 0 (i.e. only the lowest Landau
level) with the background gauge fields being purely
Abelian [valued in Uð1Þ]. This will suffice to illustrate
the main point. For the 2þ 1-dimensional case, the action
becomes

S3d ¼
i2

4π

Z ��
Aþ 1

2
ω

�
d

�
Aþ 1

2
ω

�
−

1

12
ωdω

�
:

ð18Þ

(We may note that this result agrees with Refs. [4–6] as
well.) In 4þ 1 dimensions, we have

S5d ¼
i3

ð2πÞ2
Z �

1

3!

	
Aþ ω0


�
d
	
Aþ ω0


�2

−
1

12

	
Aþ ω0


�
ðdω0Þ2 þ 1

2
Trð ~R ∧ ~RÞ

��
ð19Þ

where ~R is the SUð2Þ part of the curvature and ω0 is the
Uð1Þ part of the spin connection. In (6þ 1) dimensions, the
effective action is

S7d ¼
1

ð2πÞ3
Z �

1

4!

�
Aþ 3

2
ω0

��
d

�
Aþ 3

2
ω0

��
3

−
1

16

�
Aþ 3

2
ω0

�
d
�
Aþ 3

2
ω0

��
ðdω0Þ2 þ 1

3
Trð ~R ∧ ~RÞ

�

þ 1

1920
ω0dω0½17ðdω0Þ2 þ 14Trð ~R ∧ ~RÞ� þ 1

720
ω0Trð ~R ∧ ~R ∧ ~RÞ

�
þ 1

120

Z
ðCSÞ7ð ~ωÞ ð20Þ

where ~R is now the SUð3Þ curvature and ~ω is the
corresponding connection.
The fields A, ω0, ~ω in Eqs. (18)–(20) include fluctuations

around the background values pertinent to CPk. Notice that
the gauge field appears in the combination Aþ k

2
ω0.

Further, even if we set the combination Aþ k
2
ω0 to zero,

there are purely gravitational terms in Eqs. (18)–(20) for
d ¼ 2þ 1 and 6þ 1, not for d ¼ 4þ 1. It may be possible
to understand these leftover purely gravitational terms in
terms of the gravitational anomaly due to boundary
excitations. Here we are still considering a closed manifold
with no boundary, but if we think of enlarging the context
by considering a droplet of fermions of finite size, exci-
tations on the edge or boundary of the droplet are possible.
These edge modes would be described by a chiral theory in
ð2k − 1; 1Þ dimensions, and such a theory can have a
gravitational anomaly only if k is an odd integer [19]. The
cancellation of the anomaly between the boundary and the
bulk would necessitate purely gravitational bulk terms.
Once such terms are identified and isolated, it should be
possible to see why the remainder of the action involves the
combination Aþ k

2
ω0. Analysis from this point of view, in

two dimensions, has been carried out in Refs. [4,5].
But we can ask: is there an independent way of seeing

why the combination Aþ k
2
ω0 is natural? This is the

question we seek to address in this paper. If such an
argument works out, we may be able to utilize this to shed

some light on the nature of the edge modes, if we propose
to consider a droplet.

III. THE PERSPECTIVE OF GEOMETRIC
QUANTIZATION

As mentioned in the last section, the second way to think
about this problem is to focus on the lowest Landau level
and obtain the wave functions via geometric quantization
[15]. We will be interested in the case ofK ¼ CPk, with the
background gauge field being entirely Abelian; i.e., we
have a trivial representation for SUðkÞ in Eq. (11). For the
geometric quantization of CPk, we can consider the
symplectic form nΩ, where Ω is the Kähler form. Upon
quantization, this leads to the lowest Landau level as given
by Eqs. (10) and (11). The holomorphicity condition (10)
becomes the Bargmann (or Kähler) polarization condition
on the wave functions. An alternative approach is to
consider the flat space Ckþ1, use the obvious symplectic
form on this space, carry out the quantization and then
reduce via a constraint to obtain results relevant to the
projective space.
There are then slightly different ways to argue for the

emergence of the combination Aþ ðk=2Þω0. One way is to
start with Ckþ1, quantize and then require the implementa-
tion of a set of symplectic transformations. This can be
done via the operators realizing the algebra of the
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symplectic transformations. The closure of the algebra will
naturally lead to Uðkþ 1Þ ∼ SUðkþ 1Þ ×Uð1Þ transfor-
mations with a modified operator for the Uð1Þ part. This
will ultimately lead to the combination Aþ ðk=2Þω0. We
can then argue that the generators of Uðkþ 1Þ descend to
the CPkþ1 space of interest. Another approach would be to
consider Ckþ1 again, and obtain the correction to the
generator of the Uð1Þ from “half-forms.” Again, one can
argue that this descends to CPk. We will consider these two
related ways in turn. A third approach would be to directly
start with CPk classically and then quantize using “half-
forms” and obtain the corrected operators of interest. We
will not pursue this here, but it remains an interesting
question.
We start with the following symplectic two-form on

Ckþ1:

M ¼ idZα ∧ dZ̄α: ð21Þ
We can then impose the constraint

Z̄αZα − c ¼ 0 ð22Þ
for some constant c. The symplectic reduction of Ckþ1 by
this constraint leads to CPk. In other words, Eq. (22) is to
be viewed as a first class constraint in the sense of Dirac’s
theory of constraints. The condition (22) reduces the space
Ckþ1 to the sphere S2kþ1 and a gauge-fixing constraint
conjugate to Eq. (22) eliminates an overall phase for the
Z’s, giving CPk as S2kþ1=S1.
The quantization of Eq. (21) in the holomorphic polari-

zation leads to the usual coherent state wave functions

Ψ ¼ exp

�
−
1

2
Z̄ · Z

�
hðZÞ ð23Þ

where hðZÞ is holomorphic. The operators corresponding
to Zα, Z̄α are a†α, aα respectively, with ½aα; a†β� ¼ δαβ. The
coherent states are of the form

jZ̄i ¼ exp

�
−
1

2
Z̄ · Z

�
eZ̄·a

† j0i ð24Þ

where j0i is the Fock vacuum, aαj0i ¼ 0. The quantum
version of the constraint (22) is of the form a† · a − c0, for
some value c0. We consider the reduction of the Hilbert
space for Eq. (21) by this constraint, choosing a particular
value c0 ¼ n. This means that the states should now obey

ða† · a − nÞjni ¼ 0; ð25Þ
so that jni is given by a†α1a

†
α2…a†αn j0i. The wave functions

corresponding to this are, up to normalization,

Ψ ∼ hZja†α1a†α2…a†αn j0i ∼ Zα1Zα2…Zαne
−1
2
Z̄·Z: ð26Þ

If we relate Zα to an SUðkþ 1Þ element gα;kþ1 via
Zα ¼ λgα;kþ1, then these wave functions are seen to be

proportional to the Wigner functions hJ; ljgjJ; 0; wi; the
functions Ψ ∼ hJ; ljgjJ; 0; wi satisfy Eqs. (6) and (7)
with R̂aΨ ¼ 0.
Let us now start again with Eq. (21) before the

imposition of the constraint (22). Rather than using the
complex coordinates Z, Z̄, let us consider using real
coordinates pα, qα, with

Zα ¼
1ffiffiffi
2

p ðpα þ iqαÞ; Z̄α ¼
1ffiffiffi
2

p ðpα − iqαÞ: ð27Þ

This is equivalent to viewing Ckþ1 as R2kþ2; the two-form
M is now M ¼ dpα ∧ dqα. One could also consider new
complex combinations, say, ξα, ξ̄α of pα, qα, other than the
ones in Eq. (27), and consider the holomorphic quantiza-
tion of M, with holomorphicity being defined by the new
choice. For example, if we choose

ξα ¼
1ffiffiffi
2

p ½pα þGαβpβ þHαβpβ þ iðqα þGαβqβ −HαβqβÞ�

ξ̄α ¼
1ffiffiffi
2

p ½pα þG�
αβpβ þH�

αβpβ − iðqα þG�
αβqβ −H�

αβqβÞ�

ð28Þ

where Gαβ is anti-Hermitian, G�
αβ ¼ −Gβα, and Hαβ is

symmetric, it is easily verified that

M ¼ dpα ∧ dqα ¼ idξα ∧ dξ̄α ð29Þ
to linear order in G,H. If we quantize using coherent states
defined by the ξ, ξ̄ or by the original Z, Z̄, the quantum
theory should be the same, since they both correspond to
the same M ¼ dpα ∧ dqα. This means that we should be
able to implement the change from Z, Z̄ to ξ, ξ̄ by a unitary
transformation in the quantum theory.
To see how this works out, we first write ξα, ξ̄α directly in

terms of the Zα, Z̄α as

�
ξα

ξ̄α

�
¼

��
δαβ 0

0 δαβ

�
þ
�Gαβ Hαβ

H�
αβ G�

αβ

���Zβ

Z̄β

�
: ð30Þ

This is the infinitesimal transformation, since we only kept
Gαβ, Hαβ to linear order in verifying Eq. (29). But finite
transformations can be constructed by a sequence of
infinitesimal transformations and they too preserve
Eq. (29). The finite transformations corresponding to
Eq. (30) form the symplectic group Spðkþ 1;RÞ. The
classical generating function for the G- and H-type trans-
formations are

G ¼ iGαβZβZ̄α; H ¼ i
2
HαβZ̄αZ̄β; ð31Þ

respectively. The quantum versions of these are the
operators
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Ĝ ¼ iGαβa
†
βaα þ ordering ambiguities;

Ĥ ¼ i
2
Hαβaαaβ: ð32Þ

There are ordering ambiguities for Ĝ, affecting the terms
with α ¼ β. Classically, the Poisson bracket of i

2
HαβZ̄αZ̄β

and its conjugate gives the generators of the G-type trans-
formation, with the full algebra being the Lie algebra of
Spðkþ 1;RÞ. Quantum mechanically, commuting the gen-
erator of theH-type transformation and its conjugatewe find

½aαaβ; a†γa†δ� ¼ ðδαγJδβ þ δαδJγβ þ δβγJδα þ δβδJγαÞ

þ 2

kþ 1
ðδαγδβδ þ δαδδβγÞQ;

Jαβ ¼ a†αaβ −
δαβ
kþ 1

a† · a;

Q ¼ a† · aþ 1

2
ðkþ 1Þ: ð33Þ

Jαβ are the generators of SUðkþ 1Þ andQ generates aUð1Þ
transformation.
We now want to consider the reduction to CPk. The key

point is that while the generator Ĥ and its conjugate do not
commute with the constraint a† · a − n, Jαβ does commute
with it. Thus we expect the action of Jαβ to descend to the
case of CPk. In fact, the SUðkþ 1Þ transformations
generated by Jαβ are the isometries of the reduced space.
Similarly Q commutes with the constraint a† · a − n and
we should expect its action to descend to CPk as well. The
key point is that the Lie algebra of Spðkþ 1;RÞ at the level
of Ckþ1 chooses a certain operator ordering, giving the
unambiguous quantum expressions for the generators,
before we consider their descent to CPk. [The relevance
of the Spðkþ 1;RÞ in quantizing Eq. (21) is discussed in
Ref. [16]. Our main point is that since Jαβ,Q commute with
the constraint (22), we can easily adapt that discussion to
the case of CPk.]
From the commutator of Q with aα and a

†
α, we see that it

generates the phase transformation,

eiQθaαe−iQθ ¼ e−iθaα; eiQθa†αe−iQθ ¼ eiθa†α: ð34Þ
Classically, this is the transformation Zα → eiθZα,
Z̄α → e−iθZ̄α. The product Zα1Zα2…Zαn gets an overall
phase eiθn. However, notice that Q has a value nþ1

2
ðkþ1Þ

for the state a†α1a
†
α2…a†αn j0i. Thus there is an additional

“zero-point” value for Q. This is the “correction” we
are after.
To complete this part of the story, we now show that this

extra “zero-point” charge couples to the spin connection
when gravitational fluctuations are introduced. The iden-
tification Zα ∼ gα;kþ1 shows that the phase transformation
Zα → eiθZα is equivalent to a right transformation of g by
an element of Uð1Þ ⊂ UðkÞ. This Uð1Þ is the transforma-
tion generated by R̂k2þ2k. In the description of CPk

as SUðkþ 1Þ=UðkÞ, with coordinates given by
gα;kþ1 ∈ SUðkþ 1Þ, the right action by R̂k2þ2k, R̂a generate
the isometries. Thus the Uð1Þ under discussion does
correspond to the Uð1Þ part of the isometry group; hence
its gauging is indeed done by the Uð1Þ spin connection.
Further, the background magnetic field, chosen to be
proportional to the spin connection and specified by
Eq. (11) leads to the monomial Zα1Zα2…Zαn . Since we
do have the extra Q charge even in the absence of a
magnetic field, we must interpret this extra charge 1

2
ðkþ 1Þ

as the coupling constant for the spin connection. Thus we
expect the combination αðnþ 1

2
ðkþ 1ÞÞω0 where α takes

care of any overall normalization for the fields. Actually
our chosen normalization for the spin connection was such
that dω0 ¼ kþ1

k Ω, while the gauge field obeyed dA ¼ nΩ
(see Ref. [14]), so that dðnω0Þ ¼ ððkþ 1Þ=kÞdA and

α

�
nþ 1

2
ðkþ 1Þ

�
ω0 ¼ α

kþ 1

k

�
Aþ k

2
ω0

�
: ð35Þ

Fluctuations in the fields can be introduced at this stage and
so, we have arrived at the following conclusion about the
shift of A: the implementation of the symplectic trans-
formations (30), which is itself rooted in the need to allow
for different choices of coordinates before reduction to
CPk, naturally leads to the combination Aþ k

2
ω0 observed

in the effective action.
Now once again, we start with Eq. (21) and consider its

geometric quantization. The symplectic potential corre-
sponding to M is

A ¼ i
2
ðZαdZ̄α − Z̄αdZαÞ: ð36Þ

Under canonical transformations (which preserve M), A
transforms as A → Aþ df (for some function f), thus
behaving as a Uð1Þ gauge field. The wave functions are
charged under this Uð1Þ, transforming with a phase. One
must also consider covariant derivatives of the form
DαΨ ¼ ð∂α − iAαÞΨ, D̄αΨ ¼ ð∂̄α − iĀαÞΨ in formulating
the polarization condition. The wave functions are thus
sections of a holomorphic line bundle on Ckþ1 with
curvature M.
Explicitly, the covariant derivatives are

Dα ¼
∂

∂Zα
−
1

2
Z̄α; D̄α ¼

∂
∂Z̄α

þ 1

2
Zα: ð37Þ

The polarization condition D̄αΨ ¼ 0 on the pre-quantum
wave functions leads to the coherent states (23), with the
inner product defined by the symplectic (Liouville) volume
element for the phase space,

h1j2i ¼
Z Y

α

dZαdZ̄αe−Z̄·ZΨ�
1Ψ2: ð38Þ
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The pre-quantum operator corresponding to a function
f on the phase space is defined in geometric quantization as
[15–17]

PðfÞ ¼ −iX ·Dþ f ð39Þ

where X is the vector field corresponding to f defined by
XμMμν ¼ −∂νf. We find easily that XZα

¼ −ið∂=∂Z̄αÞ,
XZ̄α

¼ ið∂=∂ZαÞ. The actions of the corresponding pre-
quantum operators are

PðZÞΨ ¼ ð−DZ̄α
þ ZÞΨ ¼ e−

1
2
Z̄·ZZhðZÞ;

PðZ̄ÞΨ ¼ ðDZα
þ Z̄αÞΨ ¼ e−

1
2
Z̄·Z ∂

∂Zα
hðZÞ: ð40Þ

This is consistent with the assignment of Zα as a†α and Z̄α

as aα.
This is all standard and well known. However, this

picture of quantization is known to be incomplete. On a
general symplectic manifold, we can consider other polar-
izations, not necessarily the holomorphic one. For example,
on a phase space which is the cotangent bundle T�M of a
real manifold M, one can consider wave functions in
the coordinate representation. (This possibility applies to
the present case as well, since we can consider R2kþ2 as the
cotangent bundle of Rkþ1.) In such cases, because Ψ�Ψ
depends only on half of the phase-space coordinates, one
has to use a volume element on the subspace of such
coordinates to define the inner product for the wave
functions.
The problem is that there is no such volume element

defined by the given data on the phase space. The phase
volume is naturally defined (in terms of powers of the
symplectic structure) and can be used for the holomorphic
polarization (for which Ψ�Ψ depends on all phase-space
coordinates in general). But for real polarizations the phase
volume is not appropriate. On the other hand, we would
like to formulate quantization in a way which applies to any
choice of polarization, since physical results should be
independent of polarization (even though we may not have
a real polarization for manifolds of interest). One solution is
to introduce “half-forms” whose transformation property is
such that the product of two such forms transforms as the
volume form of the submanifold over which Ψ�Ψ is to be
integrated. We then consider the product of the line bundle
(with curvature equal to the symplectic two-form) and a
bundle of half-forms, with the wave functions being
identified as sections of this product bundle. The trans-
formation property of half-forms implies defining a square
root of the Jacobian of a symplectic diffeomorphism, so
that at the level of linear transformation, we need to
consider a double cover of the symplectic group, which
is named the metaplectic group.
For the case of holomorphic polarization, which is our

focus here, seemingly one can avoid using half-forms since

the volume element for the full phase space can be used in
the inner product. However, the half-forms do add certain
terms to the expressions for the operators; these additions
are the “metaplectic corrections.” We want to argue that in
the combination Aþ k

2
ω0, the second term arises from such

a correction.
The main point is that, generally, for all polarizations, the

wave functions are of the form

Ψ ∼ e−
1
2
Z̄·ZhðZÞσ−1=2ðZÞ ð41Þ

where σ−1=2ðzÞ indicates the appropriate section of the half-
form. For the case of holomorphic polarization, we do not
need to know an explicit form for σ−1=2ðZÞ; only its
transformation property is important. In fact, we may think
of it as a pure phase, which would not affect the inner
product. However, the vector fields corresponding to a
function can have a nontrivial action on σ−1=2ðZÞ, and so
the expression for the operator has to be modified. With the
half-form σ−1=2, this is given by [15–17]

PðfÞΨσ−1=2 ¼ ½ð−iX ·Dþ fÞΨ�σ−1=2 −ΨðiLXσ−1=2Þ
ð42Þ

where LXσ−1=2 is the Lie derivative of σ−1=2 with respect to
X. Explicitly, if X preserves the polarization, we must have

½X; ð∂=∂Z̄αÞ� ¼ Cβ
αð∂=∂Z̄βÞ: ð43Þ

For such cases, one can show that

−iLXσ−1=2 ¼ −iX · ∂σ−1=2 − i
2
∂ · Xσ−1=2 ¼ −

i
2
TrCσ−1=2

ð44Þ

where TrC ¼ Cα
α. This shows that it is possible to view

PðfÞ as acting just on Ψ according to

PðfÞΨ ¼
�
ð−iX ·Dþ fÞ − i

2
TrC

�
Ψ ð45Þ

and reabsorb σ−1=2 and its conjugate into the measure of
integration, where they cancel out leaving just the phase
volume defined by the symplectic form. The extra term
− i

2
TrC in PðfÞ is the metaplectic correction. The vector

fields XZα
, XZ̄α

commute with the polarization, Cβ
α ¼ 0 in

Eq. (43) for these vectors, so the expressions for the
quantum version of Zα, Z̄β are unchanged. However, for
the vector field corresponding to Z̄αZα, Eq. (43) gives
Cβ
α ¼ iδβα and hence

PðZ̄αZαÞΨ ¼ e−
1
2
Z̄·Z

�
Zα

∂
∂Zα

þ 1

2
ðkþ 1Þ

�
hðZÞ: ð46Þ

This is equivalent to saying that the quantum operator
corresponding to Z̄αZα is a† · aþ 1

2
ðkþ 1Þ, which is the Q
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we obtained previously in Eq. (33) in terms of the
Spðkþ 1;RÞ algebra. We see that the “zero-point” charge
can indeed be interpreted as the metaplectic correction.
Here we have pursued the description of CPk as the

reduced phase space obtained via symplectic reduction
from Ckþ1. This simplified the analysis since the geometric
quantization of Ckþ1 is fairly straightforward and we could
then use those features which descend to CPk to arrive at
the combination Aþ k

2
ω0. But a direct geometric quanti-

zation of CPk is also possible. The identification of σ−1=2
within such an approach and the direct calculation of the

metaplectic correction (or the Mpc correction [20]) would
be very interesting.
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