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We study the cosmological implications of interactions between spacetime quanta in the group field
theory (GFT) approach to quantum gravity from a phenomenological perspective. Our work represents a
first step towards understanding early Universe cosmology by studying the dynamics of the emergent
continuum spacetime, as obtained from a fundamentally discrete microscopic theory. In particular, we show
how GFT interactions lead to a recollapse of the Universe while preserving the bounce replacing the initial
singularity, which has already been shown to occur in the free case. It is remarkable that cyclic cosmologies
are thus obtained in this framework without any a priori assumption on the geometry of spatial sections of
the emergent spacetime. Furthermore, we show how interactions make it possible to have an early epoch of
accelerated expansion, which can be made to last for an arbitrarily large number of e-folds, without the
need to introduce an ad hoc potential for the scalar field.
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I. INTRODUCTION

Our current understanding of cosmological data is based
on classical models that rely on the validity of Einstein’s
theory of gravity. However fruitful this approach has been
so far, the basic assumptions on which it relies are clearly
unjustified from a fundamental point of view, and evidence
of their violation is expected to become manifest at the
earliest stages of expansion of our Universe. This is in fact
where the dynamics of spacetime should more appropri-
ately be given in the framework of a quantum gravity theory
and a description of spacetime as a continuum medium
should make way for its understanding as fundamentally
discrete. Of particular relevance in this sense is the status
of the inflationary paradigm. In fact, while its success in
providing an explanation for structure growth and solving
cosmological puzzles is undeniable, its ad hoc underlying
assumptions do not find support in a more fundamental
theory. More specifically, since the onset of inflation is
supposed to take place at Planckian times, the dynamics of
the Universe at this stage should find a more suitable
formulation so as to take quantum gravitational effects into
account. Furthermore, it is conceivable that the quantum
dynamics of the gravitational field itself could effectively
give rise to dynamical features similar to those of infla-
tionary models, without the need to introduce a new
hypothetical field (the inflaton) with an ad hoc potential.
The purpose of this article is to bridge the gap between

the quantum gravity era and the standard classical cosmo-
logical model, following the line of research started in

[1,2]. As in those works, we adopt the group field theory
(GFT) approach to quantum gravity [3] which provides a
formal and complete definition of spin foam models [4],
themselves giving a path integral formulation for loop
quantum gravity (LQG) [5,6]. Furthermore, GFT provides
a second quantized Fock space reformulation of the
kinematical Hilbert space of LQG [7], which also allows
to explore quantum geometries encoded by spin network
states with many nodes. In the GFT approach spacetime
geometry is seen as emerging from the collective behavior
of basic building blocks (also called “quanta of geometry”)
when taking the macroscopic limit. Such quanta represent
the fundamental degrees of freedom of the gravitational
field and can be described as simplices equipped with data
of group theoretical nature. They can be glued together
through their interactions to form simplicial complexes,
which in turn correspond to quantum states of spacetime
geometry. GFT is completely background independent and
general relativity is expected to be recovered dynamically
by taking the macroscopic and continuum limit. The
particular case of a homogeneous and isotropic universe,
which is the one relevant for our applications, can be
obtained by studying the dynamics of an isotropic con-
densate of GFT quanta for a large number of constituents.
Exploiting the structure of the kinematical Hilbert space of
LQG and, in particular, the discreteness of the spectra of the
geometric operators defined thereon [8], the GFT formal-
ism allows for a description of the effective dynamics of the
emergent spacetime by means of classical evolution equa-
tions for the expectation values of geometric observables.
These can be recast in a form that is close to the classical
Friedmann equation.
The object of our study is the effect of interactions

between the fundamental building blocks, as given in the
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microscopic theory, on the dynamics of the emergent
spacetime. It has already been shown in previous works
[1,2] that GFT predicts the occurrence of a bounce that
replaces the initial spacetime singularity bedeviling
classical cosmological models. In this sense, the results
of GFT condensate cosmology are reminiscent of those
found in loop quantum cosmology (LQC), where the
resolution of the initial singularity was shown to be a
robust feature [9,10].
The analysis done in Refs. [1,2], however, did not take

into account the effect played by GFT interactions. These
encode the connectivity of the above mentioned graph
structures; in other words, they are responsible for gluing
the fundamental building blocks. Here we show, under
fairly general assumptions, that the same result holds also
in the interacting case. Furthermore, we show that inter-
actions play a substantial role in determining the ultimate
fate of the Universe and lead to its recollapse. These two
results together imply a cyclic evolution for the Universe. It
is remarkable that this prediction has been obtained without
making any a priori assumptions on the geometry of the
spatial slices of the emergent spacetime.
In previous work by some of the authors [2] it has also

been shown that the bounce is accompanied by an early era
of accelerated expansion. However, here we show that its
duration in the free case is subject to very stringent bounds
and cannot accommodate a reasonably large number of e-
folds. Considering a model with an effective potential
which is reminiscent of multicritical models [11], here we
show that it is possible to achieve an arbitrarily large
number of e-folds by imposing a hierarchy between two
interaction coefficients. At the same time, this allows us to
select a subclass of models that realize such dynamics,
which might give indications to rule out certain models as
candidates for the fundamental microscopic theory. It
should be stressed that the result follows only from
assuming a particular form of the interactions between
basic building blocks. A minimally coupled massless scalar
field is introduced merely for the purpose of defining a
relational clock and by no means must be identified with
the inflaton.
The plan of the paper is as follows. In Sec. II we review

the effective dynamics of GFT condensate and show how
the evolution of macroscopic quantities is extracted from it.
We introduce our model and discuss how a sign ambiguity
in the coefficient of the kinetic term is fixed by means of
phenomenological considerations on the rate of expansion
of the Universe at late (relational) times. In Sec. III we
show how the higher power interaction term induces a
recollapse and we discuss the cyclicity of solutions of the
model. Section IV is divided in two parts. In the first part,
Sec. IVA, we discuss the case of a noninteracting GFT
model and show that it does not support a reasonably large
number of e-folds. Then, in Sec. IV B we show how this is
made possible by considering suitable interactions terms.

In Sec. V, we discuss how the different terms in the GFT
effective potential can be reinterpreted, from the point of
view of an effective Friedmann equation, as sources
corresponding to effective fluids with particular equations
of state. Finally, in Sec. VI, we review the main results of
the article and conclude by discussing possible lines for
future investigations. In the Appendix we show how to
make contact between the relational dynamics employed
here and the standard formulation of FLRW (Friedmann-
Lemaître-Robertson-Walker) cosmology.

II. NONLINEAR DYNAMICS
OF A GFT CONDENSATE

The dynamics of an isotropic GFT condensate can be
described by means of the effective action [1]

S ¼
Z

dϕðAj∂ϕσj2 þ VðσÞÞ: ð1Þ

Here σ is a complex scalar field representing the configu-
ration of the Bose condensate of GFT quanta as a function
of relational time ϕ. The form of the effective potential
VðσÞ can be motivated by means of the microscopic GFT
model, and we require it to be bounded from below. There
is an ambiguity in the choice of the sign of A, which is not
fixed by the microscopic theory and will turn out to be
particularly relevant for the cosmological applications of
the model.1 In particular, it can be used to restrict the class
of microscopic models by selecting only those that are
phenomenologically viable. In fact, as we will show, only
models entailing A < 0 are sensible from a phenomeno-
logical point of view since otherwise one would have faster
than exponential expansion.
The dynamics of macroscopic quantities is obtained by

computing expectation values on the condensate of the
corresponding physical observables in the quantum theory.
Introducing some notation is now in order. We define ρj as
the modulus of the component of the field σ corresponding
to the spin-j representation of SU(2), thus introducing its
polar form

σj ¼ ρjeiθj : ð2Þ
The quantity Vj ∼ l3

pj3=2 represents an elementary volume
determined by the particular SU(2) representation adopted.
Since the volume operator is diagonal in the basis of spin
representations, one has for its expectation value

VðϕÞ ¼
X

j∈N0=2

Vjρ
2
jðϕÞ; ð3Þ

as in Refs. [1,13] where it is shown how geometric
operators in GFT are constructed from their first quantized

1This ambiguity has also been discussed earlier in Ref. [12]
when exploring the possibility to embed LQC in GFT.
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counterpart in LQG [5,8]. The importance of such operators
is paramount since they allow us to give a geometric
interpretation of the solutions of the theory, e.g., in the
condensate phase we consider here. Equation (3) has
important applications to homogeneous and isotropic
cosmologies. Indeed, it makes it possible to study the
evolution of the Universe by means of classical evolution
equations, therefore establishing a link with the dynamics
of classical FLRW models. The evolution of the volume
over (relational) time ϕ is determined from the evolution of
all the ρj’s. Furthermore, it is reasonable to expect that the
condensate field peaks on a particular representation j, in
which case the rhs of Eq. (3) would only consist of one
term. In this case we will omit the index j in ρj and write

VðϕÞ ¼ Vjρ
2ðϕÞ: ð4Þ

Indeed, such a natural assumption is supported by recent
findings in the same setting used here, which explicitly
show that GFT condensates form a low-spin phase of many
quanta of geometry which are almost entirely characterized
by only one spin j (the occupation numbers corresponding
to other representations are strongly suppressed), as shown
in Ref. [14]. Thus, throughout the article we will work
under the assumption that the spin representation j is fixed.
The macroscopic dynamics following from the effective

GFT action can be given in terms of effective Friedmann
equations, giving the relational evolution of the volume
with respect to the scalar field ϕ. Those are obtained by
differentiating Eq. (4),

∂ϕV

V
¼ 2

∂ϕρ

ρ
; ð5Þ

∂2
ϕV

V
¼ 2

�∂2
ϕρ

ρ
þ
�∂ϕρ

ρ

�
2
�
: ð6Þ

Notice that from a macroscopic standpoint Eqs. (5), (6) give
the evolution of the emergent spacetime, with ρ playing
the role of an auxiliary field (the modulus of σ) whose
dynamics is determined by the effective action in Eq. (1).
In this work we consider an effective potential of the

following form:

VðσÞ ¼ BjσðϕÞj2 þ 2

n
wjσjn þ 2

n0
w0jσjn0 ; ð7Þ

where we can assume n0 > nwithout loss of generality. The
terms in the effective potential can be similarly motivated as
in Ref. [1]. The interaction terms appearing in GFT actions
are usually defined in such a way that the perturbative
expansion of the GFT partition function reproduces that of
spin-foam models. Specifically, spin-foam models for 4d
quantum gravity are mostly based on interaction terms of
power 5, called simplicial. In the case that the GFT field is

endowed by a particular tensorial transformation property,
other classes of models can be obtained whose interaction
terms, called tensorial, are based on even powers of the
modulus of the field. In this light, the particular type of
interactions considered here can be understood as mimick-
ing such types of interactions, which is the reason why we
will refer to them as pseudosimplicial and pseudotensorial,
respectively. In the following we will study their phenom-
enological consequences, and show how interesting physi-
cal effects are determined as a result of the interplay
between two interactions of this type. The integer-valued
powers n, n0 in the interactions will be kept unspecified
throughout the article, thus making our analysis retain its
full generality. The particular values motivated by the
above discussion can be retrieved as particular cases. In
the following we will show how different ranges for such
powers lead to phenomenologically interesting features of
the model, most notably concerning an early era of
accelerated expansion in Sec. IV B.
Because VðσÞ has to be bounded from below, we require

w0 > 0. The equation of motion of the field σ obtained from
Eqs. (1), (7) is

−A∂2
ϕσ þ Bσ þ wjσjn−2σ þ w0jσjn0−2σ ¼ 0: ð8Þ

Writing the complex field σ in polar form [as in Eq. (2),
omitting indices] σ ¼ ρeiθ one finds (Ref. [1]) that the
equation of motion for the angular component leads to the
conservation law

∂ϕQ ¼ 0; with Q≡ ρ2∂ϕθ; ð9Þ

while the radial component satisfies a second-order ordi-
nary differential equation (ODE)

∂2
ϕρ −

Q2

ρ3
−
B
A
ρ −

w
A
ρn−1 −

w0

A
ρn

0−1 ¼ 0: ð10Þ

The conserved charge Q is proportional to the momentum
of the scalar field πϕ ¼ ℏQ [1]. One immediately observes
that for large values of ρ the term ρn

0−1 becomes dominant.
In order to ensure that Eq. (10) does not lead to drastic
departures from standard cosmology at late times [Eq. (5)],
the coefficient of such term has to be positive,

μ≡ −
w0

A
> 0; ð11Þ

which implies, since w0 > 0, that one must have A < 0. In
fact, the opposite case μ < 0 would lead to an open
cosmology expanding at a faster than exponential rate,
which relates to a big rip. Thus, considering A < 0,
compatibility with the free case (see Refs. [1,2]) demands
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m2 ≡ B
A
> 0; ð12Þ

which in turn implies B < 0. The sign of w is a priori not
constrained, which leaves a considerable freedom in the
model. Given the signs of the parameters B and w0, the
potential in Eq. (7) can be related to models with sponta-
neous symmetry breaking in statistical mechanics and
quantum field theory. The subleading term in the potential
plays an important role in determining an inflationary-like
era, as shown below in Sec. IV B.
The connection to the theory of critical phenomena is

to be expected from the conjecture that GFT condensates
arise through a phase transition from a nongeometric to a
geometric phase [15], which could be a possible realization
of the geometrogenesis scenario [16]. Despite the lack of a
detailed theory near criticality and the fact that the
occurrence of the aforementioned phase transition is still
a conjecture, there are nonetheless encouraging results
coming from the analysis (both perturbative and non-
perturbative) of the renormalization group (RG) flow,
which shows the existence of IR fixed points in certain
models, see Refs. [17,18]. On this ground we will adopt, as
a working hypothesis, the formation of a condensate as a
result of the phase transition, as in Refs. [1,12,14,19–21].
From Eqs. (11), (12) and defining

λ≡ −
w
A
; ð13Þ

we can rewrite Eq. (10) in the form

∂2
ϕρ −m2ρ −

Q2

ρ3
þ λρn−1 þ μρn

0−1 ¼ 0; ð14Þ

which will be used throughout the rest of this article. The
above equation has the form of the equation of motion of a
classical point particle with potential (see Fig. 1)

UðρÞ ¼ −
1

2
m2ρ2 þ Q2

2ρ2
þ λ

n
ρn þ μ

n0
ρn

0
: ð15Þ

Equation (14) leads to another conserved quantity, E,
defined as

E ¼ 1

2
ð∂ϕρÞ2 þ UðρÞ; ð16Þ

which is referred to as “GFT energy” [1,2]. Its physical
meaning, from a fundamental point of view, is yet to be
clarified.

III. RECOLLAPSING UNIVERSE

Some properties of the solutions of the model and its
consequences for cosmology can already be drawn by
means of a qualitative analysis of the solutions of the

second-order ODE in Eq. (15). In fact, solutions are
confined to the positive half-line ρ > 0, given the infinite
potential barrier at ρ ¼ 0 for Q ≠ 0. Moreover, because
μ > 0, the potential in Eq. (15) approaches infinity as ρ
takes arbitrarily large values. Therefore, provided that we
fix the GFTenergy E at a value which is larger than both the
absolute minimum and that of (possible) local maxima of
the potential UðρÞ, the solutions of Eq. (14) turn out to be
cyclic motions (see Figs. 1 and 2) describing oscillations
around a stable equilibrium point. These, in turn, corre-
spond via Eq. (4) to cyclic solutions for the dynamics of the
Universe Eqs. (5), (6) (see Fig. 3).
It is interesting to compare this result with what is known

in the case where interactions are disregarded [1,2]. In that
case one has that the Universe expands indefinitely and in
the limit ϕ → ∞ its dynamics follows the ordinary
Friedmann equation for a flat Universe, filled with a
massless and minimally coupled scalar field. Therefore,
we see that the given interactions in the GFT model induce
a recollapse of the Universe, corresponding to the turning
point of the motion of ρ, as seen in Fig. 2.
It is well known in the classical theory that such a

recollapse follows as a simple consequence of the closed
topology of three-space. In the GFC framework instead, the
topology of space(time) is not fixed at the outset, but should

0 2 4 6 8 10 12 14

−1000

−500

0

500

ρ

U
( ρ

)

n=4, n'=5, λ=−1, μ=0.1, Q2=10, m2=10

FIG. 1. Plot of the potential UðρÞ [Eq. (15)] for the dynamical
system described by Eq. (14) and a particular choice of
parameters. The three horizontal curves correspond to different
values of the “GFT energy” E, in turn corresponding to different
choices of initial conditions for ρ, ρ0. The corresponding orbits in
phase space are shown in Fig. 2. Recollapse is generic feature of
the model and occurs for any values of the parameters, provided
μ > 0 and Q ≠ 0.
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rather be reconstructed from the behavior of the system in
the macroscopic limit. In other words, the simple con-
densate ansatz used here does not provide any information
about the topology of spatial sections of the emergent
spacetime which, as it is well known, play an important role
in the dynamics of classical cosmological models. Any
topological information must therefore come from addi-
tional input. A possible strategy one could follow is to work
with generalized condensates encoding such information
[13]. Here, instead, we propose that the closedness of the
reconstructed space need not be encoded in the condensate
ansatz as an input, but is rather determined by the dynamics
as a consequence of the GFT interactions. Hence, allowing
only interactions that are compatible with reproducing a
given spatial topology, one may recover the classical
correspondence between closed spatial topology and hav-
ing a finitely expanding Universe.

IV. GEOMETRIC INFLATION

Cosmology obtained from GFT displays a number of
interesting features concerning the initial stage of the
evolution of the Universe, which mark a drastic departure
from the standard FLRW cosmologies. In particular, the
initial big-bang singularity is replaced by a regular bounce
(see Refs. [1,2]), followed by an era of accelerated
expansion [2]. Similar results were also obtained in the
early LQC literature, see, e.g., Refs. [9,22]. However, it is
not obvious a priori that they must hold for GFT as well.
Nonetheless, it is remarkable that these two different
approaches yield qualitatively similar results for the
dynamics of the Universe near the classical singularity,
even though this fact by itself does not necessarily point at a
deeper connection between the two.
In the model considered in this paper, our results have a

purely quantum geometric origin and do not rely on the
assumption of a specific potential for the minimally
coupled scalar field,2 which is taken to be massless and
introduced for the sole purpose of having a relational clock.
This is quite unlike inflation, which instead heavily relies
on the choice of the potential and initial conditions for the
inflaton in order to predict an era of accelerated expansion
with the desired properties.
In this section we investigate under which conditions on

the interaction potential of the GFT model it is possible to
obtain an epoch of accelerated expansion that could last
long enough, so as to account for the minimum number
of e-folds required by standard arguments. The number of
e-folds is given by

0 2 4 6 8 10 12 14
−60

−40

−20

0

20

40

60

ρ

ρ '

FIG. 2. Phase portrait of the dynamical system given by
Eq. (14). Orbits have energy given by the corresponding color
lines as Fig. 1. Orbits are periodic and describe oscillations
around the stable equilibrium point (center fixed point) given by
the absolute minimum of the potential UðρÞ. This is a general
feature of the model which does not depend on the particular
choice of parameters, provided Eq. (11) is satisfied.

FIG. 3. Plot of the volume of the Universe as a function of
relational time ϕ (in arbitrary units), corresponding to the blue
orbit in Fig. 2. As a generic feature of the interacting model the
Universe undergoes a cyclic evolution and its volume has a
positive minimum, corresponding to a bounce.

2This is also the case in LQC, see Ref. [22]. However, the
number of e-folds computed in that framework turns out to be too
small in order to supplant inflation [23].
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N ¼ 1

3
log

�
Vend

Vbounce

�
; ð17Þ

where Vbounce is the volume of the Universe at the bounce
and Vend is its value at the end of the era of accelerated
expansion. A necessary condition for it to be called an
inflationary era is that the number of e-folds must be large
enough, namely, N ≳ 60.
Using Eq. (4) we rewrite Eq. (17) as

N ¼ 2

3
log

�
ρend

ρbounce

�
; ð18Þ

with an obvious understanding of the notation. This
formula is particularly useful since it allows us to derive
the number of e-folds only by looking at the dynamics of ρ.
Since there is no notion of proper time, a sensible

definition of acceleration can only be given in relational
terms. In particular, we seek a definition that agrees with
the standard one given in ordinary cosmology. As in
Ref. [2] we can therefore define the acceleration as

aðρÞ≡ ∂2
ϕV

V
−
5

3

�∂ϕV

V

�
2

: ð19Þ

Hence, from Eqs. (5), (6) one gets the following expression
for the acceleration a as a function of ρ for a generic
potential:

aðρÞ ¼ −
2

ρ2

�
∂ϕUðρÞρþ 14

3
½E − UðρÞ�

�
: ð20Þ

Using Eq. (15) one finally has for our model

aðρÞ ¼ −
2

ρ2

�
14

3
Eþ

�
1 −

14

3n0

�
μρn

0 þ 4m2ρ2

3

þ
�
1 −

14

3n

�
λρn −

10Q2

3ρ2

�
: ð21Þ

Therefore, the sign of the acceleration is opposite to that of
the polynomial

sðρÞ ¼ PðρÞ þ
�
3 −

14

n

�
λρnþ2 þ

�
3 −

14

n0

�
μρn

0þ2; ð22Þ

where we defined

PðρÞ ¼ 4m2ρ4 þ 14Eρ2 − 10Q2: ð23Þ

In the following we will study in detail the properties of
the era of accelerated expansion. The free case will be
discussed in Sec. IVA, whereas the role of interactions in
allowing for an inflationary-like era will be the subject of
Sec. IV B.

A. The noninteracting case

In this case the acceleration is given by

aðρÞ ¼ −
2

3ρ4
PðρÞ: ð24Þ

The bounce occurs when ρ reaches its minimum value, i.e.
when UðρÞ ¼ E, leading to

ρ2bounce ¼
1

m2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þm2Q2

p
− EÞ: ð25Þ

A straightforward calculation shows that aðρbounceÞ > 0 as
expected. The era of accelerated expansion ends when PðρÞ
vanishes, which happens at a point ρ⋆ > ρbounce, which is
given by

ρ⋆ ¼ 1

4m2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49E2 þ 40m2Q2

p
− 7EÞ: ð26Þ

We can then use Eqs. (18), (25), and (26) to determine the
energy E as a function of the number of e-folds N. Reality
of E thus leads to the following bounds on N

1

3
log

�
10

7

�
≤ N ≤

1

3
log

�
7

4

�
; ð27Þ

that is,

0.119≲ N ≲ 0.186: ð28Þ

Such tight bounds, holding for all values of the parameters
m2 and Q2, rule out the free case as a candidate to replace
the standard inflationary scenario in cosmology.

B. The interacting case: The multicritical model

In this subsection we investigate the consequences of
interactions for the evolution of the Universe. In particular,
we show how the interplay between the two interaction
terms in the effective potential [Eq. (7)] makes it possible to
have an early epoch of accelerated expansion, which lasts
as long as in inflationary models. Before studying their
effect, we want to discuss how the occurrence of such
interaction terms could be motivated from the GFT per-
spective. In principle, one could have infinitely many
interaction terms given by some power of the GFT field.
However, only a finite number of them will be of relevance
at a specific scale, as dictated by the behavior of the
fundamental theory under the RG flow.
In a continuum and large-scale limit, new terms in the

action could be generated whereas others might become
irrelevant. In this sense, one might speculate that, e.g., in
addition to the five-valent simplicial interaction term the
effective potential includes another term which becomes
relevant on a larger scale. Ultimately, rigorous RG
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arguments will of course have the decisive word regarding
the possibility of obtaining such terms from the funda-
mental theory. Nevertheless, by studying the phenomeno-
logical features of such potentials and extracting physical
consequences from the corresponding cosmological solu-
tions, we aim at clarifying the map between the funda-
mental microscopic and effective macroscopic dynamics of
the theory. At the same time, our results might help to shed
some light onto the subtle issue of the physical meaning of
such interaction terms.
Hereafter we assume the hierarchy μ ≪ jλj, since

otherwise an inflationary era cannot be easily accommo-
dated. This means that the higher-order term in the
interaction potential VðσÞ becomes relevant only for very
large values of the condensate field σ, hence, of the number
of quanta representing the basic building blocks of
quantum spacetime. Consequently, the dynamics in the
immediate vicinity of the bounce is governed by the
parameters of the free theory and the subleading interaction
term.
To begin with, let us start by fixing the value of the GFT

energy. We require the Universe to have a Planckian
volume at the bounce. Since the volume is given by
Eq. (4), this is done by imposing ρbounce ¼ 1. Such a
condition also fixes the value of the GFT energy to

E ¼ Uðρbounce ¼ 1Þ: ð29Þ

In fact, we demand that ρbounce is the minimal value
of ρ which is compatible with the GFT energy E available
to the system. Hence, we also have the condition
∂ρUðρbounce ¼ 1Þ ≤ 0. Notice that this is trivially satisfied
in the free case. In the interacting case (holding the
hierarchy μ ≪ jλj) one can therefore use it to obtain a
bound on λ,

λ ≤ m2 þQ2: ð30Þ

For our purposes and in order to carry over our analysis in
full generality, it is convenient to introduce the definitions

α≡
�
3 −

14

n

�
λ; ð31Þ

β≡
�
3 −

14

n0

�
μ: ð32Þ

The acceleration Eq. (21) can thus be written as

aðρÞ ¼ −
2

ρ4
½PðρÞ þ αρnþ2 þ βρn

0þ2�: ð33Þ

As pointed out before, a > 0 has to hold at the bounce. The
first thing to be observed is that α < 0 is a necessary
condition in order to have enough e-folds. In fact, if this

were not the case, the bracket in Eq. (33) would have a zero
at a point ρend < ρ⋆ [cf. Eq. (26)], thus leading to a number
of e-folds that is even smaller than the corresponding one in
the free case. Furthermore, it is possible to constrain the
value of μ in a way that leads both to the aforementioned
hierarchy and to the right value forN, which we consider as
fixed at the outset. In order to do so, we solve Eq. (18) with
respect to ρend, having fixed the bounce at ρbounce ¼ 1,

ρend ¼ ρbouncee
3
2
N: ð34Þ

The end of inflation occurs when the polynomial in the
bracket in Eq. (33) has a zero. Since ρend ≫ 1, it is
legitimate to determine this zero by taking into account
only the two highest powers in the polynomial, with respect
to which all of the other terms are negligible. We therefore
have

αρnþ2
end þ βρn

0þ2
end ≈ 0; ð35Þ

which, using Eq. (34), leads to

β ¼ −αe−3
2
Nðn0−nÞ: ð36Þ

The last equation is consistent with the hierarchy μ ≪ jλj
and actually fixes the value of μ once λ, n, n0 and N are
assigned. Furthermore one has β > 0 which, together with
Eqs. (11), (32), implies n0 > 14

3
. Importantly, this means that

n0 ¼ 5 is the lowest possible integer compatible with an
inflationary-like era. This particular value is also interesting
in another respect because in GFT typically only specific
combinatorially nonlocal interactions that are minimally
of such a power allow for an interpretation in terms of
simplicial quantum gravity [3,24].
Our considerations so far leave open the following two

possibilities:
(i) λ < 0 and n ≥ 5 (n0 > n), which in the case of n ¼ 5

could correspond to the just-mentioned simplicial
interaction term and the higher-order n0 term, could
possibly be generated in the continuum and large-
scale limit of the theory and becomes dominant for
very large ρ. For even n0 it mimics so-called tensorial
interactions.

(ii) λ > 0 and 2 < n < 5 (n0 ≥ 5), which for n0 ¼ 5
could allow a connection to simplicial quantum
gravity and would remain dominant for large ρ over
the n term, which in the case n ¼ 4 is reminiscent of
an interaction of tensorial type.

However, this is not yet enough in order to guarantee an
inflationlike era. In fact we have to make sure that there is
no intermediate stage of deceleration occurring between the
bounce at ρb ¼ 1 and ρend, i.e., that aðρÞ stays positive in
the interval between these two points. In other words, we
want to make sure that ρend is the only zero of the
acceleration lying to the right of ρb. In fact, aðρÞ starts
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positive at the bounce and has a minimum when PðρÞ
becomes of the same order of magnitude of the term
containing the power ρnþ2 [see Eq. (33)]. Thus we see that
we have to require that the local minimum of aðρÞ [i.e., the
maximum of the polynomial in brackets in Eq. (33)] is
positive (resp. negative). As ρ increases further, the accel-
eration increases again until it reaches a maximum when
the contribution coming from the term containing ρn

0þ2

becomes of the same order of magnitude of the other terms.
Thereafter the acceleration turns into a decreasing function
all the way until ρ → þ∞ and, therefore, has a unique zero.
Positivity of the local minimum of aðρÞ translates into a
further constraint on parameters space. By direct inspec-
tion, it is possible to see that the latter case listed above
does not satisfy such condition for any value of the
parameters of the model. Therefore we conclude that λ
must be negative if the acceleration is to keep the same sign
throughout the inflationary era. The evolution of the
acceleration as a function of relational time ϕ is shown
in Figs. 4–6 for some specific choices of the parameters. It
is worthwhile stressing that the behavior of the model in the
case λ < 0 is nevertheless generic and therefore does not
rely on the specific choice of parameters. Furthermore, by
adjusting the value of N and the other parameters in
Eq. (36), it is possible to achieve any desirable value of
e-folds during inflation.
Our comments in this section apply to the multicritical

model with the effective potential Eq. (7) but do not hold in
a model with only one interaction term. In fact in that case it
is not possible to prevent the occurrence of an intermediate
era of deceleration between ρb and ρend, the latter giving the

scale at which the higher-order interaction term becomes
relevant.
One last remark is in order: inflation was shown to be a

feature of multicritical GFT models but only at the price of
a fine-tuning in the value of the parameter μ [see Eq. (36)].

V. INTERACTIONS AND THE FINAL FATE
OF THE UNIVERSE

It is possible to recast the dynamical equations for the
volume of the Universe in a form that bears a closer
resemblance to the standard Friedmann equation, as shown
in Ref. [2]. In fact, the Hubble expansion rate can be
expressed as (see the Appendix for more details)

H ¼ 1

3

∂ϕV

V2
πϕ: ð37Þ

From Eq. (5) and the proportionality between the momen-
tum of the scalar field and Q, we have

H2 ¼ 4

9

ℏ2Q2

V2

�∂ϕρ

ρ

�
2

: ð38Þ

FIG. 4. Inflationary era supported by GFT interactions in the
multicritical model. The blue (orange) curve represents the graph
of the logarithm of the acceleration (minus the acceleration) as a
function of the number of e-folds, in the case λ < 0. The plot
refers to the particular choice of parameters n ¼ 5, n0 ¼ 6,
m ¼ 1, Q ¼ 1, and λ ¼ −3. The value of μ is determined from
Eq. (36) by requiring the number of e-folds to be N ¼ 60. There
is a logarithmic singularity at N ≃ 60, marking the end of the
accelerated expansion.

FIG. 5. The behavior of the acceleration close to the bounce.

FIG. 6. The behavior of the acceleration at the end of inflation.
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The term in bracket can thus be interpreted as a dynamical
effective gravitational constant as in Ref. [2]. Alternatively,
using Eqs. (4), (16), and (15), the last equation [Eq. (38)]
becomes (considering the case with only one interaction
term, namely, λ ¼ 0)

H2 ¼ 8ℏ2Q2

9

�
εm
V2

þ εE
V3

þ εQ
V4

þ εμ
V3−n0=2

�
; ð39Þ

where we defined

εE ¼ VjE; ð40Þ

εm ¼ m2

2
; ð41Þ

εQ ¼ −
Q2

2
V2
j ; ð42Þ

εμ ¼ −
μ

n0
V1−n0=2
j : ð43Þ

The exponents of the denominators in Eq. (39) can be
related to the w coefficients in the equation of state p ¼ wε
of some effective fluids, with energy density ε and pressure
p. Each term scales with the volume as ∝ V−ðwþ1Þ.
It is worth pointing out that Eq. (39) makes clearer the

correspondence with the framework of ekpyrotic models,3

where one has the gravitational field coupled to matter
fields with w > 1. Such models have been advocated as a
possible alternative to inflation, see Ref. [25]. We observe
that at early times (i.e., small volumes) the occurrence of
the bounce is determined by the negative sign of εQ, which
is also the term corresponding to the highest w. However,
while this is sufficient to prevent the classical singularity, it
is not enough to guarantee that the minimum number of
e-folds is reached at the end of the accelerated expansion,
as shown in Sec. IVA. In fact, the role of interactions is
crucial in that respect, as our analysis in Sec. IV B
has shown.
In the rest of this section we focus instead on the

consequences of having interactions in the GFT model
for the evolution of the Universe at late times. As we have
already seen in Sec. III, a positive μ entails a recollapsing
Universe. This should also be clear from Eq. (39). In
particular, we notice that the corresponding term in the
equation is an increasing function of the volume for n0 > 6.
This is quite an unusual feature for a cosmological model,
where all energy components (with the exception of the
cosmological constant) are diluted by the expansion of the
Universe. For n0 ¼ 6 one finds instead a cosmological
constant term. It is also possible to have the interactions
reproduce the classical curvature term ∝ κ

V2=3 by choosing

n0 ¼ 14
3
; this is, however, not allowed if one restricts to

integer powers in the interactions [3].
Our analysis shows that only λ < 0 leaves room for an

era of accelerated expansion analogous to that of infla-
tionary models. In order for this to be possible, one must
also have n0 > n ≥ 5. Moreover, if one rules out phantom
energy (i.e., w < −1), there is only one case which is
allowed, namely, n ¼ 5, n0 ¼ 6. Then, during inflation, the
Universe can be described as dominated by a fluid with
equation of state w ¼ − 1

2
. After the end of inflation its

energy content also receives a contribution from a negative
cosmological constant, which eventually leads to a recol-
lapse. It is remarkable that this particular case selects an
interaction term that is in principle compatible with the
simplicial interactions that have been extensively consid-
ered in the GFT approach. However, it must be pointed out
that the realization of the geometric inflation picture also
imposes strong restrictions on the type of interactions one
can consider, as well as on their relative strength.

VI. SUMMARY AND OUTLOOK

We investigated the phenomenological consequences of
interacting GFT models for the dynamics of the early
Universe, which in this framework is seen as emerging
from the collective behavior of “quanta of geometry.” The
dynamical equations for the GFT condensate are classical
and are obtained from an effective action, whose form can
be motivated from the microscopic theory. The dynamics of
the condensate in turn determines a Friedmann-like dynam-
ics for the geometric observables corresponding to classical
dynamical variables.
In this article we considered an effective potential

including two interaction terms besides the quadratic
one, the latter being already present in the free theory.
An ambiguity in the kinetic term, represented by the factor
A, is fixed by requiring the expansion of the Universe to not
be faster than exponential at large volumes. A general
prediction of the model is the occurrence of a recollapse
when the higher-order interaction term becomes codomi-
nant. Results that have already been obtained in the free
theory (Refs. [1,2]) survive in the interacting case, in
particular for what concerns the occurrence of a bounce
and an early epoch of accelerated expansion. The former
result, together with the recollapse induced by interactions,
leads to cyclic cosmologies. A more detailed analysis of the
latter, instead, leads to the conclusion that, in the free case,
the era of accelerated expansion does not last for a number
of e-folds which is at least as large as in inflationary
models. This is instead made possible when suitable
interaction terms are taken into account, as in the multi-
critical model considered here. Indeed, we showed that one
can attain an arbitrary number of e-folds as the Universe
accelerates after the bounce. Furthermore, having an
inflationary-like expansion imposes a restriction on the3We are grateful to Martin Bojowald for this observation.
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class of viable models. In fact, this is possible only for
λ < 0 and 5 ≤ n < n0, and when one has the hierarchy
μ ≪ jλj. Reasonable phenomenological arguments lead us
to select only the case n ¼ 5, n0 ¼ 6 as physical. The two
powers can be related, respectively, to simplicial inter-
actions, commonly considered in the GFT framework, and
to a negative cosmological constant. While the result is
encouraging as a first step towards a quantum geometric
description of the inflationary era, a few remarks are in
order. In fact, it must be pointed out that it comes at the
price of a fine-tuning in the coupling constant of the higher-
order interaction term. From this point of view, it shares one
of the major difficulties of ordinary inflationary models.
Furthermore, an inflationary-like era does not seem to be a
generic property of GFT models, but in fact requires
interactions of a suitable form.
Future work must be devoted to incorporating other

degrees of freedom in the description of the effective
dynamics of the emergent spacetime. In fact, their phe-
nomenological signatures, in particular for what concerns
the seeds for the growth of structures, are crucial in order to
be able to give a definite answer to the problem of finding a
valid alternative to the inflationary paradigm, which might
come from quantum geometry.
Cyclic cosmologies were obtained under fairly general

assumptions on the effective potential, namely, its bound-
edness from below. Furthermore, no input was given about
the geometry of the spatial sections of the reconstructed
spacetime. Given the classical correspondence existing
between a finitely expanding Universe and closed spatial
topology, it is intriguing whether this purely dynamical
result bears any implications on the geometry of the
emergent spacetime. In particular it would be worth
investigating the existence of such a generalized corre-
spondence by extending our analysis and studying, e.g., the
implications of the peculiar combinatorial structure of GFT
interactions for the geometry of the emergent spacetime
and its dynamics. In fact, this further step would be required
in order to properly take into account the effects of
anisotropies.
In this article we considered a model that can in principle

exhibit multicritical behavior, which is reminiscent of
analogous models discussed in statistical field theory to
model systems with a more complex phase structure [11].
Multicriticality has not been considered in the GFT
literature so far. Nevertheless, it would be worth studying
the possible implications of such models from a funda-
mental GFT point of view and relate them to the geo-
metrogenesis scenario.
It is our hope that the interplay between determining

phenomenological constraints, such as those obtained in
this work, and a fundamental approach involving, e.g., RG
arguments, might help to single out the correct microscopic
theory (or even a family of such theories). Further work
must come from both directions in a common effort to

develop an appropriate framework for studying early
Universe cosmology, which correctly takes into account
the quantum dynamics of all the relevant degrees of
freedom of the gravitational field.
We would like to draw the attention of the reader to

another important aspect concerning the interpretation of
the results obtained in this work, with respect to the
physical significance and the role played by the operator
counting the number of nodes in the spin network, whose
expectation value is given by N ¼ P

jρ
2
j. Looking back at

Eq. (3), one sees that in the case in which the system lies
just in one representation with fixed j (as supported by the
findings in Ref. [14]), this quantity is proportional to the
total volume of the universe. It is therefore clear that only
its relative variations are observable, and turn out to be
proportional to the Hubble expansion rate.
As a closing remark, we would like to stress that the GFT

condensate cosmology approach is not the only one that has
been suggested in the literature to extract the cosmological
sector of LQG from a covariant formulation of its
dynamics. In fact, spin foam cosmology (SFC) [26] makes
use of the spin foam expansion [4] and is thus an expansion
in terms of the number of degrees of freedom. Initially,
SFC was studied using the simplest cellular decomposition
of the three-sphere, given by the so-called dipole graph
[27], and was later on extended to more general regular
graphs [28]. Central to this approach is the assumption that
the relevant physics is encoded within a fixed number of
quanta of geometry, whereas in GFT condensate cosmol-
ogy there is no a priori restriction on the number of quanta
which—in principle—can be large. As suggested in
[19,21], a GFT condensate could also be constituted by
means of dipoles or even more complicated building
blocks; it would be important to repeat our analysis
for those and compare the results to the ones obtained
from SFC.

APPENDIX

Here we review how the effective equations that give the
relational evolution of the volume of the Universe, Eqs. (5),
(6), can be recast in a form that is closer to that of ordinary
FLRW models. In fact, in the framework considered in this
article, spacetime is an emergent concept. Hence, there is
no natural notion of proper time and evolution of physical
observables is more appropriately defined in terms of a
matter clock, here represented by a massless scalar which is
minimally coupled to the gravitational field. It is nonethe-
less worth showing the relation that exists between the two
different descriptions in the classical theory, where they are
both well defined; by considering the classical relation
between the velocity of the scalar field ϕ and its canonically
conjugate momentum πϕ,

πϕ ¼ V _ϕ; ðA1Þ
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together with the relation between the proper volume and
the scale factor

V ∝ a3; ðA2Þ

one can express the Hubble expansion rate as

H ¼ _a
a
¼ 1

3

_V
V
¼ 1

3
πϕ

∂ϕV

V2
: ðA3Þ

The last equation is the same as Eq. (37), which leads to the
modified Friedmann equation of Eq. (38). In a similar
fashion, it is also possible to get the Raychaudhuri equation
for the acceleration. In fact, taking two derivatives of
Eq. (A2), one is lead to

ä
a
¼ 1

3

�
V̈
V
−
2

3

�
_V
V

�2�
: ðA4Þ

Furthermore, using Eq. (A1), one finds

_V ¼ ∂ϕV _ϕ ¼ ∂ϕV
πϕ
V

ðA5Þ

and

V̈ ¼
�
πϕ
V

�
2
�
∂2
ϕV −

ð∂ϕVÞ2
V

�
: ðA6Þ

From Eqs. (A3), (A4), and (A6), one has

ä
a
¼ 1

3

�
πϕ
V

�
2
�∂2

ϕV

V
−
5

3

�∂ϕV

V

�
2
�
: ðA7Þ

The last equation justifies the definition of the acceleration
given in Eq. (19).
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