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In Randall-Sundrum models, one typically expects the radion to be the lightest new “gravity”
state, as it is dual to a composite pseudo-Goldstone boson associated with conformal symmetry
breaking in the IR. Here, we investigate the effects of localized brane curvature on the properties of
the radion in Goldberger-Wise stabilized Randall-Sundrum models. We point out that both the radion
mass and coupling to brane matter are sensitive to the brane curvature. Radion/Higgs kinetic mixing,
via an IR-localized nonminimal coupling to the Higgs, is also investigated, in relation to the
ghostlike radion that can occur for Oð10Þ values of the IR curvature (as required to significantly
suppress the first Kaluza-Klein graviton mass). We also discuss a class of IR-localized
terms involving the radion. Basic comments regarding the dual four-dimensional theory are
offered.
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I. INTRODUCTION

The Randall-Sundrum (RS) model provides a natural
means by which to generate hierarchically separated,
radiatively stable mass scales [1]. Accordingly, it has
received much attention as a candidate solution to the
hierarchy problem. The model employs a warped extra
dimension, namely a gravitational background, with
factorizable geometry, that is sourced by a bulk cosmo-
logical constant and nontrivial brane tensions. The use of
localized branes in the five-dimensional (5D) spacetime
explicitly breaks the 5D diffeomorphism symmetry
yet preserves the requisite four-dimensional (4D) sym-
metry. Consequently, the most-general Lagrangian for
the model, consistent with the symmetries, allows local-
ized 4D terms that break the 5D diffeomorphism
symmetry.
Included among the set of such terms are the so-called

“brane curvature" terms, which can be thought of as
localized 4D kinetic terms for the bulk graviton. These
terms have received some attention in the literature [2],
though generally they are assumed subdominant.
Nonetheless, they should appear in the most-general
Lagrangian. Recently, the brane curvature terms received
attention due to their capacity to suppress the lightest
Kaluza-Klein (KK) graviton mass. In particular, it was
shown that large brane curvature [i.e., with an Oð10Þ
dimensionless coefficient] can modify the spectrum of KK
gravitons such that the lightest KK graviton can have an

Oð102Þ GeV mass, while retaining an OðTeVÞ lightest
KK vector [3–5].
In addition to the KK gravitons, the bulk 5D metric gives

rise to a graviscalar fluctuation, known as the radion [6,7].
This field is massless unless the length of the extra
dimension is stabilized. After stabilization, it acquires a
mass that is sensitive to the backreaction of the stabilizing
dynamics. The best-studied method for stabilizing the extra
dimension relies on a bulk scalar that develops a nontrivial
background value to generate a potential for the radion
(as proposed by Goldberger and Wise (GW) [8,9]; also
see Ref. [10]).
The common origin of the radion and KK gravitons, as

fluctuations of the bulk metric, means both are sensitive to
brane curvature terms. Motivated by recent interest in large
brane curvature, in this work, we investigate some effects of
brane curvature terms on the properties of the radion in a
GW-stabilized RS model. We consider the modification to
the radion mass and couplings due to the brane curvature
and further consider the effects of an IR-localized non-
minimal coupling to the Standard Model (SM) Higgs. Our
results generalize a number of the corresponding expres-
sions in Ref. [6] to include the effects of brane curvature.
We find that, in the GW stabilized model, a nonminimal
coupling to the IR Higgs does not allow one to avoid the
ghostlike radion that arises for Oð10Þ values of the IR
curvature. However, motivated by models with localized
Lorentz-invariance violation, we consider additional
IR-localized terms that may help remove the ghostlike
radion.
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Before proceeding, we note that a number of
works recently considered the RS model in relation to
the 750 GeV diphoton excess; see, e.g., Ref. [11].
For additional discussion of the spin-2 explanation, see
Ref. [12]. In our analysis, we consider the RS model with
a UV scale of M� ∼OðMPlÞ. However, the results are
readily adapted to the little RS model [13] and related
warped models [14], for which M� ≪ MPl. For early
discussion regarding localized terms in brane models,
see Refs. [15,16].
The layout of this paper is as follows. In Sec. II, we

describe the setup for our analysis and present some
consequences of the brane curvature terms for the case of a
massless radion (i.e., a nonstabilized RS model). These
results prove useful for subsequent analysis. We explore
the radion coupling to brane-localized matter in Sec. III
and turn to the more-general case of GW stabilized RS
models in Sec. IV. The effects of a nonminimal coupling
with an IR-localized SM Higgs are studied in Sec. V, and
additional IR-localized terms for the radion are considered
in Sec. VI. Comments regarding the interpretation in the
dual 4D theory are given in Sec. VII, and we conclude in
Sec. VIII.

II. RANDALL-SUNDRUM MODEL WITH
BRANE CURVATURE

To study the effects of the brane curvature terms on the
metric fluctuations, we employ the interval approach to
braneworld gravity [17–19]. This approach enables a
transparent treatment of boundary curvature terms, which
simply modify the boundary conditions (BCs) for metric
fluctuations. However, one must be careful to correctly
identify the available gauge freedoms in the presence of
such terms (for detailed discussion, see Ref. [20]). Before
proceeding, we note that earlier works have considered
the effects of brane curvature terms in the RS framework
using the orbifold picture [2,21] and for AdS5=AdS4 in the
interval approach [18,19]. Let us also note that some
content in the following sections has overlap with
Ref. [20]. We include it here so the presentation is coherent
and (relatively) self-contained and note that (i) we present a
number of extra results, in relation to IR curvature, that
were not given in Ref. [20], due to the focus on UV
curvature in that work; (ii) in the current presentation, we
focus on the case with M� ∼MPl, relevant for RS models,
as opposed to the low UV-scale models of interest in
Ref. [20]; (iii) we subsequently generalize these results to
include a nonminimal coupling with an IR Higgs and
additional IR terms for the radion. These calculations reveal
the viable parameter space in which the radion is not
ghostlike for RS models with brane curvature and an IR-
localized Higgs. We find that, although the IR Higgs does
modify the viable regions of parameter space, the effect is
not large enough to allowOð10Þ values of the IR curvature.
Consequently, the mass of the lightest KK graviton is not

expected to be significantly suppressed relative to the IR
scale in models with an IR Higgs.1 Our results general-
ize Ref. [6].
The RS model employs a warped extra dimension,

labeled by the coordinate y ∈ ½0; L�, with a UV (IR) brane
of characteristic energy M� (e−kLM�) located at y ¼ 0
(y ¼ L). The metric has the form

ds2 ¼ e−2kyημνdxμdxν þ dy2 ¼ GMNdxMdxN; ð1Þ

where M;N;… ðμ; ν;…Þ are 5D (4D) Lorentz indices and
k denotes the AdS5 curvature. The corresponding action,
including brane-localized curvature terms, is

S ¼
Z
M

d5x
ffiffiffiffiffiffiffi
−G

p
f2M3�R − Λg

þ
X
i

Z
d4x

ffiffiffiffiffiffiffi
−gi

p fM2
i Ri − Vi=2g

þ 4M3�

I
∂M

ffiffiffiffiffiffiffi
−gi

p
K: ð2Þ

The bulk Ricci scalarR is constructed with the bulk metric
GMN , and M� is the 5D gravity scale. The brane-localized
curvature Ri is constructed with the brane metric giuv (the
restriction of Gμν to the relevant boundary) and has
coefficient Mi on the ith boundary (i ¼ UV; IR). The last
term is the usual Gibbons-Hawking boundary term [22],
with K being the extrinsic curvature of the manifold M.
This term is included to obtain consistent Einstein equa-
tions on the interval [17]. The action includes a bulk
cosmological constant Λ and brane tensions Vi, which take
their usual RS values, Vi ¼ −24kM3�θi, with bulk curvature
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ=24M3�

p
, and we use the notation θUV ¼

−θIR ¼ −1. For future purposes, we define the dimension-
less brane curvature coefficients vi ¼ M2

i k=M
3� and

wi ¼ Vi=2M3�k.
The calculation of the effective 4D Planck mass gives

M2
Pl ¼

M3�
2k

f1þ vUV − ð1 − vIRÞe−2kLg: ð3Þ

This includes contributions from both the bulk and brane
intrinsic curvatures. Observe that the Planck mass is rather
insensitive to the IR curvature, while a constraint of ð1þ
vUVÞ > 0 is required to ensure positivity of the Planck mass
(equivalently, to avoid a ghostlike massless graviton).
The different pieces have distinct interpretations in the
dual 4D picture, as we discuss in Sec. VII. Variation of the
bulk action gives the standard (bulk) equations of motion,

1Recall that the first KK graviton mass is only significantly
suppressed below the IR scale for large values of the IR
curvature [2].
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RMN −
1

2
GMNR ¼ −

Λ
4M3�

GMN: ð4Þ

The boundary conditions follow from the variations of the
4D brane action and the Gibbons-Hawking term, combined
with surface terms resulting from the variation of the bulk
action, giving [18]

�
vi
k

�
Rμν −

1

2
gμνR

�
þ 1

2
gμνkwi

þ θi
ffiffiffiffiffiffiffiffi
G55

p
ðgμν;5 − gμνgαβ;5gαβÞ

�
y¼yi

¼ 0: ð5Þ

This equation should be evaluated separately at the boun-
daries y ¼ 0; L. We work in a “straight gauge,” defined by
Gμ5 ¼ 0 [18], without loss of generality. Expanding about
the background metric, GMN ¼ G0

MN þ hMN , with zeroth-
order metric G0

μν ¼ e−2kyημν, and G0
55 ¼ 1 with G0

μ5 ¼
hμ5 ¼ 0 in a straight gauge, the boundary conditions give
(indices are raised with gμν ¼ e2kyημν)

�
vi
2k

fhαμ;να þ hαν;μα − hμν;αα − ~h;μν − gμνðhαβαβ − ~h;α
αÞg

þ θif2khμν þ hμν;5 − gμν ~h;5 − 3kgμνh55g
�
y¼yi

¼ 0:

ð6Þ

For massive 4D modes, the tensor hμν can be written as

hμν → hμν þ ∂μVν þ ∂νVμ þ e−2ky∂μ∂νS1 þG0
μνS2; ð7Þ

where hμν is now transverse traceless with 5 degrees of
freedom, ∂αhαβ ¼ ηαβhαβ ¼ 0, and Vμ is transverse,
∂αVα ¼ 0. Also, S1 and S2 are scalar degrees of freedom.
One can show that the physical massive modes are
contained in hμν [20]. Performing a gauge transformation,
with 4D gauge parameter ξμ, the transverse component of
ξμ is used to gauge away Vμ, while the longitudinal part
removes one of the scalars. The boundary conditions force
the remaining scalar to vanish, absent fine-tuning among
the brane curvature terms [20].
Writing the KK expansion for the physical fluctuations

as

hμνðx; yÞ ¼ κ�
X
n

hðnÞμν ðxÞfnðyÞ; ð8Þ

where κ� is chosen to give the 4D fields hðnÞμν a canonical
mass dimension, the solution in the bulk is

fnðyÞ ¼
1

Nn

�
J2

�
mn

k
eky

�
þ βnY2

�
mn

k
eky

��
; ð9Þ

withmn the mass of the nth spin-2 KK mode. Applying the
boundary conditions gives

βin ¼ −
J1ðziÞ − ðziviθi=2ÞJ2ðziÞ
Y1ðziÞ − ðziviθi=2ÞY2ðziÞ

; ð10Þ

where zi ¼ mnekyi=k. The KK masses follow by enforcing
βUVn ¼ βIRn ≡ βn. The mass for light IR-localized KK
modes has a negligible dependence on the UV brane
term—one can essentially take vUV ≈ 0 without modifying
the spectrum. On the other hand, the IR term vIR modifies
the KK masses in a nontrivial way [2]. For vi → 0, the KK
masses reduce to the usual RS values [23]. We note that the
additional factors of 1=2 in Eq. (10), relative to Ref. [2], can
be removed by rescaling the value of vi in Eq. (2). This
factor reflects the use of an interval rather than an orbifold
[much as the brane tensions in Eq. (2) are smaller by a
factor of 1=2, relative to the orbifold picture]. This scaling
would introduce a factor of 2 in many equations below, so it
is simpler not to rescale. In our notation, the limit of large
IR curvature gives a lightest KK graviton with mass
approximately given by mG1

≈ 2e−kLk=
ffiffiffiffiffiffiffiffiffiffiffi
vIR=2

p
. We note

that the IR curvature of rL ¼ 10=k in Ref. [3] corresponds
to vIR ¼ 20, while rL ¼ 7 in Ref. [5] corresponds to
vIR ≈ 14, and values of γπ ≈ −7.6 < 0 in Ref. [4] corre-
spond to vIR > 0, due to a notational difference. Also, we
mention that, in general, the bounds on KK graviton masses
are sensitive to the model-building details of a given RS
model. In particular, the constraints depend on the size of
the coupling between the KK graviton and SM fields and
are therefore sensitive to the localization of the SM fields in
a given RS model.
The spin-2 spectrum contains the usual UV-localized

massless graviton, with profile

f0ðyÞ ¼ e−2ky
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k
1 − e−2kL þP

ivie
−2kyi

s
: ð11Þ

A further massless mode (the scalar radion) is present in the
spectrum. This state acquires mass once the length of the
extra dimension is stabilized, with the corresponding mass
dependent on the backreaction of the stabilizing dynamics
[6], as we discuss below for the Goldberger-Wise mecha-
nism. However, it shall prove instructive to first comment
on the massless radion, as some results remain useful in the
weak backreaction case.
Thus, turning our attention to the graviscalar fluctua-

tions, we note that in a straight gauge one can always use
remnant gauge freedom to write the metric fluctuation h55
as [18,19,24]

h55ðxμ; yÞ ¼ FðyÞψðxμÞ: ð12Þ
Here, FðyÞ is an arbitrary function of y satisfyingR
L
0 dyFðyÞ ≠ 0. An arbitrary h55 can be cast into the
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form (12) via a general 5D coordinate transformation,
xM → xM þ ξM, with ξμ ¼ 0 and [18,19,24]

ξ5 ¼ 1

2

Z
y
dyh55 −

1

2

Z
y
dyFðyÞψ : ð13Þ

The presence of the arbitrary function FðyÞ is a remnant
gauge freedom.
We find it convenient to write the most general form of

the metric with background and scalar perturbations as

GMN ¼
�
a2½ημν þ∇μ∇νP3 þ ημνð2P2 − aa0P3

0Þ� 0

0 1þ 2P1 − ða2P0
3Þ0

�
: ð14Þ

Here, aðyÞ is the background warp factor, and P1;2;3 are
spin-zero perturbations that are functions of xμ and y. This
parametrization is motivated by the gauge-invariant forms
of Refs. [25,26] and is such that the Einstein equations have
a simple structure. For a detailed discussion of the gauge
freedoms and the gauge transformations that allow one to
write the scalar perturbations in this form, see the Appendix
in Ref. [20]. Two of the bulk Einstein equations can be
cast as

∂μ∂νðP1 þ 2P2Þ ¼ 0 μ ≠ ν; ð15Þ

∂μ

�
a0

a
P1 − P0

2

�
¼ 0 ∀μ: ð16Þ

Taking the integration constants to vanish (the perturba-
tions are localized in x), Eq. (15) relates P2 and P1, while
Eq. (16) determines the y-dependence of P1. The remaining
bulk Einstein equation reduces to□P1 ¼ 0, as expected for
a massless 4D field. The perturbation P3 is completely free
in the bulk, reflecting the remnant gauge freedom [20]. This
is related to the remnant gauge freedom in the massless
sector described in Refs. [18,19], and physical quantities do
not depend on (the bulk value of) P3. Boundary conditions
are derived from the two additional boundary Einstein
equations:

P0
3ðyiÞ ¼

−vi
aðyiÞ½θikaðyiÞ þ via0ðyiÞ�

P1ðyiÞ: ð17Þ

Using the solutions to the above, one can compute the
effective 4D action for the physical scalar fluctuation. We
perform separation of variables and solve for the profile of
P1, giving

P1 ¼ a−2ðyÞψðxμÞ: ð18Þ
This solution is consistent with the boundary conditions
(17) for general vi provided the arbitrary function P3 has
P0
3 ≠ 0 at the boundaries, in accordance with Eq. (17). For

the sources in Eq. (2), the solution for the background
metric has the standard RS form, aðyÞ ¼ e−ky. Ignoring 4D
surface terms (ψ vanishes at xμ → ∞) and inserting the
solution into the action, one obtains the effective 4D action
for scalar perturbations, up to Oðψ2Þ, as

SOðψ2Þ ¼
Z

d4x

�
3M3�
k

e2kL
�

1

1 − vIR
−

e−2kL

1þ vUV

��

×

�
−
1

2
ημν∂μψ∂νψ

�
: ð19Þ

Note that linear terms in ψ and additional quadratic terms,
which appear at intermediate stages of the calculation,
cancel out in the final result, providing a check. In
particular, higher-order derivative terms present at the
quadratic level in individual terms in Eq. (2) cancel out
in the full action.
The physical radion is defined as rðxÞ ¼ ψðxÞNψ , where

the normalization constant is

N2
ψ ¼ k

3M3�
e−2kL

ð1 − vIRÞð1þ vUVÞ
ð1þ vUVÞ − ð1 − vIRÞe−2kL

¼ e−2kL

6M2
Pl

ð1 − vIRÞð1þ vUVÞ: ð20Þ

We immediately observe from Eq. (19) that the kinetic
term is only well behaved for vIR < 1, while the UV term
suffers no such constraint (one may safely take vUV ≫ 1,
as in Ref. [20]). We assume that a ghostlike radion (a
wrong sign kinetic term) signals an instability of the
ground state of the theory and that it is desirable to fix
this in the traditional way by adding terms to the theory
and/or restricting the couplings. Note that the crossover
region between parameter space with/without a ghost
radion gives a vanishing kinetic term, meaning the theory
is strongly coupled; such regions should also be avoided.
Regarding parameter space with ð1þ vUVÞ < 0, one
should use Eq. (19), rather than Eq. (20), to determine
whether problems arise, due to the vUV-dependence of
MPL. Observe that the radion kinetic term is not prob-
lematic for ð1þ vUVÞ < 0, whereas it is sensitive to
the IR term, opposite to the massless graviton (this
has a clear interpretation in the dual 4D theory, as
discussed below).
It is worth emphasizing a point made above, with regard

to the fluctuation P3. In the limit vi → 0, one can use the
remaining gauge freedom to choose the form of the scalar
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fluctuations such that the derivative pieces in Eq. (14)
vanish, namely ∇μ∇νP3 and P0

3 [20]. Thus, in the limit of
vanishing brane curvature, the standard parametrization of
the graviscalar metric fluctuations in RS [6,7,9] is found to
be consistent with the boundary conditions in the interval
picture. However, for vi ≠ 0, one is unable to remove the
derivative pieces in Eq. (14) with a gauge choice while
simultaneously obtaining a solution that is consistent with
the boundary conditions [20].

III. RADION COUPLING TO BRANE MATTER

We now turn to the coupling of the radion to brane-
localized matter, which depends on the location of the
matter. Some expressions presented below generalize
results of Ref. [20] for the case with IR curvature.
Consider a set of matter fields localized at the boundary
y ¼ yi. Expanding the metric in terms of a fluctuation fμν,
which only contains the spin-zero parts of the perturbation,
gμν → gμν þ fμν, integrating over the extra dimension, and
scaling the matter fields to bring the kinetic terms to
canonical form, the linear fluctuation term is

SjOðfÞ ¼ −
1

2
e2kyi

Z
d4xημαηνβfμνTαβ; ð21Þ

where Tμν is written in terms of the flat space metric (and
canonical fields). Consider the nonderivative couplings of
the graviscalar to Tμν,

SjOðψÞ ¼
e2kyi

2

�
1 −

via0

ðθikaþ via0Þ
� Z

d4xψT þ…; ð22Þ

where T ¼ ημνTμν and we used Eqs. (15)–(18). The
coupling of the physical radion r is

SjOðrÞ ¼
1

2

Z
d4x

�
r
Λi

�
× T þ…; ð23Þ

with location-dependent coupling Λ. For matter localized
on the brane at y ¼ yi, one has

Λ−1
i ¼ ekL

�
k

3M3�

1

ð1þ vUVÞ − ð1 − vIRÞe−2kL
�

1=2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − θjvj
1 − θivi

s

¼ 1ffiffiffi
6

p 1

e−kLMPl
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − θjvj
1 − θivi

s
i ≠ j: ð24Þ

One can summarize the brane radion couplings as

Λi ¼ ΛRS;i ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − θivi
1 − θjvj

s
i ≠ j; ð25Þ

where ΛRS;i is the usual RS radion coupling for matter on
the brane at yi. Thus, in the limit vUV;IR → 0, one obtains
the standard RS results. Note that the IR coupling is

Λ−1
IR ¼ Λ−1

RS;IR ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vUV
1 − vIR

s
; ð26Þ

which becomes strongly coupled for vIR → 1. This corre-
sponds to the crossover region between having and avoid-
ing a ghostlike radion, such that the kinetic term vanishes,
as mentioned previously.
At first sight, the vIR dependence of these couplings

appears unusual. Intuitively, one may expect the IR
coupling to diminish for increasing values of vIR and the
UV coupling to have limited sensitivity to the size of vIR.
However, one observes that increasing values of vIR tend to
decrease the coupling at the UV brane and increase the
coupling at the IR brane. Actually, this behavior is not so
surprising. Recall that increasing values of vIR cause the
strength of the kinetic term for the unscaled fluctuation
ψ ¼ r=Nψ to increase; see Eq. (19). After scaling ψ , this
translates into a suppression of the couplings to the radion
r, for increasing vIR. For UV-localized matter, this is the
only vIR dependence in the coupling, giving the inverse
sensitivity of Λ−1

UV to vIR. Note that for vUV → 0, the IR
coupling has a simple form, ΛIR ¼ ΛRS;IR ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vIR

p
,

while for vIR → 1, one has Λ−1
IR → ∞, and the theory enters

a strong coupling regime. We comment more on this
coupling in Sec. VII.
As an additional point, we note that Eq. (24) displays the

expected dependence on the UV curvature vUV. In the limit
vUV → ∞, the UV coupling vanishes, Λ−1

UV → 0, with the
radion expelled from the UV brane. This corresponds to
decoupling 4D gravity by sending the 4D Planck scale to
infinity. On the other hand, the limit vUV → ∞ has little
effect on the IR coupling, which remains as ΛIR ∼ e−kLM�,
namely the characteristic IR scale. This makes intuitive
sense, given the interpretation of the radion as a composite
dilaton in the dual picture.
The preceding discussion is relevant for brane-localized

matter. However, it retains utility for models with bulk
fields. The radion couples conformally to matter. In models
where SM fermions are treated as zero modes of bulk
fermions, they typically remain massless until electroweak
symmetry breaking is triggered by an IR-localized Higgs.
Consequently, fermion masses arise locally on the IR brane.
The mass-induced coupling between the radion and SM
fermions therefore occurs locally on the IR brane, with a
strength controlled by Eq. (24), giving Λ−1

IR ∼ ekL
ffiffiffiffiffiffiffiffiffiffiffiffi
k=M3�

p
.

This statement is not sensitive to the localization profile of
the zero-mode fermion; information regarding the wave
function overlap with the IR brane is encoded in the
effective 4D fermion mass. The radion coupling to a
fermion f goes like ðmf=ΛrÞ × rff, being smaller for

REGARDING THE RADION IN RANDALL-SUNDRUM … PHYSICAL REVIEW D 94, 064045 (2016)

064045-5



an electron than a top quark simply because me ≪ mt,
regardless of the origin of this hierarchy (e.g., tiny input
Yukawa couplings or suppressed wave function overlap).2

A similar discussion holds for zero modes of bulk vectors
that acquire mass from an IR-localized scalar.

IV. RADION IN GW STABILIZED RS MODELS

In the preceding sections, the radion was massless as no
mechanism was employed to stabilize the length of the
extra dimension. Here, we briefly discuss the case where
the radion acquires mass due to radius stabilization via the
Goldberger-Wise mechanism [8]. This approach introduces
a bulk scalar Φ, with localized boundary potentials, to
generate a potential for the length of the interval. The result
is a KK tower of physical scalars that contain an admixture
of the KK modes of Φ and the graviscalar. The radion is
identified as the lightest mode in this KK tower.
With the GW scalar included, the complete action is

S ¼
Z
M

d5x
ffiffiffiffiffiffiffi
−G

p �
2M3�R −

1

2
GMN∂MΦ∂NΦ − VðΦÞ

�

þ 4M3�

I
∂M

ffiffiffiffiffiffi
−g

p
K þ

X
i

Z
d4x

ffiffiffiffiffiffiffi
−gi

p �
M3�vi
k

Ri

−M3�kwi −
1

4
tigμν∂μΦ∂νΦ −

1

2
λiðΦÞ

�
: ð27Þ

We include brane kinetic terms for both the gravity (vi) and
scalar (ti) sectors. VðΦÞ is the bulk potential for the scalarΦ
(which subsumes the bulk cosmological constant), and λi
are brane-localized potentials. The brane tensions kwi are
explicitly separated from the brane potentials, so λiðΦÞ ¼ 0
for the background value of Φ. The general analysis of this
system was presented in Ref. [20]. Here, we summarize a
few key results, which we subsequently generalize. For a
detailed discussion of the methodology, see Ref. [20].
Taking the usual warped metric ansatz,

ds2 ¼ a2ðyÞημνdxμdxν þ dy2; ð28Þ

where the warp factor aðyÞ is to be determined, and
allowing the background value of Φ to depend only on
y,3 one can obtain the equations of motion and boundary
conditions for the combined gravity-scalar theory. Two of
the boundary conditions remain as in Eq. (17), while the
other two have the form

½ti∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ−

ffiffiffiffiffiffi
−g

p
λi;Φ−2θi

ffiffiffiffiffiffiffi
−G

p
G5N∂NΦ�y¼yi

¼ 0;

ð29Þ

when expressed in straight gauge.4 The effective 4D theory
contains the following terms for the KK scalars,

S ⊃ N
Z

d4x

�
−
1

2
ημν∂μψ∂νψ −

1

2
m2ψ2

�
; ð30Þ

where m2 is the mass of the KK mode and the normali-
zation factor is

N ¼ 6M3�

Z
L

0

�
a2p2

1 þ 24M3�
a02

ϕ02 p
2
1 þ 24M3�

aa0

ϕ02 p1p0
1

þ 6M3�
a2

ϕ02 p
02
1

�
dyþ 3M3�

X
i

viaðyiÞ3p1ðyiÞ2
kaðyiÞ þ θivia0ðyiÞ

þ 1

8

X
i

ti

�
12M3�θi

2a0ðyiÞp1ðyiÞ þ aðyiÞp0
1ðyiÞ

ϕ0ðyiÞ

þ viaðyiÞ2ϕ0ðyiÞp1ðyiÞ
kaðyiÞ þ θivia0ðyiÞ

�
2

: ð31Þ

In the above, the form of the background metric is not
specified. The point is that the potentials VðΦÞ and λiðΦÞ
cause Φ to obtain a nontrivial background value, which
combines with the bulk cosmological constant and the
brane tensions to source the metric. To calculate the radion
mass, one must specify a particular model by specifying the
form for the background scalar. To allow comparison with
existing results in the literature, we follow Ref. [6] and
consider a perturbed background of the form

aðyÞ ¼ e−ky
�
1 −

l2

6
e−2uy

�
; ð32Þ

ϕðyÞ ¼ 2
ffiffiffi
2

p
M3=2

� le−uy; ð33Þ

valid in the region y ∈ ½0; L�. This corresponds to a
potential VðΦÞ ¼ ðW;ΦÞ2=2 −W2=6M3� with WðΦÞ ¼
12M3�k − uΦ2=2 and the following boundary potentials,

λiðΦÞ ¼ −θiWðϕiÞ − θiW;ΦðϕiÞðΦ − ϕiÞ þ γiðΦ − ϕiÞ2;
ð34Þ

with constants u, ϕi, and γi. The length of the extra
dimension is now dynamically fixed at L ¼
u−1 logðϕ0=ϕLÞ, with the weak backreaction limit defined
by κ�ϕi=

ffiffiffi
2

p
≪ 1. We work to Oðl2Þ in the small parameter

2Note that for off-shell fermions the radion-fermion coupling
contains additional contributions such that the Higgs-like form of
the radion coupling to fermions appears in physical amplitudes
due to delicate cancellations; see Ref. [27].

3That is, we write Φðxμ; yÞ ¼ ϕðyÞ þ P4ðxμ; yÞ, where ϕðyÞ is
the background value for Φ. See Ref. [20] for more details.

4Additional useful forms of the boundary conditions appear in
Ref. [20].
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l ¼ κ�ϕ0=
ffiffiffi
2

p
, though the expression for ϕ holds to all

orders in l.
Writing the metric perturbation as P1ðxμ; yÞ ¼

p1ðyÞψðxmuÞ, the solution for p1ðyÞ is a perturbed form
of the massless solution,

p1ðyÞ ¼ f1þ l2fðyÞg × e2ky: ð35Þ

The bulk equation for fðyÞ is the same as the case without
brane curvature terms [6],

f00 þ 2ðkþ uÞf0 ¼ 4

3
uðu − kÞe−2uy − ~m2e2ky; ð36Þ

where m2 ¼ l2 ~m2. Observe that the radion mass is on the
order of the correction to the background—the backreac-
tion must be included to generate a nonzero mass.
The solution in the bulk is [6]

f0ðyÞ ¼ −
2

3
u

�
1 −

u
k

�
e−2uy − ~m2

1

4kþ 2u
e2ky

þ Ae−2ðkþuÞy; ð37Þ

where A is an integration constant. Working in the limit of
stiff brane potentials, λi;ΦΦ → ∞, the boundary conditions
are [20]

�
f0 þ 2

3
ue−2uy þ 2

3

u2

k
e−2uy

θivi
1 − θivi

�
y¼yi

¼ 0; ð38Þ

the enforcement of which allows one to determine the mass
of the lightest spin-zero state [20]

m2 ¼ 4l2

3

ð2kþ uÞu2
k

�
1

1 − vIR
−

e−2kL

1þ vUV

�
× ðe2ðkþuÞL − e−2kLÞ−1: ð39Þ

This expression for the radion mass generalizes of the result
in Ref. [6] for the case of nonzero brane curvature, vi ≠ 0.
There are two points worth making. First, one observes that
vIR < 1 is required for the theory to remain consistent. In
particular, values of 0 < vIR < 1 tend to increase the mass of
the radion, relative to the standardRS result. This differs from
the case of the KK gravitons, where the increase in vIR
corresponds to a reduction in theKKmasses (as used recently
in relation to the 750 GeV diphoton excess [3–5]). Second,
while the mass is sensitive to the effect of the IR curvature,
vIR, it is rather insensitive to the UV curvature vUV.
In cases where it is desirable to have a heavy radion,

Eq. (39) might lead one to suppose that we could use the IR
curvature to achieve this while avoiding large perturbations
to the anti-de Sitter (AdS) background. However, one must
be careful, as, although values of vIR close to unity enhance
the radion mass, they also approach a strongly coupled

regime in the radion interactions (corresponding to the
crossover region between having and avoiding a ghostlike
radion, where the kinetic term vanishes).
To determine the coupling of the radion to matter in the

stabilized extra dimension, one requires the normalization
constant N in Eq. (31). Unsurprisingly, we find

N ¼ 3M3�
k

e2kL
�

1

1 − vIR
−

e−2kL

1þ vUV

�
þOðl2Þ; ð40Þ

matching the nonstabilized result in Eq. (20) to leading
order. With this expression, one can repeat the calculations
of Sec. III to find the radion coupling to matter. To leading
order, the results match those in Sec. III, and, in particular,
the leading-order radion kinetic term is only well behaved
for vIR < 1, signaling a ghostlike radion for vIR > 1.
It is unsurprising that the normalization factor N is

dominated by the Oðl0Þ terms in the weak-backreaction
limit. TheOðl2Þ corrections from the first two lines of Eq. 3
should clearly be subdominant for a weak backreaction.
However, one may ask if the brane-localized kinetic terms
for the GW scalar could be chosen sufficiently large to
overcome the Oðl2Þ suppression, potentially modifying the
sign of the radion kinetic term in the presence of large IR
curvature. It is interesting to evaluate these ti-dependent
terms explicitly,

N ¼
X
i

til2M3�
4

�
3

u
Ae−ðkþuÞyi −

3ðm2=l2Þeð3kþuÞyi

uð4kþ 2uÞ

þ 2ueðk−uÞyi

kð1 − θiviÞ
�
2

þ…; ð41Þ

where the dots denote everything bar the Oðl2Þ
ti-dependent terms. Here, m2 is the radion mass in
Eq. (39), and A is the constant in Eq. (37). Using the
explicit expressions for m2 and A to evaluate the Oðl2Þ ti-
dependent terms, one finds that the terms shown in Eq. (41)
vanish identically. Thus, to Oðl2Þ, the normalization factor
N is independent of the brane kinetic terms ti. One
concludes that it does not appear possible to employ large
values of ti to avoid the ghostlike radion that occurs
for vIR ∼Oð10Þ.

V. RADION-HIGGS KINETIC MIXING

In the above, we considered a GW stabilized RS model
with brane curvature. The scalar spectrum consisted of a
KK tower of massive scalars, the lightest of which is the
radion. For model building purposes, one would sub-
sequently add the SM fields to the warped space. In
particular, one adds the SM Higgs boson, which should
be localized at (or toward) the IR brane in order to solve the
hierarchy problem. In general, the Higgs will mix with
the KK scalars, the most important consequence of which is
the mixing between the Higgs and the lightest mode,
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namely the radion.5 In addition to the evident phenomeno-
logical implications, the radion-Higgs mixing has a further
consequence.We observed previously that the radionmass in
the GW stabilized setup is only well behaved for relatively
moderate values of the IR curvature, vIR < 1. This obser-
vation is important with regard to efforts to suppress the
lightest KK graviton mass by employing values of
vIR ∼Oð10Þ, as such models could suffer from instabilities.
It is also important for models seeking to generate a heavier
radion, as the IR curvature term can be used to increase the
radion mass. These conclusions, however, are drawn prior to
the inclusion of the Higgs-radion mixing. In this section, we
discuss themodifications to these observations due toHiggs-
radionmixing. The results in this sectiongeneralize a number
of results in Ref. [6] to include nonzero brane curvature.
We are interested in the case where the SM is added to

the warped space. For present purposes, we assume an
IR-localized SM Higgs,

S ⊃ −
Z

d4x
ffiffiffiffiffiffi
gIR

p fðDμHÞ†ðDμHÞ þ VðHÞg

þ ξ

Z
d4x

ffiffiffiffiffiffi
gIR

p jHj2RIR; ð42Þ

where we include an IR-localized nonminimal coupling.
There are two ways one can proceed to analyze the system
of Sec. IV with the SM Higgs added. The most-general
analysis involves deriving the full equations of motion and
boundary conditions for the gravityþ ΦþH system and
deriving the new KK spectrum for the scalar sector
(comprised of the radion, Φ, and H). Alternatively, one
can treat the SM Higgs as a small perturbation on the
previously derived background solution and derive the
leading-order mixing effects between the Higgs and the KK
scalars. Here, we make a simple observation which allows
an intermediate approach.
Expanding the Higgs around its vacuum expectation

value (VEV), one has

S ⊃
ξ

2

Z
d4x

ffiffiffiffiffiffi
gIR

p
e2kLðh2 þ 2vhþ v2ÞRIR; ð43Þ

where the Higgs is rescaled to the canonical kinetic form,
H → ekLH, with v ≪ MPl being the warped-down SM
VEV, v≃ 246 GeV. Observe that the nonminimal IR
coupling gives two different physical effects. The OðvÞ
term induces Higgs-radion kinetic mixing, requiring one to
diagonalize the scalar kinetic terms, as discussed below. On
the other hand, the Oðv2Þ term does not induce kinetic
mixing but instead gives a new contribution to the total
IR brane curvature. To treat this term, we can rewrite the IR
curvature as

S ⊃
M3�
k

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
−gIR

p fvIR þ ξvHgRIR; ð44Þ

with the dimensionless coefficient vH ¼ ðkv2Þ=
ð2e−2kLM3�Þ parametrizing the Higgs contribution to the
effective IR-localized curvature. This makes it clear that the
Oðv2Þ term in the nonminimal coupling can be incorpo-
rated in our earlier analysis by the replacement vIR →
vIR þ ξvH in the action (27). The results obtained via this
approach reduce to those obtained by the alternative
method of treating this term as a perturbation (see the
Appendix). Let us also emphasize that the KK graviton
masses are sensitive to the total IR curvature and are thus
sensitive to the value of vH for ξ ≠ 0.
With the above observation, one easily includes the

effects of the Higgs-induced IR curvature into the full
equations of motion and boundary conditions, following
the analysis of Ref. [20] (as outlined in the preceding
section). To quote a few key results, the expression for the
Planck mass becomes

M2
Pl ¼

M3�
2k

f1þ vUV − ð1 − vIR − ξvHÞe−2kLg; ð45Þ

along with a related change to the massless graviton profile.
One of the IR boundary conditions changes to

P0
3ðyIRÞ ¼

−ðvIR þ ξvHÞ
aðyIRÞ½kaðyIRÞ þ ðvIR þ ξvHÞa0ðyIRÞ�

P1ðyIRÞ;

ð46Þ
and the leading-order expression for the radion normali-
zation factor becomes

N ¼ 3M3�
k

e2kL
�

1

1 − ðvIR þ ξvHÞ
−

e−2kL

1þ vUV

�
þOðl2Þ:

ð47Þ
The stiff brane-potential limit expression for the boundary
conditions, Eq. (38), also changes, and the new Oðl2Þ
expression for the radion mass is

m2 ¼ 4l2

3

ð2kþ uÞu2
k

�
1

1 − vIR − ξvH
−

e−2kL

1þ vUV

�
× ðe2ðkþuÞL − e−2kLÞ−1: ð48Þ

With the Oðv2Þ term incorporated into the full equations
of motion and boundary conditions, we now treat the OðvÞ
term as a perturbation on the new background solution.6

The calculation makes use of the following result for the
linear terms in the radion fluctuation,

5Note that the KK scalars can still influence radion production
and decay mechanisms, with the size of the effect dependent on
the size of the mass splitting between the radion mass and the KK
scalars.

6Note that we are not performing an expansion in the
parameter v here; references to OðvÞ and Oðv2Þ terms in the
nonminimal coupling are made purely for labeling purposes.
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ffiffiffiffi
gi

p
Ri ¼

3ka3ðyiÞp1ðyiÞ□ψ

kaðyiÞ þ θivia0ðyiÞ
þ…; ð49Þ

where one should use the total brane curvature for the IR
brane, vi → vIR þ ξvH. Using this result to extract the
kinetic mixing gives

S ⊃
3ξ

ð1 − vIR − ξvHÞ
Z

d4xe2kLvh□ψ : ð50Þ

We perform a partial rescaling of the radion kinetic term,

ψ ¼ r ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ vUVÞ
6M2

Ple
−2kL

s
; ð51Þ

such that the kinetic mixing term is

S ⊃ 3ξ
v

ΛRS;IR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vUV

p
ð1 − vIR − ξvHÞ

Z
d4xh□r≡ A

B

Z
d4xh□r;

ð52Þ

where we define B≡ ð1 − vIR − ξvHÞ. This partial scaling
allows our results to be readily compared with Ref. [6].
The mixed kinetic Lagrangian contains the terms

L ⊃
1

2
ðr; hÞ

�
B−1 0

2AB−1 1

��
□r

□h

�
; ð53Þ

which are diagonalized by the following GLð2Þ
transformation,

�
r

h

�
¼

�
Z−1 0

−AðBZÞ−1 1

��
r0

h0

�
; ð54Þ

where

Z2 ≡ B−1 − ðA=BÞ2

¼ 1 − vIR − ξvH − 9ξ2γ2ð1þ vUVÞ
ð1 − vIR − ξvHÞ2

: ð55Þ

Here, we adopt the notation of Ref. [6]:

γ ¼ v
ΛRS;IR

¼ vffiffiffi
6

p
e−kLMPl

: ð56Þ

The quantity Z2 in Eq. (55) corresponds to the coefficient
of the radion kinetic term after the kinetic mixing is
diagonalized. It should be strictly positive to ensure the
kinetic term is positive definite and avoid a ghostlike
radion. Equation (55) generalizes the result in Ref. [6]
for the case with localized brane curvature. We can consider
various limits of this expression. The limit γ2 ≪ 1 gives

Z2 ¼ ð1 − vIRÞ−2
�
1 − vIR þ 3ξγ2

2
½1 − 6ξð1þ vUVÞ�

�
þ…: ð57Þ

Taking the further limit of vanishing brane curvature,
vIR;UV → 0, gives

Z2 ¼ 1þ 3

2
ξγ2ð1 − 6ξÞ; ð58Þ

which matches the expression in Ref. [6].7

Returning the curvature terms, vIR;UV ≠ 0, and demand-
ing that the radion is not ghostlike, Eq. (57) shows that one
should restrict ξ to the range

ξ− ≤ ξ ≤ ξþ; ð59Þ

where

ξ� ¼ 1

12ð1þ vUVÞ
�
1�

�
1þ 16ð1þ vUVÞð1− vIRÞ

γ2

�
1=2

�
:

ð60Þ

This expression also generalizes Ref. [6]. Note that it
appears difficult to select values of ξ consistent with
vIR ∼Oð10Þ. The only hope arises for values of
0 < ð1þ vUVÞ ≪ 1, specifically, with ð1þ vUVÞ ¼
ϵ × γ2=½16ðvIR − 1Þ� < 1 for small ϵ.8 However, this sol-
ution is misleading; it gives ξ� ∝ ðvIR − 1Þγ−2, such that
the original expansion in γ ≪ 1 cannot be trusted for ξ in
the range ξ− < ξ < ξþ, given that γ is multiplied by a factor
of ξ or ξ2 in Eq. (57). This failure to find values of ξ that
avoid a ghostlike radion for vIR ∼Oð10Þ is best understood
via Eq. (55), which gives the more-general constraint for
avoiding a ghostlike radion in the presence of brane
curvature and a nonminimal coupling to an IR Higgs,
namely

vIR þ ξvH þ 9ξ2γ2ð1þ vUVÞ < 1: ð61Þ

One notes immediately that no solution with Oð10Þ IR
curvature appears possible, given that the last term on the
left-hand side is positive definite. Naively, one may expect
that a cancellation could be arranged between the terms vIR
and ξvH, such that vIR ∼Oð10Þ is allowed. However, the
brane curvature relevant for modifying the KK graviton
mass is the total IR curvature, so a suppressed KK graviton
mass requires vIR þ ξvH ∼Oð10Þ in the presence of the
nonminimal coupling. Thus, no such cancellation is avail-
able. We conclude that it appears difficult to reconcile the

7After correcting for a notational difference.
8Recall that ð1þ vUVÞ must be strictly positive, to avoid a

ghostlike massless 4D graviton.
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constraint in Eq. (61) with Oð10Þ values of the total IR
brane curvature. Small values of the IR curvature, con-
sistent with the above constraints, remain viable.
In the basis with Higgs-radion kinetic mixing, the scalar

mass terms are diagonal: L ⊃ −m2r2=2 −m2
hh

2=2.
However, diagonalizing the kinetic terms induces mass
mixing. Defining the physical mass eigenstates as

�
rm
hm

�
¼

�
cos θ sin θ

− sin θ cos θ

��
r0

h0

�
; ð62Þ

the mass eigenvalues are

m2
� ¼ 1

½2ðBZÞ2�−1 fm
2B2 þm2

hBZðA2 þ BZÞ � Δmg;

where

Δm ¼ ½ðm2B2 þm2
hBZðA2 − BZÞÞ2 − 4m4

hA
2ðBZÞ2�1=2;

ð63Þ

and, as previously, m2 is the radion mass prior to mixing,
B ¼ ð1 − vIR − ξvHÞ, A ¼ 3ξγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vUV

p
, and Z is defined

by Eq. (55). The identification of the physical Higgs and
radion with m� depends on the mass ordering; the physical
radion has mass mþ (m−) if it is heavier (lighter) than the
physical Higgs. The mixing angle is

tan 2θ ¼ 2ABZm2
h

m2B2 þm2
hBZðA2 − BZÞ : ð64Þ

Writing the above results for the mixing angle and
eigenmasses in terms of the explicit expressions for A,
B, and Z produces cumbersome expressions that are not
particularly enlightening. One can consider various limits
of the results, however. As an example, for γ ≪ 1, the
mixing angle reduces to

tan 2θ ¼ 6m2
hξγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vUV

p
m2ð1 − vIRÞ −m2

h

; ð65Þ

which is the generalization of the result in Ref. [6]
for vIR;UV ≠ 0.
Our results show that the inclusion of Higgs-radion

mixing via an IR-localized nonminimal coupling does not
provide a means for avoiding a ghostlike radion in a GW-
stabilized RS model with large IR curvature. Of course, the
radion mass is dependent on the backreaction of the
stabilizing dynamics, and one may wonder if the ghostlike
radion can be avoided in the case of a strong backreaction,
perhaps with different stabilizing dynamics. We have
nothing insightful to say regarding this possibility, though
we note that the strong backreaction would also affect the
mass of the KK gravitons. Other possibilities include taking

the Higgs “off the wall” [21] and into the bulk or
considering warped models with a different mechanism
of stabilization. In Ref. [28], the effects of bulk SM fields
on the radion couplings were studied; however, it would be
interesting to study this scenario with additional brane-
localized curvature terms. Leaving these points aside, we
now turn our attention to some alternative IR terms.

VI. ADDITIONAL IR TERMS FOR THE RADION

In a certain sense, the use of branes in the RS model
means the brane-localized action needs only satisfy the 4D
diffeomorphism symmetry. This allows a number of addi-
tional terms that, in general, should be included in the most-
general Lagrangian. This fact was already invoked to
motivate the study of brane curvature terms and the
nonminimal coupling to the IR Higgs. Motivated by the
work of Ref. [29], in this section, we comment on a class of
brane terms involving the radion.
Reference [29] considered explicit brane-localized mass

terms for the spin-2 metric fluctuations hμν.
9 Such terms

explicitly break the 5D general coordinate invariance and
essentially force one to choose a gauge. Given recent interest
in RS models with large IR curvature, and the inherent
problem of the ghostlike radion, here we comment on
localized terms for the scalar metric perturbation h55, which
preserve the local 4D symmetry but break the 5D general
coordinate invariance. Such terms could arise in the presence
of a bulk gauge field which obtains a VEV along its fifth
direction, as studied in Ref. [31] in the context of Lorentz-
invariance violating warped models. Reference [31] consid-
ered terms of the form uAuBRAB, denoting the VEVof the
vector field asuA ¼ ð0; 0; 0; 0; 1Þ, and showed that including
such couplings in the bulk leads to a mass for the graviton.
Thus, such couplings should be prohibited in the bulk.
However, allowing the couplings locally on the branes
preserves the massless graviton and generates brane-local-
ized interactions of the form λR55, which break 5D diffeo-
morphism invariancewhile retaining the 4D symmetry.With
the 5D symmetry brokenon the branes, one expects the brane
Lagrangians to contain the most-general set of operators
consistent with local 4D diffeomorphism invariance. Some
of these terms can be of interest with regard to the ghostlike
radion, as we now discuss.
Reference [29] employed a gauge with hμ5 ¼ h55 ¼ 0.

After fixing the gauge, a boundary mass was added for the
metric perturbation, with the corresponding Oðh2Þ brane
Lagrangian having the form ∼fhμνhμν − ðhμμÞ2g. In this
work, we employ a straight gauge with hμ5 ¼ 0, while
h55 ≠ 0. By analogy with Ref. [29], we consider Oðh2Þ
brane-localized terms for the radion that break the 5D
Lorentz symmetry locally on the brane. In particular, the

9Note that Ref. [30] considered an explicit bulk mass for the
graviton in RS models.
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most-general Lagrangian, consistent with localized
Lorentz-invariance violation on the IR brane, contains
the following additional terms IR terms, which are con-
sistent with 4D Lorentz invariance:

δS ¼ −3ξ∂
M3�
k

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
−gIR

p
gμν∂μh55∂νh55

− ξmk
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
−gIR

p
h255Φ

2: ð66Þ

Treating these terms as perturbations on the background,
the first term is an IR-localized kinetic term for h55, which
gives a new contribution to the kinetic Lagrangian,10

δS ⊃ −
1

2

8ξ∂
ð1 − vIRÞ2

�
3M3�
k

e2kL
�Z

d4xðημν∂μψ∂νψÞ;

ð67Þ

while the second term gives a new contribution to the
radion mass,

δS ⊃ −
1

2

4e4kLϕ2

ð1 − vIRÞ2
Z

d4xψ2: ð68Þ

Let us focus on the kinetic term first, taking the limit
ξm ≪ 1. Combining the new kinetic term with the preex-
isting kinetic terms gives

S þ δS ⊃
Z

d4x

�
−N 0 1

2
ημν∂μψ∂νψ −N

1

2
m2ψ2

�
;

ð69Þ

where the normalization factor is now

N 0 ¼ 3M3�
k

e2kL
�

1

1 − vIR
þ 8ξ∂
ð1 − vIRÞ2

−
e−2kL

1þ vUV

�
þOðl2Þ

¼ N þ 3M3�
k

e2kL
8ξ∂

ð1 − vIRÞ2
þOðl2Þ: ð70Þ

Interestingly, the new contribution to the kinetic term can
apparently cure the problem of a ghostlike radion for large
IR curvature, provided one has

ðvIR − 1Þ < 8ξ∂ : ð71Þ

Thus, for values of vIR ≈ 15, which can achieve an
Oð102Þ GeV KK graviton, one obtains the constraint
ξ∂ > 14=8 ¼ 1.75. For our parametrization of the IR
kinetic term in Eq. (66), it appears possible to avoid a
ghostlike radion with ξ∂ ¼ Oð1Þ. Note that the radion mass

is now m2
r ¼ ðN =N 0Þm2, which is nontachyonic for the

parameter space that avoids a ghost radion; the product
N ×m2 is positive for vIR > 1 (both N and m2 are
negative for vIR > 1). Consequently, provided ξ∂ satisfies
Eq. (71), one has N 0 > 0 to ensure the radion kinetic term
is positive definite and m2

r > 0 is automatically positive.
Thus, the IR kinetic term for the radion in Eq. (66), which is
consistent with the 4D symmetries of the theory, may help
avoid the ghostlike radion that occurs for large values
of vIR.
With this observation, we can reconsider the radion

coupling to IR matter to include the effects of the IR-
localized kinetic term. We find that the IR coupling is
modified to take the form

Λ−1
IR ≃ Λ−1

RS;IR ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vUV
vIR − 1

s �
8ξ∂

ðvIR − 1Þ − 1

�
−1=2

; ð72Þ

where we write the result for the case of vIR > 1, assuming
ξ∂ is chosen to ensure positivity of the radion kinetic term.
The key point here is that avoiding the ghostlike radion has
produced a brane coupling that is also well behaved
for vIR > 1.
Turning now to the IR-localized mass term, in the limit

where the new kinetic piece is negligible, ξ∂ ≪ 1, the
quadratic action for the radion is

S ⊃ N
Z

d4x

�
−
1

2
ημν∂μψ∂νψ −

1

2
ðm2 þ δm2Þψ2

�
; ð73Þ

whereN is the prior normalization factor and the new mass
correction from the localized IR action is

δm2 ≃ 64ξm
3ð1 − vIRÞ

l2k2e−2ðkþuÞL: ð74Þ

The massm2 was found earlier in Eq. (39). Observe that the
mass correction has the same parametric dependence on the
warp factor, the backreaction, and the IR curvature as m2,
namely δm2 ∝ ð1 − vIRÞ−1l2e−2ðkþuÞL.
At the end of Sec. IV, we saw that the IR brane curvature

term could not be used to significantly enhance the radion
mass without making the radion interactions strongly
coupled. In this regard, it is interesting to note the effects
of the brane mass term for h55. Working in the limit of small
backreaction, u ≪ k, and comparing Eq. (74) to Eq. (39), we
see that δm2=m2 ∼ 8k2ξm=u2, seemingly allowing one to
increase the mass. Of course, if the boundary mass becomes
too large, one should incorporate it into the full BCs.
We emphasize that our comments in this section,

regarding additional IR terms for h55, are motivated by
scenarios with brane-localized 5D Lorentz-invariance vio-
lation. The operators we studied form part of the most-
general set of brane terms that break 5D diffeomorphism

10Here, vIR can include the contribution from the IR Higgs, if
desired.
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invariance, while retaining the 4D symmetry, and are
expected to appear in models with localized Lorentz-
invariance violation. Our main point is to mention that
such operators may offer hope of avoiding a ghostlike
radion. It would be interesting to undertake more-detailed
studies of warped models with brane-localized Lorentz-
invariance violation to explore these matters further.

VII. COMMENTS ON AdS=CFT

According to the AdS=CFT correspondence [32], RS
models are thought to be dual to strongly coupled 4D
theories that are (approximately) conformal for energies
M� > E > e−kLM� [33]. Conformal symmetry is broken
explicitly in the UV by a cutoff (dual to the UV brane) and
spontaneously in the IR (dual to the IR brane). UV- (IR-)
localized fields in the 5D picture are dual to fundamental
(composite) fields in the 4D theory. More precisely, the UV
value of a given bulk field in the 5D picture is dual to a
fundamental field that is external to the strongly coupled
4D sector (see, e.g., Ref. [34]). Here, we make a few basic
comments regarding RS models with brane curvature.11

Recall that the effective 4D Planck mass is

M2
Pl ¼

M3�vUV
2k

þM3�
2k

f1 − ð1 − vIRÞe−2kLg; ð75Þ

including contributions from both the bulk and brane
curvatures. The different pieces have distinct interpretations
in the dual 4D picture. The UV brane contribution,
M2

UV ¼ vUVM3�=k, results from a UV-localized curvature
term. As such, it corresponds to a kinetic term for the
fundamental spin-2 particle associated with the UV restric-
tion of the bulk 5D graviton [36]. The true massless
graviton does not correspond exactly to this fundamental
spin-2 field but instead contains a small admixture of the
massive spin-2 composite states. This admixture is tiny,
however, as is evident by the high degree of UV locali-
zation for the massless zero-mode in the RS picture—that
is, the UV value of the bulk graviton field is overwhelm-
ingly dominated by the value of the zero mode (i.e.,
massless graviton).
The origin of this “fundamental” contribution to the

Planck mass is separate from the dual conformal field
theory (CFT) dynamics. For vIR → 0, however, the remain-
ing pieces in Eq. (75) encode a dynamically generated
contribution to the Planck scale, induced by CFT loops;
i.e., in the limit M2

UV → 0, the Planck mass (equivalently,
massless graviton kinetic term) is fully induced by CFT
loops. Taking the further limit L → ∞, the RS expression
for the Planck scale is M2

Pl ∼M3�=k, which should corre-
spond to the induced Planck mass from a CFT with UV

cutoff k. The latter has the form M2
Pl ∼ ck2, with c being

uniquely determined by the corresponding central charge of
the CFT. The holographic calculation of c via 5D super-
gravity gives ðM�=kÞ3 [37], soM2

Pl ∼M3�=k is in agreement
with the RS result.12 For finite L, the dual CFT has a further
source of conformal symmetry breaking in the IR, at the
scale MIR ¼ e−kLk. Now, the CFT-induced Planck mass is
modified due to CFT symmetry breaking scale in the IR,
giving M2

Pl ∼ cðk2 −M2
IRÞ, in agreement with the limit

vUV;IR → 0 of Eq. (3).
Turning on the IR term, vIR ≠ 0, the additional term in

Eq. (3) encodes a change to the CFT-induced Planck mass
due to some modification of the IR dynamics. While it is
difficult to make precise statements about the strongly
coupled sector in the dual 4D theory, it seems clear that
the IR-localized brane curvature is dual to somemodification
of thekinetic terms for the spin-2 composite states.Given that
the massless graviton is largely comprised of the fundamen-
tal spin-2 field, one may not expect that modifying the
composite spin-2 kinetic terms would affect the kinetic term
for the massless graviton. However, the massless graviton
contains a small admixture to the composite spin-2 states,
and a modification to the kinetic terms for the spin-2
composites should induce a highly suppressed modification
of the kinetic term for the massless graviton—i.e., it should
generate a mixing-suppressed contribution to the Planck
mass. This naive expectation is borne out by Eq. (75), where
the suppressing factore−2kL encodes the tinymixingbetween
the fundamental graviton and the spin-2 composites. Indeed,
explicit calculations, in the so-called holographic basis, show
that the mixing between the fundamental spin-2 state and the
lightest composite spin-2 state is sin2 θg ∼ e−2kL [34], in
agreement with the above.13

Based on an inspection of the 4D Planck mass in
Eq. (75), one may naively interpret the effect of the IR
term as corresponding to a change in the effective IR scale
of the broken CFT. It is instructive to consider this point.
The standard expression for the Planck mass in RS models,
without brane curvature terms, can be written as

M2
Pl ¼

�
M�
2k

�
3

× ðk2 −M2
IRÞ: ð76Þ

If one shifts the IR brane to a new location, L → Lþ δL,
the IR scale shifts accordingly to M0

IR ¼ e−kðLþδLÞk, modi-
fying the expression for the Planck scale,

11To the extent that the following discussion contains useful
content, it is, in part, attributable to Ref. [35]. Any errors,
however, are the responsibility of the authors.

12In the language of a dual large-N gauge theory, the induced
Planck scale is ∼k2N 2, where N 2 ∼ ðM�=kÞ3 relates to the
number of colors in the dual CFT.

13Note that a massless mode from a bulk vector with IR kinetic
term does not have this severe suppression of the IR-term
dependence, as the fundamental/composite mixing is much larger
in the spin-1 sector.

DILLON, GEORGE, and MCDONALD PHYSICAL REVIEW D 94, 064045 (2016)

064045-12



M2
Pl ¼

�
M�
2k

�
3

× ðk2 − ðM0
IRÞ2Þ: ð77Þ

Comparing this expression to Eq. (75), it appears that the
same effect can be obtained by including an IR brane
curvature term with coefficient vIR, while keeping the brane
fixed at y ¼ L. Specifically, for vIR < 1, we define

Meff
IR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vIR

p
e−kLk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vIR

p
MIR; ð78Þ

such that the 4D Planck mass Eq. (3) is written as

M2
Pl ¼

�
M�
2k

�
3

× ðk2 − ðMeff
IR Þ2Þ; ð79Þ

where we take vUV ¼ 0 to focus on the effect of the IR
term. Comparing with the standard RS result (76), it
appears that the effect of the IR curvature term is to modify
the effective IR scale. In particular, values in the range 0 <
vIR < 1 tend to decrease the effective IR scale in a way that
appears similar to the increase in length L → Lþ δL
with δL ¼ ð−1

2kÞ × logð1 − vIRÞ.
If this were correct, one could immediately deduce some

additional consequences of the IR curvature. In RS models,
the radion couples conformally to IR-localized fields as
ðr=ΛRSÞT, where T is the trace of the stress-energy tensor
and ΛRS is a dimensionful coupling on the order of the IR
scale, ΛRS ∼MIR. With this information, one can guess the
effect of the IR curvature term on the coupling of the radion
to IR-localized fields:

ΛRS ∼MIR → Λ ∼Meff
IR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vIR

p
MIR: ð80Þ

Thus, values of 0 < vIR < 1, which tend to decreaseMeff
IR ,

would tend to increase the coupling of the radion to IR
fields, as this goes like Λ−1 ∼ ðMeff

IR Þ−1. Conversely,
values of vIR < 0 tend to decrease the strength with
which the radion couples. In Sec. III, we explicitly
calculated the radion coupling to IR matter in the
presence of IR curvature and obtained a result in agree-
ment with this naive guess.14 It is interesting that the
above interpretation of the IR term allows one to
foreshadow our conclusions so easily. Similarly, the
interpretation of the IR curvature term as modifying
the effective IR scale in the gravity sector suggests that
the KK graviton masses should decrease for 0 < vIR < 1,
consistent with explicit calculations [2].
While the above line of reasoning may have utility, one

should refrain from taking the interpretation of a modifi-
cation to the IR confinement scale too seriously. This is
evidenced by the failure of the IR curvature term to modify

the KK masses for other bulk fields; i.e., the KK decom-
position of a bulk vector gives a spectrum that is insensitive
to the presence of an IR curvature term, implying that the
spin-1 composite spectrum is not sensitive to this modifi-
cation. Thus, the interpretation in terms of a change to the
IR scale appears to be a mere coincidence—the IR
curvature represents a change to the kinetic terms for the
composite states, which affects the massless graviton
kinetic term via mixing, in a way that mimics the effect
of a modification to the IR/confinement scale.
Regarding the radion, it is interesting to note that the IR

curvature affects the graviton and radion kinetic terms in
different ways. The radion is highly IR localized and is dual
to a dilaton that is overwhelmingly composite. This
situation is opposite to that of the graviton. Thus, the IR
curvature, which encodes a modification to the kinetic
terms for the spin-2 and dilaton sectors, should induce an
unsuppressed change to the dilaton kinetic term. This
behavior is seen already in Eq. (19). The radion kinetic
term is highly sensitive to the IR curvature, whereas it is
relatively insensitive to the UV curvature, opposite to the
massless graviton. These different sensitivities of the radion
and graviton to the IR and UV curvature are consistent with
the dual picture.

VIII. CONCLUSION

The most general Lagrangian for RS models includes
brane-localized curvature terms on both the UV and IR
branes. These terms can modify the spectrum of KK
gravitons, as studied recently in relation to models with
an Oð102Þ GeV KK graviton [3–5]. The brane curvature
also has consequences for the properties of the radion. In
this work, we investigated some of these properties for a
general RS model, both with and without GW stabilization.
We showed that the brane curvature can modify the radion
mass and couplings. Furthermore, demanding a nonghost-
like radion gives a restriction on the allowed parameter
space for the curvature terms. We investigated the effects of
a nonminimal IR coupling with the SM Higgs to determine
the parameter space consistent with a nonghostlike radion.
Our results generalize a number of expressions in Ref. [6]
to the case with nonzero brane curvature. Unfortunately, the
resulting modifications did not remove the ghost-radion
encountered for Oð10Þ values of the IR curvature.
Motivated by models with brane-localized Lorentz-invari-
ance violation, we also considered additional IR terms for
the radion, showing that such terms offered some hope for
avoiding the ghost radion. Our results suggest it could be
interesting to further study such models.
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APPENDIX: WEAK BOUNDARY CURVATURE
LIMIT

In our analysis, we included the Higgs-induced IR
curvature in the full equations of motion and boundary
conditions, arriving at an action, to quadratic order in the
radion, with the form

S ⊃ N
Z

d4x
�
−
1

2
ημν∂μψ∂νψ −

1

2
m2ψ2

�
; ðA1Þ

with normalization factor

N ¼ 3M3�
k

e2kL
�

1

1 − ðvIR þ ξvHÞ
−

e−2kL

1þ vUV

�
þOðl2Þ:

ðA2Þ

In the limit vH ≪ 1, an expansion to OðvHÞ gives

N ¼ 3M3�
k

e2kL
�

1

1 − vIR
−

e−2kL

1þ vUV

�

þ 3M3�
k

e2kL
ξvH

ð1 − vIRÞ
þ…: ðA3Þ

TheOðvHÞ piece of the radion kinetic term agrees with that
obtained by treating the nonminimal coupling term
∼ξv2RIR as a perturbation on the background obtained
without the IR Higgs.
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