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The density matrix of Hawking radiation is calculated in the model of a black hole with a fluctuating
horizon. Quantum fluctuations smear the classical horizon of a black hole and modify the density matrix of
radiation producing the off-diagonal elements. The off-diagonal elements may store information on
correlations between the radiation and the black hole. The smeared density matrix was constructed by
convolution of the density matrix calculated with the instantaneous horizon with the Gaussian distribution
over the instantaneous horizons. The distribution has the extremum at the classical radius of the black hole
and the width of order of the Planck length. Calculations were performed in the model of a black hole
formed by the thin collapsing shell which follows a trajectory that is a solution of the matching equations
connecting the interior and exterior geometries.
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I. INTRODUCTION

From the time of Hawking’s discovery that black holes
radiate with the blackbody radiation, the problem of
information stored in a black hole [1] has attracted much
attention. Different ideas have been discussed, in particular,
those of remnants [2–4], “fuzziness” of the black hole [5,6]
and references therein, quantum hair [7–9] and Refs.
therein, and smearing of the horizon by quantum fluctua-
tions [10–13]. The underlying idea of the last approach is
that small fluctuations of the background geometry lead to
corrections to the form of the density matrix of the
radiation. These corrections are supposed to account for
correlations between the black hole and the radiation and
contain the imprint of information thrown into the black
hole with the collapsing matter.
The idea that the horizon of the black hole is not located

at the rigid position naturally follows from the observation
that a black hole as a quantum object is described by the
wave functional over geometries [14–16]. In particular, the
sum over the horizon areas yields the black hole entropy.
In papers [12,13] the density matrix of black hole

radiation was calculated in a model with a fluctuating
horizon. Horizon fluctuations modify the Hawking density
matrix producing off-diagonal elements. Horizon fluctua-
tions were taken into account by convolution the density
matrix calculated with the instantaneous horizon radius R
with the black hole wave function which was taken in the
Gaussian form ψðRÞ ¼ N−1=2e−ðR−2MGÞ2=2σ2 . Effectively
the wave function introduces the smearing of the classical
horizon radius R ¼ 2MG. The width of the distribution, σ,
was taken of order the Plank lengths lp [10,12,13]. In
Ref. [10], it was stated that the “horizon fluctuations do not
invalidate the semiclassical derivation of the Hawking

effect until the black hole mass approaches the Planck
mass.”
In this note, we reconsider calculation the density

matrix of radiation emitted from the black hole formed
by the collapsing shell. The shell is supposed to follow the
infalling trajectory which is the exact solution to the
matching equations connecting the interior (Minkowski)
and exterior (Schwarzschild) geometries of the spacetime
[17,18]. In this setting one can trace propagation of a ray
(we consider only s-modes) through the shell from the past
to the future infinity. For the rays propagating in the vicinity
of the horizon, we obtain an exact formula connecting vin at
the past infinity and uout at the future infinity.
We obtain the expression for the “smeared” density

matrix of Hawking radiation of the black hole with the
horizon smeared by fluctuations. In the limit σ=MG → 0,
the smeared density matrix turns to the Hawking density
matrix. The smeared density matrix is not diagonal and can
be expressed as a sum of the “classical part” and off-
diagonal correction which is roughly of orderOðσ=MGÞ of
the classical part. As a function of frequencies ω1;2 of
emitted quanta, the distribution is concentrated around
ω1=ω2 ¼ 1 with the width of order ðσ=MGÞ ln1=2ðMG=σÞ.
The paper is organized as follows. In Sec. II we review

the geometry of the thin collapsing shell which follows a
trajectory consisting of two phases. The trajectory is a
solution of the matching equations connecting the internal
and external geometries of the shell. We trace propagation
of a light ray from the past to future infinity. In Sec. III we
introduce the wave function of the shell which saturates the
uncertainty relations. In Sec. IV, we calculate the density
matrix of black hole radiation smeared by horizon fluctua-
tions. Following the approach of paper [19] calculation is
performed by two methods: by the “iε” prescription and by
using the normal-ordered two-point function. In Sec. V,
using the exact expressions for the smeared radiation*iofa@theory.sinp. msu.ru
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density matrix, we study the diagonal “classical” part of the
density matrix and the off-diagonal elements.

II. GEOMETRY OF THE THIN
COLLAPSING SHELL

In this section, we introduce notations and review the
geometry of space with collapsing thin spherical shell
[17,18]. Outside of the shell the exterior geometry is
Schwarzschild spacetime, the interior geometry is
Minkowsky spacetime. In the Eddington-Finkelstein coor-
dinates, the metric of the exterior spacetime is

ds2ðextÞ ¼ −ð1−R=rÞdv2 þ 2dvdrþ r2dΩ2; r > R; ð1Þ

where

v ¼ tþ xðrÞ;
u ¼ t − xðrÞ;

xðrÞ ¼ rþ R ln ðr=R − 1Þ;

and

v − u ¼ 2xðrÞ:

The metric of the interior spacetime is

ds2ðintÞ ¼ −dV2 þ 2dVdrþ r2dΩ2; ð2Þ

where

V ¼ T þ r; U ¼ T − r:

The light rays propagate along the cones v; u ¼ const in the
exterior and along V;U ¼ const in the interior regions.
The trajectory of the shell is r ¼ RshellðτÞ, where τ is

proper time on the shell. The matching conditions of
geometries on the shell, at r ¼ Rshell, are

dV − dU ¼ 2dRshell; dv − du ¼ 2dRshell

1 − R=Rshell
;

dUdV ¼ ð1 − R=RshellÞdudv; ð3Þ

where the differentials are taken along the trajectory. From
the matching conditions, follow the equations

2R0
sð1 −U0Þ ¼ U02 − ð1 − R=RshellÞ; ð4Þ

2 _Rsð1 − _VÞ ¼ − _V2 þ ð1 − R=RshellÞ: ð5Þ

Here the prime and dot denote derivatives over u and v
along the trajectory. The trajectory of the shell consists of
two phases [18]:

I: u < 0∶ RshellðuÞ ¼ R0 ¼ const

II: u > 0∶ v ¼ const; V ¼ const:

From Eqs. (4), (5), we obtain the following expressions for
the trajectory:
In phase I,

UðuÞ ¼ L0u − 2R0 þ 2R;

VðvÞ ¼ L0ðv − 2xðR0ÞÞ þ 2R; ð6Þ

where L0 ¼ ð1 − R=R0Þ1=2.
In phase II,

V ¼ 2R;

U ¼ 2R − 2Rshell;

v ¼ 2xðR0Þ
u ¼ 2xðR0Þ − 2xðRshellÞ: ð7Þ

The horizon is formed at UH ¼ 0, u → ∞ and VH ¼ 2R,
vH ¼ 2xðR0Þ.
We consider the modes propagating backwards in time

(see Fig. 1). At I−, the ray is in phase I, and after crossing
the shell, it reaches Iþ in phase II. We let the in-falling ray
be at I− at v1 < vH. Between points 1 and 2, the ray
propagates outside the shell in phase I with v ¼ v1. At
point 2, the ray crosses the shell, and we have v2 ¼ v1 and
V2ðv1Þ ¼ L0ðv1 − 2xðR0ÞÞ þ 2R. The ray propagates in

FIG. 1. Penrose diagram for the collapsing shell. For u < 0, the
shell is in phase I, for u > 0, it is in phase II. vH is the point of
horizon formation.
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the interior of the shell, and at point 3, V3 ¼ V2. The
reflection condition at r ¼ 0, at point 3, is V3 ¼ U3 þ 2R.
At the crossing point with shell 4, we haveU4 ¼ U3, where

U4 ¼ −2Rshellð4Þ þ 2R;

u4 ¼ −2xðRshellð4ÞÞ þ 2xðR0Þ:

Here Rshellð4Þ is the radial position of the shell trajectory at
point 4. The equation for u4 can be written as

u4
2R

¼ ðR0 − RÞ − ðRshellð4Þ − RÞ
R

þ ln
R0 − R

Rshellð4Þ − R
:

In the region Rshellð4Þ ∼ R, and Rshellð4Þ ≪ R0, where
U4 ≪ R, neglecting in the first term Rshell − R as compared
with R0 − R, we obtain the approximate equation for u4∶

u4
2R

¼ R0 − R
R

− ln
−U4=2
R0 − R

: ð8Þ

Thus, we have

v1 − vH ¼ L−1
0 ðV2 − 2RÞ ¼ L−1

0 ðV3 − 2RÞ ¼ L−1
0 U4ðu4Þ

¼ −L−1
0 2ðR0 − RÞe−ðu4−2R0Þ=2R−1: ð9Þ

Removing the indices, we obtain our final result as

v ¼ vH − 2ðeL0Þ−1ðR0 − RÞe−ðu−2R0Þ=2R: ð10Þ

The above formulas are purely classical; modifications due
to backreaction of Hawking radiation are neglected.

III. QUANTUM BLACK HOLE

The quantum nature of horizons of the black holes was
discussed in the work of Carlip and Teitelboim [14], where
it was shown that the area of horizon A and the opening
angle, Θ, or equivalently the deficit angle 2π − Θ, form the
canonical pair. In Ref. [13], it was shown that the canonical
pair is formed by the opening angle and the Wald entropy
SW [20]:

�
Θ;

SW
2π

�
¼ 1: ð11Þ

When the black hole is quantized, the Poisson bracket is
promoted to the commutation relation

½Θ̂; ŜW � ¼ iℏ: ð12Þ

The wave function of the black hole satisfies the relation

−i
∂Ψ
∂SW ¼ 2πℏΘΨ: ð13Þ

The minimal uncertainty ΔSWΔΘ ¼ ℏ=2 wave function is

ΨðΘÞ ∼ eCðΘ−2πÞ2ei
ℏhSWiΘ; ð14Þ

where C ∼ hSWi. For the spherically symmetric configu-
rations which we consider, the wave function written
through the instantaneous horizon radius R is

jΨðRÞj ¼ N−1e−
ðR−RÞ2
4σ2 : ð15Þ

The scale of the horizon fluctuations is σ ∼ lp [10], where
l2p ¼ ℏG is the Planck length and R ¼ 2MG is the classical
horizon radius of the black hole of the mass M. The
normalization factor N is

N−2 ¼
Z

∞

0

4πdRR2e
ðR−RÞ2
2σ2 ≃ σR2: ð16Þ

IV. HAWKING RADIATION FROM THE BLACK
HOLE FORMED BY THE SHELL

Let us turn to the calculation of Hawking radiation of the
massless real scalar field in the background of the black
hole formed by the shell. To perform quantization of the
field, we restrict ourselves to the s-wave modes. Expanding
the scalar field in the orthonormal set of solutions u−i of the
Klein-Gordon equation, which at the past null infinity I−

has only positive frequency modes, we have

φ ¼
X
i

ðaiuð−Þi þ aþi u
ð−Þ�
i Þ: ð17Þ

The scalar product of the fields is

ðφ1;φ2Þ ¼ i
Z
Σ
dΣμφ�

2∂
↔

μφ1: ð18Þ

Alternatively, the field φ can be expanded at the hyper-
surface Σþ ¼ Iþ ⊕ Hþ, where Iþ is the future null infinity
and Hþ is the event horizon:

φ ¼
X
i

ðbiuðþÞ
i þ bþi u

ðþÞ�
i þ ciqi þ cþi q

�
i Þ: ð19Þ

Here fuðþÞ
i g is the orthonormal set of modes which contain

at the Iþ only positive frequencies, and fqig is the
orthonormal set of solutions of the wave equation which
contains no outgoing components [1]. The operators ai, a

þ
i

and bi, b
þ
i are quantized with respect to the vacua jini

and jouti, respectively.
The modes uðþÞ

i can be expanded in terms of the

modes uð−Þi ,
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uðþÞ
i ¼

X
j

ðαijuð−Þj þ βiju
ð−Þ�
j Þ; ð20Þ

where αij and βij are given by the scalar products

αij ¼ ðuðþÞ
i ; uð−Þj Þ; βij ¼ −ðuðþÞ

i ; uð−Þ�j Þ:

For the spherically symmetric collapse, the basis for the in-
and outgoing modes is

uð−ÞωlmjI− ∼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωv

r
Ylmðθ;φÞ;

uð−ÞωlmjIþ ∼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωu

r
Ylmðθ;φÞ:

Omitting the angular parts, the modes uð−Þω and uðþÞ
ω are

uð−Þω ðvÞjI− ∼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωv;

uðþÞ
ω ðuÞjIþ ∼

1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωu: ð21Þ

From (10), we find

uðvÞ ¼ 2R0 þ 2R

�
− lnðeL0Þ þ ln

R0 − R
R

− ln
vH − v
2R

�

¼ FðRÞ − 2R ln
vH − v
2R

;

whereFðRÞ¼2R0þ2R½CþlnððR0−RÞ=RÞ�,C ¼ − lnðeL0Þ.
To simplify formulas, we consider the case R0 ≫ R, so
lnððR0 − RÞ=RÞ≃ lnR0=R, and

FðRÞ≃ 2R0 þ 2R½Cþ lnðR0=RÞ�:

Note that both vH and uðvÞ have explicit dependence on R.
The Bogolubov coefficient,1

βω1ω2
¼ i

Z
vH

−∞
dvuðþÞ

ω1
ðvÞ∂v

↔
uð−Þω2

ðvÞ

∼ i
Z

dvffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p e−iω1uðvÞ∂v

↔
e−iω2v;

smeared by the horizon fluctuations is obtained by con-
voluting it with the function jΨ2j∶

βω1ω2
¼

Z
∞

0

dRR2e−ðR−RÞ2=2σ2N2βω1ω2

∼ ðω2=ω1Þ1=2
Z

vH

−∞
dve−iω1ðFðRÞ−2R lnððvH−vÞ=2RÞ−iω2v

× dRN2R2e−ðR−RÞ2=2σ2 : ð22Þ

Direct evaluation of the smeared Bogolubov coefficient
(22) yields (cf. [19])

βω1ω2
∼
Z

dRR2N2e−ðR−RÞ2=2σ2R

×
ffiffiffiffiffiffi
ω1

ω2

r
e−iω1FðRÞþiω2vHΓð2Riω1Þ

ð−2Riω2 þ εÞ2Riω1
: ð23Þ

A. Method 1

Following Ref. [19], we consider two ways of calculat-
ing the density matrix:

ρω1ω2
¼ i

Z
I−
dvuðþÞ

ω1
ðvÞ∂v

↔
uðþÞ�
ω2

ðvÞ

¼ i
Z
I−
dv

Z
dω0dω00βω1ω

0β�ω2ω
00u

ð−Þ
ω0 ðvÞ∂v

↔
uð−Þ�ω00 ðvÞ

¼
Z

∞

0

dω0βω1ω
0β�ω2ω

0 ; ð24Þ

where in the last equality we used that the modes fuð−Þω g
form the orthonormal set of functions on I−. The density
matrix smeared by horizon fluctuations is

ρω1ω2
¼

Z
∞

0

dω0βω1ω
0β�ω2ω

0

Z
∞

0

dR1R2
1e

−ðR1−RÞ2=2σ2N2

×
Z

∞

0

dR2R2
2e

−ðR2−RÞ2=2σ2N2: ð25Þ

Substituting (23), we have

ρω1ω2
∼
Z

∞

0

dω0
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
ω0 R1R2ð−2iR1ω

0 þ εÞ−2iR1ω1

× ð2iR2ω
0 þ εÞ2iR2ω2Γð−2iR1ω1ÞΓð2iR2ω2Þ

× e−iω1FðR1Þþiω2FðR2ÞdR1dR2R2
1R

2
2N

4

× e−ðR1−RÞ2=2σ2e−ðR2−RÞ2=2σ2 : ð26Þ

The terms with v0 have canceled. Integrating over ω0, we
obtain1Hereafter, we abandon the numerical and greybody factors.
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ρω1ω2
∼

ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p Z
dR1dR2R2

1R
2
2δðR1ω1 − R2ω2Þ

×

�
−
R1

R2

�
−2iR1ω1 1

R1ω1 sinhð2πR1ω1Þ
× e−iω1FðR1Þþiω2FðR2ÞN4e−ðR1−RÞ2=2σ2e−ðR2−RÞ2=2σ2

¼ ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p Z
dR1dR2R3

1R
3
2

1

R1ω1ω2

δ

�
R2 − R1

ω1

ω2

�

× ðe4πR1ω1 − 1Þ−1e−2iR0ðω1−ω2ÞN4e−ðR1−RÞ2=2σ2

× e−ðR2−RÞ2=2σ2 ; ð27Þ

where, taking into account the δ function, we
substituted

ð−2iR1Þ−2iR1ω1ð2iR2Þ2iR2ω2 ⇒ ð−R1=R2Þ−2iR1ω1

¼ e2πR1ω1ðR1=R2Þ−2iR1ω1

Γð−2iR1ω1ÞΓð2iR2ω2Þ ⇒
1

2R1ω1 sinhð2πR1ω1Þ

and

e−iω1FðR1Þþiω2FðR2Þ ⇒ e2iR1ω1 lnR1−2iR2ω2 lnR2

¼ ðR1=R2Þ2iR1ω1 :

Integration over R2 yields

ρω1ω2
∼

1ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
Z

dR1R5
1

�
ω1

ω2

�
3

ðe4πR1ω1 − 1Þ−1e−2iR0ðω1−ω2Þ

×
1

R4σ2
exp

�
−

1

2σ2

�
R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

1=ω
2
2

q
− R

1þ ω1=ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

1=ω
2
2

p
�

2
�
exp

�
−
R2ðω1 − ω2Þ2
2σ2ðω2

1 þ ω2
2Þ
�
: ð28Þ

Because R=σ ≫ 1, both exponents have sharp extrema.
Integrating over R1, we arrive at the density matrix of the
form

ρω1ω2
∼

1ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
�
ω1

ω2

�
3
�
1þ ω1=ω2

1þ ω2
1=ω

2
2

�
5

×
R

σð1þ ω2
1=ω

2
2Þ1=2

ðe4πRðω1þω2Þω1ω2=ðω2
1
þω2

2
Þ − 1Þ−1

× e−2iR0ðω1−ω2Þ exp
�
−
R2ðω1 − ω2Þ2
2σ2ðω2

1 þ ω2
2Þ
�
: ð29Þ

B. Method 2

Alternatively, the density matrix can be presented in the
following form,

ρωω0 ¼
Z

dω1

Z
Σ
dΣμ

1u
ðþÞ�
ωlm ðx1Þ∂

↔

μu
ð−Þ
ω1l1m1

ðx1Þ

×
Z
Σ
dΣν

2u
ðþÞ
ω0l0m0 ðx2Þ∂

↔

νu
ð−Þ�
ω1l1m1

ðx2Þ; ð30Þ

where for the initial value the hypersurface can be taken as
either I− or Iþ. Expanding φ in the basis fuð−Þg,

hinjφðx1Þφðx2Þjini ¼
Z

dω1u
ð−Þ
ω1

ðx1Þuð−Þ�ω1
ðx2Þ;

where jini and jouti are vacuum states at I− and Iþ, and
using the relation

hinj∶φðx1Þφðx2Þ∶jini ¼ hinjφðx1Þφðx2Þjini
− houtjφðx1Þφðx2Þjouti;

we obtain

ρω1ω2
¼

Z
Σ
dΣμ

1

Z
Σ
dΣν

2½uðþÞ�
ω1

ðx1Þ∂
↔

μ�½uðþÞ
ω2

ðx2Þ∂
↔

ν�

× hinj∶φðx1Þφðx2Þ∶jini: ð31Þ

To perform the calculation of (31), one can use the
expansion of the two-point function hinj∶φðx1Þφðx2Þ∶jini
on Iþ to obtain [19]

ρω1ω2
∼ ðω1ω2Þ−1=2

Z
Iþ
du1du2e−iu1ω1þiu2ω2

×

�ðdv=duÞðu1Þðdv=duÞðu2Þ
ðvðu1Þ − vðu2Þ − iεÞ2 −

1

ðu1 − u2 − iεÞ2
�
;

ð32Þ

where, for vðuÞ, we take the function (10). For the density
matrix modified by horizon fluctuations, we obtain

ρω1ω2
∼ ðω1ω2Þ−1=2

Z
Iþ
du1

Z
Iþ
du2

e−iu1ω1þiu2ω2

R1R2

×
e−ðu1−2R0Þ=2R1e−ðu2−2R0Þ=2R2

ðe−ðu1−2R0Þ=2R1 − e−ðu2−2R0Þ=2R2 − iεÞ2
× e−ðR1−RÞ2=2σ2−ðR2−RÞ2=2σ2N4R2

1R
2
2dR1dR2. ð33Þ
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Extracting in the denominator the factor
ðe−ðu1−2R0Þ=4R1−ðu2−2R0Þ=4R2Þ2, shifting ui − 2R0 ⇒ ui and
changing variables ui=4Ri ⇒ ui, we obtain

ρω1ω2
∼ ðω1ω2Þ−1=2

Z
∞

−∞
du1

×
Z

∞

−∞
du2e−4iω1u1R1þ4iω2u2R2−2iR0ðω1−ω2Þ

× sinh−2ðu1 − u2 − iεÞ
× e−ðR1−RÞ2=2σ2−ðR2−RÞ2=2σ2N4R2

1R
2
2dR1dR2: ð34Þ

Performing the contour integration over u1 around the pole
in the upper half plane using the formula

Z
∞

−∞
dy

e−iωy

sinh2ðy − z − iεÞ ¼ 2π
e−iωz

eπω − 1
;

we have

ρω1ω2
∼ ðω1ω2Þ−1=2

Z
dR1dR2R2

1R
2
2N

4ω1R1

1

e4πω1R1 − 1

×
Z

du2e−4iω1R1u2þ4iω2R2u2

× e−2iR0ðω1−ω2Þe−ðR1−RÞ2=2σ2−ðR2−RÞ2=2σ2 : ð35Þ

Integration over u2 yields

ρω1ω2
∼ ðω1ω2Þ−1=2

Z
dR1dR2R2

1R
2
2N

4ω1R1

1

e4πω1R1 − 1
δðω1R1 − ω2R2Þ

× e−2iR0ðω1−ω2Þe−ðR1−RÞ2=2σ2−ðR2−RÞ2Þ=2σ2 : ð36Þ

Integrating over R2 and removing the δ function, we obtain

ρω1ω2
∼

1ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
Z

dR1R5
1

�
ω1

ω2

�
3

ðe4πR1ω1 − 1Þ−1e−2iR0ðω1−ω2Þ

×
1

R2σ2
exp

�
−

1

2σ2

�
R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

1=ω
2
2

q
− R

1þ ω1=ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

1=ω
2
2

p
�

2
�
exp

�
−
R2ðω1 − ω2Þ2
2σ2ðω2

1 þ ω2
2Þ
�
: ð37Þ

The expression (37) is identical to that obtained by method
1 in (28).

V. DIAGONAL AND OFF-DIAGONAL PARTS
OF THE DENSITY MATRIX

In the limit R=σ → ∞, the expression

R

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

1=ω
2
2

p exp
�
−

R2

2σ2
ð1 − ω1=ω2Þ2
1þ ω2

1=ω
2
2

�
ð38Þ

becomes the delta function δð1 − ω1=ω2Þ. The density
matrix ρω1ω2

Eq. (37) turns into the formula for the
Hawking spectrum:

ρω1ω2
∼

ffiffiffiffiffiffi
ω1

ω2

r
δðω1 − ω2Þðe2πRðω1þω2Þ − 1Þ−1: ð39Þ

The smeared density matrix contains the off-diagonal
elements. Because the density matrix has the sharp maxi-
mum at ω1=ω2 ¼ 1, it is natural to divide it into the
“classical” contribution,

ρclω1ω2
∼Θ

�
2
σ

R
ln1=2

R
σ
−
				1−ω1

ω2

				
�
R
σ

×exp

�
−
R2ð1−ω1=ω2Þ2

4σ2

� ffiffiffiffiffiffi
ω1

ω2

r
ðe2πRðω1þω2Þ−1Þ−1;

ð40Þ

and the off-diagonal correction. As mentioned above,
in the classical contribution the factor multiplying

ðe2πRðω1þω2Þ − 1Þ−1 in the limit R=σ → ∞ turns into the
δ function.
At ω1=ω2 ¼ 1, the expression (38) equals R=ðσ ffiffiffi

2
p Þ.

At ω1=ω2 ¼ 1� 2ðσ=RÞ ln1=2ðR=σÞ, (38) is of order unity.
Stated differently, at the distance 2ðσ=RÞ ln1=2ðR=σÞ
from the extremum, the off-diagonal part is of order
Oðσ=RÞ of the classical expression at the point of
extremum. To make this difference explicit, we extract
the factor σ=R,

ρω1ω2
¼ ρclω1ω2

þ σ

R
Δρω1ω2

; ð41Þ

where
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σ

R
Δρω1ω2

∼ ρω1ω2
Θ
�				1 − ω1

ω2

				 − 2
σ

R
ln1=2

R
σ

�
: ð42Þ

It is of interest to evaluate the contribution of small
distances to the smeared density matrix (cf. [19]). It is
convenient to use method 2. Starting from (33) and making
the change of variables ui → uiRi=R, we have

ρω1ω2
∼ðω1ω2Þ−1=2

Z
du1

×
Z
du2e−4iω1u1R1=Rþ4iω2u2R2=Rsinh−2

�ðu1−u2Þ
R

− iε

�

×N4e−ðR1−RÞ2=2σ2−ðR2−RÞ2=2σ2R2
1R

2
2dR1dR2; ð43Þ

where we omitted the irrelevant for the estimate terms.
Introducing z ¼ ðu1 − u2Þ=2, y ¼ ðu1 þ u2Þ=2, we inte-

grate over y in the interval ð−∞;∞Þ and over z in the
interval ð−α;αÞ:

ρω1ω2
∼ ðω1ω2Þ−1=2

Z
α

−α
dz

R1R2

R2
e−izðR1ω1þR2ω2Þ=R

× RδðR1ω1 − R2ω2Þ
1

sinh2ðz=R − iεÞ
× N4e−ðR1−RÞ2=2σ2−ðR2−RÞ2=2σ2R2

1R
2
2dR1dR2: ð44Þ

Integrating over R2, we obtain the expression structurally
similar to (28) and (37). Because this expression has a sharp
extremum at R1 ¼ R and ω1=ω2 ¼ 1, for our estimates we
can set in the integrand R1 and ω1=ω2 equal to the extremal
values.
The resulting density matrix is

I ∼ ðω1ω2Þ−1=2
Z

α

−α
dze−iωz

R2

sinh2ð2RzÞ

× Θ
�
σ

R
ln
R
σ
−
				1 − ω1

ω2

				
�
: ð45Þ

The integral in (45) was estimated in [19] for ωR < 1, and
it was shown that the ratio of (45) to the Hawking
spectrum is

IðωR; α=RÞ
ðe4πωR − 1Þ−1

∼ α=R: ð46Þ

Taking α ∼ σ lnR=σ and assuming for an estimate that
the mass of the black hole is of order of several solar
masses, we obtain that α=R ∼ ðσ=MÞ lnðM=σÞ ≪ 1.

VI. DISCUSSION

In this paper, we discussed modifications of the density
matrix of the radiation of the black hole formed by the
collapsing shell resulting from the horizon fluctuations of

the black hole. Horizon fluctuations are inherent to the
black hole considered as a quantum object. Distinct from
the original Hawking calculation based on the rigid
horizon, horizon fluctuations provide the off-diagonal
matrix elements of the density matrix. Qualitatively, the
off-diagonal matrix elements account for correlations
between the particles in the radiation and the information
stored in these correlations.
The construction of the density matrix discussed in the

present note is parallel to that of Refs. [12,13], where the
density matrix with the off-diagonal corrections was
obtained in the form ρHðω; ~ωÞ þ C1=2

BHΔρðω; ~ωÞ, where
ρH is the original Hawking matrix and the off-diagonal
correction is of order C1=2, where CBH ¼ l2p=4πM2G2,
whereM is the mass of the shell. The fact that the expansion
parameter in both approaches is the same is rather obvious
because σ=M is the only dimensionless parameter con-
necting the horizon radius and the scale of fluctuations.
In [12], it was supposed that the shell is assigned a wave

function ΨshellðRshellÞ, and the already formed black hole is
described by the wave function of the Gaussian form
ΨBH ∼ expf−ðR − RSÞ2=2σ2g, where RS ¼ 2M is the
Schwarzschild radius. Next, it was supposed that, as the
shell approaches the Schwarzschild radius, the shell wave
function approaches the black hole wave function

ΨshellðRshellÞjRshell→RS
→ ΨBHðRshellÞ:

Using the approximate relation Rshell − RS ≃ vH − vshell,
the expressions for the expectation values of operators
OðRshellÞ smeared with the shell wave function are written
in the form of integrals over vshell.
In the present paper it was assumed that the fluctuations

of the horizon radius R are distributed as the Gaussian
function around the Schwarzschild radius. The Bogolubov
coefficients smeared by fluctuations of the horizon radius
were obtained in a convoluted form of the standard
Bogolubov coefficients calculated with radius R with the
distribution of horizon radius. The density matrix was
defined by the standard expression, but with the Bogolubov
coefficients smeared by fluctuations of horizon radius.
Technically, the details of calculations and the actual

form of the off-diagonal terms in the densitymatrix obtained
in the present paper and in the paper [12] are different.
Because the structural form (but not the explicit form) of

the smeared density matrix obtained in the present paper is
similar to that in papers [12,13], we arrive at the same
qualitative conclusions concerning the information prob-
lem as in these papers. It is possible to construct the
N-particle density matrix ρðNÞ having dimensionality
N × N and to calculate the entropy of radiation
S=N ¼ −TrðρðNÞ ln ρðNÞ. Calculating the information con-
tained in the radiation, which is defined as the difference
between the thermal Bekenstein-Hawking entropy SH of

DENSITY MATRIX OF RADIATION OF A BLACK HOLE … PHYSICAL REVIEW D 94, 064044 (2016)

064044-7



radiation, I ¼ SH − S, one obtains the qualitatively correct
Page purification curve [21–23].
In Ref. [24], it was shown by another method that off-

diagonal terms in the density matrix which are responsible
for subtle correlations in the radiation can convert a
maximally mixed state into a pure state. An important
difference between Ref. [24] and the approaches discussed
above is that distinct from the “usual” approaches in which
the density matrix is calculated for particles propagating to
the infinity Iþ, in this paper no degrees of freedom
(infalling modes) are traced out.
However, the above results pose a question. In [4,5], it

was shown that the Schwarzschield metric admits con-
struction of “nice slices.” The nice slices are at r≃ const
inside the horizon, and one can take r ∼M=2. ForM ≫ lp,
the horizon fluctuations which are on the scale lp are
insignificant for particle production on the nice slices. If,
however, the horizon fluctuations are somehow connected
with hair (in the spirit of [8,9] and Refs. therein), then the
niceness is broken and the horizon fluctuations can be
connected with the release of information from the black
hole.
The expressions for the density matrix discussed in the

present paper refer to eternal black holes. Because of the
outgoing flux of particles, the mass of the collapsing shell is
not constant, but decreases with time

∂MðuÞ
∂t ¼ −hTuui≡ −LH:

Here Tuu is the uu component of the radiation stress tensor.
In Refs. [17,18] it was found that for the mass of the black

hole MðuÞ ≫ mp, where mp is the Planck mass, the
backreaction of black hole radiation does not prevent
formation of the event horizon. When the outgoing flux
is small and slowly varying, the calculation is self-
consistent. The metric of the exterior geometry of the shell
at large distances r becomes

ds2 ≃ −
�
1 −

2MðuÞ
r

�
dv2 þ 2dudrþ r2dΩ2;

where dMðuÞ=du ¼ −LH, and LH ∼ 1=M2ðuÞ.
For the case considered in Sec. II at leading order,

LH ¼ 1

48π

M
R3
shell

�
2 −

3M
Rshell

�
;

where M is the mass of the shell. Substituting RshellðUÞ ¼
−ðU − 4MÞ=2, we have

LH ¼ M
3π

U −M
ðU − 4MÞ4 :

In the near-horizon region U → 0, and we obtain LH ≃
1=ð768πM2Þ. The smallness of LH shows that our semi-
classical treatment is valid.
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