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We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion
relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the
fluid velocity matches the group velocity of low-frequency waves. We find the exact solution for wave
propagation in the flow. The scattering shows amplification of classical waves, leading to spontaneous
emission when the waves are quantized. In the dispersionless limit the system corresponds to a 1þ 1-
dimensional black-hole or white-hole binary and there is a thermal spectrum of Hawking radiation from
each horizon. Dispersion changes the scattering coefficients so that the quantum emission is no longer
thermal. The scattering coefficients were previously obtained by Busch and Parentani in a study of
dispersive fields in de Sitter space [Phys. Rev. D 86, 104033 (2012)]. Our results give further details of the
wave propagation in this exactly solvable case, where our focus is on laboratory systems.
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I. INTRODUCTION

The scattering of waves by material inhomogeneities
occurs in many guises and is most familiar through the
reflection of light at sharp boundaries. The basic phenome-
non of scattering may seem intuitive, but new types of
scattering become possible when the inhomogeneity consists
of a position-dependent velocity of the medium. The flow of
the medium can allow additional propagating modes that are
absent in the nonmoving case. Scattering into the additional
modes may be accompanied by wave amplification in which
energy is transferred from the flow to the wave. When this
amplification occurs in a region where the flow velocity
exceeds the group velocity of the wave, the process is
analogous to that underlying the Hawking effect at a black-
hole horizon [1–3]. Inhomogeneous flow profiles and black-
hole horizons can both act as amplifiers for waves. The
quantum Hawking effect [4,5] of black holes is due to the
coupling of the horizon amplifier to the wave’s quantum
ground state, the latter being “amplified” into real quanta or
quantum noise [6]. Both classical wave amplification and
spontaneous quantum emission can occur in inhomogeneous
flows and several theoretical proposals have now been
investigated experimentally [7–17].
The Hawking effect in moving media differs most

significantly from the astrophysical case in the essential
role played by dispersion. The lack of short-wavelength
dispersion for waves in space-time renders the astrophysi-
cal Hawking effect somewhat singular, as its derivation
features infinite wavelength shifts at the horizon [18]. For
waves in material media, dispersion necessarily limits the
wavelength shifts and the Hawking effect has no unphys-
ical features [19,20]. Dispersion has been shown to alter the

spectrum of Hawking radiation from the original thermal
result for black holes [3,21–27]. In general the spectrum of
quantum Hawking emission depends on the dispersion and
the shape of the flow profile. Moreover a flow velocity that
exceeds the group velocity of the wave is not necessary for
measurable wave amplification to occur [13,17,27]. Waves
in moving media thus offer a rich theoretical and exper-
imental arena where the quantitative dependence of the
Hawking effect on dispersion and flow profile can be
explored.
A less welcome effect of dispersion is to make wave

scattering in the experimental systems very difficult to
solve analytically. The most accessible experimental sys-
tem to date uses surface waves on flowing water, where
Hawking amplification of classical incident waves has been
observed [13,17]. The dispersion of water waves is com-
plicated, with regions of normal dispersion (d2ω=dk2 < 0

in the fluid frame) and anomalous dispersion (d2ω=dk2 > 0
in the fluid frame) giving various types of horizon effects
[8,28,29]. The system most studied theoretically is sound
waves in a flowing Bose-Einstein condensate (BEC), and
experiments with BECs have detected quantum Hawking
emission of phonons [14,16]. A fourth-order dispersion
relation is widely used to model the BEC system [2], and a
polynomial dispersion relation can also be used in a simple
model for water waves. The resulting wave equations have
not been exactly solved for an inhomogeneous flow and
theoretical predictions of the Hawking effect in these
systems are based on approximate analytical techniques
and numerical simulations [19–27,30–38].
Here we give the exact solution for wave scattering in a

flow whose velocity changes linearly with position, where
we use a simple BEC model featuring a fourth-order
anomalous dispersion relation [2]. The one-dimensional
linear flow profile has regions of positive and negative flow*t.g.philbin@exeter.ac.uk
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velocity, so there are two horizons, one for left-moving and
one for right-moving waves. The flow is thus analogous to
a black-hole or white-hole binary (depending on the sign
of the velocity gradient). A linear flow profile is often
assumed in the neighborhood of a single horizon, and
approximate treatments of this case using the same tech-
niques employed here were given in [24,34]. But the exact
treatment of the linear profile necessarily involves two
horizons. On the other hand, the wave scattering does not
depend on the profile being linear at large distances, so that
the scattering coefficients obtained here are also valid for
profiles that slowly change from linear to flat far from the
horizons.
The linear flow profile in the dispersionless case gives an

effective space-time metric for waves that corresponds to a
patch of de Sitter space, as discussed in Ref. [39]. In that
work, Busch and Parentani studied dispersive fields in de
Sitter space and in a cosmological context considered the
dispersive wave equation used here. These authors derived
the scattering amplitudes (57)–(60) below by a somewhat
different method. Here we provide more details on the exact
wave solution and its asymptotics. Also, our focus here is
on laboratory systems rather than cosmology.
The linear flow profile is not the example one would most

like to solve exactly because it does not model current
experiments, but nevertheless it gives some interesting
lessons. The results highlight the importance of reflection,
the familiar conversion of right-moving waves to left-
moving and vice versa, where left/right motion here refers
to the velocity relative to the fluid. Scattering due to
reflection in inhomogeneous flows has until recently been
of secondary interest in studies of Hawking amplification,
but reflection occurs in the experimental systems and its
magnitude affects the spectrum of quantum Hawking emis-
sion [27]. For theoretical purposes, dispersion can be
implemented in a manner that does not give reflection, so
that the left- and right-moving waves do not mix [40], but
this possibility is not realized in the experimental systems.
For wave equations in spatially inhomogeneous media,

the exact solution for a linearly changing profile is the basis
for the WKB approximation for arbitrary profiles [41]. In
optics and quantum mechanics the solutions in question
are the two Airy functions, valid for a linearly changing
permittivity or potential. For the wave equation in a linearly
inhomogeneous flow we will obtain four solutions, rather
than two, and importantly they depend on the dispersion.
Our solutions do not therefore have the same universal
significance for inhomogeneous flows as the Airy functions
have in optics and quantum mechanics, rather they are
specific to the dispersion of the BEC model.
The model equation used together with a general

description of the propagating modes is given in Sec. II.
In Sec. III the wave equation is Fourier transformed and
solved exactly in k-space. Section IV presents the lengthiest
part of the analysis, in which four independent solutions of

the wave equation are defined and their meaning in terms
of mode scattering is elucidated. In Sec. V solutions are
constructed that represent the scattering of single incident
modes and the exact scattering coefficients are calculated.
The final results are contained in (57)–(60) and (73) and
(74), and are visually represented in Figs. 8 and 9.

II. WAVE EQUATION

An approximate (1þ 1)-dimensional wave equation for
sound in a flowing BEC takes the form [2]

∂tð∂t þ v∂xÞψ þ ∂xðv∂t þ v2∂xÞψ −
�
∂2
x −

1

k2c
∂4
x

�
ψ ¼ 0:

ð1Þ

Here velocity is dimensionless, vðxÞ is the (time-
independent) flow velocity, kc quantifies a dispersive term,
and ψðx; tÞ is the wave field; for the BEC ψðx; tÞ is the
phase fluctuation in the field operator of the Bose gas [2].
A more accurate equation for sound in a BEC can be
derived [35], but (1) is often considered in studies of
dispersion and the Hawking effect. In the absence of the
fourth-order derivative term there is no dispersion of the
wave and (1) is the equation of a scalar field in a curved
(1þ 1)-dimensional space-time [1,2]. In the nondispersive
case (kc → ∞) the waves have speed 1 relative to the fluid
and points where vðxÞ ¼ �1 are in strict analogy to event
horizons for the waves [1].
We take (1) as our model wave equation in a dispersive

fluid. The central problem is to solve (1) as a classical wave
equation, as this determines the mode expansion for ψðx; tÞ
as a classical or quantum field. In particular, the Hawking
effect in this system is at root a classical scattering effect for
waves satisfying (1). The monochromatic wave equation
follows from the substitution ψðx; tÞ ¼ e−iωtϕðxÞ:�
ω2 þ iωv0 þ 2vðiω − v0Þ∂x þ ð1 − v2Þ∂2

x −
1

k2c
∂4
x

�
ϕ ¼ 0;

ð2Þ

where a prime denotes a derivative with respect to x.
The dispersion relation is

ðω − vkÞ2 ¼ k2 þ k4

k2c
; ð3Þ

which can be solved exactly for four roots kðωÞ that can
all describe propagating modes in the fluid for ω > 0 [the
expressions for kðωÞ are too cumbersome to reproduce
here]. The frequency ω in the laboratory frame is conserved
for monochromatic waves because of the time independ-
ence of (2). The quantity ω − vðxÞk is the frequency in a
frame locally comoving with the fluid, which is the relevant
frame for characterizing the material dispersion. We see
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that (3) gives anomalous dispersion at all frequencies, so
the group and phase speeds relative to the fluid exceed their
nondispersive values of 1, except in the limit of zero k. As
long as the dispersion is entirely anomalous or entirely
normal for all frequencies, there will still be at most four
propagating modes with ω > 0. If the dispersion is normal
for some frequency ranges and anomalous for others, there
are in general more than four ω > 0 propagating modes
(water waves provide an example [28]).
We consider the linear flow profile

vðxÞ ¼ −αx; α > 0 ð4Þ

(see Fig. 1). This flow exceeds the small-k (nondispersive)
speed of the waves relative to the fluid at x ¼ �1=α. In the
nondispersive limit kc → ∞ the flow provides a sharp
horizon for left-going waves at x ¼ −1=α, and for right-
going waves at x ¼ 1=α. This is shown in Fig. 1, where the
rays for ω > 0 waves are plotted in the nondispersive case.

The two rays for left movers (relative to the fluid) are
shown in red and are funnelled to the horizon at x ¼ −1=α,
undergoing an infinite blueshifting (k → ∞) in the process.
The solid (dotted) ray has a positive (negative) frequency
ω − vðxÞk in the comoving frame. Similarly the two right
movers (relative to the fluid), one of which has a negative
comoving frequency, are funnelled to the horizon at x ¼
1=α and infinitely blueshifted. This flow profile corre-
sponds to a white-hole binary, i.e. two 1þ 1-dimensional
white holes facing each other. By reversing the direction of
time (or reading the ray plot from top to bottom) a black-
hole binary is obtained. The anomalous dispersion in the
wave equation (2) limits the blueshifting at the horizons
and redirects the blueshifted left and right movers into
the respective white holes, as also shown in Fig. 1. This
behavior can be understood by looking at the dispersion
relation at different point in the flow, shown in Fig. 2. As
noted above, there are four propagating modes kðωÞ in the

FIG. 1. Top: The linear velocity profile (4) for α ¼ 1=2. At
x ¼ �1=α the flow speed matches the speed relative to the fluid
of low-k waves. Middle: Ray plots for waves in the flow with
ω ¼ 1, and with dispersion removed (kc → ∞). Red (blue) rays
are for waves moving left (right) relative to the fluid. Solid
(dotted) rays have positive (negative) frequency ω − vðxÞk in a
frame comoving with the fluid. This corresponds to a white-hole
binary. Bottom: The ray plots when dispersion is included
(kc ¼ 5). The mode labels 1, 2, 3 and 4 refer to the four solutions
kðωÞ of the dispersion relation (3); these solutions are shown
graphically in Fig. 2.

FIG. 2. Plots of ω versus k for the dispersion relation (3) in the
linear profile (4), for three values of x (with α ¼ 1=2, kc ¼ 5).
The horizontal magenta line is ω ¼ 1 and its intersection with the
dispersion plots gives the propagating (real k) modes at this
frequency; these mode solutions are labeled 1 to 4. Modes from
an intersection with a red (blue) dispersion curve travel left (right)
relative to the fluid. In addition, if the intersection is with a solid
(dotted) dispersion curve, the mode has positive (negative)
comoving frequency ω − vðxÞk. In the region between the
horizons, such as in the middle plot for x ¼ 0, there are two
propagating modes. Beyond the horizons (x ≪ 0 and x ≫ 0)
modes 3 and 4 can propagate.
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flow, labeled 1 to 4 in the bottom ray plot in Fig. 1 and in the
graphical solutions for these modes shown in Fig. 2. Modes
1 and 2 are the usual left- and right-moving ω > 0 waves
that would be present in a nonmoving fluid [vðxÞ ¼ 0]; these
modes have positive frequency in a frame comoving with the
fluid. The motion of the fluid has the remarkable effect of
making modes 3 and 4 into propagating ω > 0 waves,
despite their having a negative comoving frequency
ω − vðxÞk. Modes 3 and 4 have complex wave vectors in
the region between the horizons, with mode 3 exponentially
increasing with x in this region and mode 4 exponentially
decreasing with x. It is not visually apparent from Figs. 1
and 2 how to follow modes 3 and 4 through the region where
their wave vectors are complex and identify which is mode 3
and which is mode 4 when they again become propagating.
The identification follows from the four exact roots of the
quartic dispersion relation (3) and a choice of branch cuts in
these roots. Modes 3 and 4 coincide at two points in the flow,
as is clear from the bottom ray plot in Fig. 1; these modes are
thus converted into each other in a continuous manner by the
flow. Rays move at the group velocity dω=dk, and Fig. 2
explains the reversal of group velocity as modes 3 and 4 are
converted into each other. Note also that when mode 4
propagates in the left-hand region of the flow its phase (ω=k)
and group (dω=dk) velocities are in opposite directions, and
similarly for mode 3 in the right-hand region.
Mixing of modes 3 and 4 occurs at the level of ray

tracing and is therefore visible in the bottom ray plot in
Fig. 1. In addition, there is also wave scattering of each of
the four modes into the other three modes because of a
breakdown of geometrical optics near the horizons. Our
goal is to calculate the exact scattering coefficients. The
scattering of modes 1 and 2, with positive comoving
frequency, into modes 3 and 4, which have negative
comoving frequency, is accompanied by wave amplifica-
tion and is the underlying mechanism of the Hawking effect
[19]. Modes 3 and 4 scatter into modes 1 and 2 with a
similar amplification effect. The wave amplification can be
partly understood in terms of the conserved quantities
associated with the wave equation (1). As detailed in
Appendix A, there is a conserved norm, associated with
Uð1Þ symmetry of the action giving (1), and a conserved
pseudoenergy associated with its time-translation invari-
ance. The sign of the norm and pseudoenergy of each mode
is given by the sign of its comoving frequency (see
Appendix B). When a mode with positive comoving
frequency scatters into a mode with negative comoving
frequency, the total norm can only be conserved if the
original mode increases its norm. There is thus an
amplification of the wave excitation in the system. This
occurs with conservation of pseudoenergy, but in the real
physical system the energy of the wave has increased while
energy is removed from the fluid motion (this corresponds
to evaporation of black holes [4,5]). A complete treatment
of the physics involved would require a full account of

backreaction on the fluid together with the resulting energy
transfer from the flow to the wave, but in (1) the fluid
appears simply as an external field vðxÞ. In actual experi-
ments the amplification effect is so small that ignoring
backreaction in theoretical predictions is justified.
In order for the notion of scattering coefficients to make

sense it is necessary for the waves in the asymptotic regions
jxj → ∞ to reduce to noninteracting superpositions of
waves associated with the four roots of the dispersion
relation and their corresponding rays. In discussing the
“modes” labeled 1 to 4 above, we have implicitly assumed
the validity of such a picture. If the flow has constant
velocity in the asymptotic regions jxj → ∞, it is clear the
waves will asymptotically become superpositions of non-
interacting plane waves given by the dispersion relation.
For the linear profile (4), however, it is not immediately
obvious that the breakdown of geometrical optics is
confined to the horizon regions, since the profile has the
same rate of change at all points x and there are rays whose
wavelengths grow longer as jxj increases (mode 2 on the
left and mode 1 on the right). Nevertheless, waves in the
linear profile in the regions jxj → ∞ do reduce to non-
interacting superpositions whose components are associ-
ated with the roots of the dispersion relation and their
corresponding rays. This is shown in Appendix B, where it
is also found that the low-k asymptotic modes do not have
the same dependence on vðxÞ as they do for asymptotically
constant flows. (This last fact contrasts with the optical and
quantum mechanical case, where the WKB solutions for
the linear profile have exactly the same dependence on the
profile function as for asymptotically constant profiles
[41].) The flow regions on the far left and far right are
thus places where we can legitimately speak of input
and output waves and compute well-defined scattering
coefficients.

III. SOLUTION OF THE WAVE EQUATION
IN k-SPACE

We express the monochromatic wave ϕðxÞ by a Fourier
representation

ϕðxÞ ¼
Z
C
dk ~φðkÞeikx; ð5Þ

where we allow any contour C in the complex k-plane such
that the integral converges and ~φðkÞeikx vanishes at the
endpoints (in practice our contours will run to infinity in the
complex plane). The wave equation (2) for the linear profile
(4) then gives

�
k2
�
1þ k2

k2c

�
− iαω − ω2

�
~φðkÞ þ 2kαðα − iωÞ ~φ0ðkÞ

þ k2α2 ~φ00ðkÞ ¼ 0; ð6Þ
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where a prime denotes a derivative. Extracting a
factor through ~φðkÞ ¼ k−1þiω=α exp½−ik2=ð2αkcÞ�fðkÞ and
rescaling the variable k leads to a differential equation of
the well-studied form

f00ðzÞ − 2zf0ðzÞ þ afðzÞ ¼ 0: ð7Þ

We thereby obtain the general solution

~φðkÞ ¼ k−1þ
iω
α exp

�
−

ik2

2αkc

�"
c1H−1

2
−ikc

2α

 ffiffiffiffiffiffiffi
i

αkc

s
k

!

þ c21F1

�
1

4
þ ikc

4α
;
1

2
;
ik2

αkc

�#
; ð8Þ

whereHaðzÞ is the Hermite function (which is a polynomial
for non-negative integer a), 1F1ða;b; zÞ is the Kummer
confluent hypergeometric function, and fc1; c2g are arbi-
trary constants.
Through (5) and (8) we now have the general solution for

the wave ϕðxÞ, expressed as an integral representation.
Although there are only two linearly independent solutions
in (8) for ~φðkÞ, there are four independent solutions for
ϕðxÞ because of the freedom to choose a branch cut in the
integrand in (5). We choose two independent solutions for
~φðkÞ by taking just the Hermite term, or just the hyper-
geometric term, in (8). For each of these ~φðkÞ we will
obtain two independent solutions for ϕðxÞ by the choice of
the contour and branch cut in (5).

IV. FOUR INDEPENDENT SOLUTIONS
OF THE WAVE EQUATION

Both the Hermite function HaðzÞ and the confluent
hypergeometric function 1F1ða;b; zÞ are entire functions
of z [42]. The k-space solution (8) therefore has one
singularity and one branch cut in the complex k-plane
due to the factor k−1þ

iω
α . In the contour integral (5), which

gives us the exact solutions to the wave equation, we must
avoid the singularity at k ¼ 0 and negotiate the branch cut.
We will choose the branch cut to run either along the
positive or the negative imaginary k-axis. Then we choose
the contour in (5) to run from k ¼ −∞ to k ¼ ∞, as in the
usual Fourier transform, but avoiding k ¼ 0 by running
below k ¼ 0 (branch cut along positive imaginary axis) or
above k ¼ 0 (branch cut along negative imaginary axis).
These two choices of branch cut and contour will give two
independent solutions for ϕðxÞ.

A. Two solutions with HaðzÞ in their
integral representations

With c1 ¼ 1 and c2 ¼ 0 in (8), the integrand in (5)
contains the Hermite function HaðzÞ. This integrand is
plotted in the complex k-plane in Figs. 3 and 4, with the

FIG. 3. The integrand in (5) plotted in the complex k-plane,
with c1 ¼ 1 and c2 ¼ 0 in (8). Color indicates the phase while
brightness indicates the absolute value (brighter means bigger).
The branch cut is placed along the positive imaginary axis.
Parameter values are ω ¼ 1, α ¼ 1=2 and kc ¼ 5. The top plot is
for x ¼ 4, the bottom for x ¼ −4. We take C0 as the contour in (5)
and thereby define an exact solution of (2).

FIG. 4. The same as Fig. 3, but with the branch cut along the
negative imaginary axis and a different contour C00. This defines
another independent solution of (2).
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branch cut running along the positive or negative imaginary
axis, respectively. Also shown in each figure is a contour
that defines a solution (5). The contours are as described
above and labeled C0 (branch cut along positive imaginary
axis) or C00 (branch cut along negative imaginary axis).
Our main goal is to quantify the wave scattering in the

flow and for this we need the asymptotic expansions of the
exact solutions (5) in the large jxj regions. Every exact
solution must reduce as jxj → ∞ to a superposition of the
asymptotic wave components derived in Appendix B.
These asymptotic waves do not interact and correspond
to the four ray solutions of Sec. II, propagating in the large
jxj regions.
If the contour in (5) ran along the real k-axis we would

have a Fourier transform. For large jxj, the rapid oscillation
in k of the eikx factor tends to make the Fourier transform
zero as jxj → ∞, provided the function being transformed is
well behaved. The Riemann-Lebesgue lemma gives the
technical requirements [43]. In our case there is a singularity
at k ¼ 0 and we do not integrate along the real k-axis, so we
need not expect the integral (5) to vanish as jxj → ∞.
Indeed, we know that the low-k asymptotic wave compo-
nents do not vanish as jxj → ∞ (see Appendix B). Hence the
integral (5) will be nonzero as x → −∞ (x → ∞) if
and only if the solution ϕðxÞ contains any of the low-k
asymptotic wave components in the far left (far right)
regions. The high-k asymptotic wave components, on the
other hand, vanish as jxj → ∞ (see Appendix B) and we
must also extract these components from the solution (5). We
thus require not simply the leading-order part of the solution
(5) for large jxj, but rather the leading-order contributions to
all asymptotic wave components that are present.
To find the asymptotic expansions for x → �∞ of the

integral (5), we must consider the behavior of the integrand
along the contour. The contours C0 and C00 in Figs. 3 and 4
run mostly along the real k-axis. For large jxj, the rapid
oscillation of eikx gives net cancellation for the parts of the
contours on the real axis and so their contribution to the
integral will vanish as jxj → ∞. The leading-order term in
these contributions is determined by whether or not there
are points of stationary phase in the integrand that lie close
to the contour. One can see two patches in the top plots in
Figs. 3 and 4 where the phase has an extremum in the
complex plane, while in the lower plots the integrand

appears to be the sum of two parts, one with an extremum
of the phase that is situated to the left and another part
that has no extrema. Moreover all these extrema move out
along the real k-axis as jxj increases, so to investigate them
analytically we must consider the form of the integrand for
large jkj. We will find below that there are terms in the
integrand with points of stationary phase that are precisely
the points we have just identified visually. Moreover each
of these stationary-phase points is the wave vector of one of
the high-k asymptotic waves and the resulting contributions
to the integral will give all the high-k asymptotic wave
components. There remains the parts of the contours C0 and
C00 that do not lie on the real k-axis. For x > 0 the factor
eikx decreases exponentially along the positive imaginary
k-axis, whereas for x < 0 it decreases along the negative
imaginary axis. All other factors in the integrand are
dominated by this behavior, as is visible in Figs. 3
and 4. We can deform the parts of the contours C0 and
C00 that leave the real axis so that as much as possible they
lie along the half of the imaginary axis where the integrand
is exponentially small. If there is no branch cut along the
relevant half of the imaginary axis (as in the bottom plot of
Fig. 3 and the top plot of Fig. 4), then the contribution of
this part of the contour is arbitrarily small. If however the
branch cut lies along the half of the imaginary axis where
the integrand is exponentially decreasing (as in the top plot
of Fig. 3 and the bottom plot of Fig. 4), then the contour
gets wrapped around k ¼ 0 and runs along both sides of the
branch cut. The latter situation will give a contribution to
the integral that does not vanish as jxj → ∞ and corre-
sponds to low-k asymptotic wave components present in
the solution. This outlines how the asymptotic wave
components are encoded in the exact integral representation
(5). A similar identification of wave components occurs in
[34], where the techniques used here were applied to an
approximate treatment of the wave equation in an arbitrary
flow profile.
To identify the points of stationary phase discussed

above, we require the asymptotic expansions for k ≫ 0
and k ≪ 0 of the Hermite function that appears in (8).
Asymptotic expansions of the Hermite function for large
variable are given in [42]; in our case the variable isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i=ðαkcÞ

p
k, giving the following leading-order expansions:

H−1
2
−ikc

2α

 ffiffiffiffiffiffiffi
i

αkc

s
k

!
∼ 2−

1
4
−ikc

4α

 ffiffiffiffiffiffiffi
2i
αkc

s
k

!−1
2
−ikc

2α

; −π < argðkÞ < π

2
; ð9Þ

H−1
2
−ikc

2α

 ffiffiffiffiffiffiffi
i

αkc

s
k

!
∼ 2−

1
4
−ikc

4α

" ffiffiffiffiffiffiffi
2i
αkc

s
k

!−1
2
−ikc

2α

−
i
ffiffiffiffiffiffi
2π

p

Γð1
2
þ ikc

2αÞ

 ffiffiffiffiffiffiffi
2i
αkc

s
k

!−1
2
þikc

2α

exp

�
ik2

αkc
−
πkc
2α

�#
; −2π < argðkÞ < −

π

2
:

ð10Þ
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Here the branch cuts in the asymptotic expressions
are rotated out of the range of argðkÞ for which they are
valid. This amounts to analytically continuing ln z from its
principal branch −π < argðzÞ ≤ π.
The points of stationary phase in the integrand in (5)

can now be identified [where here we take just the
Hermite-function term in (8)]. In the region where (9)
is valid, which includes the positive real k-axis, the
integrand has an exponential factor containing k given
by exp ½ikx − ik2=ð2αkcÞ�. This factor has a point of
stationary phase at

k ¼ αkcx; x ≫ 0; ð11Þ

where the condition on x occurs because (9) is not valid for
negative real k. This point of stationary phase is visible on
the right of the top plots in Figs. 3 and 4. In the region
where (10) is valid, which includes the negative real k-axis,
we have two terms in the asymptotic expansion of the
Hermite function, the second of which has an exponential
involving k. We must therefore treat the two terms in (10)
separately as they have different phase factors. The first
term in (10) gives a contribution to (5) that has a phase
factor exp ½ikx − ik2=ð2αkcÞ�, giving a point of stationary
phase at

k ¼ αkcx; x ≪ 0; ð12Þ

where now the condition is for x to be negative because (10)
is not valid on the positive real k-axis. The second term
in (10) leads to a contribution to (5) with a phase factor
exp ½ikxþ ik2=ð2αkcÞ�, with stationary phase at

k ¼ −αkcx; x ≫ 0: ð13Þ

The significance of the point (12) is partly visible on the left
of the lower plots in Figs. 3 and 4 but the integrand also has
the contribution of the second term in (10), for which there
are no points of stationary phase for negative x. The point
(13) is similarly a stationary-phase point for only one term
in the integrand but its significance is nevertheless apparent
on the left of the top plots in Figs. 3 and 4.
The points (11)–(13) lie on the contours C0 and C00. For

large jxj, we use the method of steepest descent to compute
the leading-order contribution to the integral of the terms
which have a stationary phase at these points. Note that the
points (11)–(13) are the local wave vectors of asymptotic
wave components (see Appendix B) whose amplitudes
fall off as 1=jxj3=2. We will find that the stationary-phase
contributions give exactly these asymptotic wave compo-
nents in a particular superposition. Contributions to this
part of the integral that are not stationary-phase contribu-
tions fall off faster in jxj than the stationary-phase con-
tributions and therefore they are not needed to compute the
asymptotic wave components. In the method of steepest

descent [44] we expand the phase around the stationary point
to second order and find the directions in the complex plane
in which the quadratic term in the expansion is real and
negative. We deform the contour to run along this line of
steepest descent. Other factors in the integrand are evaluated
at the stationary point and the resulting Gaussian integral
along the steepest-descent line gives the leading-order
contribution to the integral. In our case the phase factors
are exp ½ikx ∓ ik2=ð2αkcÞ�, which are simple to work with
and give steepest-descent lines running through the sta-
tionary-phase points at angles of�45°. When evaluating the
other factors in the integrand at the stationary-phase point we
must remember to choose the branch cut in the k−1þ

iω
α factor

from (8) to lie on the positive or negative imaginary axis,
depending on which of the two solutions we are evaluating.
This will complete the leading-order contributions to the
solution from the parts of the contours C0 and C00 that lie on
the real k-axis. There remains the portions of the contours
that run around the singularity at k ¼ 0.

1. First solution: Branch cut along positive
imaginary k-axis

The branch cut in the integrand is first chosen to lie along
the positive imaginary k-axis (Fig. 3) and the solution is
defined by the contour C0. We denote this solution by
ϕðaÞðxÞ. There are two expansions of ϕðaÞðxÞ in terms of the
asymptotic waves, one for x ≪ 0 and one for x ≫ 0.
Taking first x ≪ 0, we see from (11)–(13) that there is

just one stationary-phase contribution, from the point (12).
This point is the wave vector of mode 1 in the far-left
region, whose normalized asymptotic form is ϕ−

1 ðxÞ given
by (B21). The part of the contour C0 that leaves the real
k-axis can be pushed down along the negative imaginary
k-axis (see the bottom plot in Fig. 3) where the integrand is
exponentially small and gives no contribution. The only
asymptotic wave component for x ≪ 0 is thus mode 1 with a
constant complex amplitude that we obtain from the method
of steepest descent. The expansion of the solution is

ϕðaÞðxÞ ∼x≪0 a−1ϕ
−
1 ðxÞ; ð14Þ

a−1 ¼ ð−1Þ18 ffiffiffi
π

p
2
1
2
−ikc

2αe
πω
α −

3πkc
8α αðαkcÞiωα−

ikc
4α−

1
4: ð15Þ

For x ≫ 0 we will find contributions from all four
asymptotic wave components and the expansion of the
solution is

ϕðaÞðxÞ ∼x≫0 aþ1 ϕ
þ
1 ðxÞ þ aþ2 ϕ

þ
2 ðxÞ þ aþ3 ϕ

þ
3 ðxÞ þ aþ4 ϕ

þ
4 ðxÞ;
ð16Þ

for constant coefficients aþn . For large positive x there are
contributions from the two stationary-phase points (11) and
(13). These points are the local wave vectors of modes 2
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and 3, respectively, in the far-right region, where they have
the normalized asymptotic expressions (B18) and (B19).
The steepest descent method gives the coefficients aþ2 and
aþ3 of these modes:

aþ2 ¼ ð−1Þ138 ffiffiffi
π

p
2

1
2
−ikc

2αe
πkc
8α αðαkcÞiωα−

ikc
4α−

1
4; ð17Þ

aþ3 ¼ ð−1Þ982πeπω
α −

πkc
8α αðαkcÞiωαþ

ikc
4α−

1
4

Γð1
2
þ ikc

2αÞ
: ð18Þ

There is also a contribution from the part of the contour C0
that runs around the singularity at k ¼ 0. For positive x the
integrand exponentially decreases along the positive imagi-
nary k-axis (see top plot in Fig. 3) and we move the contour
upwards so that it runs along both sides of the branch cut, as
shown in Fig. 5. The exponential decrease along the
positive imaginary k-axis is very rapid for large x so only
the part of the contour in Fig. 5 close to k ¼ 0 is significant
for the asymptotic integral. We can therefore compute this
part of the integral by expanding the integrand around
k ¼ 0. The Taylor expansion of the Hermite-function factor
around k ¼ 0 is

H−1
2
−ikc

2α

 ffiffiffiffiffiffiffi
i

αkc

s
k

!
¼

ffiffiffi
π

p
2−

1
2
−ikc

2α

Γð3
4
þ ikc

4αÞ
−

ffiffiffiffiffi
iπ

p
2

1
2
−ikc

2αkffiffiffiffiffiffiffi
αkc

p
Γð1

4
þ ikc

4αÞ
þOðk2Þ:

ð19Þ

Using the first two terms in this series we compute the
integral along the contour in Fig. 5 for x ≫ 0, where we can
take the ends of the contour to run to positive imaginary
infinity along both sides of the branch cut. We make the
substitution k ¼ is=x in the integral and expand the
integrand to find the two leading-order terms for large x.
This gives the integral

ffiffiffi
π

p
2−

1
2
−ikc

2α

Z
ds

�
is
x

�iω
α

e−s
�

1

sΓð3
4
þ ikc

4αÞ
þ 2

ffiffiffiffiffi
−i

p

x
ffiffiffiffiffiffiffi
αkc

p
Γð1

4
þ ikc

4αÞ

�
;

ð20Þ

where our original choice of contour and branch cut in the
complex k-plane means that in (20) the branch cut in the
integrand runs along the positive real s-axis and the contour
runs in from infinity above the branch cut, around s ¼ 0,
then out to infinity below the branch cut. Both terms in the
integral (20) are related to Hankel’s integral representation
of the gamma function [45], which states

ΓðzÞ ¼ i
2 sinðπzÞ

Z
CΓ

dtð−tÞz−1e−t; z ∉ integers; ð21Þ

where the branch cut in the integrand is along the positive
real t-axis and the contour CΓ runs in from infinity above
the branch cut, around t ¼ 0, then out to infinity below the
branch cut. The branch cut of the log function is chosen
differently in (20) compared to (21), and we must bear this
in mind when employing the latter. The result for (20)
follows from (21):

−
ffiffiffi
π

p
2

1
2
−ikc

2αe
πω
2αΓ
�
iω
α

�
sinh

�
πω

α

�
x−

iω
α

�
1

Γð3
4
þ ikc

4αÞ

þ 2
ffiffi
i

p
ω

xα
ffiffiffiffiffiffiffi
αkc

p
Γð1

4
þ ikc

4αÞ

�
: ð22Þ

Referring to (B17) and (B20), we see that (22) is a
superposition of the two low-k asymptotic wave compo-
nents on the far right (modes 1 and 4). Solving for the
coefficients in this superposition we find aþ1 and aþ4 in (16):

aþ1 ¼ −
ffiffiffiffi
ω

p
e
πω
2αΓðiωα Þ sinhðπωα Þffiffiffi
2

p
Γð1

2
þ ikc

2αÞ

�
Γ
�
1

4
þ ikc

4α

�

þ 2i

ffiffiffiffiffi
iα
kc

s
Γ
�
3

4
þ ikc

4α

��
; ð23Þ

aþ4 ¼ −
ffiffiffiffi
ω

p
e
πω
2αΓðiωα Þ sinhðπωα Þffiffiffi
2

p
Γð1

2
þ ikc

2αÞ

�
Γ
�
1

4
þ ikc

4α

�

− 2i

ffiffiffiffiffi
iα
kc

s
Γ
�
3

4
þ ikc

4α

��
: ð24Þ

FIG. 5. A portion of the upper plot in Fig. 3, with the contour C0
deformed to wrap around the singularity at k ¼ 0. The integrand
decays exponentially along the positive imaginary axis. For the
portion of the contour shown here, only the part running along
both sides of the branch cut and around the singularity contributes
to the integral for large x.
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Here the expressions have been simplified a little by use of
Legendre’s duplication formula [46] for the gamma func-
tion, which gives

Γ
�
1

2
þ ikc

2α

�
¼ 2−

1
2
þikc

2αffiffiffi
π

p Γ
�
1

4
þ ikc

4α

�
Γ
�
3

4
þ ikc

4α

�
: ð25Þ

This completes the decomposition of the solution
ϕðaÞðxÞ into the asymptotic modes on both sides of the
flow. The content of this solution in terms of mode
scattering can be seen from (14) and (16), together with
the lower ray plot in Fig. 1. The input wave is incident
from the right and is a superposition of the low-k
modes 1 and 4 with different amplitudes (23) and (24)
(see Fig. 1). Mode 1 propagates through the horizon
regions and continues to the left, while mode 4 reverses
its group velocity and is transformed to mode 3, as in
the ray plots in Fig. 1. In addition, there is scattering of
the input modes 1 and 4 into mode 2 on the right. In
fact there is also scattering of input mode 1 into mode 3
on the right and of input mode 4 into mode 1 on the
left, but this will become clearer when we calculate the
scattering coefficients. Note that there is no scattering
into mode 4 on the left. Although both of the incident
modes 1 and 4 from the right scatter into mode 4 on the
left, the weighting of the incident modes in this solution
causes cancellation of the scattering into mode 4 on
the left.
The norm flux of any monochromatic solution is

constant throughout the flow (see Appendix A). It must
therefore be the case that the norm flux of the asymptotic
wave decomposition (14) on the far left of the flow is
equal to that of the decomposition (16) on the far right.
As discussed in Appendix B, the norm flux of the
normalized asymptotic wave components is �1, with a
sign given by the product of the signs of the comoving
frequency and the group velocity. Also, a superposition
of asymptotic wave components has a norm flux which
is the sum of the fluxes of the individual components.
For the solution (14) and (16), constancy of the norm
flux therefore implies

−ja−1 j2 ¼ −jaþ1 j2 þ jaþ2 j2 − jaþ3 j2 þ jaþ4 j2: ð26Þ

One can verify that this relation indeed holds for the
coefficients (15), (17), (18), (23), and (24). The calcu-
lation of the absolute values of the coefficients requires
the gamma-function identities [46]

ΓðzÞΓð−zÞ ¼ −
π

z sinðπzÞ ; ð27Þ

ΓðzÞΓð1 − zÞ ¼ π

sinðπzÞ : ð28Þ

2. Second solution: Branch cut along negative
imaginary k-axis

We now take the branch cut in the integrand to lie along
the negative imaginary k-axis (Fig. 4), with the solution
defined by the contour C00. We denote this solution by
ϕðbÞðxÞ and calculate its two expansions in terms of the
asymptotic wave components, one for x ≪ 0 and one
for x ≫ 0.
For x ≪ 0 we have a stationary-phase contribution to

the integral from the point (12), as in the first solution.
But now there is also a branch-cut contribution
because in deforming the contour C00 into the region
along the negative imaginary axis (where the integrand
decreases exponentially) it gets wrapped around the
singularity at k ¼ 0. This last contribution will give
low-k wave components corresponding to modes 2
and 3 on the far left. The decomposition of ϕðbÞðxÞ
for x ≪ 0 will consequently have three asymptotic wave
components:

ϕðbÞðxÞ ∼x≪0 b−1ϕ
−
1 ðxÞ þ b−2ϕ

−
2 ðxÞ þ b−3ϕ

−
3 ðxÞ: ð29Þ

The calculation of b−1 by the steepest descent method
is almost identical to that of a−1 in the first solution.
The different position of the branch cut in the two
cases means that b−1 differs from a−1 by a simple
factor:

b−1 ¼ e−
2πω
α a−1 : ð30Þ

The branch-cut contribution gives the coefficients b−2
and b−3 , and the calculation here has only minor
differences from that represented in Fig. 5. We again
use the Taylor expansion (19) of the Hermite function
and Hankel’s integral (21). The final results are simply
related to the low-k coefficients (23) and (24) in the
previous solution:

b−2 ¼ −e−πω
α aþ4 ; b−3 ¼ −e−πω

α aþ1 : ð31Þ

For x ≫ 0 there is no branch-cut contribution to the
integral as the part of the contour C00 near k ¼ 0 can be
moved upwards along the positive imaginary axis
where the integrand is exponentially small (see
Fig. 4). There are stationary-phase contributions from
the points (11) and (13), as in the previous solution,
but here the new position of the branch cut in the
integrand gives some minor differences. We obtain an
expansion

ϕðbÞðxÞ ∼x≫0 bþ2 ϕ
þ
2 ðxÞ þ bþ3 ϕ

þ
3 ðxÞ ð32Þ

in which the coefficients bþ2 and bþ3 are simply related
to (17) and (18):
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bþ2 ¼ aþ2 ; bþ3 ¼ e−
2πω
α aþ3 : ð33Þ

The expansions (29) and (32) reveal how the modes
scatter in the solution ϕðbÞðxÞ. Referring to Fig. 1, we see
that the incident wave is a superposition of modes 2 and 3
from the left. Mode 2 propagates through into the right-
hand region and there is also scattering into mode 3 on the
right and mode 1 on the left. Note that there is no mode-4
component on the left even though the incident mode-3
component on the left would normally convert to a blue-
shifted mode-4 wave on the same side. As in the solution
ϕðaÞðxÞ, here the different contributions to mode 4 on the
left exactly cancel.
The constancy of the norm flux for ϕðbÞðxÞ implies the

following relation between the “b” coefficients for the
modes on the left and the right:

−jb−1 j2 þ jb−2 j2 − jb−3 j2 ¼ jbþ2 j2 − jbþ3 j2: ð34Þ

The coefficients (30), (31), and (33) indeed satisfy this
relation.

B. Two solutions with 1F1ða; b; zÞ in their
integral representations

We now take c1 ¼ 0 and c2 ¼ 1 in (8), so that the
integrand in (5) contains the confluent hypergeometric
function 1F1ða; b; zÞ. This integrand is plotted in the
complex k-plane in Figs. 6 and 7, with the branch cut
running along the positive or negative imaginary axis,
respectively. A solution of (2) is obtained for each choice of
branch cut and corresponding contourC0 orC00. We proceed
to find the expansions of these two solutions in terms of the
asymptotic waves. The derivation follows exactly the steps
described above when the integrand contained the Hermite
function.
Figures 6 and 7 indicate that there are points of stationary

phase on the real k-axis, but only for parts of the integrand.
In the region near the positive real k-axis, the integrand
appears to be the sum of a part with a stationary-phase point
and a part with no extrema of the phase, and similarly for
the region near the negative real k-axis. These stationary-
phase features in the plots are present for both positive and
negative x and they move out along the real k-axis as jxj
increases. We confirm this picture by looking at the
asymptotic expansion of the hypergeometric function in
(8) for k ≫ 0 and k ≪ 0. We refer to [42] for asymptotic
expansions of the hypergeometric function for large var-
iable. In our case the form ik2=ðαkcÞ of the variable means
there is an asymptotic expansion that is valid for both
k ≫ 0 and k ≪ 0, which to leading order is

FIG. 6. The integrand in (5) plotted in the complex k-plane,
with c1 ¼ 0 and c2 ¼ 1 in (8). Color indicates the phase while
brightness indicates the absolute value (brighter is bigger). The
branch cut is placed along the positive imaginary axis. Parameter
values are ω ¼ 1, α ¼ 1=2 and kc ¼ 5. The top plot is for x ¼ 4,
the bottom for x ¼ −4. With C0 as the contour in (5) this defines
an exact solution of (2).

FIG. 7. The same as Fig. 6, but with the branch cut along the
negative imaginary axis and a different contour C00. This defines
another independent solution of (2).
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1F1

�
1

4
þ ikc

4α
;
1

2
;
ik2

αkc

�
∼

ffiffiffiffiffi
iπ

p
e−

πkc
4α

Γð1
4
− ikc

4αÞ

�
ik2

αkc

�−1
4
−ikc

4α þ
ffiffiffi
π

p

Γð1
4
þ ikc

4αÞ

�
ik2

αkc

�−1
4
þikc

4α

exp

�
ik2

αkc

�
;

−
π

2
< argðkÞ < π

2
or

π

2
< argðkÞ < 3π

2
: ð35Þ

The two terms in the expansion (35) give terms with
different phase factors in the integrand in (5) [we take
just the hypergeometric-function term in (8)]. The first
term in the resulting integrand has a phase factor
exp ½ikx − ik2=ð2αkcÞ�, which has a point of stationary
phase at

k ¼ αkcx: ð36Þ

As (35) is valid for both k ≫ 0 and k ≪ 0, the first term in
the integrand thus has a stationary-phase point (36) on the
positive real k-axis for x ≫ 0 and on the negative real
k-axis for x ≪ 0. The second term in (35) gives a
term in the integrand in (5) with a phase factor
exp ½ikxþ ik2=ð2αkcÞ� and a point of stationary phase at

k ¼ −αkcx: ð37Þ

The second term in the integrand thus has a stationary-
phase point (37) on the negative real k-axis for x ≫ 0 and
on the positive real k-axis for x ≪ 0. These results confirm
what is already apparent from the plots in Figs. 6 and 7.
The asymptotics (35) is not valid on the imaginary

k-axis, and we have not given an expansion of the
hypergeometric function valid in this region of the complex
k-plane. We do not include it here because it does not give
any points of stationary phase for terms in the integrand
in (5).
The stationary-phase points (36) and (37) lie on both

contoursC0 andC00 and give contributions to the asymptotic
expansions of the integral (5) for large jxj. These contri-
butions are calculated by the method of steepest descent.
There may also be a branch-cut contribution, which is
evaluated as above for the solutions generated by the
Hermite function.

1. First solution: Branch cut along positive
imaginary k-axis

With the branch cut in the integrand chosen to lie along
the positive imaginary k-axis (Fig. 6) the solution is defined
by the contour C0. We denote this solution by ϕðcÞðxÞ and
find its expansions in terms of the asymptotic waves for
x ≪ 0 and for x ≫ 0.
For x ≪ 0 there are stationary-phase contributions

from the points (36) and (37), which give asymptotic
waves corresponding to modes 1 and 4, respectively. There
is no branch-cut contribution and so the expansion is

ϕðcÞðxÞ ∼x≪0 c−1ϕ
−
1 ðxÞ þ c−4ϕ

−
4 ðxÞ: ð38Þ

The steepest descent method gives the coefficients c−1
and c−4 :

c−1 ¼ −
2πð−1Þ78eπω

α −
πkc
8α αðαkcÞiωα−

ikc
4α−

1
4

Γð1
4
− ikc

4αÞ
; ð39Þ

c−4 ¼ −
2πð−1Þ18e−πkc

8α αðαkcÞiωαþ
ikc
4α−

1
4

Γð1
4
þ ikc

4αÞ
: ð40Þ

For x ≫ 0, the solution ϕðcÞðxÞ has contributions from all
four asymptotic wave components:

ϕðcÞðxÞ ∼x≫0 cþ1 ϕ
þ
1 ðxÞ þ cþ2 ϕ

þ
2 ðxÞ þ cþ3 ϕ

þ
3 ðxÞ þ cþ4 ϕ

þ
4 ðxÞ:
ð41Þ

The two stationary-phase points (36) and (37) give rise to
the mode-2 and mode-3 waves on the far right, with
coefficients

cþ2 ¼ −
2πð−1Þ78e−πkc

8α αðαkcÞiωα−
ikc
4α−

1
4

Γð1
4
− ikc

4αÞ
; ð42Þ

cþ3 ¼ −
2πð−1Þ18eπω

α −
πkc
8α αðαkcÞiωαþ

ikc
4α−

1
4

Γð1
4
þ ikc

4αÞ
: ð43Þ

There is also a branch-cut contribution, which gives the
low-k asymptotic wave components on the right (modes 1
and 4). The relevant contour is as in Fig. 5, but here the
integrand is different. As before, we only require the
integrand in the region near k ¼ 0 in order to evaluate
the branch-cut contribution. We employ the Taylor expan-
sion of the hypergeometric function around k ¼ 0:

1F1

�
1

4
þ ikc

4α
;
1

2
;
ik2

αkc

�
¼ 1 −

ðkc − iαÞk2
2α2kc

þOðk4Þ: ð44Þ

As previously, we make the substitution k ¼ is=x in the
resulting integral and expand the integrand to find the first
two leading-order terms for large x. This gives the integral

Z
ds

�
is
x

�iω
α

e−s
�
1

s
þ s
2x2α2

�
; ð45Þ
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where the branch cut in the integrand runs along the
positive real s-axis and the contour runs in from infinity
above the branch cut, around s ¼ 0, then out to infinity
below the branch cut. Evaluation of (45) using Hankel’s
integral (21) produces

−2eπω
2αΓ
�
iω
α

�
sinh

�
πω

α

�
x−

iω
α

�
1þ iωðαþ iωÞ

2x2α4

�
: ð46Þ

This is a superposition of the two low-k asymptotic wave
components (B17) and (B20), but note that (46) does not
have a term falling off as 1=x, whereas both (B17) and
(B20) contain such a term. It must therefore be the case
that (46) is an equal superposition of (B17) and (B20), so
that the terms containing x−iω=α−1 cancel out. This would
require the ratio of the two terms in (46) to be equal to the
ratio of the first and third terms in (B17) and (B20), as is
indeed the case. Solving for the coefficients cþ1 and cþ4 in
the superposition we obtain

cþ1 ¼ cþ4 ¼ −
ffiffiffiffiffiffi
2ω

p
e
πω
2αΓ
�
iω
α

�
sinh

�
πω

α

�
: ð47Þ

The expansions (38) and (41), together with (47), show
that the solution ϕðcÞðxÞ is an incident wave from the right
that is an equal superposition of modes 1 and 4 (see Fig. 1).
These incident modes scatter into all outgoing modes on the
left and right. The “c” coefficients obey the relation that
follows from constancy of the norm flux:

−jc−1 j2 þ jc−4 j2 ¼ −jcþ1 j2 þ jcþ2 j2 − jcþ3 j2 þ jcþ4 j2: ð48Þ

2. Second solution: Branch cut along
negative imaginary k-axis

For the second solution generated by the hypergeometric
function, we take the branch cut in the integrand to lie
along the negative imaginary k-axis (Fig. 7). The solution is
defined by the contour C00 and we denote it by ϕðdÞðxÞ.
The calculation of the expansions of the solution in terms of
the asymptotic wave components has by now been well
rehearsed and here we quote the results.
For x ≪ 0 the expansion contains all four asymptotic

wave components:

ϕðdÞðxÞ ∼x≪0 d−1ϕ
−
1 ðxÞ þ d−2ϕ

−
2 ðxÞ þ d−3ϕ

−
3 ðxÞ þ d−4ϕ

−
4 ðxÞ;
ð49Þ

where the coefficients are given by

d−1 ¼ e−
2πω
α c−1 ; d−2 ¼ d−3 ¼ −e−πω

α cþ1 ; d−4 ¼ c−4 :

ð50Þ

For x ≫ 0 the expansion has two wave components, for
modes 2 and 3:

ϕðdÞðxÞ ∼x≫0 dþ2 ϕ
þ
2 ðxÞ þ dþ3 ϕ

þ
3 ðxÞ; ð51Þ

with coefficients

dþ2 ¼ cþ2 ; dþ3 ¼ e−
2πω
α cþ3 : ð52Þ

The “d” coefficients obey the norm-flux constancy condition

−jd−1 j2 þ jd−2 j2 − jd−3 j2 þ jd−4 j2 ¼ jdþ2 j2 − jdþ3 j2: ð53Þ

The solution ϕðdÞðxÞ is an incident wave from the left
that is an equal superposition of modes 2 and 3 (see Fig. 1).
The incident wave is scattered into all outgoing modes on
the left and right.

V. SCATTERING COEFFICIENTS

The four independent solutions derived in the previous
section contain all the information about scattering in the
flow. To compute the scattering coefficients however, it is
convenient to have solutions that contain just one incident
mode. These are straightforwardly obtained by superposing
our four solutions in an appropriate manner.

A. Scattering of mode 2 incident from the left

We first construct a solution that corresponds to mode 2
incident from the left (see Fig. 8). In this solution the
asymptotic wave components on the far left do not include
mode 3, and on the far right there are no asymptotic waves
for modes 1 and 4. We also choose the mode-2 component
on the left to be normalized so that it is exactly (B22). Two
of our four solutions have a wave incident from the left
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FIG. 8. Heuristic ray picture for the wave solution (54), whose
only incident asymptotic wave component is the normalized
mode-2 wave (B22) on the left. The incident wave scatters into all
outgoing modes, some of which have negative norm (modes 3
and 4) and some propagate to the left relative to the fluid (modes
1 and 4). As in Fig 1, the flow corresponds to a white-hole binary.
Reversing t (i.e. reading the plot top to bottom) corresponds to a
black-hole binary, in which several modes in the past combine to
give an outgoing low-k mode 2 on the left.
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only, namely ϕðbÞðxÞ and ϕðdÞðxÞ. We superpose these
solutions so that on the far left the incident mode-3
component is removed and the mode-2 component is
normalized. From (29) and (49) the required wave is

ϕ2inðxÞ ¼ d−3ϕ
ðbÞðxÞ − b−3ϕ

ðdÞðxÞ
d−3 b

−
2 − b−3 d

−
2

: ð54Þ

A qualitative picture of the solution (54) is given in
Fig. 8. The incident mode 2 is right-moving relative to
the fluid and has positive norm. This incident mode
propagates through to the right where it scatters into
mode 3, which is also a right mover but has negative
norm. As a result of the scattering, the outgoing mode 2
on the right has been amplified (otherwise norm would
not be conserved). This part of the scattering process
occurs even in the limit of no dispersion, where it
corresponds exactly to the Hawking effect at an event
horizon. Because of dispersion there is also reflection of
mode 2 into modes which are left moving relative to the

fluid (modes 1 and 4 on the left). Moreover the reflection
also involves further scattering into a negative-norm mode,
namely mode 4 on the left, and therefore additional
amplification of positive-norm components.
The scattering coefficients for this process are just the

coefficients of the asymptotic wave components of (54)
on the far left and far right. These are easily obtained
from (29), (32), (49), (51) and (54). We denote the
coefficient for scattering of incident mode 2 into outgoing
mode n by Sn;2, so that the expansions of (54) into
asymptotic waves read

ϕ2inðxÞ ∼x≪0
ϕ−
2 ðxÞ þ S1;2ϕ−

1 ðxÞ þ S4;2ϕ−
4 ðxÞ; ð55Þ

ϕ2inðxÞ ∼x≫0 S2;2ϕ
þ
2 ðxÞ þ S3;2ϕ

þ
3 ðxÞ: ð56Þ

The most important information is given by the absolute
values of the scattering coefficients. In computing jSn;2j2
we make use of the identities (27) and (28) to obtain

jS1;2j2 ¼ ðe2πω
α − 1Þ−1

�
−
1

2
þ e−

πkc
4α

�
π
ffiffiffiffiffi
kc

p
4
ffiffiffi
α

p
����Γ
�
3

4
þ ikc

4α

�����−2 þ π
ffiffiffi
α

pffiffiffiffiffi
kc

p
����Γ
�
1

4
þ ikc

4α

�����−2
��

; ð57Þ

jS2;2j2 ¼ ð1 − e−
2πω
α Þ−1

�
1

2
þ e−

πkc
4α

�
π
ffiffiffiffiffi
kc

p
4
ffiffiffi
α

p
����Γ
�
3

4
þ ikc

4α

�����−2 þ π
ffiffiffi
α

pffiffiffiffiffi
kc

p
����Γ
�
1

4
þ ikc

4α

�����−2
��

; ð58Þ

jS3;2j2 ¼ ðe2πω
α − 1Þ−1

�
1

2
þ e−

πkc
4α

�
π
ffiffiffiffiffi
kc

p
4
ffiffiffi
α

p
����Γ
�
3

4
þ ikc

4α

�����−2 þ π
ffiffiffi
α

pffiffiffiffiffi
kc

p
����Γ
�
1

4
þ ikc

4α

�����−2
��

; ð59Þ

jS4;2j2 ¼ ð1 − e−
2πω
α Þ−1

�
−
1

2
þ e−

πkc
4α

�
π
ffiffiffiffiffi
kc

p
4
ffiffiffi
α

p
����Γ
�
3

4
þ ikc

4α

�����−2 þ π
ffiffiffi
α

pffiffiffiffiffi
kc

p
����Γ
�
1

4
þ ikc

4α

�����−2
��

: ð60Þ

These are exact amplitudes of scattering coefficients for
the linear flow profile. They were previously obtained by
Busch and Parentani [39] by a different approach as part of
a study of dispersive fields in de Sitter space. We refer to
[39] for the application of these results to cosmological
particle creation and black-hole thermodynamics when
Lorentz invariance is broken.
Similarly to the four wave solutions in the previous

section, (55) and (56) imply that jSn;2j2 are (up to a sign)
equal to the norm fluxes of the outgoing modes. Constancy
of the norm flux explains the following identity:

1 − jS1;2j2 þ jS4;2j2 ¼ jS2;2j2 − jS3;2j2: ð61Þ

The scattering amplitudes (57)–(60) demonstrate the
importance of dispersion in laboratory analogues of event
horizons. Note the following simple relation that is clear
from (57)–(60):

jS3;2j
jS2;2j

¼ jS1;2j
jS4;2j

¼ e−
πω
α : ð62Þ

The first ratio in (62) has the same value as in the
nondispersive case (see below) but dispersion leads to
nonzero values for S1;2 and S4;2 whose ratio matches
that of S3;2 and S2;2. An interesting question is
whether the elementary relation (62) is a property
of the linear flow profile with arbitrary anomalous
dispersion, but our results allow no conclusions on
this point.
The nondispersive result for the scattering amplitudes

is very simple and was first derived by Hawking [4]. To
extract the nondispersive case from (57)–(60) we can
employ asymptotic expansions of the gamma functions
for large kc. The following complete asymptotic
expansion for large z will allow us to take the required
limit [46]:
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ln ½Γðaþ zÞ� ∼
�
aþ z −

1

2

�
ln z − zþ 1

2
lnð2πÞ

þ
X∞
n¼1

ð−1Þnþ1Bnþ1ðaÞ
nðnþ 1Þzn ; ð63Þ

where BnðzÞ are the Bernoulli polynomials. Employing
this expansion in (57)–(60) we can compute the leading-
order scattering amplitudes as kc → ∞:

jS1;2j2 ∼ ðe2πω
α − 1Þ−1 α4

64k4c

�
1þ 5α2

k2c

�
; ð64Þ

jS2;2j2 ∼ ð1 − e−
2πω
α Þ−1

�
1þ α4

64k4c

�
1þ 5α2

k2c

��
; ð65Þ

jS3;2j2 ∼ ðe2πω
α − 1Þ−1

�
1þ α4

64k4c

�
1þ 5α2

k2c

��
; ð66Þ

jS4;2j2 ∼ ð1 − e−
2πω
α Þ−1 α4

64k4c

�
1þ 5α2

k2c

�
: ð67Þ

These expansions should be treated with caution. The
appearance of exponentials containing �kc=α in the
asymptotic expansions of the gamma functions in
(57)–(60) means it is not possible to develop complete
asymptotic expansions of the scattering amplitudes in
powers of α=kc. For kc → ∞, we obtain from (64)–(67)
the Hawking result

jS1;2j2 ¼ jS4;2j2 ¼ 0; ð68Þ

jS2;2j2 ¼ ð1 − e−
2πω
α Þ−1; jS3;2j2 ¼ ðe2πω

α − 1Þ−1; ð69Þ

in which there is no scattering of the incident mode into
modes left moving relative to the fluid. The squared
amplitude jS3;2j2 in (69) for scattering into the right-
moving negative-norm mode has the form of the Planck
distribution.
The frequency dependence of the scattering amplitudes

(57)–(60) factors out neatly from the dependence on
dispersion, the latter being a function of kc=α. This
factorization may be unique to the linear flow profile. In
heuristic terms, each frequency in the linear profile expe-
riences the same profile shape in the region around a
blocking point (where the group velocity changes sign),
even though the blocking point is at a different position in
the flow for each frequency. For a curving flow profile each
frequency will experience a different flow shape near a
blocking point and the dependence of the scattering
coefficients on frequency, profile shape and dispersion will
be very complicated [3,21–27].
The fact that classical waves in the flow experience

scattering into modes of opposite norm implies sponta-
neous emission in the quantum theory, provided an

appropriate quantum description exists. The derivation of
quantum emission from classical scattering into negative-
norm modes is well described elsewhere [3,5,19] and is
not repeated here. Recall that we chose the sign of t so that
the flow corresponds to a white-hole binary, whereas a
black-hole binary is obtained by t → −t. For the black-hole
binary, the scattering of mode 2 given by the solution (54)
occurs backward in time, so that time runs from the top to
the bottom in Fig. 8. In this case the positive-norm mode 2
on the left contains negative-norm components in the past.
As a consequence, the annihilation operator for mode-2
quanta is a sum of annihilation and creation operators for
modes in the past. If all modes were in their ground state in
the past then mode 2 will now contain quanta and there will
be emission of low-k waves to the left (see Fig. 8, reading
top to bottom). The expectation value for the number of
quanta in mode 2 is jS3;2j2 þ jS4;2j2, and is thus determined
by the scattering into negative-norm modes. In the dis-
persionless case this gives the familiar thermal spectrum of
quanta, as is seen from (68) and (69). When dispersion is
included the spectrum is obtained from (59) and (60) and is
no longer thermal.
Note that jS4;2j2 does not go to zero at large frequencies,

but rather approaches a value given by the quantity in
square brackets in (60). This means the result for quantum
emission does not vanish at large frequency, in contrast to
the dispersionless case. But we cannot of course employ the
model assumed here at arbitrarily high frequencies. The
missing ingredient is dissipation. When waves propagate in
any medium there is a limit to the size of the wavelength
that can be supported and one manifestation of this is the
loss of energy from the wave into the medium. This is very
clear in the case of water waves where it is readily observed
how dissipation increases as the wavelength decreases into
the capillary-wave regime. The influence of dissipation on
the Hawking effect has been explored in [47,48].

B. Scattering of mode 3 incident from the left

We now construct a solution that corresponds to mode
3 incident from the left (see Fig. 9). Here the asymptotic
wave components on the far left do not include mode 2,
and on the far right there are no asymptotic waves for
modes 1 and 4. The mode-3 component on the left is
normalized to be exactly (B23). This solution is given by
a superposition of ϕðbÞðxÞ and ϕðdÞðxÞ that removes the
mode-2 wave on the left and normalizes the mode-3
component on the left. From (29) and (49) we find the
required wave:

ϕ3inðxÞ ¼ d−2ϕ
ðbÞðxÞ − b−2ϕ

ðdÞðxÞ
d−2 b

−
3 − b−2 d

−
3

: ð70Þ

The incident mode-3 wave on the left is left moving
relative to the fluid and has negative norm. It is scattered
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into all four outgoing modes, including those right moving
relative to the fluid (modes 2 and 3 on the right). The
outgoing mode 1 on the left and mode 2 on the right have
positive norm, so conservation of norm again implies
amplification of the incident wave. We denote the coef-
ficient for scattering of the incident mode 3 into outgoing
mode n by Sn;3, The expansions of (70) into asymptotic
waves then take the form

ϕ3inðxÞ ∼x≪0
ϕ−
3 ðxÞ þ S1;3ϕ−

1 ðxÞ þ S4;3ϕ−
4 ðxÞ; ð71Þ

ϕ3inðxÞ ∼x≫0 S2;3ϕ
þ
2 ðxÞ þ S3;3ϕ

þ
3 ðxÞ; ð72Þ

with scattering coefficients that follow from (29), (32),
(49), (51) and (70). We calculate the absolute values of the
scattering coefficients and find expressions that already
appear in (57)–(60):

jS1;3j2 ¼ jS3;2j2; jS2;3j2 ¼ jS4;2j2; ð73Þ

jS3;3j2 ¼ jS1;2j2; jS4;3j2 ¼ jS2;2j2: ð74Þ

The scattering amplitudes for mode 3 obey the identity that
follows from constancy of the norm flux:

−1 − jS1;3j2 þ jS4;3j2 ¼ jS2;3j2 − jS3;3j2: ð75Þ

There is also a simple relation analogous to (62):

jS1;3j
jS4;3j

¼ jS3;3j
jS2;3j

¼ e−
πω
α : ð76Þ

By means of (64)–(67) we find immediately the leading-
order scattering amplitudes (73) and (74) as kc → ∞. The
scattering amplitudes thus reproduce the nondispersive
Hawking result

jS2;3j2 ¼ jS3;3j2 ¼ 0; ð77Þ

jS4;3j2 ¼ ð1 − e−
2πω
α Þ−1; jS1;3j2 ¼ ðe2πω

α − 1Þ−1; ð78Þ

in which there is no scattering into modes right moving
relative to the fluid and jS1;3j2 has the form of the Planck
distribution.
The scattering of the incident mode 3 into modes with

opposite norm again implies spontaneous emission in the
quantum theory [3,5,19]. In the black-hole binary, the
expectation value for the number of quanta in mode 3
emitted to the left (reading Fig. 9 from top to bottom) is
jS1;3j2 þ jS2;3j2. From (73) we see that this is equal to the
result we obtained for the number of quanta in mode 2
emitted to the left by the black-hole binary. The symmetry
of the problem shows that this is also the number of quanta
in the low-k modes 1 and 4 emitted to the right (see Fig. 1).
There is thus emission of the same nonthermal spectrum of
radiation in all the modes, both left moving and right
moving relative to the fluid.
Our results were derived for the strictly linear flow

profile (4), but our analysis showed that there is no wave
scattering in the far-left and far-right regions of the flow.
The scattering coefficients will therefore be the same for a
flow profile that flattens out far from the horizons, provided
the change in the flow velocity with distance is slow
enough not to induce further scattering.

VI. CONCLUDING REMARKS

We chose the fourth-order wave equation (1) because
it is relatively simple while still being applicable to a
physical system (the flowing BEC). The same equation
with kc → ikc has dispersion that is normal rather than
anomalous, but this gives a fourth-order normal dispersion
relation ωðkÞ that is not monotonic in k in the fluid frame.
A monotonic normal dispersion relation leads to singular
wave propagation in the linear flow profile, as some modes
are infinitely blueshifted as they approach any point where
the flow speed is zero [2]. In reality such modes would be
heavily damped as their wavelengths go to zero. For these
reasons we have not treated the case of normal dispersion in
the linear flow profile.
Our motivation was to obtain an exact solution for the

Hawking effect in the presence of dispersion. The linear
flow profile has two horizons but it can be solved exactly
and the scattering amplitudes (57)–(60) and (73) and (74)
are our final results. They demonstrate in exact formulas
how dispersion changes the Hawking effect in one par-
ticular flow profile.
For the wave equation (1), the new qualitative feature

introduced by the dispersive term is the reflection of waves,
i.e. the scattering of right movers relative to the fluid into
left movers and vice versa. In the absence of dispersion
there is no reflection because Eq. (1) is then exactly the
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FIG. 9. Heuristic ray picture for the wave solution (70), whose
only incident asymptotic wave component is the normalized
mode-3 wave (B23) on the left. The incident wave has negative
norm and scatters into all outgoing modes, some of which have
positive norm (modes 1 and 2) and some propagate to the right
relative to the fluid (modes 2 and 3 on the right).
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1þ 1-dimensional wave equation in curved space-time,
and conformal flatness of the metric tensor leads to a strict
separation of left and right movers. Dispersion causes
coupling between the left and right movers and this is
why reflection occurs in our example. The modification of
the Hawking effect due to dispersion is related to the
amount of refection because the total scattering into all
channels must conserve the norm. The precise relationship
between the various scattering channels will depend on the
flow profile, even when the dispersion is fixed. For more
complicated flow functions vðxÞ than the one considered
here, the scattering coefficients for the wave equation (1)
will also be more complicated, if indeed exact results can
be found.
Instead of trying to solve the wave scattering in a given

flow profile, an alternative possibility is to design profiles
that give a desired scattering. This approach has been
fruitfully pursued in optics and quantum mechanics
[49–56]. An important lesson from this work is that a
breakdown of the geometrical-optics approximation does
not necessarily imply scattering. In fact several infinite
classes of inhomogeneous profiles are known in optics that
have strictly zero scattering, even when the geometrical-
optics approximation is violated arbitrarily badly. If these
techniques can be extended to the wave equation in a
moving medium, then dramatic differences in the spectrum
of spontaneous quantum emission may be achieved by
careful control of the flow profile.
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APPENDIX A: CONSERVED QUANTITIES

An action giving the wave equation (1) can be written in
a general form that allows for arbitrary dispersion [19]:

S ¼
Z Z

dtdx

�
1

2
ð∂tψ

� þ v∂xψ
�Þð∂tψ þ v∂xψÞ

−
1

2
F�ð−i∂xÞψ�Fð−i∂xÞψ

�
; ðA1Þ

Fð−i∂xÞ ¼
X∞
n¼0

ð−1Þnþ1ib2nþ1∂2nþ1
x : ðA2Þ

This gives the wave equation

∂tð∂t þ v∂xÞψ þ ∂xðv∂t þ v2∂xÞψ þ F2ð−i∂xÞψ ¼ 0;

ðA3Þ

with the dispersion relation

ðω − vkÞ2 ¼ F2ðkÞ: ðA4Þ

The general dispersive equation (A3) has spatial derivatives
of ψ of all even orders (terms in the wave equation with
an odd number of derivatives would give dissipation).
The fourth-order equation (1) corresponds to F2ð−i∂xÞ ¼
−∂2

x þ 1
k2c
∂4
x, which gives an Fð−i∂xÞ that is defined by the

power series

FðkÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

k2c

s
¼
X∞
n¼0

�
1
2

n

�
k2nþ1

k2nc
: ðA5Þ

In (A1) we allow ψðx; tÞ to be complex to see better the
quantities conserved by (A3). We derive the conservation
laws for arbitrary dispersion and then specialize to the
fourth-order equation (1).
The action (A1) is invariant under the Uð1Þ trans-

formation ψ → eiθψ and also under time translation [since
vðxÞ is time independent]. The conserved quantities asso-
ciated with these symmetries are the norm and the
pseudoenergy, respectively. To construct the conservation
laws we must apply Noether’s theorem to an action with an
(in general) unbounded number of terms containing deriv-
atives of arbitrarily high order. The method for applying
Noether’s theorem to such actions is described in [57], with
examples from dispersive optics. We refer to [57] for the
technicalities of how to construct the conservation laws and
here quote the results for the norm and pseudoenergy. The
norm density ρNðx; tÞ and norm flux sNðx; tÞ are

ρN ¼ iψ�ð∂tψ þ v∂xψÞ þ c:c:; ðA6Þ

sN ¼ ivψ�ð∂tψ þ v∂xψÞ

þ
X∞
n¼0

X2n
m¼0

ð−1Þnþmb2nþ1½∂m
x Fð−i∂xÞψ �∂2n−m

x ψ�

þ c:c:; ðA7Þ

where c.c. means complex conjugate. It is straightforward
to verify that the norm conservation law

∂tρNðx; tÞ þ ∂xsNðx; tÞ ¼ 0 ðA8Þ

holds for waves satisfying the general dispersive
equation (A3). The pseudoenergy density ρEðx; tÞ and
pseudoenergy flux sEðx; tÞ are

ρE ¼ 1

2
ð∂tψ

�∂tψ − v2∂xψ
�∂xψÞ

þ 1

2
F�ð−i∂xÞψ�Fð−i∂xÞψ ; ðA9Þ
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sE ¼ 1

2
v∂tψ

�ð∂tψ þ v∂xψÞ

−
i
2

X∞
n¼0

X2n
m¼0

ð−1Þnþmb2nþ1½∂m
x Fð−i∂xÞψ �∂2n−m

x ∂tψ
�

þ c:c: ðA10Þ

These also obey the conservation law of form (A8), because
of (A3).
For monochromatic waves ψðx; tÞ ¼ e−iωtϕðxÞ, the den-

sities (A6) and (A9), and fluxes (A7) and (A10), are clearly
time independent. The conservation law (A8) thus gives for
monochromatic waves

∂xsN ¼ 0; ðA11Þ

so that the flux is the same at each point in the inhomo-
geneous flow. This constant-flux condition is of great
importance in analyzing wave propagation in the fluid.
The fourth-order wave equation (1) corresponds to F given
by (A5), and in this case the norm flux (A7) reduces to a
finite number of terms:

sNðx; tÞ ¼ ivψ�ð∂tψ þ v∂xψÞ − iψ�∂xψ

þ ik−2c ðψ�∂3
xψ − ∂xψ

�∂2
xψÞ þ c:c: ðA12Þ

The constancy of this flux for monochromatic waves will
be referred to throughout.

APPENDIX B: ASYMPTOTICS OF THE
WAVE EQUATION

The main aim here is to understand the wave equation (1)
in the asymptotic regions jxj → ∞ of the linear flow profile.
We show that waves in the linear profile must reduce, as
jxj → ∞, to noninteracting wave components associated
with the dispersion relation. The norm flux (A12) for these
wave components is then calculated.
The issue addressed here could be phrased as that of

finding the WKB solutions of the wave equation in the
flow. But it is worth pointing out some significant
differences between asymptotic solutions for sound in a
flowing fluid and the familiar WKB solutions in optics and
quantum mechanics. For the Helmholtz equation (equiv-
alently the time-independent Schrödinger equation) in an
inhomogeneous medium, there is a simple criterion for the
WKB solutions to be good approximations, namely that the
fractional change in the refractive index must be very small
over a local wavelength. This criterion is clearly satisfied
as jxj → ∞ if the permittivity profile approaches constant
values. But the Helmholtz equation has the property that the
WKB criterion is satisfied for large jxj even for profiles that
diverge as jxj → ∞, because the local wavelength goes to
zero. This means that general WKB solutions can be
written which are functionals of an arbitrary permittivity

profile and these will always be valid as jxj → ∞. The wave
equation for sound in a moving fluid shows important
differences. One can compute leading-order asymptotic
solutions in this case also, but the criterion for their validity
is not very simple. For all flow profiles with regions where
v0ðxÞ is very small, leading-order asymptotic solutions that
are accurate in these regions can be derived as functionals
of vðxÞ. These functionals, however, do not give the
leading-order asymptotic solutions for the linear profile
in the regions jxj → ∞. This is because v0ðxÞ stays constant
as jxj → ∞ for the linear profile while the wavelengths of
some roots of the dispersion relation get larger.
For completeness, we first give the leading-order asymp-

totic solutions valid in any regions where v0ðxÞ is “small”
and allowing for arbitrary dispersion. Then we treat the
leading-order asymptotic solutions of (1) for the linear
profile (4), in the regions jxj → ∞.

1. Asymptotics in regions of slowly
varying flow velocity

The wave equation (A3) in the case of arbitrary
dispersion gives the monochromatic equation

½ω2 þ iωv0 þ 2vðiω − v0Þ∂x − v2∂2
x − F2ð−i∂xÞ�ϕ ¼ 0:

ðB1Þ

Following a standard approach to the WKB approximation
in quantummechanics [58], we substitute ϕðxÞ ¼ eiχðxÞ and
arrange (B1) as

ðω − vχ0Þ2 − F2ðχ0Þ ¼ −iωv0 þ 2ivv0χ0 þ iv2χ00

þ e−iχ ½F2ð−i∂xÞ − F2ðχ0Þ�eiχ :
ðB2Þ

In regions where v0, and therefore χ0, are nearly constant,
terms on the right-hand side of (B2) are small compared to
terms on the left-hand side. We therefore iterate (B2) as
follows. To lowest order the solution of (B2) is χ00,
satisfying

ðω − vχ00Þ2 − F2ðχ00Þ ¼ 0; ðB3Þ

i.e. the branches of the dispersion relation (A4). The lowest
order correction χ01 to χ

0
0 is found by inserting χ

0 ¼ χ00 þ χ01
into (B2), applying (B3), and keeping only terms linear in
small quantities of the same order as χ01, i.e. χ

00
0 , χ

0
1 and v0.

This gives

− 2ðω − vχ00Þvχ01 − 2Fðχ00ÞF0ðχ00Þχ01
¼ −iωv0 þ 2ivv0χ00 þ iv2χ000 − i

d
dx

½Fðχ00ÞF0ðχ00Þ�;
ðB4Þ
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which yields the following solution for χ01:

χ01 ¼
i
2

d
dx

ln jðω − vχ00Þvþ Fðχ00ÞF0ðχ00Þj

¼ i
2

d
dx

ln jFðχ00ÞVgðχ00Þj: ðB5Þ

The last expression contains Vgðχ00Þ, the group velocity in
the laboratory frame of the mode given by the root χ00 of the
dispersion relation (B3), i.e.

VgðkÞ ¼ v� F0ðkÞ; ðB6Þ

where the sign depends on the branch k. The solution for
ϕðxÞ ¼ eiχðxÞ to order χ01 is thus

ϕðxÞ ∼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijFðχ00ÞVgðχ00Þj

p eiχ0 ; ðB7Þ

where a normalization factor of 1=2 is inserted. This result,
valid for arbitrary dispersion, can also be derived from an
analysis of the wave equation (B1) in k-space [3].
The norm density (A6) and pseudoenergy density (A9)

for the asymptotic solutions (B7) is positive or negative
according to the sign of the comoving frequency ω − vχ00.
Norm and pseudoenergy are transported at the group
velocity of the mode, i.e. sN=ρN ¼ sE=ρE ¼ Vgðχ00Þ.
The norm flux (A7) of the asymptotic solutions (B7) is

equal to �1 (to the same order of approximation). The sign
of the norm flux is given by the product of two signs: the
sign of the norm being transported by the mode (given by
the sign of the comoving frequency) and the sign of the
mode’s group velocity. A superposition of asymptotic
solutions (B7) for different roots χ00 of the dispersion
relation has the important property that its norm flux is
just the sum of the fluxes of the individual components in
the superposition, i.e. all cross terms in (A7) involving
different components cancel out.

2. Asymptotics of the wave equation
in the linear profile

Herewe confine attention to the fourth-order equation (2)
in the linear profile (4), and find its asymptotic solutions in
the regions jxj → ∞.
As noted in Sec. II, the four roots of the dispersion

relation (3) in the linear profile have complicated
expressions, but here we require only their asymptotic
expansions for large jxj. We denote the roots by knðxÞ,
where n labels the ray solutions 1 to 4 discussed in Sec. II.
For large positive x the first few terms of the expansions of
knðxÞ are

k1ðxÞ ∼
ω

αx

�
−1þ 1

αx
−

1

α2x2
þ 2k2c þ ω2

2k2cα3x3

�
; ðB8Þ

k2ðxÞ ∼ αkcx −
kc − 2ω

2αx
−
k2c − 8kcωþ 8ω2

8kcα3x3
; ðB9Þ

k3ðxÞ ∼ −αkcxþ
kc þ 2ω

2αx
þ k2c þ 8kcωþ 8ω2

8kcα3x3
; ðB10Þ

k4ðxÞ ∼
ω

αx

�
−1 −

1

αx
−

1

α2x2
−
2k2c þ ω2

2k2cα3x3

�
: ðB11Þ

The invariance of the dispersion relation under x → −x,
k → −k leads to the following (exact) relations: k1ð−xÞ ¼
−k2ðxÞ, k3ð−xÞ ¼ −k4ðxÞ (this can be seen in the
dispersion plots in Fig. 2). We can thus easily obtain from
(B8)–(B11) the asymptotic expansions of the wave vectors
knðxÞ for large negative x.
We first seek asymptotic solutions to (2) for large

positive x. In view of (B7), we make the Ansatz

ϕþ
n ðxÞ ∼ Aþ

n ðxÞ exp
�
i
Z

x
dxknðxÞ

�
; ðB12Þ

where Aþ
n ðxÞ are unknown amplitude functions for the

modes 1 to 4, and the superscriptþ labels the region (large
positive x) in which the expansion (B12) is to be valid. We
insert (B12) for n ¼ 1;…; 4 into the wave equation (2) and
demand that it be satisfied for x → ∞. For modes 1 and 4
the wave equation is satisfied by (B12) as x → ∞ even
with constant Aþ

1 and Aþ
4 . By demanding that Aþ

1 ðxÞ and
Aþ
4 ðxÞ increase the accuracy of the asymptotic solutions

(B12), so that the wave equation is satisfied to higher
orders of 1=x, we can build up the required amplitudes
Aþ
1 ðxÞ and Aþ

4 ðxÞ as asymptotic series. For modes 2 and 3
we perform the same procedure, but here the wave
equation is not satisfied by (B12) to any order of 1=x
without x-dependent amplitudes Aþ

2 ðxÞ and Aþ
3 ðxÞ. The

amplitudes Aþ
n , to the orders consistent with the accuracy

of the expansions (B8)–(B11), are found to be

Aþ
1 ðxÞ ∼

1ffiffiffiffiffiffi
2ω

p
�
1þ iω3

6k2cα4x3

�
; ðB13Þ

Aþ
2 ðxÞ ∼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kcα3x3

p �
1þ 12kc − 27iα − 32ω

16kcα2x2

�
; ðB14Þ

Aþ
3 ðxÞ ∼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kcα3x3

p �
1þ 12kc þ 27iαþ 32ω

16kcα2x2

�
; ðB15Þ

Aþ
4 ðxÞ ∼

1ffiffiffiffiffiffi
2ω

p
�
1 −

iω3

6k2cα4x3

�
; ðB16Þ

where convenient constant normalization factors have
been included. Using these and (B8)–(B11) in (B12)
we obtain asymptotic solutions for the four modes. We
will only need the leading order of (B12) for modes 2
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and 3, but we require the first three orders for modes 1 and
4, as follows:

ϕþ
1 ðxÞ ∼

x−iω=αffiffiffiffiffiffi
2ω

p
�
1 −

iω
α2x

þ iωðαþ iωÞ
2α4x2

�
; ðB17Þ

ϕþ
2 ðxÞ ∼

x−
3
2
þi2ω−kc

2αffiffiffiffiffiffiffiffiffiffiffiffi
2kcα3

p exp

�
iαkcx2

2

�
; ðB18Þ

ϕþ
3 ðxÞ ∼

x−
3
2
þi2ωþkc

2αffiffiffiffiffiffiffiffiffiffiffiffi
2kcα3

p exp

�
−
iαkcx2

2

�
; ðB19Þ

ϕþ
4 ðxÞ ∼

x−iω=αffiffiffiffiffiffi
2ω

p
�
1þ iω

α2x
þ iωðαþ iωÞ

2α4x2

�
: ðB20Þ

One can show that the amplitudes (B14) and (B15) for
modes 2 and 3 are the same as would be obtained by using
the result (B7) for a slowly varying flow velocity. But the
amplitudes (B13) and (B16) for modes 1 and 4 are not
given correctly by (B7).
The four expressions (B17)–(B20) are also asymptotic

solutions for large negative x, but the identification of each
with one of the four modes is different in the region
x → −∞. It is straightforward to find the corresponding
mode in each case, and the four asymptotic solutions ϕ−

n ðxÞ
for x → −∞ take the form

ϕ−
1 ðxÞ ∼

jxj−1
2
þi2ω−kc

2α

x
ffiffiffiffiffiffiffiffiffiffiffiffi
2kcα3

p exp

�
iαkcx2

2

�
; ðB21Þ

ϕ−
2 ðxÞ ∼

jxj−iω=αffiffiffiffiffiffi
2ω

p
�
1þ iω

α2x
þ iωðαþ iωÞ

2α4x2

�
; ðB22Þ

ϕ−
3 ðxÞ ∼

jxj−iω=αffiffiffiffiffiffi
2ω

p
�
1 −

iω
α2x

þ iωðαþ iωÞ
2α4x2

�
; ðB23Þ

ϕ−
4 ðxÞ ∼

jxj−1
2
þi2ωþkc

2α

x
ffiffiffiffiffiffiffiffiffiffiffiffi
2kcα3

p exp

�
−
iαkcx2

2

�
: ðB24Þ

The norm flux (A7) of each of the asymptotic
solutions (B17)–(B24) is equal to �1, to leading order.
Modes 2 and 4 have norm flux equal to þ1 while
modes 1 and 3 have norm flux of −1. The sign of the
norm flux is the product of the sign of the norm
(positive for modes 1 and 2, negative for modes 3 and
4) and the group velocity (positive for modes 2 and 3,
negative for modes 1 and 4). A superposition of the
asymptotic solutions has a norm flux that is the sum of
the fluxes of the individual mode components, i.e. all
cross terms in (A7) between different modes cancel out,
to leading order.
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