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We show that complex, massive spin-1 fields minimally coupled to Einstein’s gravity with a negative
cosmological constant, admit asymptotically anti–de Sitter self-gravitating solutions. Focusing on
four-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the
Proca field equations can be solved in a fixed anti–de Sitter background, and then find fully nonlinear
solutions numerically. These solutions are a natural extension of the recently found asymptotically
flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are
stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited
by their point of maximum mass. We finish with an overview of the behavior of Proca stars in five
dimensions.
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I. INTRODUCTION

Driven by the widely celebrated anti–de Sitter/conformal
field theory correspondence conjecture [1,2], the study of
asymptotically anti–de Sitter (aAdS) spacetimes has
attracted a great deal of interest in the last two decades.
One of the main defining aspects of an aAdS spacetime is
the existence of a timelike boundary at conformal infinity,
which requires suitable boundary conditions to be provided
at infinity, if one wishes to have a well-posed initial value
problem in a dynamical scenario [3]. This property is the
reason why AdS is normally said to behave as a “confining
box,” and is the main reason for the existence of some very
peculiar phenomena occurring in AdS. For example,
dynamical studies of the propagation of scalar fields in
AdS have led to the conclusion that AdS is nonlinearly
unstable against black hole (BH) formation for a wide class
of smooth initial data, regardless of the field’s initial
amplitude [4–6]. This is thought to be caused by the
confinement property of the AdS boundary, which allows
nonlinear effects to build up over time.
However, it is now clear that there are also large classes of

initial data which are able to avoid collapse to a BH by
forming stable configurations. For scalar fields and pure
gravitational perturbations, these “islands of stability” seem
to be closely related to self-gravitating time-periodic sol-
utions of Einstein’s field equations with a negative cosmo-
logical constant [7–11], known as geons or oscillons,
depending on whether they are made of gravitational
radiation or real scalar fields, respectively. For complex
scalar fields, analogous solutions known as boson stars can
also be constructed, but the existence of a global Uð1Þ
symmetry allows for the existence of solutions with a time-
periodic scalar field, while keeping the metric static or
stationary [12–15].
Boson stars are compact self-gravitating solutions

of the Einstein-Klein-Gordon field equations which were

first studied more than 40 years ago for a vanishing
cosmological constant [12,13] (for a recent review see
Ref. [16]). On the other hand, boson stars in spacetimes
with a negative cosmological constant were first con-
structed in Ref. [14] and recently reexplored in the context
of the weakly turbulent instability of AdS [15]. These
solutions were shown to be stable against sufficiently small
perturbations and apparently immune to the weakly turbu-
lent instability [15].
Analogous configurations for spin-1 fields have seen far

less progress than their spinless counterpart. Nonetheless,
complex massive spin-1 fields minimally coupled to
Einstein’s gravity were recently shown to also allow for
the existence of asymptotically flat self-gravitating solu-
tions [17]. These solutions, dubbed Proca stars, were shown
to share very similar properties to boson stars. In particular,
a subset of solutions was shown to be linearly stable [17]
and they are believed to be formed under generic initial
conditions [18,19]. Moreover, the rotating Proca stars built
in Ref. [17] were shown to be continuously connected to
asymptotically flat rotating black holes with Proca hair
[20], similarly to rotating boson stars [21]. Following these
works, charged Proca stars were constructed in Ref. [22],
while in the context of the AdS/CFT duality and holo-
graphic superfluids, Ref. [23] (see also [24]) studied hairy
planar BH solutions of the Einstein-Maxwell-Proca field
equations.
Here we show that by adding a negative cosmological

constant, one can also construct Proca stars with AdS
asymptotics, and that a subset of these solutions is linearly
stable against radial perturbations. Similarly to the scalar
field and gravitational cases [7,8,15], in the test-field limit
these solutions are related to the normal modes of a Proca
field in AdS. Finally, we extend these results to 4þ 1
dimensions and argue that a negative cosmological constant
is necessary for the existence of stable Proca stars in higher-
dimensional spacetimes.
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II. SETUP

A. Framework

We are interested in a complex Proca field1 with mass μ,
described by the potential 1-form A and the field strength
F ¼ dA. The minimal Einstein-Proca model is then
given by

S ¼
Z

d4
ffiffiffiffiffiffi
−g

p �
R − 2Λ
16πG

−
1

4
F αβF̄ αβ −

1

2
μ2AαĀ

α

�
; ð1Þ

where Λ is the cosmological constant and Ā and F̄ are the
complex conjugates of the potential and the field strength,
respectively. The Einstein-Proca field equations implied by
this action are

Gαβ ¼ 8πGTαβ; ð2Þ

∇αF αβ ¼ μ2Aβ; ð3Þ

where the stress-energy tensor is given by

Tαβ ¼ −F σðαF̄ σ
βÞ −

1

4
gαβF στF̄ στ

þ μ2
�
AðαĀβÞ −

1

2
gαβAσĀ

σ

�
: ð4Þ

One can easily check that, for μ ≠ 0, the Lorenz condition
∇αAα ¼ 0 is implied by the Proca field equation (3).
The action (1) is invariant under a globalUð1Þ symmetry

of the form Aμ → eiαAμ, with α constant, which implies
the existence of a conserved 4-current:

jα ¼ i
2
ðF̄ αβAβ − F αβĀβÞ: ð5Þ

This in turn implies the existence of a conserved Noether
charge Q given by

Q ¼ −
Z
Σ
d3x

ffiffiffiffiffiffi
−g

p
jt; ð6Þ

where jt is the temporal component of the 4-current, and Σ
is a space-like hypersurface.

B. Spherically symmetric ansatz
and boundary conditions

We consider spherically symmetric solutions with a
metric of the form

ds2 ¼ −σ2ðrÞFðrÞdt2 þ 1

FðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ;

ð7Þ

where FðrÞ ¼ 1 − 2mðrÞ=r − Λr2=3, and a time-periodic
Proca potential given by

A ¼ e−iωt½fðrÞdtþ igðrÞdr�: ð8Þ

Here, the functions mðrÞ, fðrÞ, gðrÞ and σðrÞ are real
functions of the radial coordinate only and ω is a real
parameter.
Denoting radial derivatives with a prime, Einstein’s field

equations (2) yield

m0 ¼ 4πGr2
�ðf0 − ωgÞ2

2σ2
þ 1

2
μ2
�
g2F þ f2

Fσ2

��
; ð9Þ

σ0 ¼ 4πGrμ2σ

�
g2 þ f2

F2σ2

�
; ð10Þ

while from the Proca field equations (3) we obtain

�
r2ðf0 − ωgÞ

σ

�0
¼ μ2r2f

σF
; ð11Þ

ωg − f0 ¼ μ2σ2Fg
ω

: ð12Þ

It is worth noting that the equations are very similar to the
ones obtained in Ref. [17], where asymptotically flat Proca
stars were studied, except for the addition of a cosmological
constant term in the metric function FðrÞ.
For these solutions, the Noether charge (6) can be

computed using

Q ¼ 4πμ2

ω

Z
∞

0

drr2gðrÞ2σðrÞFðrÞ; ð13Þ

while their energy is given by

ρ ¼ −Tt
t ¼

ðf0 − ωgÞ2
2σ2

þ 1

2
μ2
�
g2F þ f2

Fσ2

�
: ð14Þ

To solve this system of equations we impose regular
boundary conditions both at the origin and at infinity.
Close to r ¼ 0, the field equations (9)–(12) imply that

1Note that a complex Proca field can also be described by two
independent real vector fields with the same mass μ [20].
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fðrÞ ¼ f0 þ
f0
6
r2
�
μ2 −

ω2

σ20

�
þOðr4Þ;

gðrÞ ¼ −
f0ω
3σ20

rþOðr3Þ;

mðrÞ ¼ 4πGf20μ
2

6σ20
r3 þOðr5Þ;

σðrÞ ¼ σ0 þ
4πGf20μ

2

2σ0
r2 þOðr4Þ; ð15Þ

where f0 and σ0 are constants. On the other hand, when
r → ∞, the only regular solutions behave as

fðrÞ ¼ c0rα � � � ;

gðrÞ ¼ −
c0l4ω
αþ 1

rα−3 þ � � � ;

mðrÞ ¼ M þ 4πGc20
α2 þ μ2l2

2ð1þ 2αÞ r
2αþ1 þ � � � ;

log σðrÞ ¼ 4πGc20
μ2l4

2ðα − 1Þ r
2α−2 þ � � � ; ð16Þ

where c0 is a constant, M is the Arnowitt-Deser-Misner
(ADM) mass, l2 ¼ −3=Λ is the AdS curvature radius
squared and α ¼ −ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ2l2

p
þ 1Þ=2. Here we should

note that, as expected, the cosmological constant changes
the behavior of the Proca field at infinity, when compared to
the asymptotically flat case where the Proca field decays
exponentially [20].

III. ANALYTICAL SOLUTIONS

Before computing the fully nonlinear Proca stars, let us
gain some insight about the nature of these solutions by
considering a perturbative expansion in the amplitude of
the vector potentialA. These small-amplitude solutions are
simply the normal modes of a Proca field in AdS, which for
test scalar fields and pure gravitational perturbations have
been shown to be related to boson stars and geons [6,7,15].
We start by considering an expansion of the form

fðrÞ ¼ ϵ
u1ðrÞ
r

þOðϵ3Þ;

gðrÞ ¼ ϵ
u2ðrÞ
rF0ðrÞ

þOðϵ3Þ;

mðrÞ ¼ ϵ2m2ðrÞ þOðϵ4Þ;
σðrÞ ¼ 1þ ϵ2σ2ðrÞ þOðϵ4Þ;

where F0ðrÞ ¼ 1þ r2

l2 , l
2 ¼ −3=Λ and ϵ is a small book-

keeping parameter, which can be chosen to be the free
parameter f0 ≡ fðr ¼ 0Þ ¼ ϵ, by normalizing the function
u1 as

u1
r

����
r→0

¼ 1: ð17Þ

At the linear order in ϵ, the problem reduces to solving
the Proca field equations in an AdS background. The
Lorenz condition, ∇αAα ¼ 0, implies that

u1 ¼ −
F0∂rðru2Þ

ωr
: ð18Þ

From this condition and the (r) component of the Proca
field equations (3), we then obtain the following master
equation:

d2u2
dr2�

þ
�
ω2 − F0

�
2

r2
þ μ2

��
u2 ¼ 0; ð19Þ

where we defined the tortoise coordinate r� as dr� ¼
F−1
0 dr.
To solve this equation we change the radial variable to

x ¼ sin2ðr�=lÞ and define a new radial function ZðxÞ as

u2ðxÞ ¼ ð1 − xÞð3−kÞ=2xZðxÞ ð20Þ

where k ¼ 5=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ μ2l2

p
, such that Eq. (19)

becomes a hypergeometric differential equation for ZðxÞ:

xð1 − xÞ d
2Z
dx2

þ ½c − ðaþ bþ 1Þx� dZ
dx

− ðabÞZ ¼ 0; ð21Þ

where a ¼ ð5 − k − lωÞ=2, b ¼ ð5 − kþ lωÞ=2 and
c ¼ 5=2. The most general solution to this equation is
given by

ZðxÞ ¼ A2F1ða; b; c; xÞ
þ Bx1−c2F1ð1þ a − c; 1þ b − c; 2 − c; xÞ: ð22Þ

Requiring a regular solution at the origin r ¼ 0, implies that
B ¼ 0, while imposing regularity of the solution at infinity
gives the spectrum

ωl ¼ 2nþ k; ð23Þ
where n ¼ f0; 1; 2;…g.
The backreaction of these solutions on the metric can be

obtained by considering higher-order corrections in ϵ. In
particular, at order ϵ2, the ADM mass M of these solutions
can be obtained by integrating the radial equation form2ðrÞ
obtained from expanding Eq. (9). For the fundamental
solution, n ¼ 0, we obtain

M=l ¼ 4πϵ2
ffiffiffi
π

p
kðk − 3Þðk − 2ÞΓ½k − 3

2
�

24Γ½k� ; ð24Þ

while the charge can be obtained from Eq. (13), and reads
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Q=l2 ¼ 4πϵ2
ffiffiffi
π

p ðk − 3Þðk − 2ÞΓ½k − 3
2
�

24Γ½k� : ð25Þ

In this small-amplitude limit, we also find that for any n the
charge and the mass are related by

M ¼ ωQ; ð26Þ

with ω given by Eq. (23).
In the next section, we will show that these results agree

very well with fully nonlinear solutions of the system of
equations (9)–(12).

IV. NUMERICAL SOLUTIONS

We are now in position to find the fully nonlinear aAdS
Proca stars. The set of ordinary differential equations
(ODEs) (9)–(12) can be solved numerically to find sol-
utions fulfilling the boundary conditions (15) and (16). For
a given choice of the parameter f0, we use the initial
conditions (15) and numerically integrate the equations
from r ¼ 10−3 towards large r, and adjust the shooting
parameter ω, to find the solutions satisfying the boundary
condition (16). Fixing Λ and varying f0 we then find a set
of solutions which are summarized in Figs. 1–3. We should
note that for a given Λ and f0 there is an infinite family of
solutions parametrized by the number of nodes in the
profile of the function gðrÞ. For concreteness, here we focus
on the fundamental solutions, for which gðrÞ is nodeless.
For numerical purposes, and in the following, we set μ ¼
G ¼ 1 by using the rescalings r → rμ,m → mμ, ω → ω=μ,
Λ → Λ=μ2 and f → f

ffiffiffiffiffiffiffiffiffi
4πG

p
, g → g

ffiffiffiffiffiffiffiffiffi
4πG

p
.

In the left panel of Fig. 1 we show the ADMmassM and
the charge Q of the fundamental solutions as a function of
f0 for three different values of the cosmological constant,
while in the right panel we show the ADM mass as a
function of the fundamental frequency ω for the same
values of Λ.

For Λ ¼ 0 our results agree with the ones obtained in
Ref. [17]. In particular, we obtain a maximum ADM mass
given by Mmax ≃ 1.058, while the fundamental frequency
is limited to a range of frequencies satisfying ω≲ 1. In the
limit ω → 1 the solutions become spatially diluted, while
their mass and Noether charge vanish, but M=Q → 1.
On the other hand for Λ ≠ 0, the eigenfrequencies of the

solutions approach the spectrum given by Eq. (23) when
f0 → 0, while their typical size2 is always of the order
R ∼ 10=ω. For small f0, their ADM mass and charge are
well described by Eqs. (24) and (25), as shown in Fig. 2,
where we compare our numerical results for Λ ¼ −1 with
the perturbative approximations of the previous section.3

Overall, the behavior of the ADM mass when increasing
f0 is qualitatively similar to the asymptotically flat case.
There is always a maximum mass, not foreseen by the
linear analysis of the last section, which is a monotonically
decreasing function of jΛj. For example, for Λ ¼ −0.05
we obtain Mmax ≃ 0.595, while for Λ ¼ −1 we find
Mmax ≃ 0.234. The location of the maximum mass Mmax
for each Λ is denoted by a black dot in the left panel of
Fig. 1. As we will show in the next section, solutions to the
left of this point are stable against radial perturbations while
every solution to the right is unstable.
In Fig. 3 we compare the typical density profile ρ ¼ −Tt

t,
given by Eq. (14), for solutions with different values of the
cosmological constant Λ. As expected, for small jΛj, aAdS
Proca stars are nearly indistinguishable from the asymp-
totically flat ones. In the inset plot, we can see that
at intermediate distances r, the small-jΛj solutions are

dominated by the typical exponential decay ρ ∼ e−2r
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
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FIG. 1. Left panel: ADMmassM and chargeQ as a function of the parameter f0 for three different values of Λ. The black dots denote
the point of maximum mass Mmax. Right panel: ADM mass M as a function of the fundamental frequency ω for three different values
of Λ.

2Proca stars do not have a hard surface and a well-defined
radius. A typical definition for the effective radius of the star is to
consider the radius containing, e.g., ∼99% of the star’s mass.

3Note that due to the rescaling employed in this section we
have ϵ ¼ f0=ð

ffiffiffiffiffi
4π

p Þ.
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(cf. dashed red curve in Fig. 3), typically found in
asymptotically flat Proca stars [17] (cf. solid black curve
in Fig. 3). For these solutions, the cosmological constant
only starts to dominate at large r, with the field behaving as
Eq. (16). On the other hand, for large jΛj, the effect of the
mass term is always subdominant compared to the cos-
mological constant term and the solutions differ consid-
erably from the asymptotically flat ones.
Finally, we note that when μ ¼ 0, spherically symmetric

regular solutions do not exist, for any value of Λ. This is
consistent with the fact that Maxwell fields do not allow for
spherically symmetric solitonic configurations, but is in
contrast with the scalar field case, for which boson stars
exist for μ ¼ 0, but only when Λ < 0 [15]. This behavior
can be understood from the fact that the solutions discussed
here are analogous to stationary waves in a box. Since
Maxwell fields do not allow for everywhere regular spheri-
cally symmetric waves, then solitonic solutions cannot
exist when μ ¼ 0.

V. STABILITY AGAINST LINEAR
PERTURBATIONS

Having established the existence of Proca stars with AdS
asymptotics, we now study the stability of these solutions
against small radial perturbations. It has been shown, for
both scalar boson stars [25,26] and Proca stars [17], that the
asymptotically flat solutions are stable from the point
f0 → 0, where M → 0, up to the value fc0 corresponding
to the maximal massMmax (cf. black dots in Fig. 1). Similar
studies have shown that the same rule applies for aAdS
boson stars [14,15], and this picture is also supported by
fully nonlinear evolutions of the field equations for aAdS
boson stars [15]. Here we will show that the same
conclusion can be drawn for aAdS Proca stars.
We consider linear perturbations around the ground state

of the spherically symmetric Proca stars, assuming that all
perturbations have a harmonic time dependence of the form
e−iΩt, where Ω is the characteristic vibrational frequency.
Following Ref. [17], the perturbed metric can be written as

ds2 ¼ −σ2ðrÞFðrÞ½1 − ϵH0ðrÞe−iΩt�dt2

þ ½1þ ϵH2ðrÞe−iΩt�
FðrÞ dr2 þ r2dΩ2; ð27Þ

while the perturbed vector field can be written as

A ¼ e−iωt
��

fðrÞ þ e−iΩt
ϵf1ðrÞ þ iϵf2ðrÞ

r

�
dt

þ
�
igðrÞ þ e−iΩt

ϵg1ðrÞ þ iϵg2ðrÞ
r

�
dr

�
;

Ā ¼ eiωt
��

fðrÞ þ e−iΩt
ϵf1ðrÞ − iϵf2ðrÞ

r

�
dt

þ
�
−igðrÞ þ e−iΩt

ϵg1ðrÞ − iϵg2ðrÞ
r

�
dr

�
; ð28Þ

where ϵ is a small, bookkeeping parameter and H0, H2, f1,
f2, g1 and g2 are radial perturbations around the back-
ground solutions.
As shown in the Appendix, the perturbed Einstein-Proca

field equations (2) and (3) can be reduced to a set of
coupled ODEs. To solve this system of equations we
impose regularity of the perturbations at the origin and
at infinity. At r ¼ 0, we get the following boundary
conditions for the perturbed quantities:

H0ðrÞ ¼ h0 þOðr2Þ;
H2ðrÞ ¼ Oðr2Þ;
f1ðrÞ ¼ h1rþOðr3Þ;
f2ðrÞ ¼ h2rþOðr3Þ;
g2ðrÞ ¼ Oðr2Þ; ð29Þ
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FIG. 2. Comparison between the perturbative approximations
for the mass (24) and charge (25) and the fully nonlinear results,
as a function of f0 for Λ ¼ −1.
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FIG. 3. Energy density ρ ¼ −Tt
t of the star for f0 ¼ 0.165 and

different values of Λ. The inset plot shows a zoom of the solutions
for large r.
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where the coefficients h0, h1 and h2 are constants. Using
the linearity of the system of equations (A2)–(A6), we can
set h1 ¼ 1. We see from Eq. (A5) that, when Ω ¼ 0, the
equation for f2 decouples. Thus, we can set h2 ¼ 0 and
check a posteriori that this is consistent with the boundary
conditions. At infinity the system of equations (A2)–(A6)
allows for the following boundary conditions:

X → 0; as r → ∞; ð30Þ

where X collectively denotes H0
0, H2, f1, f2 and g2. We

checked that imposing two of these conditions is sufficient
to ensure all the others. The system (A2)–(A6), jointly with
these boundary conditions is then a two-dimensional
eigenvalue problem for Ω and h0, which can be solved
using the same shooting method outlined in the previous
section and described in Refs. [17,27].
The fundamental characteristic frequency Ω as a func-

tion of the Proca star’s mass is shown in Fig. 4 for
Λ ¼ −0.05, where the black dot denotes the point of
maximum mass Mmax ∼ 0.595 shown in the left panel of
Fig. 1. A similar behavior can be found for other values
of Λ. We can see thatΩ is a real number for f0 < fc0, which
corresponds to stable normal modes of the star. For
f0 > fc0, Ω becomes a pure positive imaginary number,
and thus from Eqs. (27) and (28) we conclude that these
solutions are unstable.
Unlike in the asymptotically flat case, where unstable

solutions can migrate to the stable branch via mass ejection
[19,28–31] or simply completely disperse, the confinement
property of the AdS boundary makes these scenarios
unlikely to occur for aAdS solutions. Although fully
nonlinear evolutions are needed to access the end state
of the unstable solutions, the most likely scenario is that
they quickly collapse to black holes.
Finally, we note that for asymptotically flat solutions,

one can typically define a “binding energy” through the

quantity B ¼ 1 −M=ðμQÞ and show that solutions with
B < 0 are unstable [17,32]. As can be seen in Fig. 1 and
from Eq. (26), for a negative cosmological constant we
generically have B < 0. As shown in this section and in
Refs. [14,15] for aAdS scalar boson stars, in aAdS space-
times this does not necessarily imply that these solutions
are unstable. Interestingly, if one defines the quantity
~B ¼ 1 −M=ðω0QÞ, where ω0 is the eigenfrequency of
the solution in the limit f0 → 0, we find that for any Λ, ~B is
always positive for f0 < fc0, while it becomes negative for
some value larger than fc0, similarly to what happens for
Λ ¼ 0. It is thus tempting to speculate that this quantity
generalizes the concept of binding energy for a negative
cosmological constant, and that solutions with ~B < 0 are
necessarily unstable.

VI. SOLUTIONS IN FIVE DIMENSIONS

Solutions for Proca stars with or without a cosmological
constant can easily be extended to higher-dimensional
spacetimes. For concreteness, let us focus on five dimen-
sions, although we expect the same behavior to occur for
any dimension larger than four. For this case the spherically
symmetric metric is given by

ds2 ¼ σ2ðrÞFðrÞdt2 þ 1

FðrÞ dr
2 þ r2dΩ2

3; ð31Þ

where dΩ2
3 denotes the three-dimensional unit sphere line

element and the function FðrÞ is now given by

FðrÞ ¼ 1 −
2mðrÞ
r2

−
Λr2

6
: ð32Þ

For the Proca potentials we keep the ansatz (8). Similarly
to the previous sections, Einstein’s equations, together with
the Proca field equations, yield a system of four ordinary
differential equations that generalize Eqs. (9)–(12), which
can be solved using the same methods of Sec. IV.
The main difference with the four-dimensional case

occurs when Λ ¼ 0. In five dimensions the mass and
charge of the solutions go to a finite value M ¼ Q ∼
22.6 in the limit f0 → 0. This is shown in Fig. 5. This
behavior can also be found for scalar boson stars [33,34]
and seems to be unique to asymptotically flat solutions, as
can be seen in Fig. 5.
We note that, unlike the four-dimensional case discussed

above, in five dimensions we find that for Λ ¼ 0, the
binding energy is always negative, 1 −M=ðμQÞ < 0, for
any value of f0. This behavior was also noticed for
asymptotically flat scalar boson stars in Ref. [34], where
it was argued that asymptotically flat five-dimensional
boson stars are always unstable. A dynamical analysis,
similar to the one employed in the previous section,
confirms that asymptotically flat five-dimensional boson
stars are indeed always unstable against radial perturbations

0.593 0.594 0.595
M

-0.01

0

0.01

Ω
2

Stable

Unstable

FIG. 4. The squared characteristic vibrational frequency as a
function of the total mass of the Proca star for Λ ¼ −0.05. The
critical mass at which the star becomes unstable is also its point of
maximum mass, denoted by a black dot.
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[35]. We thus conclude that asymptotically flat five-
dimensional Proca stars should also be always unstable.
On the other hand, from Fig. 5 it is also clear that for

Λ < 0, the mass and charge of the solutions vanish when
f0 → 0, while there is a maximum mass and charge at a
finite value of f0, similarly to the four-dimensional case
(cf. Fig 1). We thus expect that for Λ < 0 there will always
be a region of stable solutions. Unfortunately, due to the
more complex nature of the five-dimensional solutions, we
were not able to confirm this instability using the same
method of the previous section. We thus leave a complete
analysis of these solutions for future work.

VII. CONCLUSIONS

We showed that complex massive spin-1 fields coupled
to Einstein’s gravity with a negative cosmological con-
stant can form solitonic structures. These structures
are qualitatively similar to aAdS scalar boson stars
discussed in Refs. [14,15] and are a direct extension of
the asymptotically flat Proca stars recently found in
Ref. [17].
Dynamical studies of matter fields in AdS have been

mostly focused on scalar fields [4–6,9,36,37]. As shown
here, it is very likely that the dynamics of massive vector
fields in AdS will share very similar properties. For
example, we expect that aAdS Proca stars will be another
example of solutions able to avoid the weakly turbulent
instability of confined geometries [4–7,9].
There are various possible extensions of this work.

A generalization of these solutions to real vector fields,
analogous to the real scalar field oscillons [9,11],4 should
exist. We also expect that by going beyond spherical
symmetry one should also be able to construct rotating
Proca stars, and it is very likely that the field equations

allow for the existence of time-periodic massless spin-1
geons, analogous to the gravitational geons built in
Refs. [7,10].
Furthermore, going beyond spherical symmetry might

unveil a much richer structure. In fact, it was recently
shown that Maxwell fields, i.e., massless spin-1 fields,
allow for the existence of nonspherically symmetric static
or stationary regular solutions with AdS asymptotics
[39–41]. As far as we know, whether a generalization of
these solutions for massive spin-1 fields exists is currently
unknown.
A further generalization of this work is the construction

of aAdS Kerr black holes with Proca hair [20]. Although
one can prove that the only spherically symmetric black
hole solution allowed by the field equations (9)–(12) is the
Schwarzschild-AdS spacetime,5 we naturally expect that
Kerr-AdS black holes with Proca hair, analogous to the
solutions found in Refs. [20,21,42,43], should also exist.
Additionally, one might also expect that other hairy black
hole solutions, analogous to the ones found in Refs. [40,44]
for Einstein-Maxwell theory with a negative cosmological
constant, might also exist when adding a mass term to the
vector field. We thus hope that this work will trigger more
research in this direction.
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APPENDIX: LINEAR STABILITY ANALYSIS:
FIELD EQUATIONS

Expanding the metric and the vector field as
Eqs. (27) and (28), and considering only linear terms in
ϵ, we find that the ðtrÞ component of the Einstein
equations (2) gives

g1 ¼ −
2gμ2f2 þ iΩH2

2μ2f
: ðA1Þ

Replacing this in the ðttÞ component we get

0 0.4 0.8 1.2 1.6
f0

0

5

10

15

20

25

M
Q

Λ=0

Λ=-0.05

FIG. 5. ADM mass and charge of a five-dimensional Proca star
as a function of the parameter f0, for Λ ¼ 0 and Λ ¼ −0.05.

4In asymptotically flat spacetimes these solutions are more
frequently known as oscillatons [19,38].

5A detailed proof was shown in Ref. [20] for an asymptotically
flat geometry, but the same procedure can easily be extended to
AdS with the same result.
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H0
2 ¼ H2

�
rμ2f2

F2σ2
−

1

rF
−
Ω2g
ωf

þ Λr
F

�

þH0

�
rμ2f
F2σ2

þ rμ4g2Fσ2

ω2

�
þ 4gμ2g2 þ f2

2iμ2Ωg2

ωf

þ 2μ2f1

�
g
rω

þ f
σ2F2

�
− f01

2μ2g
ω

: ðA2Þ

Multiplying the ðrrÞ component by F2σ2 and adding the
ðttÞ component one finds

H0
0¼H0

2−4gμ2g2−ðH0þH2Þ
2rμ2f2

F2σ2
−f1

4μ2f
F2σ2

: ðA3Þ

The (r) component of the Proca field equations (3) and its
complex conjugate are independent and give

f01 ¼
f1
r
þ g2ω

�
1 −

μ2Fσ2

ω2 − Ω2

�
þH0

μ2rgFσ2ð2ω2 − Ω2Þ
2ωðω2 −Ω2Þ

þ f2
iΩgðμ2Fσ2 þ ω2 −Ω2Þ

fðω2 −Ω2Þ

þH2Ω2

2f

�
Fσ2ðμ2rfg − ωÞ

ω3 − ωΩ2
−

1

μ2

�
; ðA4Þ

f02 ¼ −iΩg2ω
�
1þ μ2Nσ2

ω2 −Ω2

�
þH0

iΩμ2rgFσ2

2ðω2 −Ω2Þ

þ f2

�
1

r
þ ωgðω2 −Ω2 − μ2Fσ2Þ

fðω2 −Ω2Þ
�

þ iH2Ω
2f

�
Fσ2ðμ2rfg − ωÞ

ω2 −Ω2
þ ω

μ2

�
: ðA5Þ

Finally, from the (t) component of the Proca equations we
find

g02 ¼ −f1
ω

F2σ2
þ g2

�
μ4rg2Fσ2ð3ω2 −Ω2Þ

ω2ðω2 −Ω2Þ −
1

rF
þ rΛ

F

�

þH0

�
−

rωf
F2σ2

−
μ4r2g3Fσ2

ω2 −Ω2

�

þH2

�
μ2rΩ2g2Fσ2ðω − μ2rfgÞ

ω2fðω2 −Ω2Þ −
rωf
F2σ2

−
g
F

þ r2Λg
F

�
þ iΩf2
F2σ2

�
2μ4rg3F3σ4

ω3f − ωΩ2f
þ 1

�
: ðA6Þ

[1] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [Adv.
Theor. Math. Phys. 2, 231 (1998)].

[2] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[3] H. Friedrich, J. Geom. Phys. 17, 125 (1995).
[4] P. Bizoń and A. Rostworowski, Phys. Rev. Lett. 107,

031102 (2011).
[5] J. Jalmuzna, A. Rostworowski, and P. Bizoń, Phys. Rev. D

84, 085021 (2011).
[6] A. Buchel, L. Lehner, and S. L. Liebling, Phys. Rev. D 86,

123011 (2012).
[7] O. J. C. Dias, G. T. Horowitz, and J. E. Santos, Classical

Quantum Gravity 29, 194002 (2012).
[8] O. J. C. Dias, G. T. Horowitz, D. Marolf, and J. E. Santos,

Classical Quantum Gravity 29, 235019 (2012).
[9] M. Maliborski and A. Rostworowski, Phys. Rev. Lett. 111,

051102 (2013).
[10] G. T. Horowitz and J. E. Santos, Surveys Diff. Geom. 20,

321 (2015).
[11] G. Fodor, P. Forgács, and P. Grandclément, Phys. Rev. D 92,

025036 (2015).
[12] D. J. Kaup, Phys. Rev. 172, 1331 (1968).
[13] R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).
[14] D. Astefanesei and E. Radu, Nucl. Phys. B665, 594 (2003).
[15] A. Buchel, S. L. Liebling, and L. Lehner, Phys. Rev. D 87,

123006 (2013).
[16] S. L. Liebling and C. Palenzuela, Living Rev. Relativ. 15, 6

(2012).

[17] R. Brito, V. Cardoso, C. A. R. Herdeiro, and E. Radu, Phys.
Lett. B 752, 291 (2016).

[18] D. Garfinkle, R. B. Mann, and C. Vuille, Phys. Rev. D 68,
064015 (2003).

[19] R. Brito, V. Cardoso, C. F. B. Macedo, H. Okawa, and C.
Palenzuela, Phys. Rev. D 93, 044045 (2016).

[20] C. Herdeiro, E. Radu, and H. Runarsson, Classical Quantum
Gravity 33, 154001 (2016).

[21] C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112,
221101 (2014).

[22] F. García and I. S. Landea, arXiv:1608.00011.
[23] R. Arias and I. S. Landea, arXiv:1608.01687.
[24] R.-G. Cai, L. Li, and L.-F. Li, J. High Energy Phys. 01

(2014) 032.
[25] M. Gleiser and R. Watkins, Nucl. Phys. B319, 733 (1989).
[26] T. D. Lee and Y. Pang, Nucl. Phys. B315, 477 (1989).
[27] S. H. Hawley and M.W. Choptuik, Phys. Rev. D 67, 024010

(2003).
[28] E. Seidel and W.-M. Suen, Phys. Rev. D 42, 384 (1990).
[29] E. Seidel and W.-M. Suen, Phys. Rev. Lett. 72, 2516

(1994).
[30] M. Alcubierre, R. Becerril, F. Siddhartha Guzmán, T. Matos,

D. Núñez, and L Arturo Ureña-López, Classical Quantum
Gravity 20, 2883 (2003).

[31] R. Brito, V. Cardoso, and H. Okawa, Phys. Rev. Lett. 115,
111301 (2015).

[32] M. Gleiser, Phys. Rev. D 38, 2376 (1988).

MIGUEL DUARTE and RICHARD BRITO PHYSICAL REVIEW D 94, 064055 (2016)

064055-8

http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.1016/0393-0440(94)00042-3
http://dx.doi.org/10.1103/PhysRevLett.107.031102
http://dx.doi.org/10.1103/PhysRevLett.107.031102
http://dx.doi.org/10.1103/PhysRevD.84.085021
http://dx.doi.org/10.1103/PhysRevD.84.085021
http://dx.doi.org/10.1103/PhysRevD.86.123011
http://dx.doi.org/10.1103/PhysRevD.86.123011
http://dx.doi.org/10.1088/0264-9381/29/19/194002
http://dx.doi.org/10.1088/0264-9381/29/19/194002
http://dx.doi.org/10.1088/0264-9381/29/23/235019
http://dx.doi.org/10.1103/PhysRevLett.111.051102
http://dx.doi.org/10.1103/PhysRevLett.111.051102
http://dx.doi.org/10.4310/SDG.2015.v20.n1.a13
http://dx.doi.org/10.4310/SDG.2015.v20.n1.a13
http://dx.doi.org/10.1103/PhysRevD.92.025036
http://dx.doi.org/10.1103/PhysRevD.92.025036
http://dx.doi.org/10.1103/PhysRev.172.1331
http://dx.doi.org/10.1103/PhysRev.187.1767
http://dx.doi.org/10.1016/S0550-3213(03)00482-6
http://dx.doi.org/10.1103/PhysRevD.87.123006
http://dx.doi.org/10.1103/PhysRevD.87.123006
http://dx.doi.org/10.12942/lrr-2012-6
http://dx.doi.org/10.12942/lrr-2012-6
http://dx.doi.org/10.1016/j.physletb.2015.11.051
http://dx.doi.org/10.1016/j.physletb.2015.11.051
http://dx.doi.org/10.1103/PhysRevD.68.064015
http://dx.doi.org/10.1103/PhysRevD.68.064015
http://dx.doi.org/10.1103/PhysRevD.93.044045
http://dx.doi.org/10.1088/0264-9381/33/15/154001
http://dx.doi.org/10.1088/0264-9381/33/15/154001
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://arXiv.org/abs/1608.00011
http://arXiv.org/abs/1608.01687
http://dx.doi.org/10.1007/JHEP01(2014)032
http://dx.doi.org/10.1007/JHEP01(2014)032
http://dx.doi.org/10.1016/0550-3213(89)90627-5
http://dx.doi.org/10.1016/0550-3213(89)90365-9
http://dx.doi.org/10.1103/PhysRevD.67.024010
http://dx.doi.org/10.1103/PhysRevD.67.024010
http://dx.doi.org/10.1103/PhysRevD.42.384
http://dx.doi.org/10.1103/PhysRevLett.72.2516
http://dx.doi.org/10.1103/PhysRevLett.72.2516
http://dx.doi.org/10.1088/0264-9381/20/13/332
http://dx.doi.org/10.1088/0264-9381/20/13/332
http://dx.doi.org/10.1103/PhysRevLett.115.111301
http://dx.doi.org/10.1103/PhysRevLett.115.111301
http://dx.doi.org/10.1103/PhysRevD.38.2376


[33] B. Hartmann, B. Kleihaus, J. Kunz, and M. List, Phys. Rev.
D 82, 084022 (2010).

[34] Y. Brihaye and B. Hartmann, Classical Quantum Gravity 33,
065002 (2016).

[35] V. Cardoso and E. Franzin (to be published).
[36] H. Okawa, J. C. Lopes, and V. Cardoso, arXiv:1504.05203.
[37] H. Okawa, V. Cardoso, and P. Pani, Phys. Rev. D 90,

104032 (2014).
[38] E. Seidel and W. Suen, Phys. Rev. Lett. 66, 1659 (1991).
[39] C. Herdeiro and E. Radu, Phys. Lett. B 749, 393 (2015).

[40] M. S. Costa, L. Greenspan, M. Oliveira, J. Penedones,
and J. E. Santos, Classical Quantum Gravity 33, 115011
(2016).

[41] C. Herdeiro and E. Radu, Phys. Lett. B 757, 268
(2016).

[42] O. J. C. Dias, G. T. Horowitz, and J. E. Santos, J. High
Energy Phys. 07 (2011) 115.

[43] O. J. C. Dias, J. E. Santos, and B. Way, J. High Energy Phys.
12 (2015) 171.

[44] C. A. R. Herdeiro and E. Radu, arXiv:1606.02302.

ASYMPTOTICALLY ANTI–DE SITTER PROCA STARS PHYSICAL REVIEW D 94, 064055 (2016)

064055-9

http://dx.doi.org/10.1103/PhysRevD.82.084022
http://dx.doi.org/10.1103/PhysRevD.82.084022
http://dx.doi.org/10.1088/0264-9381/33/6/065002
http://dx.doi.org/10.1088/0264-9381/33/6/065002
http://arXiv.org/abs/1504.05203
http://dx.doi.org/10.1103/PhysRevD.90.104032
http://dx.doi.org/10.1103/PhysRevD.90.104032
http://dx.doi.org/10.1103/PhysRevLett.66.1659
http://dx.doi.org/10.1016/j.physletb.2015.08.010
http://dx.doi.org/10.1088/0264-9381/33/11/115011
http://dx.doi.org/10.1088/0264-9381/33/11/115011
http://dx.doi.org/10.1016/j.physletb.2016.04.004
http://dx.doi.org/10.1016/j.physletb.2016.04.004
http://dx.doi.org/10.1007/JHEP07(2011)115
http://dx.doi.org/10.1007/JHEP07(2011)115
http://dx.doi.org/10.1007/JHEP12(2015)171
http://dx.doi.org/10.1007/JHEP12(2015)171
http://arXiv.org/abs/1606.02302

