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We present the numerical analysis of effectively interacting group field theory models in the context of
the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-
Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually
considered construction for free models. More precisely, considering such interactions in a weak regime,
we find solutions for which the expectation value of the number operator N is finite, as in the free case.
When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N
grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein
condensates, where a strong interaction regime can only be realized at high density. This behavior suggests
the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock
representations to describe the system when the condensate constituents are strongly correlated.
Furthermore, we study the expectation values of certain geometric operators imported from loop quantum
gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of
the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate
population for which the spectra are dominated by the lowest nontrivial configuration of the quantum
geometry. This result indicates that the condensate may indeed consist of many smallest building blocks
giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase
to correspond to a geometric phase.
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I. INTRODUCTION

The most difficult problem for all quantum gravity
approaches using discrete and quantum pregeometric struc-
tures is the recovery of continuum spacetime, its geometry,
diffeomorphism invariance, and General Relativity as an
effective description for the dynamics of the geometry in an
appropriate limit. It has been suggested that a possibleway of
how continuum spacetime and geometry could emerge from
a quantum gravity substratum in such theories is bymeans of
at least one phase transition from a discrete pregeometric to a
continuum geometric phase. One refers to such a process as
“geometrogenesis” [1]. A particular representative in this
class of approaches where such a scenario has been proposed
is group field theory (GFT) [2] where one tries to identify the
continuum geometric phase to a condensate phase of the
underlying quantum gravity system [3] with a tentative
cosmological interpretation [4–11].
GFTs are quantum field theories (QFT) defined over group

manifolds and are characterized by their combinatorially

nonlocal interaction terms. In the perturbative expansion, it
becomes apparent that the Feynman diagrams of the theory
are dual to cellular complexes because of this particular
nonlocality. Depending on the details of the Feynman
amplitudes, the sum over the cellular complexes can be
interpreted as a possible discrete definition of the covariant
path integral for four-dimensional (4D) quantumgravity. The
reason for this is that beyond the combinatorial details, GFT
Feynman graphs can be dressed by group theoretic data of
which the function is to encode geometric information
corresponding exactly to the elementary variables of loop
quantum gravity (LQG) [12]. Using this, it can be shown that
GFTs provide a formal and complete definition of spin foam
models which give a path integral formulation for LQG
[13,14]. In case the GFTs possess a discrete geometric
interpretation, it is also possible to manifestly relate their
partition functions to (noncommutative) simplicial quantum
gravity path integrals [15].
In order to understand the nonperturbative properties of

particular GFT models, the application of functional
renormalization group (FRG) techniques is needed [16].
In general, these techniques provide the most powerful
theoretical description of thermodynamic phases by means
of a coarse graining operation that progressively eliminates
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short scale fluctuations. Their successful application to
matrix models of two-dimensional (2D) quantum gravity
[17,18] serves as an example for the adaption to GFT
models which has recently been very actively pursued
[19,20]. In this way, the FRG methods enable one to study
the consistency of GFT models, analyze their continuum
limit, chart their phase structure, and investigate the
possible occurrence of phase transitions.
More precisely, standard FRG methodology has been

applied to a couple of models from a class of group field
theories called tensorial GFTs, for which one requires the
fields to possess tensorial properties under a change of basis.
The common features of the models analyzed so far are a
nontrivial kinetic term of Laplacian type and a quartic
combinatorially nonlocal interaction. However, they differ
first in the size of the rank, second in whether gauge
invariance is imposed or not, and third in the compactness
or noncompactness of the used groupmanifold. Remarkably,
all these models are shown to be asymptotically free in the
UV limit which is deeply rooted in the combinatorial
nonlocality of the interaction [21]. Furthermore, signs for
a phase transition separating a symmetric from a broken/
condensate phase were found as the mass parameter μ tends
to negative values in the IR limit analogous to a Wilson-
Fisher fixed point in the corresponding local QFT. To
corroborate the existence of such a phase transition, among
others, the theory has to be studied around thenewly assumed
ground state by means of a mean field analysis as noticed in
Refs. [19,20].Oneway to check thiswould amount to finding
solutions to the classical equation of motion in a saddle point
approximation of the path integral.
The possible occurrence of a phase transition in such

systems is highly interesting, since it has been suggested
that phase transitions from a symmetric to a condensate
phase in GFT models for 4D quantum gravity could be a
realization of the above-mentioned geometrogenesis sce-
nario. In such a setting, a pregeometric discrete phase,
given by an appropriate microscopic GFT model, passes
through a phase transition into a continuum geometric
phase, the dynamics of which is in turn described by a
corresponding effective action. The phase transition would
then correspond to a renormalization group (RG) flow fixed
point and could be interpreted as the condensation of
discrete spacetime building blocks [1,3].
So far, however, the mentioned FRG results for tensorial

GFTs can only lend indirect support to the geometrogenesis
hypothesis, since a full geometric interpretation of such
models is currently lacking. To realize such a hypothesis in
this context, one would have to proceed toward a GFT
model enriched with additional geometric data and an
available simplicial quantum gravity interpretation that is
closely linked to LQG. The application of FRG methods to
such a model with a combinatorially nonlocal simplicial
interaction term would be needed to give an accurate
account of the phase structure of the system. The hope

is that studying its renormalization group flow will reveal
an IR fixed point which marks the phase transition into a
condensate phase ideally corresponding to a continuum
geometric phase. Hence, the aim is to gradually increase the
sophistication of the studied toy models to rigorously
underpin the GFT condensate assumption and connect it
to the geometrogenesis hypothesis [3].
In this context, the basic aim of GFT condensate

cosmology (GFTCC) is to derive an effective dynamics
for the GFT condensate states directly from the micro-
scopic GFT quantum dynamics using mean field theoretic
considerations and consequently to extract a cosmological
interpretation from them [4–11]. The central assumption of
GFTCC is that the possible continuum geometric phase of a
particular GFT model is ideally approximated by a con-
densate state which is suitable to describe spatially homo-
geneous universes. The mean field theoretic considerations
used so far in Refs. [4–11] to give an effective description
of the condensate phase and its dynamics use techniques
which are strongly reminiscent of those employed to study
the Gross-Pitaevskii equation for, at most, weakly interact-
ing Bose-Einstein condensates [22,23].
In this article, we will go beyond the analysis of free

GFTCCmodels and investigate the effect of combinatorially
local interaction terms (pseudopotentials) for a gauge invari-
ant model with Laplacian kinetic term, the mean field
analysis of which was started for the free case in an isotropic
restriction1 [5]. We will further elaborate the results of the
free model in this restriction studying the expectation values
of certain geometric operators. We note that no additional
massless scalar field is added to study the evolution of
the system in relational terms as in Refs. [7–10]. We choose
local interactions for pure practical reasons: in this way, the
equations of motion take a particularly simple nonlinear
form, and to solve them, we employ numerical methods.
Despite the fact that from a physics viewpoint these models
appear as somewhat artificial because such interactions lack
a proper discrete geometric interpretation, they have never-
theless a practical utility as simplified versions of more
complicated ones andbringus nearer to the physicswhichwe
want to probe. One might also speculate that the local
effective interactions between the condensate constituents
could only be valid on length scales where the true micro-
scopic details of the interaction, namely the combinatorial
nonlocality, are irrelevant. Ultimately, rigorous RG argu-
ments will have the last word on how such terms can or
cannot be derived from the fundamental theory; however, by
adopting a phenomenological point of view, the analysis of
the effect of such pseudopotentials might prove useful to
clarify the map between the microscopic and effective
macroscopic regimes of the theory.

1The isotropic restriction employed in this article differs from
the one used in Ref. [7] which renders the interaction term local in
the spin label.
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For a particular choice of the signs of the free parameters
in the GFT action, we find in the isotropic restriction
solutions which (i) are consistent with the condensate
ansatz, (ii) are normalizable with respect to the Fock space
measure in the weakly nonlinear regime, and (iii) obey a
specific condition of which the fulfillment is required for
the interpretation in terms of continuous smooth manifolds.
For such solutions, we study the effect of the interactions
onto the expectation values of certain operators needed for
their further geometric interpretation. We repeat this analy-
sis for solutions to the equations of motion around the
nontrivial minima of the used effective potentials and find
that the expectation values of the geometric operators are
clearly dominated by low spin modes. In this sense, such
solutions can be interpreted as giving rise to an effectively
continuous geometry. Moreover, we discuss the conse-
quences of the interactions in the strongly nonlinear
regime, where solutions generally lose their normalizability
with respect to the Fock space measure and thus can be
interpreted as corresponding to non-Fock representations of
the canonical commutation relations.
To this aim, the article is organized as follows. In the first

part of the second section, Sec II A, we review the GFT
approach to quantum gravity from the classical and
quantum perspective. We then motivate its quantum cos-
mology spinoff called GFTCC in Sec. II B. The presenta-
tion is kept rather short to motivate the essential concepts
needed to follow the analysis presented later on. We invite
the reader familiar with these concepts to proceed directly
to the Sec. III where we analyze in detail the properties of
the free and interacting solutions in Secs. III A, III B 1,
III B 2, and III B 3, respectively. In Sec. IV, we summarize
our results, discuss limitations of our analysis, and propose
further studies.
In the Appendixes A, B, and C, we supplement the main

sections of this article by discussing the notions of non-
commutative Fourier transform, non-Fock representations,
and non-Fock coherent states, respectively, needed to allow
for a better understanding of the obtained results.

II. GROUP FIELD THEORY AND GROUP FIELD
THEORY CONDENSATE COSMOLOGY

A. Group field theory

GFTs represent a particular class of QFTs which aim at
generalizing matrix models for 2D quantum gravity to
higher dimensions. The fields of GFT live on group
manifolds G or dually on their associated Lie algebras g.
For quantum gravity intended models, G is interpreted as
the local gauge group of gravity.2 The essential idea is that
all data encoded in the fields are solely of combinatorial

and algebraic nature, thus rendering GFT into a manifestly
background independent and generally covariant field
theoretic framework [2].
In the following, we introduce aspects of this approach in

a shortened manner which are needed for its application to
GFT condensate cosmology in the remainder of this article.

1. Classical theory

The classical field theory is specified by choosing a type
of field and an action dictating its dynamics. Most gen-
erally, we consider the complex-valued scalar field φ living
on d copies of the Lie group G, i.e.,

φðgIÞ∶Gd → C ð1Þ

with I ¼ 1;…; d. The group elements gI are parallel

transports Pe
i
R
eI
A
associated to d links eI , and A denotes

a gravitational connection 1-form.
Importantly, one demands the invariance under the right

diagonal action of G on Gd, i.e.,

φðg1h…; ; gdhÞ ¼ φðg1;…; gdÞ; ∀ h ∈ G; ð2Þ

which is a way to guarantee that the parallel transports,
emanating from a vertex and terminating at the end point of
their respective links eI, only encode gauge invariant data.
For compact G, the action is given by

S½φ;φ� ¼
Z
G
ðdgÞd

Z
G
ðdg0ÞdφðgIÞKðgI; g0IÞφðg0IÞ þ V; ð3Þ

where dg stands for the normalized Haar measure on G.
The symbol K denotes the kinetic kernel, and V ¼ V½φ;φ�
is a nonlinear and in general nonlocal interaction potential.
Choices of K, V, d, and G define a specific model.
The classical equation of motion is then given by

Z
ðdg0ÞdKðgI; g0IÞφðg0IÞ þ

δV
δφðgIÞ

¼ 0: ð4Þ

2. Quantum theory: Path integral

The quantum theory is defined by the partition function
ZGFT. If we write a more general interaction term as a sum
of polynomials of degree n, i.e., V ¼ P

nλnVn, the path
integral becomes

ZGFT ¼
Z

½Dφ�½Dφ�e−S½φ;φ� ¼
X
Γ

Q
nλ

NnðΓÞ
n

AutðΓÞ AΓ ð5Þ

in the perturbative expansion in terms of the coupling
constants λn. The Feynman diagrams are denoted by Γ,
AutðΓÞ is the order of their automorphism group, NnðΓÞ
denotes the number of interaction vertices of type n, andAΓ

2Typically, one choosesG¼ Spinð4Þ, SLð2;CÞ, orG ¼ SUð2Þ.
The last is the gauge group of Ashtekar-Barbero gravity lying at
the heart of canonical LQG.
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is the Feynman amplitude. Crucially, field arguments in V
are related to each other in a specific combinatorially
nonlocal pattern which correlates fields among each other
just through some of their arguments. This model-specific
combinatorial nonlocality implies that the GFT Feynman
diagrams are dual to cellular complexes of arbitrary
topology [2].
In view of constructing a partition function for 4D

quantum gravity, one starts with the GFT quantization of
the Ooguri model [24], a topological BF theory, which is
based on a real field with G ¼ Spinð4Þ or SLð2;CÞ, and its
Feynman diagrams are dual to simplicial complexes. If d is
chosen to equal the dimension of the spacetime under
construction, the fields are interpreted as (d − 1)-simplices.
The d arguments of the fields are then associated to their
(d − 2)-faces. In this case, a particular type of interaction V
describes how dþ 1 of these simplices are glued together
across their faces to constitute the boundary of a d-simplex.
Finally, the kinetic operatorK dictates how to glue together
two such d-simplices across a shared (d − 1)-simplex.
In particular, for the case we are aiming at, the (right-

invariant) field is defined over d ¼ 4 copies of G and
corresponds to a quantum tetrahedron or equally a 3-simplex,
a choice we further motivate in Appendix A. For the
construction of the corresponding simplicial path integral,
the interaction term has five copies of the field. Their
arguments are paired in a particular way to form a 4-simplex,
given by

V ¼ λ

5!

Z
ðdgÞ10φ1234φ4567φ7389φ96210φ10851 ð6Þ

with φðg1; g2; g3; g4Þ≡ φ1234, etc. The kinetic term of the
action with kernel KðgI; g0IÞ ¼ δðg0Ig−1I Þ is specified by

K ¼ 1

2

Z
ðdgÞ4φ2

1234: ð7Þ

The data given so far does not yet permit the reconstruction of
a unique geometry for the simplicial complex. In a second
step, one has to impose restrictions which reduce the non-
geometric quantum theory to the gravitational sector.
This can be substantiated by invoking the correspondence

betweenGFTand spin foammodels. Indeed, anyGFTmodel
defines in its perturbative expansion a spin foam model
[2,14]. One can then show that GFTs based on the Ooguri
model may provide a covariant QFT formulation of the
dynamics of LQG. In the latter, boundary spin network
states correspond to discrete quantum 3-geometries [12], and
transition amplitudes in between two such boundary states
are given by appropriate spin foam amplitudes [13]. A
concrete strategy to construct gravitational spin foammodels
is to start with a spin foam quantization of the topological BF
theory which is equivalent to setting up its discrete path
integral. Importantly, it is then turned into a gravitational
theory by imposing so-called simplicity constraints. These

restrict the data dressing the spin foam model such that it
becomes equivalent to a discrete path integral for Plebanski
gravity. Moreover, the constraints allow one to establish the
link to LQG by restricting the group G to SU(2) [25].
It is precisely in this way that each so-constructed spin

foam amplitude corresponds to a discrete spacetime history
interpolating in between the boundary configurations and is
thus identical to a restricted GFT Feynman amplitude.
Therefore, the sum over Feynman diagrams given by
Eq. (5) can be rewritten as a sum over diagrams dual to
simplicial complexes decorated with quantum geometric
data which clarifies how the GFT partition function can be
intuitively understood to encode the sum-over-histories for
4D quantum gravity.3

3. Quantum theory: Second quantized framework

Motivated by the roots of GFT in LQG, it is possible to
construct a second quantized Fock space reformulation of
the kinematical Hilbert space of LQG of which the states
describe discrete quantum 3-geometries. The construction
is closely analogous to the one known from ordinary
nonrelativistic QFTs [27,28]. In a nutshell, the construction
leads to the reinterpretation of spin network vertices as
fundamental quanta which are created or annihilated by the
field operators of GFT. Pictorially seen, exciting a GFT
quantum creates an atom of space or a choron, and thus
GFTs are not QFTs on space but of space itself.
To start with, the GFT Fock space constitutes itself from

a fundamental single-particle Hilbert space Hv ¼ L2ðGdÞ,

F ðHvÞ ¼ ⨁
∞

N¼0

symð⊗N
i¼1 H

ðiÞ
v Þ: ð8Þ

The symmetrization with respect to the permutation group
SN is chosen to account for the choice of bosonic statistics
of the field operators and is pivotal for the idea of
reinterpreting spacetime as a Bose-Einstein condensate
(BEC). Hv is the space of states of a GFT quantum. For
G ¼ SUð2Þ and the imposition of gauge invariance as in
Eq. (2), a state represents an open LQG spin network vertex
or its dual quantum polyhedron.4 In the simplicial context,
when d ¼ 4, a GFT quantum corresponds to a quantum
tetrahedron, the Hilbert space of which is

3This reasoning could be generalized in different ways. First, the
discussion of the case with noncompact group G can be found in
Ref. [4]. Second, when remaining faithful to simplicial building
blocks, one could, e.g., consider higher interaction terms which
also allow for an interpretation in terms of regular simplicial
4-polytopes. Finally, it is in principle possible to go beyond the
choice of simplicial building blocks and define GFTs which are
fully compatible with the combinatorics of LQG. Within this
theory, quantum states of the 3-geometry are defined on boundary
graphs with vertices of arbitrary valence. These correspond to
general polyhedra and not merely to 3-simplices [26].

4This also holds true forG ¼ SLð2;CÞ and G ¼ Spinð4Þ when
gauge invariance and simplicity constraints are properly imposed.

PITHIS, SAKELLARIADOU, and TOMOV PHYSICAL REVIEW D 94, 064056 (2016)

064056-4



Hv ¼ L2ðG4=GÞ ≅ ⨁
Ji∈N

2

Invð⊗4
i¼1 H

JiÞ; ð9Þ

with HJi denoting the Hilbert space of an irreducible
unitary representation of G ¼ SUð2Þ.
In this picture, the no-space state in F ðHvÞ is devoid of

any topological and quantum geometric information. It
corresponds to the Fock vacuum j∅i defined by

φ̂ðgIÞj∅i ¼ 0: ð10Þ

By convention, it holds that h∅j∅i ¼ 1. Exciting a one-
particle GFT state over the Fock vacuum is expressed by

jgIi ¼ φ̂†ðgIÞj∅i ð11Þ

and understood as the creation of a single open 4-valent
LQG spin network vertex or of its dual tetrahedron.
The GFT field operators obey the canonical commuta-

tion relations (CCR)

½φ̂ðgÞ; φ̂†ðg0Þ� ¼ 1Gðg; g0Þ and ½φ̂ð†ÞðgÞ; φ̂ð†Þðg0Þ� ¼ 0:

ð12Þ

The delta distribution 1Gðg; g0Þ ¼
R
G dh

Q
IδðgIhg0−1I Þ on

the space Gd=G is compatible with the imposition of gauge
invariance at the level of the fields as in Eq. (2).5

Using this, properly symmetrized many particle states
can be constructed over the Fock space by

jψi ¼ 1ffiffiffiffiffiffi
N!

p
X
P∈SN

P
Z

ðdgÞdNψðg1I ;…; gNI Þ
YN
i¼1

φ̂†ðgiIÞj∅i;

ð13Þ

with the wave functions ψðg1I ;…; gNI Þ ¼ hg1I ;…; gNI jψi.
Such states correspond to the excitation of N open
disconnected spin network vertices. The construction of
such multiparticle states is needed for the description of
extended quantum 3-geometries.
Using this language, one can set up second-quantized

Hermitian operators to encode quantum geometric observ-
able data. In particular, an arbitrary one-body operator
assumes the form

Ô ¼
Z

ðdgÞd
Z

ðdg0Þdφ̂†ðgIÞOðgI; g0IÞφ̂ðg0IÞ; ð14Þ

with OðgI; g0IÞ ¼ hgIjôjg0Ii given in terms of the matrix
elements of the first-quantized operators ô. For Hermitian
operators, these have to suffice of course OðgI; g0IÞ ¼
ðOðg0I; gIÞÞ�. For example, the number operator is given by

N̂ ¼
Z

ðdgÞdφ̂†ðgIÞφ̂ðgIÞ: ð15Þ

Strictly speaking, N exists only in the zero-interaction
representation which is when all representations of the
CCRs are equivalent to the Fock representation, as is well
known within the context local QFTs [29]. Another
relevant operator encoding geometric information is the
vertex volume operator

V̂ ¼
Z

ðdgÞd
Z

ðdg0Þdφ̂†ðgIÞVðgI; g0IÞφ̂ðg0IÞ; ð16Þ

wherein VðgI; g0IÞ is given in terms of the LQG volume
operator between two single-vertex spin networks and
an analogous expression holds for the LQG area operator
[4,11,30].

B. Group field theory condensate cosmology

The cosmology of the very early universe provides a
natural setting in which quantum gravity effects can be
expected to have played a decisive role. The GFTCC
research program attempts to describe cosmologically
relevant geometries by applying the previously summarized
techniques.
In this context, the goal is to model homogeneous

continuum 3-geometries and their cosmological evolution
by means of particular multiparticle GFT states, i.e.,
condensate states, and their effective dynamics. A possible
mechanism which could lead to such condensate states is
suggested by the concept of phase transitions in GFT. As
explained in the Introduction, the FRG analysis of specific
GFT models has found IR fixed points in all cases
investigated so far, suggesting a phase transition from a
symmetric to a broken/condensate phase [19,20]. The
condensate corresponds to a nonperturbative vacuum of
a GFT model described by a large sample of bosonic GFT
quanta which all settle into a common ground state away
from the Fock vacuum. To confirm the occurrence of such a
transition, a mean field analysis of the broken phase has to
be undertaken. Ideally, the effective dynamics of the
resulting effective geometry should admit a description
in terms of the one given by General Relativity for the
corresponding classical geometry, perhaps up to modifica-
tions [4,11].

1. Condensate states

In the following, we briefly recapitulate the motivation
for why GFT condensate states serve as a good ansatz to
effectively capture the physics of homogeneous continuum
spacetimes following Refs. [4,11] and review important
aspects of their construction. We turn then to the extraction
of the effective dynamics from the microscopic GFTaction.
In the case of spatial homogeneity, which is relevant to

us, it is possible to reconstruct the geometry from any point5The case of noncompact group G is discussed in Ref. [4].
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as the metric is the same everywhere.6 This homogeneity
criterion translates on the level of GFT states to the
requirement that all quanta occupy the same quantum
geometric state. This is the reason for choosing GFT
condensate states as the main ingredient for GFTCC in
close analogy to the theory of real Bose condensates [22].
Furthermore, for a state to encode in some adequate limit
information allowing for the description of a smooth metric
3-geometry, one assumes that a large constituent number N
will lead to a good approximation of the continuum.
Moreover, the simplicial building blocks are required to
be almost flat. This near-flatness condition translates on the
level of the states to the requirement that the probability
density is concentrated around small values of the curva-
ture. Finally, for a classical cosmological spacetime to
emerge from a given quantum state, it should exhibit
semiclassical properties. Crucially, condensate states auto-
matically fulfill such a desirable feature because they are
coherent states and as such exhibit, in a certain sense,
ultraclassical behavior by saturating the number-phase
uncertainty relation and are thus the quantum states which
are the closest to classical waves. We will discuss the
construction of such states and their properties in the
following.
Using the Fock representation of GFT as recapitulated in

Appendix B, we decompose the field operator φ̂ðgIÞ in
terms of annihilation operators fĉig of single-particle
quantum geometry states fjiig yielding

φ̂ðgIÞ ¼
X
i

ψ iðgIÞĉi: ð17Þ

Following the logic of the Bogoliubov approximation valid
for ultracold, non- to weakly interacting and dilute Bose
condensates [22,23], if the ground state i ¼ 0 has a
macroscopic occupation, one separates this expression into
a condensate term and one for all the remaining non-
condensate components. This yields

φ̂ðgIÞ ¼ ψ0ðgIÞc0 þ
X
i≠0

ψ iĉi; ð18Þ

where one replaces the operator ĉ0 by the c-number c0 so
that the average occupation number of the ground state is
given by N ¼ hĉ†0ĉ0i. In the next step, one redefines σ ≡ffiffiffiffi
N

p
ψ0 as well as δφ̂≡P

i≠0ψ iĉi giving rise to

φ̂ðgIÞ ¼ σðgIÞ þ δφ̂ðgIÞ; ð19Þ

where ψ0 is normalized to 1. This ansatz is only justified if
the ground state is macroscopically occupied, i.e., N ≫ 1,

and the fluctuations δφ̂ are regarded as small. One calls the
classical field σðgIÞ the mean field of the condensate which
assumes the role of an order parameter. Making use of the
particle density nðgIÞ ¼ jσðgIÞj2 and a phase characterizing
the coherence properties of the condensate, we write the
mean field in polar form as

σðgIÞ ¼
ffiffiffi
n

p
eiθðgIÞ: ð20Þ

This illustrates that the order parameter can always be
multiplied by an arbitrary phase factor without affecting the
physical measurement. This behavior is identified as a
global U(1)-symmetry of the system which is associated
with the conservation of the total particle number. Upon
BEC phase transition, a particular phase is chosen which
amounts to the spontaneous breaking of this symmetry.
By construction, the Bogoliubov ansatz (19) gives rise to

a nonzero expectation value of the field operator, i.e.,
hφ̂ðgIÞi ≠ 0, indicating that the condensate state is in, or
rather close to, a coherent state.
Concretely, the simplest choice for the order parameter is

provided by a condensate state,

jσi ¼ Aeσ̂j∅i; σ̂ ¼
Z

ðdgÞ4σðgIÞφ̂†ðgIÞ; ð21Þ

which is constructed from quantum tetrahedra all encoding
the same discrete geometric data.7 It defines a nonpeturba-
tive vacuum over the Fock space. The normalization factor
is given by

A ¼ e−
1
2

R
ðdgÞ4jσðgÞj2 : ð22Þ

We require in addition to the right invariance as in Eq. (2)
invariance under the left diagonal action of G, i.e.,
σðkgIÞ ¼ σðgIÞ for all k ∈ G. The latter encodes the
invariance under local frame rotations.
Such states are coherent because they are eigenstates of

the field operator,

φ̂ðgIÞjσi ¼ σðgIÞjσi; ð23Þ

such that indeed hφ̂ðgIÞi ¼ σðgIÞ ≠ 0 holds (as long as jσi
is not the Fock vacuum). Due to this property, the expect-
ation value of the number operator immediately yields the
average particle number

N ¼
Z

ðdgÞ4jσðgIÞj2 < ∞: ð24Þ

It is of course only possible to use such a condensate state
for the description of a macroscopic homogeneous

6The procedure to reconstruct the spatial metric by means of
the information encoded in the quantum state is briefly adum-
brated in Appendix A.

7In principle, more complicated types of composite states can
be considered as in Ref. [4].
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universe, if the number of quanta is N ≫ 1 but finite. If the
number operator is well defined and its expectation value is
finite, the states used here are Fock coherent states
(cf. Appendixes B and C). By construction, such a
description is only valid for noninteracting or weakly
interacting condensates. Toward the strongly interacting
regime, it has to be replaced by one given in terms of non-
Fock coherent states, as the Appendixes B and C suggest.

2. Effective dynamics

After having discussed the construction of suitable
states, let us briefly summarize how the effective con-
densate dynamics can be obtained from the underlying
GFT dynamics as in Refs. [4,11].
This is done by using the infinite tower of Schwinger-

Dyson equations,

0 ¼ δφhO½φ;φ�i ¼
�
δO½φ;φ�
δφðgIÞ

−O½φ;φ� δS½φ;φ�
δφðgIÞ

�
; ð25Þ

where O is a functional of the fields. One extracts an
expression for the effective dynamics by setting O equal to
the identity. This leads to

�
δS½φ;φ�
δφðgIÞ

�
¼ 0 ð26Þ

with the action S½φ;φ� as in Eq. (3). When the expectation
value is taken with respect to the condensate state jσi, one
obtains the analog of the Gross-Pitaevskii (GP) equation for
real Bose condensates

Z
ðdg0Þ4KðgI; g0IÞσðg0IÞ þ

δV
δσðgIÞ

¼ 0: ð27Þ

This is in general a nonlinear and nonlocal equation for the
dynamics of the mean field σ and is interpreted as a
quantum cosmology equation. In analogy to the GP
equation, it has no direct probabilistic interpretation.
These features might appear as a problem when trying
to relate the GFTCC framework to LQC [31] or Wheeler-
DeWitt (WdW) quantum cosmology [32]. However, they
do not pose a problem for the direct extraction of
cosmological predictions from the full theory. We refer
to Refs. [4,5,7,8,10], where it has been demonstrated how a
Friedmann-like evolution equation can be derived from
such an effective dynamics of specific GFT condensates.

III. TOWARD THE MEAN FIELD ANALYSIS
OF AN INTERACTING GFTCC MODEL

In the following, we proceed with analyzing the quantum
dynamics of a particular GFT/GFTCC model in the free
and interacting cases. The larger scope of such an analysis
is to see whether one can construct particular condensate

solutions which admit, e.g., an interpretation in terms of
smooth continuous 3-geometries and are in line with the
geometrogenesis picture.
We first review a free model and discuss how the general

solution for an isotropic condensate is obtained from the
equation of motion of the mean field σ in Sec. III A. By
doing so, we follow closely Ref. [5] and further elaborate
special solutions. We extensively discuss the geometric
interpretation of such solutions by analyzing their curvature
properties and by computing the expectation values of
the volume and area operators imported from LQG. In
Sec. III B, we then introduce two types of combinatorially
local interaction terms in Sec. III B 1 and first treat them in
Sec. III B 2 as perturbations of the aforementioned free
solutions. We study solutions around the nontrivial minima
of the resulting effective potentials in Sec. III B 3 and
discuss the expectation values of the LQG volume and area
operators in this case. Finally, we conclude the analysis by
interpreting the obtained results.
In order to study the quantum dynamics of the mean field

σ as in Eq. (27), first we have to specify the details of the
action

S½φ;φ� ¼
Z

ðdgÞ4ðdg0Þ4φðgIÞKðgI; g0IÞφðg0IÞ þ V½φ;φ�:

ð28Þ

Most generally, one could study the evolution in relational
terms by adding a free massless scalar field ϕ into the
action. For the GFT field, one would then have φ ¼
φðgI;ϕÞ where ϕ ∈ R accounts for the relational clock
as discussed in Ref. [7]. In these terms, the local kinetic
operator is given by

K ¼ δðg0Ig−1I Þδðϕ0 − ϕÞ
�
−
�
τ∂2

ϕ þ
X4
I¼1

ΔgI

�
þm2

�
: ð29Þ

The signs of the terms appearing in K are chosen such that
the functional S in the partition function Z is bounded from
below. For τ > 0, the operator −ðτ∂2

ϕ þ
P

4
I¼1ΔgIÞ is

positive, and also this choice accounts for the correct
coupling of matter to gravity as noticed in Ref. [4]. The
Laplacian on the group manifold is motivated by the
renormalization group analysis of GFT models where
one can show that it is generated by radiative corrections
(cf. Ref. [20]). The “mass term” is related to the GFT/spin
foam correspondence, as it corresponds to the spin foam
edge weights.8 Throughout the remainder of this article, we
will focus on “static” mean fields, i.e., σðgI;ϕÞ ¼ σðgIÞ.

8Freezing the kinetic operator to the identity would then lead to
the ultralocal truncation of the model and establish the above-
discussed correspondence between certain GFT and spin foam
models [14] for an appropriate choice of interaction term.
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The choice of action is then finalized by selecting the
interaction term V.

A. Static free model

In a first approximation, we neglect all interactions and
set V ¼ 0. Using Eqs. (27) and (29), this yields

�
−
X4
I¼1

ΔgI þm2

�
σðgIÞ ¼ 0: ð30Þ

To find solutions to this dynamical equation, we introduce
coordinates on the SU(2) group manifold, use invariance
properties of σðgIÞ, and apply symmetry reductions, where
we closely follow the results of Ref. [5] and elaborate them
where needed.
To this aim, assume that the connection in the holonomy

g ¼ Pei
R
e
A remains approximately constant along the link

e with length l0 in the x-direction, which yields g ≈ eil0Ax .
In the polar decomposition, this gives

g ¼ cosðl0jj~AxjjÞ1þ i~σ
~Ax

jj~Axjj
sinðl0jj~AxjjÞ; ð31Þ

with the suð2Þ-connection Ax ¼ ~Ax · ~σ and the Pauli
matrices fσigi¼1.::3. In the next step, we introduce the
coordinates ðπ0;…; π3Þ together with π20 þ � � � þ π23 ¼ 1

which specifies an embedding of SUð2Þ ≅ S3 into R4. Due
to the isomorphism SOð3Þ ≅ SUð2Þ=Z2, the choice of sign
in π0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~π2

p
corresponds to working on one hemi-

sphere of S3. With the identification

~π ¼
~Ax

jj~Axjj
sinðl0jj~AxjjÞ; ð32Þ

we can parametrize the holonomies as

gð~πÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~π2

p
1þ i~σ · ~π; jj~πjj ≤ 1; ð33Þ

where jj~πjj ¼ 0 corresponds to the pole of the hemisphere
and jj~πjj ¼ 1 marks the equator. In these coordinates, the
Haar measure becomes

dg ¼ d~πffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~π2

p : ð34Þ

Using the Lie derivative on the group manifold acting on a
function f, one has for the Lie algebra elements

~BfðgÞ≡ i
d
dt

fðei
2
~σtgÞjt¼0: ð35Þ

With this, the Laplace-Beltrami operator ~B2 ¼ −Δg in
terms of the coordinates ~π on SU(2) is given by

−ΔgfðgÞ ¼ −½ðδij − πiπjÞ∂i∂j − 3πi∂i�fð~πÞ: ð36Þ

This applies to all group elements gI , I ¼ 1;…; 4 dressing
the spin network vertex dual to the quantum tetrahedron.
In the most general case, the left and right invariance

implies that σðgIÞ lives on the six-dimensional domain
space SUð2ÞnSUð2Þ4=SUð2Þ. It is thus parametrized by six
invariant coordinates πIJ ¼ ~πI · ~πJ, with I; J ¼ 1, 2, 3
and 0 ≤ jπIJj ≤ 1.
Using the above, Eq. (30) gives rise to a rather compli-

cated partial differential equation. To find solutions, one
imposes a symmetry reduction by considering functions σ
which only depend on the diagonal components πII and,
furthermore, are assumed to be all equal. Together with
Eq. (32), this yields

p≡ πII ¼ sin2ðl0jj~AxjjÞ: ð37Þ

Using this, one can rewrite Eq. (30) as

−
�
2pð1 − pÞ d2

dp2
þ ð3 − 4pÞ d

dp

�
σðpÞ þ μσðpÞ ¼ 0;

ð38Þ

with μ≡ m2

12
and p ∈ ½0; 1� for which analytic solutions can

be found [5].9

Indeed, it makes sense to refer to this symmetry
reduction (to just one variable p) as an isotropization.
Retrospectively, this can be seen when rewriting Eq. (38)
using p≡ sin2ðψÞ. With this, we obtain

−
�
d2

dψ2
þ 2 cotðψÞ d

dψ

�
σðψÞ þ 2μσðψÞ ¼ 0;

ψ ∈ ½0; π=2�; ð39Þ

which can be compared to the Laplacian on a hemisphere of
S3 acting on a function σðϕ; θ;ψÞ, given by

−Δσðϕ; θ;ψÞ ¼ −
1

sin2ðψÞ
� ∂
∂ψ

�
sin2ðψÞ ∂

∂ψ σ

�
þ ΔS2σ

�
;

ð40Þ

with ϕ ∈ ½0; 2π�, θ ∈ ½0; π�, and ψ ∈ ½0; π=2�. The function
σ is called isotropic or zonal if it is independent of ϕ and θ
[33]. These are spherically symmetric eigenfunctions of
−ΔS2 for which Eq. (39) is equal to Eq. (40). Hence, the
symmetry reduction can be seen as explicitly restricting the
rather general class of condensates to a representative with

9Observe that this symmetry reduction should not be confused
with those performed in WdW quantum cosmology or LQC,
since it is applied after quantization onto the quantum state and
not before.
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a clearer geometric interpretation. The general solution to
Eq. (38) is given by

σðpÞ ¼
ffiffiffi
4

p 1 − p
p

�
aP

1
2
1
2

ffiffiffiffiffiffiffiffi
1−2μ

p
−1ð2p − 1Þ

þ bQ
1
2
1
2
ð ffiffiffiffiffiffiffiffi

1−2μ
p

−1Þð2p − 1Þ
�
; ð41Þ

with a; b ∈ C and P, Q are associated Legendre functions
of the first and second kinds, respectively. With respect to
the measure induced from the full Fock space, one yields
for the average particle number

N ¼
Z

ðdgÞ3jσðg1; g2; g3Þj2

¼ 2π

Z
dp

ffiffiffiffiffiffiffiffiffiffiffi
p

1 − p

r
jσðpÞj2 < ∞: ð42Þ

In the following, wewant to specify the possible values of
μ in the symmetry reduced case by means of discussing the
spectrum of the operator −

P
IΔgI. Its self-adjointness and

positivity imply that its eigenvalues fm2g lie in Rþ
0 . The

compactness of the domain space SUð2ÞnSUð2Þ4=SUð2Þ
entails that the spectrum is discrete and the respective
eigenspaces are finite-dimensional. This also holds for the
symmetry reduced case.
To finally concretize the spectrum, we have to introduce

boundary conditions, which we infer from physical
assumptions. For this, we can exploit that we are looking
for solutions to the equation of motion which admit an
interpretation in terms of smooth metric 3-geometries and
thus obey the above-mentioned near-flatness condition. In
the group representation, this condition concretely trans-
lates into demanding that the character of the group
elements decorating the quantum tetrahedra are close to

χð1JiÞ ¼ 2Ji þ 1 according to Refs. [4,11]. On the level of
the mean field, this leads to the requirement that the
probability density is concentrated around small values
of the connection or its curvature. In the symmetry reduced
case, this condition holds for σðpÞ if the probability density
jσðpÞj2 is concentrated around small values of the variable
p and tends to zero at the equator traced out at p ¼ 1. The
latter translates into a Dirichlet boundary condition on the
equator,

σðpÞjp¼1 ¼ 0; ð43Þ

which is only obeyed by theQ-branch of the general solution
Eq. (41). Using this, the spectrum of the Dirichlet Laplacian
is given by μ ¼ −2nðnþ 1Þ with n ∈ ð2N0 þ 1Þ=2.10,11
Equivalently, these solutions correspond to the eigenso-

lutions of Eq. (39) obeying the boundary condition
σðπ

2
Þ ¼ 0. They are given by

σjðψÞ ¼
sinðð2jþ 1ÞψÞ

sinðψÞ ; ψ ∈
�
0;
π

2

�
ð45Þ

with j ∈ 2N0þ1
2

corresponding to the eigenvalues μ ¼
−2jðjþ 1Þ. On the interval ½0; π

2
�, these solutions are

exactly equal to those hyperspherically symmetric eigen-
functions of the Laplacian on S3 which vanish on the
equator. Furthermore, observe that these are just the
characters χjðψÞ of the respective representation for j.
In view of the geometric interpretation of these solutions,

we want to illustrate and then discuss the behavior of the
first few eigensolutions by plotting their probability density
jσðpÞj2 in Fig. 1 or jσðψÞj2 in Fig. 2. The plot illustrates that
the probability density is concentrated around small values
of the variable p or ψ, respectively. In general, eigenso-
lutions remain finitely peaked around p ¼ 0 or ψ ¼ 0.
Solutions for slightly perturbed eigenvalues μ are infinitely
peaked as limp→0jσðpÞj2 ∼ 1=p.

FIG. 1. Probability density of the free mean field over p.

10The only eigenfunction of the Dirichlet Laplacian to the
eigenvalue μ ¼ 0 is the trivial function. In the mean field analysis
of phase transitions, the mean field is supposed to vanish if the
driving parameter μ turns to zero. Here, consistency with the
flatness condition implies the vanishing of the mean field σ for
μ ¼ 0.

11Due to the linear character of the free problem, the solutions
have a rescaling invariance with respect to the chosen boundary
conditions. This means that two solutions for different boundary
conditions σ0ð1Þ can be rescaled into one another according to

N½σ01ð1Þ�
N½σ02ð1Þ�

¼ jσ01ð1Þj2
jσ02ð1Þj2

; ð44Þ

which obscures the interpretation of the quantity N and other
observables in the free case. This rescaling property is lost once
(strong) nonlinear interactions are considered as in the next
subsection.
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A concentration of the probability density around small
p corresponds to a concentration around small curvature
values. This is because small p, itself directly proportional
to the gravitational connection A, implies small field
strength via F ¼ DAA. Naively, in turn this leads to a
small 3-curvature R, as is known from the first-order
formalism for gravity. This is important for consistency
matters, meaning that the building blocks of the geometry
are indeed almost flat which is needed to approximate a
smooth continuum 3-space. Around p ¼ 1 or ψ ¼ π

2
,

tracing out the equator of S3, the solutions vanish. The
occurrence of the finite number of oscillatory maxima does
not a priori pose a problem to the fulfillment of the near-
flatness condition since the eigensolutions are indeed
concentrated around small values of p or angles ψ , far
away from the equator. For the characters of the corre-
sponding representations, the near-flatness condition
means that they should be close to χð1jÞ ¼ 2jþ 1

[4,11]. Our solutions obey this requirement since in
Eq. (45) limψ→0σjðψÞ exactly yields 2jþ 1. In this light,
using the solutions σjðψÞ, we can compute the average of
the field strength12 Fi ∼ p given by

hF̂ii
N

∼
Z

π=2

0

dψsin2ðψÞjσjðψÞj2F̂i=N > 0; ð46Þ

which is illustrated in Fig. 3. The dots indicate the discrete
contributions to the field strength for a particular j-mean
field and show a dominance of the 1=2-eigensolution over
the others on which we comment below. In light of the
previous discussion, it may seem a bit surprising that the
expectation value of the field strength is nonzero despite
the fact that p ¼ 0 is the most probable value of the
corresponding mean field. However, the extended tail of the
probability density with the finite oscillatory maxima
accounts for the average being bigger than the most
probable value. The finite value indicates that the space
described by the condensate is of finite size. We will come
back to this point at the end of this section.13

In the last step, we want to transform our nearly flat
solutions to the spin-representation which facilitates most
directly the extraction of information about the LQG volume
and area operators and is crucial for the geometric interpre-
tation of the solutions. To this aim, notice that due to the left-
and right-invariance of σðgIÞ, the mean field is in particular a
central function on the domain space, i.e., σðhgIh−1Þ ¼ σðgIÞ
for all h ∈ SUð2Þ. This holds for the isotropic function σðpÞ
or σðψÞ, analogously. In this case isotropy coincides with the
notion of centrality. Using the Fourier series of a central
function on SU(2) [33], the Fourier series for the mean field
in the angle parametrization is given by

σjðψÞ ¼
X

m∈N0=2

ð2mþ 1ÞχmðψÞσj;m; ð47Þ

with the “plane waves” given by the characters χmðψÞ ¼
sinðð2mþ1ÞψÞ

sinðψÞ . The Fourier coefficients are then obtained via

FIG. 3. Un-normalized spectrum of the field strength with
respect to the eigensolutions σjðψÞ in arbitrary units.

FIG. 2. Probability density of the free mean field over ψ.

12Relating p to the field strength is justified when considering
a plaquette □ in a face of a tetrahedron so that we can make use
of the well-known expression

Fk
abðAÞ ¼

1

TrðτkτkÞ lim
Area□→0

Trj

�
τk
hol□ij

ðAÞ − 1

Area□

�
δiaδ

j
b;

where a; b ∈ f1; 2g and for the suð2Þ-algebra elements τk ¼
− i

2
σk the relation TrðτkτkÞ ¼ − 1

3
jðjþ 1Þð2jþ 1Þ holds [31].

This yields Fk ∼ sin2ðψÞ ¼ p.

13The last word on the flatness behavior of such solutions also
in the interacting case, however, lies with the analysis (of the
expectation value) of a currently lacking GFT-curvature operator,
as already noticed in Ref. [11].
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σj;m ¼ 2

π

1

2mþ 1

Z
π=2

0

dψsin2ðψÞχmðψÞσjðψÞ; ð48Þ

and m ∈ N0

2
. Using this, the Fourier coefficients of the

solutions σjðψÞ [cf. Eq. (45)] yield

σj;m ¼ 2

π

1

2mþ 1

ð−1Þ2j−12 ð2jþ 1Þ cosð2mπ
2
Þ

ð2m − 2jÞð2mþ 2jþ 2Þ ; ð49Þ

with j ∈ 2N0þ1
2

. In the spin-representation, the expectation
value of the volume operator with respect to the mean field is
decomposed as

hV̂i≡ V ¼ V0

X
m∈N0=2

jσj;mj2Vm with Vm ∼m3=2 ð50Þ

and V0 ∼ l3
p.

14 The normalized volume V=V0 is shown in
Fig. 4 for different values of j. The dots indicate the discrete
contributions to the volume for a particular j. Eigensolutions
for smaller j or jμj have a bigger volume in comparison to
those with larger j; especially the j ¼ 3=2 eigensolution has
the relatively biggest volume. Importantly, thevolume is finite
for all j indicating that the space which the condensate
approximates must be of finite size. Hence, a general solution
which can be decomposed in terms of eigensolutions
describes a finitely sized space of which the largest contri-
butions arise from low spin modes. Finally, Fig. 5 illustrates
the uncertainty of the volume operator, which is

monotonously increasing in j and indicates that its expect-
ation value assumes a sharper value if the condensate resides
in lower j-modes.
Analogously, the expectation value of the area operator

for an individual face of a quantum tetrahedron in the
condensate is given as

hÂi≡ A ¼ A0

X
m∈N0=2

jσj;mj2Am ð51Þ

with Am ∼ ðmðmþ 1ÞÞ1=2 and A0 ∼ l2
p. Depending on the

solution σj, the spectrum of the normalized area A=A0

is illustrated in Fig. 6 showing a dominance of the
1=2-representation and otherwise with a similar interpre-
tation as in the case of the volume operator.

FIG. 4. Normalized spectrum of the volume operator with
respect to the eigensolutions σjðψÞ in arbitrary units.

FIG. 5. Standard deviation of the volume operator over j.

FIG. 6. Normalized spectrum of the area operator with respect
to the eigensolutions σjðψÞ in arbitrary units.

14As a side remark, notice that if μ was strictly larger than zero,
naively j would be complex and thus also the spectra of the
geometric operators such as the volume V̂.
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From the above, it is not clear whether a certain
eigensolution could be dynamically preferred over others.
The near-flatness condition seems to be better fulfilled by
lower eigenmodes, that means for those solutions with a
lower number of oscillatory maxima. These are the sol-
utions which are mostly concentrated around small con-
nection or curvature values. This might be connected to the
recent findings of a dynamically reached low spin phase in
a similar GFT condensate cosmology model [9]. In this
light, it is striking that the computation of the expectation
values of the volume, area, and the field strength operators
all display the dominance of low j-modes. This can be seen
to be in favor of the condensate picture where the field
quanta tend to condense into the same simple quantum
geometric state. Below, we explore the case of interacting
models which is pivotal for the geometric interpretation of
the solutions and the extraction of phenomenology.
We want to make a final remark about restricting our

attention solely to the those solutions obeying the near-
flatness condition. Of course, one could consider more
general solutions to Eq. (38) which are not necessarily
peaked around p ¼ 0 as in Ref. [5]. Despite the fact that
such solutions cannot be interpreted in terms of smooth
continuous 3-geometries according to the near-flatness
condition proposed in Ref. [4], their properties could
nevertheless be studied in a similar manner which will
be done elsewhere.

B. Static interacting models

In this subsection, we add to the above considered free
model two different combinatorially local interaction terms,
i.e., pseudopotentials, and analyze their effect on the
behavior of the solutions and the expectation values of
relevant operators. This enables us to study aspects of the
resulting effective quantum geometries.
One might speculate that such simplified interactions

between the condensate constituents are only relevant in a
continuum and large scale limit, where the true combina-
torial nonlocality of the fundamental theory could be
effectively hidden. This idea can perhaps be motivated
by speculating that while the occurrence of UV fixed points
in tensorial GFTs is deeply rooted in their combinatorial
nonlocality (cf. Refs. [19,21]), the occurrence of IR fixed
points, akin to Wilson-Fisher fixed points in the corre-
sponding local QFTs, seems to be unaffected by this
feature. Ultimately, rigorous RG arguments will have the
decisive word whether combinatorially local interaction
terms may be derived from the fundamental theory. In this
way, studying the effect of pseudopotentials and trying to
extract physics from the solutions can be useful to clarify
the map between the microscopic and effective macro-
scopic dynamics of the theory and is instructive to gain
experience for the treatment of the corresponding nonlocal
terms which have a clearer discrete geometric interpreta-
tion. In this light, we will consider two classes of local

interactions, mimicking the so-called tensorial and the
above-introduced simplicial interactions.

1. General setup of the interacting GFTCC models

The models on which we built our analysis assume an
action of the form

S½φ;φ� ¼
Z

ðdgÞ4ðdg0Þ4φðgIÞKðgI; g0IÞφðg0IÞ þ V½φ;φ�;

ð52Þ

with the kinetic operator

K ¼ δðg0Ig−1I Þ
�
−
X4
I¼1

ΔgI þm2

�
ð53Þ

and the general pseudopotential mimicking so-called ten-
sorial interactions,

VT ½φ� ¼
X
n≥2

κn
n

Z
ðdgÞ4ðjφðgIÞj2Þn; ð54Þ

which is even powered in the modulus of the field. One
obtains for the equation of motion of the mean field

�
−
X4
I¼1

ΔgI þm2

�
σðgIÞ þ σðgIÞ

X
n¼2

κnðjσðgIÞj2Þn−1 ¼ 0:

ð55Þ

Observe that the combinatorial locality implies that we do
not make use of any nontrivial pairing pattern for the fields
and when applying the same symmetry assumptions as
above one has σðg1; g2; g3; g4Þ ¼ σðg; g; g; gÞ ¼ σðpÞ.
Considering only one summand for the interaction, we
yield

−
�
2pð1 − pÞ d2

dp2
þ ð3 − 4pÞ d

dp

�
σðpÞ þ μσðpÞ

þ κσðpÞðjσðpÞj2Þn−1 ¼ 0; ð56Þ

with n ¼ 2; 3; 4;….
In the following, we focus on the case of real-valued

GFT fields and set n ¼ 2, for which the equation of motion
reads

−
�
2pð1 − pÞ d2

dp2
þ ð3 − 4pÞ d

dp

�
σðpÞ þ μσðpÞ

þ κσðpÞ3 ¼ 0; ð57Þ

with the effective potential
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Veff ½σ� ¼
μ

2
σ2 þ κ

4
σ4: ð58Þ

The signs of the coupling constants determine the structure
of the ground state of the theory. For appropriately chosen
signs of μ and κ, the potential, and thus the spectrum of the
theory, is bounded from below. However, only for μ < 0
and κ > 0, one can have a nontrivial (nonperturbative)
vacuum with

hσi ≠ 0; ð59Þ

which is needed to be in agreement with the condensate
state ansatz. The two distinct minima of the potential are
located at hσ0i ¼ � ffiffiffiffiffiffiffiffiffiffiffi

−μ=κ
p

where the potential has
strength V0 ¼ −μ2=4κ, which is lower than the value for
the excited configuration σ ¼ 0. The system would thus
settle into one of the minima as its equilibrium configu-
ration and could be used to describe a condensate.15 This
potential is illustrated in Fig. 7 and contrasted to the case
where μ > 0 for which the potential is a convex function of
σ with minimum at hσi ¼ 0. The latter setting cannot be
used to describe a condensate withN ≠ 0. For other choices
of signs, the equilibrium configuration hσi ¼ 0 is unstable
or metastable and should be dismissed. The upshot of this
discussion is that if the effective action is to represent a
stable system and a condensate of GFT quanta, one must
choose the signs of the coupling constants accordingly.16

Similarly, when considering the local pseudopotential
mimicking the above-introduced simplicial interaction for
real-valued GFT fields,

VS½φ� ¼
κ

5

Z
ðdgÞ4φðgIÞ5; ð60Þ

one has

−
�
2pð1 − pÞ d2

dp2
þ ð3 − 4pÞ d

dp

�
σðpÞ þ μσðpÞ

þ κσðpÞ4 ¼ 0: ð61Þ

For such a model, the effective potential reads

Veff ½σ� ¼
μ

2
σ2 þ κ

4
σ5: ð62Þ

Wewill ignore here that this potential is unbounded from
below to one side.17 Only for (μ<0, κ>0) or (μ<0, κ<0),
one can have a nontrivial (nonperturbative) vacuum in
agreement with the condensate state ansatz, and the
discussion of the choice of signs is similar to the first
considered potential. Classically, the corresponding min-
ima of the potential are then located at σ0 ¼ � ffiffiffi

3
p ∓ μ=κ

where the potential has strength V0 ¼ ð∓μ=κÞ2=3ð3μ=10Þ.
This is illustrated in Fig. 8 for one case and contrasted to the
situation where μ > 0 which would lead to hσi ¼ 0.

2. Perturbation of the free case

In a first step, we consider the interaction term as a
perturbation of the free case discussed in Sec. III A using
the same boundary conditions σð1Þ ¼ 0 and different σ0ð1Þ
to solve numerically the nonlinear differential equa-
tions (57) and (61), respectively. By following closely
the procedure adopted in the free case, we compute the
effect of perturbations onto the probability densities and the
spectra of geometric operators. In this way, we obtain a
clear qualitative picture of the effect of interactions by
comparing the results to the ones obtained for the free case.
In the following, we discuss the behavior of solutions

for the pseudotensorial potential (58) with μ < 0 and κ > 0
and where the qualitative results differ also for the

FIG. 7. Plot of the effective potential Veff ½σ� ¼ μ
2
σ2 þ κ

4
σ4.

15A sign change of the driving parameter μ from positive to
negative values induces a spontaneous symmetry breaking of the
global Z2-symmetry of the action specified in Eq. (52). This
symmetry would have guaranteed the conservation of oddness or
evenness of the number of GFT quanta as it corresponds to the
conserved discrete quantity ð−1ÞN. For complex-valued GFT
fields, the analoguous situation would correspond to the sponta-
neous breaking of the global U(1)-symmetry of the action which
would have guaranteed the conservation of the particle numberN.

16For real BECs, κ < 0 gives an attractive interaction, and only
a large enough kinetic term can prevent the condensate from
collapsing. In the opposite case where κ > 0, the interaction is
repulsive, and if it dominates over the kinetic term, the con-
densate is well described in terms of the so-called Thomas-Fermi
approximation [22].

17Notice that when using four arguments in the group field φ,
higher simplicial interaction terms known to be, e.g., of power 16
or 500 would lead in the local point of view, adopted here, to
bounded effective potentials Veff like (58), and the discussion of
their effects would be rather analogous.
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pseudosimplicial potential (62) with μ < 0 and κ > 0 (or
κ < 0) so that the potentials would possess nontrivial
minima. The effect of weak nonlinearities in the equation
of motion onto the solutions is illustrated respectively in
Figs. 9 and 10 in the p- and ψ-parametrizations and is
contrasted to the behavior of the free solutions of Sec. III A.
In general, the finiteness of the free solutions at the origin is
lost due to the interactions. Crucially, the concentration of
the probability densities around the origin can still be
maintained giving rise to nearly flat solutions, as long as jκj
does not become too big. For larger j, i.e., larger jμj, one
sees that the departure from the free solutions is less
pronounced because the μ-term of the potential dominates
longer over the κ-term.
When jκj and jσ0ð1Þj are small, solutions will remain

normalizable with respect to the Fock space measure, i.e.,

N ¼
Z

ðdgÞ3jσðg1; g2; g3Þj2 < ∞: ð63Þ

However, when gearing up toward the strongly nonlinear
regime, i.e., κ ≳Oð1Þ, this feature is lost as N grows, and
eventually one finds N → ∞.18 The loss of normalizability
of σ with respect to the Fock space measure in the strongly
nonlinear regime goes in hand with the breaking of the
rescaling invariance expressed by Eq. (44) and signals the
breakdown of the ansatz used here. Such behavior is not
surprising, as it is well known within the context of local
QFTs that the proper treatment of interactions necessitates
the use of non-Fock representations for which N is infinite
(cf. Appendix B and Ref. [29]). We will get back to this
point below.

With regard to the average of the field strength, one
observes that κ > 0 increases hF̂ii=N for some j in
comparison to the free case, whereas for negative κ, the
expectation value decreases. This behavior is reminiscent of
the effect of similar interactions onto the effective curvature
of the space described by the condensate in Ref. [10],
where it was shown that a bounded interaction potential
generically leads to recollapsing condensate solutions.
By means of the numerically computed solutions, one

can obtain their corresponding Fourier components, and
with these, one yields in close analogy to the free case the
modified spectra of the volume and area operators, illus-
trated in Figs. 11 and 12. The plots clearly indicate that
perturbations for κ > 0 increase both the volume and the
area; however, in the weakly nonlinear regime, they remain
finite. More specifically, one observes that the effects of the

FIG. 8. Plot of the effective potential Veff ½σ� ¼ μ
2
σ2 þ κ

5
σ5.

FIG. 10. Probability density of the interacting mean field over p
for Veff ½σ� ¼ μ

2
σ2 þ κ

4
σ4.

FIG. 9. Probability density of the interacting mean field over ψ
for Veff ½σ� ¼ μ

2
σ2 þ κ

4
σ4.

18It should be noted that the precise values of κ and/or σ0ð1Þ for
which N → ∞ depend on the numerical accuracy of the used
solver. In this sense, the observation of such a behavior is a
qualitative result.
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perturbations upon the spectra of the volume and area are
more pronounced for small j, i.e., small jμj, since for these
the nonlinearity dominates quickly over the μ-term of the
potential. Moreover, one notices that, when pushing κ to
larger values, as a consequence V and A quickly blow up in
the same way as N does, whereas hF̂ii=N remains finite.
For the pseudosimplicial potential, one obtains qualita-

tively analogous results with the differences to the free

solutions being more emphasized since the nonlinearity is
stronger.

3. Solutions around the nontrivial minima

To chart the condensate phase and understand its proper-
ties, it is necessary to study numerically the solutions to the
nonlinear differential equation (57) around the nontrivial
minima. To this aim, we choose the coupling constants in
Eq. (58) in such a manner that the potential forms a
Mexican hat, as in Fig. 7, and select the position of the
minimum σ0 as well as σ0ð1Þ as the boundary condition in
order to find solutions numerically.
Without any loss of generality, we will use the same

values for μ as in the previous subsections. Apart from the
requirement that they assume negative values, they could be
completely arbitrary since here we do not study eigenso-
lutions to the Dirichlet Laplacian as in Sec. III A.
Figures 13 and 14 show the resulting probability density

and the potential over p and ψ computed for an exemplary
choice for the values of the free parameters. Depending on
the sign of σ0ð1Þ or σ0ðπ=2Þ, the solution either climbs over
the local maximum at σ ¼ 0, then reaches the other
minimum, after which it ascends the left branch of the
potential or directly climbs up the right branch shown in
Fig. 7. For the choice of parameters leading to Figs. 13
and 14, the solutions are normalizable. In general, for small
σ0ð1Þ, the solutions crawl slowly out of the minima, and if
σ0ð1Þ is almost zero, the solutions remain almost constant
up to p ¼ 0, where the regular singularity of the differential
equation finally kicks in. The contribution of the Laplacian
term is less pronounced for smaller μ than for larger ones,

FIG. 11. Normalized spectrum of the volume operator with
respect to the interacting mean field σjðψÞ for κ ¼ 0.22
(triangles) compared to the respective free solutions (dots).

FIG. 12. Normalized spectrum of the area operator with respect
to the interacting mean field σjðψÞ for κ ¼ 0.22 (triangles)
compared to the respective free solutions (dots).

FIG. 13. Semilog plot of the probability density and potential
for solutions σðpÞwith μ ¼ −1.5, κ ¼ 0.01, σð1Þ ¼ 12.2474, and
σ0ð1Þ ¼ �100 for the potential Veff ½σ� ¼ μ

2
σ2 þ κ

4
σ4. Solutions

were computed by means of MATLAB’s ODE45 solver which is
based on an explicit Runge-Kutta (4,5) formula. Output was
generated for 105 points on the interval [0, 1] while making use of
highly stringent error tolerances.
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as Fig. 14 in the ψ-parametrization illustrates. Similar
results are obtained when one keeps μ fixed while decreas-
ing jσ0ðπ=2Þj.
It is clear that, as long as for the boundary condition σ0 ≈ 0

holds, this is equivalent to neglecting theLaplacian part of the
kinetic term K in the equation of motion. The solutions,
exemplified by Figs. 13 and 14, show that the properties of
the nontrivial ground state are then defined by the ultralocal
action. Solving the equation of motion starting at the minima
of the effective potentials gives rise to almost constant, i.e.,
homogeneous, functions on the domain.19

The geometric interpretation of such solutions which
“sit” in the equilibrium position is slightly obstructed. This
is due to the fact that the above-used near-flatness condition
cannot be straightforwardly applied to such solutions.
Despite the fact that the probability density can be tuned
to be concentrated around low curvature values, it is finite
close to the equator at p ¼ 1, while in other cases it simply
remains constant on the whole interval, as Figs. 13 and 14
show. This calls for a more differentiated formulation
of this condition, perhaps by means of a well-defined
GFT-operator capturing the average curvature of the
3-space described by means of the condensate state.
In spite of the current lack of such an operator to

determine the curvature information stored in the mean
field, it is possible to obtain from exemplary numerical
solutions the spectrum of the volume and area operators as
illustrated in Figs. 15,16, and 17. Solutions which are
computed around the nontrivial minima give rise to a

different qualitative form of the spectrum of the volume
and area as compared to the ones obtained in Secs. III A
and III B 2; nevertheless, we emphasize again the relevance
of low spin modes. In general, for different μ, the dominant

FIG. 14. Double-log plot of the probability density for solutions
σðψÞ for different μ, with the same κ ¼ 0.01, and the same
jσ0ðπ=2Þj at the respective minima σðπ=2Þ for the potential
Veff ½σ� ¼ μ

2
σ2 þ κ

4
σ4.

FIG. 15. Normalized discrete spectrum of the volume operator
(in arbitrary units) with respect to the interacting mean field
σμðψÞ: Solutions σμðψÞ were obtained with κ ¼ 0.01, but
boundary conditions σ0ðπ=2Þ differ for each μ to solve around
a nontrivial minimum of the respective potential Veff ½σ� ¼
μ
2
σ2 þ κ

4
σ4.

FIG. 16. Normalized discrete spectrum of the volume operator
(in arbitrary units) with respect to the interacting mean field
σμðψÞ: Solutions σμðψÞ were obtained for μ ¼ −1.5, different κ,
and the same boundary conditions σ0ðπ=2Þ to solve around the
respective nontrivial minima of the potential Veff ½σ�¼μ

2
σ2þκ

4
σ4.

19Completely neglecting the Laplacian from the onset is only
justified when the interaction is dominant which corresponds to
the regime of large ground state condensate “density,” i.e.,
κN ≫ 1. In the context of real BECs, this is known as the
Thomas-Fermi approximation [22].
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contribution to the volume V and area A comes from the
Fourier coefficients with m ¼ 1=2, whereas in the case
discussed in the previous subsections, the predominant
contribution comes from the Fourier coefficients with
m ¼ j. This is due to the fact that σ remains mostly
constant and is thus best approximated by the simplest
nontrivial mode for m ¼ 1=2. In particular, one can check
that the contributions to V and A coming from the other
modes are exponentially suppressed when σ0ð1Þ ≈ 0.
Moreover, the volume and area remain finite in the

weakly nonlinear case and when the boundary condition
σ0ð1Þ is relatively small. The use of weak interactions is
thus instructive in order to understand the qualitative
behavior of the solutions in particular with regard to the
expectation values of the geometric operators. Since the
size of κ has only a quantitative impact on the spectrum,
as Fig. 16 suggests, an analogous form of the spectra
can be expected also in the strongly nonlinear regime.
Furthermore, for bigger values of jσ0ð1Þj and/or strongly
nonlinear interaction terms, the volume and area as well as
the expectation value of the number operator N̂ blow up
quickly. As noticed above, this signals the breakdown of
the simple condensate state ansatz used here and suggests
the need for non-Fock coherent states once the strongly
correlated regime is explored (cf. Appendix C).20

Such solutions yield for all choices of μ < 0 and κ > 0
for the averaged observables

hÔi
N

≈ const; ð64Þ

since σ is approximately constant. This naturally applies to

the averaged field strength hF̂ii
N which is larger than in the

corresponding free case. This indicates that the chosen
effective GFT interactions have the effect of positively
curving the effective geometry described by the condensate
state. This is again reminiscent of similar findings in
Ref. [10] where it was shown that relationally evolving
and effectively interacting GFTCC models display recol-
lapsing solutions when the interaction potential is bounded
from below as here.
Analogously, such a discussion can be repeated for the

pseudosimplicial potential, where the solutions to the
nonlinear equation of motion are illustrated in Fig. 18.
The resulting behavior of the relevant operators is similar
and will not be repeated here, though it should be kept in
mind that only such interaction terms can be more closely
related to models with a simplicial quantum gravity
interpretation.
To summarize the main points of this subsection, we note

that we have computed static condensate solutions around
the nontrivial minima of the interaction potentials of which
the essential features can be defined by means of the
ultralocal action. We found that the condensate consists of
many GFT quanta residing in the low spin mode m ¼ 1=2.

FIG. 17. Normalized discrete spectrum of the area operator (in
arbitrary units) with respect to the interacting mean field σμðψÞ:
Solutions σμðψÞ were obtained with κ ¼ 0.01, but boundary
conditions differ for each μ to solve around a nontrivial minimum
of the respective potential Veff ½σ� ¼ μ

2
σ2 þ κ

4
σ4.

FIG. 18. Semilog plot of the probability density and potential
for solutions σðpÞ with μ ¼ −1.5, κ ¼ 0.01, σð1Þ ¼ 5.3132, and
σ0ð1Þ ¼ �100 for the potential Veff ½σ� ¼ μ

2
σ2 þ κ

5
σ5. Solutions

were computed by means of MATLAB’s ODE113 procedure
which is a variable order “Adams-Bashforth-Moulton predictor-
corrector” solver. Output was generated for 105 points on the
interval [0, 1] while making use of highly stringent error
tolerances.

20Figure 16 also seems to suggest that V is ever increasing for
κ → 0. However, in such a limit, it is more appropriate to treat the
system as in the free case, which we discussed in Sec. III A.
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This is indicated by the analysis of the discrete spectra of
the geometric operators. Such low spins actually corre-
spond to the IR regime of the theory. Hence, these results fit
well into the picture suggested by the above -mentioned
FRG analyses which find IR fixed points in all GFT models
considered so far, marking the formation of a condensate
phase of which main features are supposed to be captured
by means of the employed condensate state. In this sense,
one can understand the condensate phase as to describe an
effectively continuous homogeneous and isotropic 3-space
built from many small building blocks of the quantum
geometry.

IV. DISCUSSION AND CONCLUSION

The purpose of this article was to investigate and
interpret the impact of simplified interactions onto static
GFT quantum gravity condensate systems describing
effective 3-geometries with a tentative cosmological inter-
pretation. To this aim, we extensively examined the geo-
metric properties of a free system in an isotropic restriction
by studying the spectra of the volume and area operators
imported from LQG and comparing the results to the
perturbed case. In a last step, we studied the features of
the GFT condensate when the system sits in the nontrivial
minima of the effective interaction potentials. The main
result of this study is then that the condensate consists of
many discrete building blocks predominantly of the small-
est nontrivial size encoded by the quantum number
m ¼ 1=2—which supports the idea that an effectively
continuous geometry can emerge from the collective
behavior of a discrete pregeometric GFT substratum [3].
In this sense, our results also strengthen the connection
with LQC where the typically used quantum states are
constructed from the assumption that the quanta of the
geometry all reside in the same lowest nontrivial configu-
ration [31]. Together with the recently obtained results
which show how free GFT condensate models dynamically
reach a low spin phase [9], this lends strong support to the
idea that condensate states are appropriate for studying the
cosmological sector of LQG.
The results of this article can also be seen as a support of

the idea proposed in Ref. [34]: The Laplacian in the kinetic
operator K, originally motivated by field theoretic argu-
ments to guarantee the consistent implementation of a
renormalization scheme, might only be a property of the
UV completed GFTwithout a significant physical effect in
the effectively continuous region which is expected to
correspond to the small spin (IR) regime together with
many building blocks of the quantum geometry. In this
regime, the kinetic term is then suggested to become
ultralocal, thus allowing for a straightforward interpretation
of the GFTamplitudes in terms of spin foam amplitudes for
quantum gravity. The numerical analysis done here indeed
suggests that from the ultralocal action alone one can find

that the condensate consists of many GFT quanta residing
in the low spin configuration.
In the following, we want to comment on the limitations

of our discussion. We implicitly assumed that the con-
densate ansatz is trustworthy for any μ ≤ 0, where μ ¼ 0
marks the critical value at which the phase transition from
the unbroken into the condensate phase is supposed to take
place [19,20]. With respect to these findings, our analysis
should be complemented by investigating whether indica-
tions for a phase transition into a condensate phase can be
observed with the mean field techniques employed here,
e.g., by means of the analyticity properties of the partition
function, and whether their possible absence might be
related to the expectation that true phase transitions are only
realized for GFTs on noncompact manifolds, like
Lorentzian quantum gravity models, as noticed in Ref. [19].
In this light, it is worth noting that in the context of

weakly interacting, diluted, and ultracold nonrelativistic
BECs [22], it is well understood that Bogoliubov’s mean
field and perturbation theory [23] becomes invalid and
breaks down in the vicinity of the critical point of the phase
transition because quantum fluctuations become important.
Of course, as is generally known today, mean field
approaches work only accurately as effective descriptions
of thermodynamic phases well away from critical points. A
satisfactory description for such systems which systemati-
cally extends Bogoliubov theory and cures its infrared
problems has been given in terms of FRG techniques [35].
The example of real BECs suggests that the analog of the
Bogoliubov ansatz for quantum gravity condensates should
be similarly extended by means of FRG methods at the
critical point. This could be relevant for better under-
standing the nature of the phase transition which is possibly
related to the geometrogenesis scenario.
It is also well understood that Bogoliubov theory for real

BECs breaks down, when considering condensates with
rather strongly interacting constituents. Likewise, FRG
techniques can systematically implement nonperturbative
extensions to Bogoliubov’s approximation. These suggest
that for Bose condensates with approximately pointlike
interactions like in superfluid 4He, it is only possible to
realize a strongly interacting regime for a very dense
condensate [35]. This example could indicate a similar
failure of the quantum gravity condensate ansatz when
considering the strongly interacting regime. Indeed, when
increasing the coupling constant κ in this sector, the average
particle number N grows. If κ is too large, we find that
solutions are generally not normalizable with respect to the
Fock space measure. The regime of large number of quanta
N and the eventual failure of jσi to be normalizable in this
sector certainly mark the breakdown of the Gross-Pitaevskii
approximation to the dynamics (27) for the simple con-
densate state constructed with Bogoliubov’s ansatz (19). In
this regime, quantum fluctuations and correlations among
the condensate quanta become relevant, and only solutions
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to the full quantum dynamics together with FRG tech-
niques would be capable of capturing adequately their
impact. This entails that the approximation used here
should only be trusted in a mesoscopic regime where N
is not too large, as already noticed in Ref. [7]. Nevertheless,
the finding of solutions corresponding to non-Fock repre-
sentations gives a forecast on what should be found when
considering nonperturbative extensions of the techniques
used here.
In fact, the loss of normalizability is not too surprising

because it is a generic feature of massless or interacting
(local) QFTs according to Haag’s theorem which require
the use of non-Fock representations [29]. However, finding
such solutions is first of all intriguing as a matter of
consistency because non-Fock representations are also
required in order to describe many particle systems in
the thermodynamic limit. It is only in this limit that
inequivalent irreducible representations of the CCRs
become available, which is a prerequisite for the occurrence
of nonunique equilibrium states, in turn essential to con-
sistently describing phase transitions [29]. It is also
interesting for a second reason, since in the context of
quantum optics it was understood that such non-Fock
coherent states with an infinite number of (soft) photons
can be described in terms of a classical radiation field [36].
Hence, the occurrence of non-Fock coherent state solutions
in our context might also play a role in the classicalization
of the system and could be important to consistently
capture continuum macroscopic information of the GFT
system. This would intuitively make sense, because one
would expect to look for the physics of continuum space-
times in the regime far from the perturbative Fock vacuum
corresponding to the no-space state.
To fully extract the geometric information encoded by

such solutions, it would then also be necessary to go
beyond the use of the simplified local interactions and
explore the effect of the proper combinatorially nonlocal
interactions encountered in the GFT literature (e.g., on the
expectation values of the geometric operators) in order to
compare it to the results obtained here. Additionally, it is
worth mentioning that only for proper simplicial interaction
terms, the quantum geometric interpretation is rather
straightforward, while for the others, a full geometric
interpretation is currently lacking.
In a next step, the time evolution of the condensate with

respect to a relational clock could be studied. This would be
in the spirit of Ref. [7], where for an isotropic and free
condensate configuration a Friedmann-like evolution was
found. It would allow for the comparison between the two
settings and the extraction of further phenomenological
consequences from our model.
Another, perhaps more consistent way to properly relate

the quantum geometric information stored in the conden-
sate to a classical counterpart could be to reconstruct the
metric from the mean field as reviewed in Appendix A

and investigate its isometries. Should the condensate
approximate a continuous homogeneous geometry, one
would expect that diffeomorphism invariance be restored as
highlighted in a related context in Ref. [37]. This could be
helpful when comparing the isotropic restriction employed
in Ref. [7] to the one used here and also when anisotropic
condensates are studied.
Finally, we remarked in our analysis that the notion of

near flatness used in the previous subsections should be
reconsidered for the condensate solutions around the non-
trivial minima since it cannot be straightforwardly applied
then. Statements regarding the flatness property of such
solutions can only be satisfactorily made if the spectrum of
the currently unavailable GFT curvature operator is studied.
Such possible extensions will be explored elsewhere.
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APPENDIX A: NONCOMMUTATIVE FOURIER
TRANSFORM AND RECONSTRUCTION

OF THE METRIC

The following discussion reviews how GFT states can be
understood to encode quantum geometric information
dressing 3D simplicial complexes and thus express how
spatial slices can be triangulated. For a detailed discussion,
we refer to Refs. [4,11].
As is well known, in the Hamiltonian formulation of

Ashtekar-Barbero gravity, where G ¼ SUð2Þ, the canoni-
cally conjugate variable to the gravitational connection is
given by the densitized inverse triad. From these momentum
space variables, the spatial metric can be derived, making
the geometric interpretation perhaps more transparent.
Motivatedby this,wewant to reformulate theGFT formalism
in terms of these variables by means of a noncommutative
Fourier transform (ncFT) which allows us to shift in between
configuration and momentum space [38].
To this aim, letGd with d ¼ 4 be the configuration space

of the GFT field; then the phase space is given by the
cotangent bundle T�G4 ≅ G4 × g4. The ncFT of a square
integrable GFT field is then given by

~̂φðBIÞ ¼
Z

ðdgÞ4
Y4
I¼1

egIðBIÞφ̂ðgIÞ; ðA1Þ

wherein the fluxes BI with I ¼ 1;…; 4 parametrize the
noncommutative momentum space g4 and egIðBIÞ is a
choice of plane waves on G4. Their product is noncom-
mutative, i.e., egðBÞ ⋆ eg0 ðBÞ ¼ egg0 ðBÞ, signified by the
star product. By means of the noncommutative Dirac delta
distribution in the momentum space representation
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δ⋆ðBÞ ¼
Z

dgegðBÞ; ðA2Þ

it can be shown that the invariance of the GFT fields under
the right diagonal action of G yields a closure condition for
the fluxes, i.e.,

P
IBI ¼ 0. It guarantees the closure of I

faces dual to the links eI to form a tetrahedron. It also
allows us to eliminate one of the BIs when reexpressing the
fluxes in terms of discrete triads. This is done by Bab

i ¼R
△i
ea ∧ eb with the cotriad field ea ∈ R3 encoding the

simplicial geometry and i ¼ 1, 2, 3 associated to the faces
△i of the tetrahedron. From this, the metric at a given fixed
point in the tetrahedron can be reconstructed leading to

gij ¼ eai e
b
jδab ¼

1

4trðB1B2B3Þ
ϵkli ϵ

mn
j

~Bkm
~Bln; ðA3Þ

with ~Bij ≡ trðBiBjÞ [4]. In this way, ~̂φ†ðBiÞj∅i ¼ jBii
determines the metric of a quantum tetrahedron. Notice
that for the condensate mean field σðgIÞ, the ncFT can be
straightforwardly computed by means of (A1), and the
reconstruction of the metric (A3) holds then for all
constituents of the condensate.

APPENDIX B: FOCK AND NON-FOCK
REPRESENTATIONS

Following Ref. [27], for the Fock representation of GFT,
one defines a set of fundamental operators ĉi and ĉ†i , with
the algebraic relations

½ĉi; ĉ†i0 � ¼ δii0 and ½ĉð†Þi ; ĉð†Þi0 � ¼ 0

satisfying

ĉijNii ¼
ffiffiffiffiffi
Ni

p
jNi − 1i and

ĉ†i jNii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni þ 1

p
jNi þ 1i:

The operators ĉi and ĉ†i annihilate and create single spin
network vertices acting on the Fock vacuum state given by

ĉij∅i ¼ 0; ∀i;
with the single-vertex label i characterizing the quantum
geometric properties of the state. The occupation number
operators are then expressed by

N̂ijNii ¼ ĉ†i ĉijNii ¼ NijNii

with the total number operator N̂ ¼ P
iN̂i.

Within the context of local QFT [29], it is well known
that in the finite dimensional and noninteracting infinite
dimensional cases, all irreducible Fock representations are
unitarily equivalent and hence there is just one phase
associated to the quantum system. However, this is different

for interacting fields, models with nonvanishing ground
state expectation value, and many body systems in the
thermodynamic limit, where the Fock representation is not
allowed and N is not a good quantum number for the
characterization of the system since N̂ is unbounded from
above. In these situations, the systems are described by
means of non-Fock representations corresponding to
inequivalent representations of the commutation relations
and thus allow for the occurrence of different phases
associated to the considered quantum system. Though
these statements currently lack an axiomatic underpinning
from within the GFT context, we believe that their basic
intuition also holds there.

APPENDIX C: NON-FOCK COHERENT STATES

In the following, we clarify the notion of a non-Fock
coherent state following largely the established literature on
optical coherence in Refs. [29,36] and try to link it to the
GFT formalism. To this aim, we introduce some axiomatic
terminology.
Fromanalgebraic point of view, it is known that a quantum

system is defined by its algebra of observables A being a
unital C�-algebra. A state is a linear functional ω∶A → C
which is positive [i.e., ωða†aÞ ≥ 0 ∀ a ∈ A] and normal-
ized [i.e.,ωð1Þ ¼ 1] withωðAÞ ¼ hAi. Without proof, let us
assume that for each such ω, there is a Gelfand-Naimark-
Segal triple (determined up to unitary transformations),
(Fω, πω, ψω), where Fω is the bosonic Fock space, πω is
a unit-preserving representation of A in terms of linear
operators over Fω, and ψω ∈ Fω is cyclic, which means
πωðAÞψω is dense in Fω. Using the scalar product in Fω,
hψωjπωðaÞψωi ¼ ωðaÞ holds for all a ∈ A. Using this
language, in relation to Appendix B, one can write for
example hNii ¼ ωðĉ†i ĉjÞ ¼ Ni.
In the following, let the domain C ¼ SUð2ÞnSUð2Þ4=

SUð2Þ, and dh denotes the measure on C with gI ∈ C. Using
the distributional character of the field operators, we smear
the creation and annihilation operators with the real
functions fi ∈ C∞

0 ðCÞ which form an orthonormal set
ffig, giving, e.g., ĉðfiÞ ¼ ψ̂ðfiÞ ¼

R
C dhψ̂ðgIÞfiðgIÞ.

Using the above-introduced terminology, a state ω is
called (fully) coherent if it possesses a factorization
property of the correlation functions in the sense that with
a linear form, the coherence function, L∶C∞

0 ðCÞ → C one
has

ωðĉ†ðf1Þ � � � ĉ†ðfkÞĉðg1Þ � � � ĉðgkÞÞ
¼ Lðf1Þ � � �LðfkÞLðg1Þ � � �LðglÞ

for all k; l ∈ N0 with k ¼ l and for all ffkg and fglg ∈
C∞
0 ðCÞ. In particular, ωðĉ†ðfiÞĉðfiÞÞ¼jLðfiÞj2 ¼! Ni holds.

One calls the coherence function L bounded, if there exists
a constant cL ≥ 0 with jLðfÞj ≤ cLjjfjj. Otherwise, L is
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unbounded. In our context, f is strictly related to the mean
field σ.
With this, one can make the following statements. A

coherent state ω is normal to the Fock representation, if and
only if L is bounded, which means the state is given by a
unique density operator in Fock space. For unboundedL, the
state ω is not representable by a density operator in Fock
space; i.e., ω is disjoint from the Fock sector. This implies
that the set of all occupation numbers is unbounded.
Suppose now that ω is a coherent state in the above

sense. For bounded L, one calls ω a Fock coherent or a
microscopic coherent state. In contradistinction to that, one

calls ω a non-Fock coherent or a macroscopic coherent
state if the coherence function L is unbounded. One can
show that L exhibits then specific classical features, such as
a collective phase and amplitude, which means that it
acquires the status of a classical field due to the ordering
effect of the present phase correlations. Furthermore, one
can show that the unboundedness of L leads to a finite
particle density in the infinite volume in contrast to a
vanishing particle density for bounded L in the same limit
[36]. Despite the fact that these statements currently lack a
rigorous underpinning from within the GFT context, again,
we believe that their intuition could be directly transferred.

[1] T. Konopka, F. Markopoulou, and L. Smolin, Quantum
graphity, arXiv:hep-th/0611197.

[2] R. De Pietri, L. Freidel, K. Krasnov, and C. Rovelli, Barrett-
Crane model from a Boulatov-Ooguri field theory over a
homogeneous space, Nucl. Phys. B574, 785 (2000); L.
Freidel, Group field theory: An overview, Int. J. Theor.
Phys. 44, 1769 (2005); D. Oriti, Approaches to Quantum
Gravity, edited by D. Oriti (Cambridge University Press,
Cambridge, 2009); Foundations of Space and Time, edited
by G. Ellis et al. (Cambridge University Press, Cambridge,
2012); A. Baratin and D. Oriti, Ten questions on group field
theory (and their tentative answers), J. Phys. Conf. Ser. 360,
012002 (2012); T. Krajewski, Group field theories, Proc.
Sci., QGQGS2011 (2011) 005.

[3] D. Oriti, Group field theory as the microscopic description
of the quantum spacetime fluid: A new perspective on the
continuum in quantum gravity, Proc. Sci., QG-PH (2007)
030; , Disappearance and emergence of space and time in
quantum gravity, Stud. Hist. Phil. Mod. Phys., 46, 186
(2014).

[4] S. Gielen, D. Oriti, and L. Sindoni, Cosmology from Group
Field Theory Formalism for Quantum Gravity, Phys. Rev.
Lett. 111, 031301 (2013); Homogeneous cosmologies as
group field theory condensates, J. High Energy Phys. 06
(2014) 013.

[5] S. Gielen, Quantum cosmology of (loop) quantum gravity
condensates: An example, Classical Quantum Gravity 31,
155009 (2014); G. Calcagni, Loop quantum cosmology
from group field theory, Phys. Rev. D 90, 064047
(2014).

[6] S. Gielen, Perturbing a quantum gravity condensate, Phys.
Rev. D 91, 043526 (2015); Identifying cosmological per-
turbations in group field theory condensates, J. High Energy
Phys. 08 (2015) 010; S. Gielen and D. Oriti, Quantum
cosmology from quantum gravity condensates: Cosmologi-
cal variables and lattice-refined dynamics, New J. Phys. 16,
123004 (2014); L. Sindoni, Effective equations for GFT
condensates from fidelity, arXiv:1408.3095.

[7] D. Oriti, L. Sindoni, and E. Wilson-Ewing, Emergent
Friedmann dynamics with a quantum bounce from quantum
gravity condensates, arXiv:1602.05881.

[8] D. Oriti, L. Sindoni, and E. Wilson-Ewing, Bouncing
cosmologies from quantum gravity condensates, arXiv:
1602.08271; M. de Cesare and M. Sakellariadou, Accel-
erated expansion of the Universe without an inflaton and
resolution of the initial singularity from GFT condensates,
arXiv:1603.01764.

[9] S. Gielen, Emergence of a Low Spin Phase in Group Field
Theory Condensates, arXiv:1604.06023.

[10] M. de Cesare, A. G. A. Pithis, and M. Sakellariadou,
Cosmological implications of interacting Group Field
Theory models: cyclic Universe and accelerated expansion,
arXiv:1606.00352.

[11] S. Gielen and L. Sindoni, Quantum cosmology from group
field theory condensates: A review, SIGMA 12, 082 (2016).

[12] T. Thiemann, Modern Canonical Quantum General Rela-
tivity (Cambridge University Press, Cambridge, 2007); C.
Rovelli, Quantum Gravity (Cambridge University Press,
Cambridge, 2007).

[13] C. Rovelli, Zakopane lectures on loop gravity, Proc. Sci.,
QGQGS2011 (2011) 003; A. Perez, The spin foam ap-
proach to quantum gravity, Living Rev. Relativ. 16, 3
(2013); C. Rovelli and F. Vidotto, Covariant Loop Quantum
Gravity: An Elementary Introduction to Quantum Gravity
and Spinfoam Theory, Cambridge Monographs on Math-
ematical Physics (Cambridge University Press, Cambridge,
2014).

[14] M. P. Reisenberger and C. Rovelli, Spacetime as a Feynman
diagram: The connection formulation, Classical Quantum
Gravity 18, 121 (2001).

[15] M. Han and M. Zhang, Asymptotics of spinfoam amplitude
on simplicial manifold: Euclidean theory, Classical
Quantum Gravity 29, 165004 (2012); A. Baratin and D.
Oriti, Group Field Theory with Non-Commutative Metric
Variables, Phys. Rev. Lett. 105, 221302 (2010).

[16] B. Delamotte, An introduction to the nonperturbative
renormalization group, Lect. Notes Phys. 852, 49 (2012);
C. Wetterich, Exact evolution equation for the effective
potential, Phys. Lett. B 301, 90 (1993); J. Berges, N.
Tetradis, and C. Wetterich, Non-perturbative renormaliza-
tion flow in quantum field theory and statistical physics,
Phys. Rep. 363, 223 (2002); T. R. Morris, The exact

IMPACT OF NONLINEAR EFFECTIVE INTERACTIONS ON … PHYSICAL REVIEW D 94, 064056 (2016)

064056-21

http://arXiv.org/abs/hep-th/0611197
http://dx.doi.org/10.1016/S0550-3213(00)00005-5
http://dx.doi.org/10.1007/s10773-005-8894-1
http://dx.doi.org/10.1007/s10773-005-8894-1
http://dx.doi.org/10.1088/1742-6596/360/1/012002
http://dx.doi.org/10.1088/1742-6596/360/1/012002
http://dx.doi.org/10.1016/j.shpsb.2013.10.006
http://dx.doi.org/10.1016/j.shpsb.2013.10.006
http://dx.doi.org/10.1103/PhysRevLett.111.031301
http://dx.doi.org/10.1103/PhysRevLett.111.031301
http://dx.doi.org/10.1007/JHEP06(2014)013
http://dx.doi.org/10.1007/JHEP06(2014)013
http://dx.doi.org/10.1088/0264-9381/31/15/155009
http://dx.doi.org/10.1088/0264-9381/31/15/155009
http://dx.doi.org/10.1103/PhysRevD.90.064047
http://dx.doi.org/10.1103/PhysRevD.90.064047
http://dx.doi.org/10.1103/PhysRevD.91.043526
http://dx.doi.org/10.1103/PhysRevD.91.043526
http://dx.doi.org/10.1007/JHEP08(2015)010
http://dx.doi.org/10.1007/JHEP08(2015)010
http://dx.doi.org/10.1088/1367-2630/16/12/123004
http://dx.doi.org/10.1088/1367-2630/16/12/123004
http://arXiv.org/abs/1408.3095
http://arXiv.org/abs/1602.05881
http://arXiv.org/abs/1602.08271
http://arXiv.org/abs/1602.08271
http://arXiv.org/abs/1603.01764
http://arXiv.org/abs/1604.06023
http://arXiv.org/abs/1606.00352
http://dx.doi.org/10.12942/lrr-2013-3
http://dx.doi.org/10.12942/lrr-2013-3
http://dx.doi.org/10.1088/0264-9381/18/1/308
http://dx.doi.org/10.1088/0264-9381/18/1/308
http://dx.doi.org/10.1088/0264-9381/29/16/165004
http://dx.doi.org/10.1088/0264-9381/29/16/165004
http://dx.doi.org/10.1103/PhysRevLett.105.221302
http://dx.doi.org/10.1007/978-3-642-27320-9
http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1016/S0370-1573(01)00098-9


renormalisation group and approximate solutions, Int. J.
Mod. Phys. A 09, 2411 (1994); A. Wipf, Statistical
Approach to Quantum Field Theory: An Introduction
(Springer, Berlin, 2013).

[17] P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin, 2D
gravity and random matrices, Phys. Rep. 254, 1 (1995).

[18] E. Brezin and J. Zinn-Justin, Renormalization group ap-
proach to matrix models, Phys. Lett. B 288, 54 (1992); A.
Eichhorn and T. Koslowski, Continuum limit in matrix
models for quantum gravity from the functional renormal-
ization group, Phys. Rev. D 88, 084016 (2013); A. Eichhorn
and T. Koslowski, Towards phase transitions between
discrete and continuum quantum spacetime from the re-
normalization group, Phys. Rev. D 90, 104039 (2014).

[19] D. Benedetti, J. Ben Geloun, and D. Oriti, Functional
renormalisation group approach for tensorial group field
theory: a rank-3 model, J. High Energy Phys. 03 (2015) 084;
J. Ben Geloun, R. Martini, and D. Oriti, Functional
renormalisation group analysis of a tensorial group field
theory on R3, Europhys. Lett. 112, 31001 (2015); Func-
tional renormalisation group analysis of tensorial group
field theories on Rd, Phys. Rev. D 94, 024017 (2016); D.
Benedetti and V. Lahoche, Functional renormalization
group approach for tensorial group field theory: A rank-6
model with closure constraint, Classical Quantum Gravity
33, 095003 (2016).

[20] S. Carrozza, Flowing in group field theory space: A review,
SIGMA 12, 070 (2016).

[21] V. Rivasseau, Why are tensor field theories asymptotically
free?, Europhys. Lett. 111, 60011 (2015).

[22] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation,
1st ed. (Clarendon, Oxford, 2003); P. G. Kevrekidis, D. J.
Frantzeskakis, and R. Carretero-Gonzlez (eds.), Emergent
Nonlinear Phenomena in Bose-Einstein Condensates
Theory and Experiment (Springer, Berlin, 2008).

[23] N. Bogoliubov, On the theory of superfluidity, J. Phys.
(Moscow) 11, 23 (1947); S. Beliaev, Energy spectrum of a
non-ideal Bose gas, Sov. Phys. JETP 34, 289 (1958); N.
Hugenholtz and D. Pines, Ground-state energy and excita-
tion spectrum of a system of interacting bosons, Phys. Rev.
116, 489 (1959).

[24] H. Ooguri, Topological lattice models in four-dimensions,
Mod. Phys. Lett. A 07, 2799 (1992).

[25] L. Freidel and K. Krasnov, A new spin foam model for 4d
gravity, Classical Quantum Gravity 25, 125018 (2008); J.
Engle, E. Livine, R. Pereira, and C. Rovelli, LQG vertex
with finite Immirzi parameter, Nucl. Phys. B799, 136
(2008); J. Ben Geloun, R. Gurau, and V. Rivasseau,
EPRL/FK group field theory, Europhys. Lett. 92, 60008
(2010); A. Baratin and D. Oriti, Quantum simplicial
geometry in the group field theory formalism: Reconsider-
ing the Barrett-Crane model, New J. Phys. 13, 125011
(2011); W. Kaminksi, M. Kisielowski, and J. Lewandowski,
Spin-foams for all loop quantum gravity, Classical Quantum
Gravity 27, 095006 (2010); 29, 049502(E) (2012).

[26] D. Oriti, J. P. Ryan, and J. Thürigen, Group field theories
for all loop quantum gravity, New J. Phys. 17, 023042
(2015).

[27] D. Oriti, Group field theory as the 2nd quantization of Loop
Quantum Gravity, Classical Quantum Gravity 33, 085005
(2016).

[28] D. Oriti, Loop Quantum Gravity, 100 Years of General
Relativity, edited by A. Ashtekar and J. Pullin (World
Scientific, Singapore, 2014).

[29] F. Strocchi, Symmetry Breaking (Springer, Berlin, 2008); An
Introduction to Non-Perturbative Foundations of QFT
(Oxford University, New York, 2013); N. N. Bogolubov,
A. A. Logunov, A. I. Oksak, and I. Todorov, General
Principles of Quantum Field Theory (Springer, Berlin,
1990); R. Haag, Local Quantum Physics: Fields, Particles,
Algebras (Springer, Berlin, 1996); G. F. Dell’Antonio and S.
Doplicher, Total number of particles and Fock representa-
tion, J. Math. Phys. (N.Y.) 8, 663 (1967); J. M. Chaiken,
Number operators for representations of the canonical
comutation relations, Commun. Math. Phys. 8, 164
(1968); Finite-particle representations and states of the
canonical commutation relations, Ann. Phys. (N.Y.) 42,
23 (1967).

[30] D. Oriti, D. Pranzetti, J. P. Ryan, and L. Sindoni, Gener-
alized quantum gravity condensates for homogeneous
geometries and cosmology, Classical Quantum Gravity
32, 235016 (2015).

[31] A. Ashtekar and P. Singh, Loop quantum cosmology: A
status report, Classical Quantum Gravity 28, 213001
(2011); K. Banerjee, G. Calcagni, and M. Martin-Benito,
Introduction to loop quantum cosmology, SIGMA 8, 016
(2012).

[32] C. Kiefer, Quantum Gravity, 3rd ed. (Oxford University,
New York, 2012).

[33] J. Faraut, Analysis on Lie Groups, An Introduction
(Cambridge University Press, Cambridge, 2008).

[34] S. Carrozza, Group field theory in dimension four minus
epsilon, Phys. Rev. D 91, 065023 (2015).

[35] T. Gollisch and C. Wetterich, Equation of state for helium-4
from microphysics, Phys. Rev. B 65, 134506 (2002); C.
Wetterich, Functional renormalization for quantum phase
transitions with non relativistic bosons, Phys. Rev. B 77,
064504 (2008); S. Floerchinger and C. Wetterich, Func-
tional renormalization for Bose-Einstein Condensation,
Phys. Rev. A 77, 053603 (2008).N. Dupuis and K.
Sengupta, Non-perturbative renormalization group ap-
proach to zero-temperature Bose systems, Europhys. Lett.
80, 50007 (2007); C. Castellani, C. Di Castro, F. Pistolesi,
and G. C. Strinati, Infrared Behavior of Interacting Bosons
at Zero Temperature, Phys. Rev. Lett. 78, 1612 (1997); F.
Pistolesi, C. Castellani, C. D. Castro, and G. C. Strinati,
Renormalization-group approach to the infrared behavior of
a zero-temperature Bose system, Phys. Rev. B 69, 024513
(2004);

[36] R. J. Glauber, Coherent and incoherent states of the radi-
ation field, Phys. Rev. 131, 2766 (1963); J. P. Provost, F.
Rocca, and G. Vallee, Coherent states, phase states and
condensed states, Ann. Phys. (N.Y.) 94, 307 (1975); J. P.
Provost, F. Rocca, G. Vallee, and M. Sirugue, Phase
properties of some photon states with nonzero energy
density, J. Math. Phys. (N.Y.) 15, 2079 (1974); J. P. Provost,

PITHIS, SAKELLARIADOU, and TOMOV PHYSICAL REVIEW D 94, 064056 (2016)

064056-22

http://dx.doi.org/10.1142/S0217751X94000972
http://dx.doi.org/10.1142/S0217751X94000972
http://dx.doi.org/10.1016/0370-1573(94)00084-G
http://dx.doi.org/10.1016/0370-2693(92)91953-7
http://dx.doi.org/10.1103/PhysRevD.88.084016
http://dx.doi.org/10.1103/PhysRevD.90.104039
http://dx.doi.org/10.1007/JHEP03(2015)084
http://dx.doi.org/10.1209/0295-5075/112/31001
http://dx.doi.org/10.1103/PhysRevD.94.024017
http://dx.doi.org/10.1088/0264-9381/33/9/095003
http://dx.doi.org/10.1088/0264-9381/33/9/095003
http://dx.doi.org/10.1209/0295-5075/111/60011
http://dx.doi.org/10.1103/PhysRev.116.489
http://dx.doi.org/10.1103/PhysRev.116.489
http://dx.doi.org/10.1142/S0217732392004171
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1209/0295-5075/92/60008
http://dx.doi.org/10.1209/0295-5075/92/60008
http://dx.doi.org/10.1088/1367-2630/13/12/125011
http://dx.doi.org/10.1088/1367-2630/13/12/125011
http://dx.doi.org/10.1088/0264-9381/27/9/095006
http://dx.doi.org/10.1088/0264-9381/27/9/095006
http://dx.doi.org/10.1088/0264-9381/29/4/049502
http://dx.doi.org/10.1088/1367-2630/17/2/023042
http://dx.doi.org/10.1088/1367-2630/17/2/023042
http://dx.doi.org/10.1088/0264-9381/33/8/085005
http://dx.doi.org/10.1088/0264-9381/33/8/085005
http://dx.doi.org/10.1063/1.1705261
http://dx.doi.org/10.1007/BF01645803
http://dx.doi.org/10.1007/BF01645803
http://dx.doi.org/10.1016/0003-4916(67)90186-8
http://dx.doi.org/10.1016/0003-4916(67)90186-8
http://dx.doi.org/10.1088/0264-9381/32/23/235016
http://dx.doi.org/10.1088/0264-9381/32/23/235016
http://dx.doi.org/10.1088/0264-9381/28/21/213001
http://dx.doi.org/10.1088/0264-9381/28/21/213001
http://dx.doi.org/10.1103/PhysRevD.91.065023
http://dx.doi.org/10.1103/PhysRevB.65.134506
http://dx.doi.org/10.1103/PhysRevB.77.064504
http://dx.doi.org/10.1103/PhysRevB.77.064504
http://dx.doi.org/10.1103/PhysRevA.77.053603
http://dx.doi.org/10.1209/0295-5075/80/50007
http://dx.doi.org/10.1209/0295-5075/80/50007
http://dx.doi.org/10.1103/PhysRevLett.78.1612
http://dx.doi.org/10.1103/PhysRevB.69.024513
http://dx.doi.org/10.1103/PhysRevB.69.024513
http://dx.doi.org/10.1103/PhysRev.131.2766
http://dx.doi.org/10.1016/0003-4916(75)90170-0
http://dx.doi.org/10.1063/1.1666585


F. Rocca, and G. Vallee, Phase operator and phase transition
in a classical Dicke model, Ann. Phys. (N.Y.) 107, 168
(1977); R. Honegger and A. Rapp, General Glauber
coherent states on the Weyl algebra and their phase
integrals, Physica A (Amsterdam) 167, 945 (1990); R.
Honegger and A. Rieckers, The general form of non-Fock
coherent boson states, Publ. RIMS, Kyoto Univ. 26, 397
(1990); R. Honegger, The Dynamical Generation of
Macroscopic Coherent Light, Appeared in Large-Scale
Molecular Systems, edited by W. Gans et al. (Plenum,
New York, 1991); R. Honegger, The extremal microscopic
coherent boson states, Lett. Math. Phys. 28, 155 (1993); R.
Honegger and A. Rieckers, Photons in Fock Space and

Beyond (World Scientific, Singapore, 2015), Vols. 1–3;
J. R. Klauder and B. S. Skagerstam, Coherent States:
Applications in Physics and Mathematical Physics (World
Scientific, Singapore, 1985).

[37] B. Dittrich, 100 Years of General Relativity, edited by A.
Ashtekar and J. Pullin (World Scientific, Singapore, 2014).

[38] A. Baratin, B. Dittrich, D. Oriti, and J. Tambornino, Non-
commutative flux representation for loop quantum
gravity, Classical Quantum Gravity 28, 175011 (2011);
C. Guedes, D. Oriti, and M. Raasakka, Quantization maps,
algebra representation and non-commutative Fourier trans-
form for Lie groups, J. Math. Phys. (N.Y.) 54, 083508
(2013).

IMPACT OF NONLINEAR EFFECTIVE INTERACTIONS ON … PHYSICAL REVIEW D 94, 064056 (2016)

064056-23

http://dx.doi.org/10.1016/0003-4916(77)90208-1
http://dx.doi.org/10.1016/0003-4916(77)90208-1
http://dx.doi.org/10.1016/0378-4371(90)90301-8
http://dx.doi.org/10.2977/prims/1195171085
http://dx.doi.org/10.2977/prims/1195171085
http://dx.doi.org/10.1007/BF00750308
http://dx.doi.org/10.1088/0264-9381/28/17/175011
http://dx.doi.org/10.1063/1.4818638
http://dx.doi.org/10.1063/1.4818638

