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We consider a general class of four-dimensional geometries admitting a null vector field that has no twist
and no shear but has an arbitrary expansion. We explicitly present the Petrov classification of such
Robinson-Trautman (and Kundt) gravitational fields, based on the algebraic properties of the Weyl tensor.
In particular, we determine all algebraically special subcases when the optically privileged null vector field
is a multiple principal null direction (PND), as well as all the cases when it remains a single PND. No field
equations are a priori applied, so that our classification scheme can be used in any metric theory of gravity
in four dimensions. In the classic Einstein theory, this reproduces previous results for vacuum spacetimes,
possibly with a cosmological constant, pure radiation, and electromagnetic field, but can be applied to an
arbitrary matter content. As nontrivial explicit examples, we investigate specific algebraic properties of the
Robinson-Trautman spacetimes with a free scalar field, and also black hole spacetimes in the pure Einstein-
Weyl gravity.
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I. INTRODUCTION

Robinson-Trautman family of spacetimes was discov-
ered more than half a century ago [1,2], soon after the
advent of new powerful techniques and concepts in general
relativity such as geometrical optics of null congruences,
null tetrad formalism, and related algebraic classification of
the Weyl tensor. It became one of the most fundamental
classes of exact solutions of Einstein’s equations, enabling
us to construct explicit models in black hole physics,
gravitational waves, and cosmology.
Geometrically, the Robinson-Trautman class is defined

by admitting a nontwisting, shear-free, and expanding
congruence of null geodesics generated by a vector field
k (the nonexpanding class defines the closely related Kundt
geometries [3,4]). This group of spacetimes contains many
important vacuum, electrovacuum, or pure radiation sol-
utions, including any value of the cosmological constant Λ.
In particular, it involves the well-known spherically sym-
metric black holes (Schwarzchild, Reissner–Nordström,
Schwarzchild–de Sitter, Vaidya), uniformly accelerating
black holes (C metric), arbitrarily moving Kinnersley’s or
Bonnor’s “photon rockets”, expanding spherical gravita-
tional waves (including sandwich or impulsive waves)
propagating on conformally flat backgrounds with maximal
symmetry (Minkowski, de Sitter, anti-de Sitter), and even
their combinations, e.g., radiative spacetimes with Λ
settling down to spherical black holes. These are of various
algebraically special Petrov-Penrose types (D, N, O, III, II).
Details and a substantial list of references can be found in
Chap. 28 of the monograph [5] or Chap. 19 of [6].

There has also been a growing interest in Robinson-
Trautman spacetimes beyond the standard settings of four-
dimensional general relativity and classic matter fields. In
[7], this family was extended to the Einstein theory in
higher dimensions D > 4 for the case of an empty space
(with any Λ) or aligned pure radiation, which revealed
substantial differences with respect to the usualD ¼ 4 case.
Aligned electromagnetic fields were also incorporated into
the Robinson-Trautman higher-dimensional spacetimes
within the Einstein-Maxwell theory [8] (including the
Chern-Simons term for odd D) and even for more general
p-form Maxwell fields [9].
Absence of gyratons (null fluid or particles with an

internal spin) in the Robinson-Trautman class of anyD was
proved in [10]. In fact, it was demonstrated that in four
dimensions the off diagonal metric components determine
two independent amplitudes of exact gravitational waves.
Moreover, new explicit solutions of this type in the

Einstein gravity in D ¼ 4 were found and studied, namely
Robinson-Trautman solutions with minimally coupled free
scalar field [11] and with electromagnetic field satisfying
equations of nonlinear electrodynamics [12].
Very recently, a remarkable class of static, spherically

symmetric solutions representing black holes in the
Einstein-Weyl gravity (with higher derivatives) was pre-
sented in [13,14]. It was shown numerically that such a
class contains further black hole solutions over and above
the Schwarzschild solution. As we will demonstrate, this
also belongs to the Robinson-Trautman class of spacetimes.
Motivated by all these works, we now wish to present a

complete algebraic classification of the four-dimensional
Robinson-Trautman (and Kundt) geometries. As far as we
know, this has not been done before because the classic
works summarized in [5,6] remained constrained to
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(electro)vacuum or pure radiation solutions of Einstein’s
equations which are algebraically special due to the
celebrated Goldberg-Sachs theorem [15] and its general-
izations, see section 7.6 of [5].
To this end, we will employ explicit components of the

curvature tensors for the general class of nontwisting,
shear-free geometries in any dimension D ≥ 4 which we
calculated in our previous work. This enabled us to
determine possible algebraic types and subtypes of such
spacetimes in higher dimensions, based on the multiplicity
of the Weyl aligned null directions—following the classi-
fication method [16,17] summarized in [18]. The particular
case of nonexpanding Kundt geometries was investigated
in [19,20] while the inclusion of expanding Robinson-
Trautman geometries was achieved in [21], with the
discussion of vacuum solutions of Einstein’s equations.
In this work, we will solely concentrate on the most

important D ¼ 4 case which exhibits highly specific
properties. Above all, the corresponding transverse
Riemannian space is two-dimensional, i.e., conformally
flat which considerably simplifies the possible structure of
algebraic subtypes. Also, here we will use a different and
more convenient choice of the null frame in real coordi-
nates and the corresponding ten independent real Weyl
scalars of five distinct boost weights. This we will combine
with standard Newman-Penrose formalism employing a
complex null tetrad.
Let us also emphasize that in our analysis we will not

initially assume any gravitational field equations, so that
the “purely geometrical” results can be applied in any
metric theory of gravity (not just in Einstein’s general
relativity), and in the presence of any matter field.
First, in Sec. II, we present the general metric form of a

nontwisting, shear-free spacetime, and we introduce the
Robinson-Trautman geometries. In Sec. III, we define the
null tetrad and the corresponding Weyl scalars, both in real
and complex formalisms. Explicit form of these scalars,
crucial for the algebraic classification, is given in Sec. IV.
General method of determining algebraic types of four-
dimensional spacetimes and the corresponding principal
null directions (PNDs) are recalled in Sec. V. A detailed
discussion of all possible algebraically special types is
contained in Secs. VI and VII for the cases when the
geometrically privileged null vector field k is a multiple
PND or it remains a single PND, respectively. A remark on
the special case of Kundt geometries is given in Sec. VIII.
Section IX is devoted to applications of our general results
to several explicit examples, namely the algebraically
special Robinson-Trautman spacetimes in Einstein’s theory
of gravity—both of the Ricci type I (vacuum, aligned
Maxwell field) and of a general Ricci type (scalar field)—
and the static, spherically symmetric black holes in the pure
Einstein-Weyl gravity. Explicit coordinate components of
the Weyl tensor for a generic geometry are presented in
Appendix A.

II. THE ROBINSON-TRAUTMAN GEOMETRIES

In this paper, we will investigate the general family of
four-dimensional spacetimes admitting a null vector field k
that is nontwisting (ω ¼ 0), shear-free (σ ¼ 0) but expand-
ing (Θ ≠ 0). It was shown already in the original seminal
work by Robinson and Trautman [1,2] that the metric of
such spacetimes can be written in the form

ds2 ¼ gijðr; u; xkÞdxidxj þ 2guiðr; u; xkÞdudxi − 2dudr

þ guuðr; u; xkÞdu2; ð1Þ

where the coordinates are adapted to the optically privi-
leged null vector field. Namely, r is the affine parameter
along a congruence of null geodesics generated by k (so
that k ¼ ∂r), the whole manifold is foliated in such a way
that k is everywhere tangent (and normal) to hypersurfaces
u ¼ const, and at any fixed u and r, the two spatial
coordinates xk ≡ ðx2; x3Þ span the transverse two-dimen-
sional Riemannian manifold with the metric gij.

1 Note that
the nontrivial components of an inverse metric are gij

(inverse of gij), gri ¼ gijguj, gru ¼ −1 and grr ¼ −guu þ
gijguiguj (so that gui ¼ gijgrj and guu ¼ −grr þ guigri).
By construction, the metric (1) is nontwisting with a

nonzero shear σ and expansion Θ. The requirement that the
congruence generated by k is shear-free implies the
condition

Gij ¼ 0; where Gij ¼ gij;r − 2Θgij; ð2Þ

which can be readily integrated to

gij ¼ ϱ2ðr; u; xkÞhijðu; xkÞ; where ϱ;r ¼ Θϱ; ð3Þ

that is ϱ ¼ expðR Θðr; u; xkÞdrÞ. Moreover, since any two-
dimensional spatial metric is conformally flat, without loss
of generality, we can assume hij ¼ δij, if such a choice of
gauge is convenient.

III. NULL TETRAD AND CORRESPONDING
WEYL SCALARS

To evaluate the Weyl scalars determining the algebraic
structure of the spacetime, it is necessary to set up a
normalized reference frame. In our notation, this consists of
two future oriented null vectors, k and l, and two
perpendicular real spacelike vectors mðiÞ [standing for
mð2Þ and mð3Þ], which satisfy the normalization conditions

k · l ¼ −1; mðiÞ ·mðjÞ ¼ δij;

k · k ¼ 0 ¼ l · l; k ·mðiÞ ¼ 0 ¼ l ·mðiÞ: ð4Þ

1Throughout this paper, the indices i, j, k, l label the spatial
directions and range from 2 to 3.
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It is most convenient to identify the vector k with the
geometrically privileged null vector field k ¼ ∂r, which
generates the nontwisting, shear-free, and affinely para-
metrized geodesic congruence of the spacetime (1). The
conditions (4) are then satisfied by the natural choice of the
null frame2

k ¼ ∂r; l ¼ −
1

2
grr∂r þ ∂u − gri∂i; mðiÞ ¼ mi

ðiÞ∂i;

ð5Þ

where the coefficients mi
ðiÞ are normalized as

gijmi
ðkÞm

j
ðlÞ ¼ δkl, i.e., mi

ðkÞm
ðkÞj ¼ gij.

Our aim is to calculate the components of the Weyl
tensor in the frame (5) and discuss its algebraic properties.
We define real Weyl scalars with respect to the frame
fk; l;mð2Þ;mð3Þg by3

Ψ0ij ¼ Cabcdkamb
ðiÞk

cmd
ðjÞ;

Ψ1i ¼ Cabcdkalbkcmd
ðiÞ;

Ψ2S ¼ Cabcdkalblckd;

Ψ2ij ¼ Cabcdkalbmc
ðiÞm

d
ðjÞ;

Ψ3i ¼ Cabcdlakblcmd
ðiÞ;

Ψ4ij ¼ Cabcdlamb
ðiÞl

cmd
ðjÞ; ð6Þ

where the indices i, j ¼ 2, 3 again correspond to two
transverse spatial directions. The symmetries of the Weyl
tensor Cabcd imply that Ψ0ij ¼ Ψ0ji , Ψ2ij ¼ −Ψ2ji ,
Ψ4ij ¼ Ψ4ji , and that these 2 × 2 matrices are trace free.
We thus have two independent components of each boost
weight, namely Ψ022 ¼ −Ψ033 and Ψ023 , Ψ12 and Ψ13 , Ψ2S
and Ψ223 , Ψ32 and Ψ33 , Ψ422 ¼ −Ψ433 and Ψ423 .
In fact, these scalars defined by (6) are simply related to

ten real components of the classic five complex Newman-
Penrose scalars

Ψ0 ¼ Cabcdkambkcmd;

Ψ1 ¼ Cabcdkalbkcmd;

Ψ2 ¼ Cabcdkambm̄cld;

Ψ3 ¼ Cabcdlakblcm̄d;

Ψ4 ¼ Cabcdlam̄blcm̄d; ð7Þ

in the complex null tetrad fk; l;m; m̄g. Indeed, with the
natural identification

m≡ 1ffiffiffi
2

p ðmð2Þ − imð3ÞÞ; m̄≡ 1ffiffiffi
2

p ðmð2Þ þ imð3ÞÞ; ð8Þ

we immediately obtain the relations

Ψ0 ¼ Ψ022 − iΨ023 ;

Ψ1 ¼
1ffiffiffi
2

p ðΨ12 − iΨ13Þ;

Ψ2 ¼ −
1

2
ðΨ2S þ iΨ223Þ;

Ψ3 ¼
1ffiffiffi
2

p ðΨ32 þ iΨ33Þ;

Ψ4 ¼ Ψ422 þ iΨ423 : ð9Þ

IV. WEYL SCALARS FOR GENERIC
ROBINSON-TRAUTMAN GEOMETRIES

Now the main point is to explicitly express the key Weyl
scalars in the null frame (5) using their definition (6). The
Weyl tensor coordinate components for a completely
general four-dimensional Robinson-Trautman metric (1)
are summarized in Eqs. (A1)–(A10) of Appendix A.
Straightforward but lengthy calculation of the respective
projections leads to the following Weyl scalars:

Ψ0ij ¼ 0; ð10Þ

Ψ1i ¼
1

2
mi

ðiÞNi; ð11Þ

Ψ2S ¼
1

3
S; ð12Þ

Ψ2ij ¼ mi
ðiÞm

j
ðjÞFij; ð13Þ

Ψ3i ¼
1

2
mi

ðiÞVi; ð14Þ

Ψ4ij ¼ mi
ðiÞm

j
ðjÞ

�
Wij −

1

2
gijW

�
; ð15Þ

where

Ni ¼ −
1

2
Gui;r þ Θ;i; ð16Þ

S ¼ 1

2
SRþ 1

2
Guu;r þ

1

2
gijGuijjj þ 2griNi − 2Θ;u; ð17Þ

Fij ¼ Gu½i;j�; ð18Þ

2An alternative choice used, e.g., in [21] is k ¼ ∂r,
l ¼ 1

2
guu∂r þ ∂u, mðiÞ ¼ mi

ðiÞ∂i þmi
ðiÞgui∂r, from which the null

frame (5) is obtained by a null rotation ~k ¼ k, ~l ¼ lþffiffiffi
2

p
LimðiÞ þ jLj2k, ~mðiÞ ¼ mðiÞ þ

ffiffiffi
2

p
Lik, with Li ¼− 1ffiffi

2
p mi

ðiÞgui
(and dropping the tildes).

3Due to the symmetries of Cabcd, all other projections onto the
frame vectors can be expressed in terms of (6).
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Vi ¼
1

2
SRgui þ

1

2
gkleklGui −

1

2
grjGuijjj þ grjGujjji þ

1

2
Gui;u −

1

2
Guu;i

þ 1

2
gjkðgij;u − guijjjÞGuk − gklðgk½i;ujjl� þ gu½k;i�jjlÞ þ

1

2
grrNi; ð19Þ

Wij ¼ −
1

2
guujjij −

1

2
gij;uu þ guði;ujjjÞ −

1

2
eijGuu þ

1

2
guu;ðiGjÞu þ

1

2
guuGuðijjjÞ

þ 1

4
grkgukGuiGuj −

1

2
guiguj

�
SR − gkl

�
Gukjjl þ

1

2
GukGul

��
þgkl½guiðgk½j;ujjl� þ gu½k;j�jjlÞ þ gujðgk½i;ujjl� þ gu½k;i�jjlÞ�

−gkleklGuðigjÞu þ gklGukelðigjÞu −
1

2
grkGukGuðigjÞu

þgklEkiElj − grkEkðiGjÞu −
1

2
grkðguðiGjÞujjk þ GukjjðigjÞuÞ; ð20Þ

and the contraction W is defined as W ¼ gijWij. Here, we
have introduced convenient functions

Gui ¼ gui;r − 2Θgui; ð21Þ

Guu ¼ guu;r − 2Θguu; ð22Þ

and auxiliary tensor quantities on the transverse Rieman-
nian 2-space (see [21])

eij ¼ guði∥jÞ −
1

2
gij;u; Eij ¼ gu½i;j� þ

1

2
gij;u;

guijjj ¼ gui;j − gukSΓk
ij; gui;u∥j ¼ gui;uj − guk;uSΓk

ij;

ð23Þ

etc. Covariant derivative with respect to gij is denoted by
the symbol ∥. Of course, gu½i;j� ¼ gu½i∥j�. The symbol SR is
the Ricci scalar for the metric gij of the transverse
Riemannian 2-space.
The key functions (16)–(20) simplify enormously when

the off diagonal coefficients gui of the metric (1) vanish,
that is

ds2 ¼ gijðr; u; xkÞdxidxj − 2dudrþ guuðr; u; xkÞdu2:
ð24Þ

Indeed, in such a case

gui ¼ 0 ⇒ Gui ¼ 0; gri ¼ 0; grr ¼ −guu; ð25Þ

so that

Ni ¼ Θ;i; ð26Þ

S ¼ 1

2
SRþ 1

2
Guu;r − 2Θ;u; ð27Þ

Fij ¼ 0; ð28Þ

Vi ¼ −
1

2
Guu;i − gjkgj½i;u∥k� −

1

2
guuNi; ð29Þ

Wij ¼ −
1

2
guu∥ij −

1

2
gij;uu þ

1

4
gij;uGuu þ

1

4
gklgik;ugjl;u:

ð30Þ

Notice that Ψ2ij ¼ 0 due to (28), which indicates that the
case (25) is a specific algebraically distinct subcase of the
Robinson-Trautman geometry.
Let us also recall that it is always possible to

assume

gij ¼ ϱ2ðr; u; xkÞδij; ð31Þ

see (3), in which case the normalized spacelike vectors mðiÞ
have simple components mk

ðiÞ ¼ ϱ−1δki and expressions

(11)–(15) reduce to

Ψ1i ¼
1

2
ϱ−1Ni; Ψ2S ¼

1

3
S; Ψ2ij ¼ ϱ−2Fij; ð32Þ

Ψ3i ¼
1

2
ϱ−1Vi; Ψ4ij ¼ ϱ−2

�
Wij −

1

2
gijW

�
: ð33Þ

Finally, it can be seen from the definitions (21) and (22)
that—once the functions Gui and Guu are determined—
the metric coefficients gui and guu can be immediately
obtained by integration using the relation ϱ;r ¼ Θϱ, see (3),
namely

gui ¼ ϱ2
Z

ϱ−2Guidr; and guu ¼ ϱ2
Z

ϱ−2Guudr:

ð34Þ
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V. DETERMINING THE ALGEBRAIC TYPES
AND PRINCIPAL NULL DIRECTIONS (PNDS)

Let us emphasize that the results (10)–(15) with (16)–
(20) are valid for all Robinson-Trautman geometries (and
Kundt geometries as well, by setting Θ ¼ 0), without any
restriction imposed by specific field equations and/or
matter content of the spacetime. This enables us to
explicitly determine the algebraic type of an arbitrary
spacetime of the form (1), (3), and to find the corresponding
principal null directions (together with their multiplicity).
First, we immediately observe from (10) that Ψ0ij ¼ 0.

This means that the optically privileged null vector field
k ¼ ∂r is always a principal null direction of the Weyl
tensor, and the algebraic structure is obviously of type I
with respect to the null frame (5).
The next question then arises: What is the explicit

condition for the Robinson-Trautman geometry to be of
type II, i.e., algebraically special, and what is the corre-
sponding double PND? It is well-known (see, e.g.,
Secs. 4.2, 4.3, 9.3 in [5] or the explicit algorithm in
[22]) that such a condition reads I3 ¼ 27J2, in terms of
scalar polynomial invariants constructed from the complex
Newman-Penrose scalars ΨA as

I ¼ Ψ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2; J ¼

������
Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

������:
ð35Þ

For any Robinson-Trautman geometry, Ψ0ij ¼ 0⇒Ψ0¼ 0.
The invariants (35) thus reduce to

I ¼ 3Ψ2
2 − 4Ψ1Ψ3; J ¼ Ψ1ð2Ψ2Ψ3 −Ψ1Ψ4Þ −Ψ3

2;

ð36Þ
so that the condition I3 ¼ 27J2 explicitly reads

Ψ2
1½27ðΨ2

1Ψ
2
4 − 4Ψ1Ψ2Ψ3Ψ4 þ 2Ψ3

2Ψ4Þ
þ 64Ψ1Ψ3

3 − 36Ψ2
2Ψ

2
3� ¼ 0: ð37Þ

The Robinson-Trautman spacetime is algebraically special
(admits a double PND) if, and only if, the condition (37)
is satisfied. There are two distinct possibilities, namely,
Ψ1 ¼ 0 and Ψ1 ≠ 0

(i) In the case Ψ1 ¼ 0, the optically privileged vector
field k ¼ ∂r is (at least) a double PND of the Weyl
tensor, and its algebraic structure is of type II with
respect to the null frame (5).

(ii) In the peculiar case Ψ1 ≠ 0, the optically privileged
null vector field k ¼ ∂r is not a double principal null
direction (it remains a nondegenerate PND), and
there exists another double PND in the spacetime
provided the expression in the square bracket of (37)
vanishes.

In the following sections, we will systematically analyze
both these cases separately. We will also discuss the
conditions for the geometry to be of algebraic type III,
N, O, and D.
Moreover, we will explicitly determine the correspond-

ing four (possibly multiple) principal null directions. Recall
(cf. [5,6]) that any PND k0 can be obtained by performing a
null rotation of the frame (5), (8) with a fixed null vector l,
that is

k0 ¼ kþ Km̄þ K̄mþ KK̄l; l0 ¼ l; m0 ¼ mþ Kl;

ð38Þ

where the parameter K is a root of the equation
Ψ4K4 þ 4Ψ3K3 þ 6Ψ2K2 þ 4Ψ1K þΨ0 ¼ 0. This always
has four complex solutions, each corresponding to one
of the four PNDs. Of course, for a degenerate root K,
we obtain a multiple PND k0 given by (38). Since we
employ the frame (5) in which Ψ0 ¼ 0 for any
Robinson-Trautman geometry, this quartic equation
reduces to

KðΨ4K3 þ 4Ψ3K2 þ 6Ψ2K þ 4Ψ1Þ ¼ 0; ð39Þ

with an obvious root K ¼ 0 corresponding to the
optically privileged PND k0 ¼ k ¼ k ¼ ∂r.

VI. MULTIPLE PND k= ∂r AND ALGEBRAICALLY
SPECIAL SUBTYPES

Wewill first analyze the most important caseΨ1 ¼ 0, for
which the key equation (39) reads

K2ðΨ4K2 þ 4Ψ3K þ 6Ψ2Þ ¼ 0: ð40Þ

Since K ¼ 0 is its double root, the optically privileged null
vector field k ¼ ∂r is (at least) a double PND of the Weyl
tensor, and the corresponding Robinson-Trautman space-
time is of type II (or more special). In view of (9), (11), such
a situation occurs if, and only if,

Ψ1i ¼ 0 ⇔ Ni ¼ 0; ð41Þ

for both i ¼ 2 and i ¼ 3 [because the spatial vectors mðiÞ
are independent]. Using (16), this condition is equivalent to
Gui;r ¼ 2Θ;i. It can be integrated to

Gui ≡ fi; where fiðr; u; xÞ ¼ 2

Z
Θ;idrþ φiðu; xÞ;

ð42Þ

in which φi is any function independent of r. Consequently,

gui ¼ ϱ2
Z

ϱ−2fidr: ð43Þ
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Moreover, applying the condition Ni ¼ 0 and (42),
the functions (17)–(20) determining the remaining Weyl
scalars (12)–(15) simplify to

S ¼ 1

2
SRþ 1

2
Guu;r þ

1

2
gijfi∥j − 2Θ;u; ð44Þ

Fij ¼ f½i;j�; ð45Þ

Vi ¼
1

2
SRgui þ

1

2
gkleklfi −

1

2
grjfi∥j

þ grjfj∥i þ
1

2
fi;u −

1

2
Guu;i

þ1

2
gjkðgij;u − gui∥jÞfk − gklðgk½i;u∥l� þ gu½k;i�∥lÞ; ð46Þ

Wij ¼ −
1

2
guu∥ij −

1

2
gij;uu þ guði;u∥jÞ −

1

2
eijGuu

þ 1

2
guu;ðifjÞ þ

1

2
guufði∥jÞ

þ 1

4
grkgukfifj −

1

2
guiguj

�
SR − gkl

�
fk∥l þ

1

2
fkfl

��
þgkl½guiðgk½j;u∥l� þ gu½k;j�∥lÞ þ gujðgk½i;u∥l� þ gu½k;i�∥lÞ�

−gkleklfðigjÞu þ gklfkelðigjÞu −
1

2
grkfkfðigjÞu

þgklEkiElj − grkEkðifjÞ −
1

2
grkðguðifjÞ∥k þ fk∥ðigjÞuÞ:

ð47Þ

A. Type II subtypes with a double PND k

The Robinson-Trautman spacetimes (1), (3) satisfying
the condition (42) are of type II with (at least) a double
PND k ¼ ∂r. In addition to Ψ1i ¼ 0, they may admit the
following particular algebraic subtypes of the Weyl tensor

(i) subtype IIðaÞ ⇔ Ψ2S ¼ 0 ⇔ S ¼ 0 ⇔ the metric
function guu satisfies the relation

Guu;r ¼ −SR − gijfi∥j þ 4Θ;u: ð48Þ

This determines the specific dependence of
Guuðr; u; xÞ on the coordinate r, which is the affine
parameter along the optically privileged null con-
gruence generated by k, and subsequently, also the r
dependence of guu via the second equation of (34).

(ii) subtype IIðdÞ ⇔ Ψ2ij ¼ 0 ⇔ Fij ¼ 0:

f½i;j� ¼ 0: ð49Þ

Introducing ϕ≡ fidxi in the transverse two-
dimensional Riemannian space, this condition says
that ϕ is closed (dϕ ¼ 0). By the Poincaré lemma,
on any contractible domain there exists a function F

such that ϕ ¼ dF , that is fi ¼ F ;i. In a general case,
such F exists only locally.

In general, there are two additional (distinct) principal
null directions k0 given by (38). The corresponding two
parameters K are solutions of the quadratic equation
Ψ4K2 þ 4Ψ3K þ 6Ψ2 ¼ 0, which follows from (40), that
is explicitly

K ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

�
Ψ3

Ψ4

�
2

− 6
Ψ2

Ψ4

s
− 2

Ψ3

Ψ4

: ð50Þ

The special case Ψ4 ¼ 0 will be discussed in Secs. VI E
and VI F.

B. Type III with a triple PND k

The Robinson-Trautman spacetime is of algebraic type
III with respect to the triple PND k ¼ ∂r if both indepen-
dent conditions (48) and (49) are satisfied simultaneously.
Indeed, in such a case, the boost-weight zero Weyl tensor
component Ψ2 vanishes, see (9), and Eq. (40) reduces to

K3ðΨ4K þ 4Ψ3Þ ¼ 0: ð51Þ

Thus, K ¼ 0 is a triple root, so that the optically privileged
null vector field k ¼ ∂r is a triply degenerate principal null
direction of the Weyl tensor.
There is just one additional PND k0 determined by (38)

with the parameter K given by

K ¼ −4
Ψ3

Ψ4

; ð52Þ

which is the fourth root of the complex Eq. (51). Again, the
special case Ψ4 ¼ 0 is left to Sec. VI E. The Weyl scalars
Ψ3, Ψ4 entering the above expressions are explicitly
determined by Eqs. (9), (14), (15), in which the structural
functions Vi and Wij take the form (46) and (47),
respectively, with the two constraints (48), (49).

C. Type N with a quadruple PND k

It immediately follows from (51) that the geometrically
privileged PND k ¼ ∂r becomes quadruply degenerate if,
and only if, Ψ3 ¼ 0 (so that K ¼ 0 becomes a quadruple
root). In view of (9), (14), this is equivalent to

Ψ3i ¼ 0 ⇔ Vi ¼ 0; ð53Þ

for both i ¼ 2 and i ¼ 3. Using (46) simplified by (49), this
condition takes the explicit form

Guu;i ¼ SRgui þ grjfi∥j þ gkleklfi þ fi;u

þgjkðgij;u − gui∥jÞfk − 2gklðgk½i;u∥l� þ gu½k;i�∥lÞ:
ð54Þ

J. PODOLSKÝ and R. ŠVARC PHYSICAL REVIEW D 94, 064043 (2016)

064043-6



This is a specific constraint on the spatial derivatives of the
function Guu, and thus guu.
In such a case, the only remaining Weyl tensor compo-

nents form a symmetric and traceless 2 × 2 matrix
Ψ4ij ¼ mi

ðiÞm
j
ðjÞðWij − 1

2
gijWÞ, see (15), equivalent to the

complex Newman-Penrose scalar Ψ4 ¼ Ψ422 þ iΨ423. The
structural functions Wij for such type N geometries are
explicitly given by (47). They directly encode the ampli-
tudes Ψ4ij of the corresponding gravitational waves.

D. Type O geometries

The Weyl tensor vanishes completely if, and only if, all
the above conditions are satisfied and, in addition, Ψ4 ¼ 0,
equivalent to Ψ4ij ¼ 0. This clearly occurs when

Wij ¼
1

2
gijW; ð55Þ

with W ¼ gijWij, which is a specific restriction on the
functions Wij of (47).

E. Type IIIi with a triple PND k and a PND l

Let us now investigate the special caseΨ4 ¼ 0 forbidden
in expression (50), and for which (40) reduces just to a
cubic equation. It can immediately be seen from the
definitions (6) that Ψ0ij ↔ Ψ4ij and Ψ1i ↔ Ψ3i under the
swap k ↔ l of the null vectors. Consequently, the condition
Ψ4 ¼ 0means that the null vector l defined in (5) is a PND.
Instead of (38) with (52), that formally diverges in this case,
the single separate PND is now given by

k0 ¼ l ¼ −
1

2
grr∂r þ ∂u − gri∂i; ð56Þ

in addition to the triply degenerate PND k ¼ ∂r.

F. Type D with a double PND k and a double PND l

In the highly degenerate case when Ψ4 ¼ 0 ¼ Ψ3 and
Ψ0 ¼ 0 ¼ Ψ1, both the null vectors of the frame (5), that is
k ¼ k ¼ ∂r and l ¼ − 1

2
grr∂r þ ∂u − gri∂i, are doubly

degenerate principal null directions. Such a situation
occurs if, and only if,

Vi ¼ 0 and Wij ¼
1

2
gijW; ð57Þ

where the functions Vi and Wij are given by (46) and (47).
The only remaining components of the Weyl tensor are
thus Ψ2S and Ψ2ij (of boost-weight zero). If one of them
vanishes, we obtain the algebraic subtypes D(a) and D(d),
respectively, see the conditions (48) and (49).
The explicit conditions (57) look rather complicated to

enable a complete integration of the metric functions in the
most general case. However, there is a considerable

simplification for the Robinson-Trautman geometries with
gui ¼ 0, given by the metric (24). As can be seen from
expressions (25) and (27)–(30), all such type D spacetimes
are determined by the conditions

Guu;i ¼ −2gjkgj½i;u∥k�; ð58Þ

guu∥ij þ gij;uu −
1

2
gij;uGuu −

1

2
gmngim;ugjn;u

¼ 1

2
gijgkl

�
guu∥kl þ gkl;uu −

1

2
gkl;uGuu −

1

2
gmngkm;ugln;u

�
:

ð59Þ

Fij ¼ 0 due to fi ¼ 0 in this case, see (28) and (45);
therefore, such geometries are always of subtype D(d) since
(49) is automatically satisfied, with the only remaining
Weyl component

Ψ2 ¼ −
1

2
Ψ2S ¼ −

1

12
ðSRþ Guu;r − 4Θ;uÞ: ð60Þ

For gij ¼ ϱ2ðr; u; xkÞδij, the conditions (58), (59) for
algebraic type D further simplify to

ðGuu − ðlog ϱ2Þ;uÞ;i ¼ 0; ð61Þ

guu∥23 ¼ 0 ¼ guu∥32; guu∥22 ¼ guu∥33: ð62Þ

G. Type D with a double PND k
and a double PND k0 ≠ l

Finally, the special case Ψ1 ¼ 0, Ψ4 ≠ 0 of Eq. (40) can
take the form

K2Ψ4ðK − aÞ2 ¼ 0; ð63Þ

when the quadratic expression Ψ4K2 þ 4Ψ3K þ 6Ψ2 is
Ψ4ðK − aÞ2 with a double root K ¼ a. This happens if, and
only if, the discriminant vanishes, i.e.,

3Ψ2Ψ4 ¼ 2Ψ2
3: ð64Þ

It represents type D geometries with a doubly degenerate
PND k ¼ ∂r [corresponding to the root K2 ¼ 0] and
another doubly degenerate PND k0 [corresponding to the
root ðK − aÞ2 ¼ 0] given by (38) with

K ¼ −2
Ψ3

Ψ4

: ð65Þ

VII. EXCEPTIONAL TYPE II CASES WHEN k =∂r
IS A SINGLE PND

In this section, we will analyze the peculiar case of
algebraically special Robinson-Trautman geometries for
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which the optically privileged null vector field k ¼ ∂r
remains a single (nondegenerate) PND while there is
another null direction which is doubly or possibly triply
degenerate PND of the Weyl tensor. As shown in Sec. V,
such a situation occurs if, and only if, Ψ1 ≠ 0 and

27ðΨ2
1Ψ

2
4 − 4Ψ1Ψ2Ψ3Ψ4 þ 2Ψ3

2Ψ4Þ
þ 64Ψ1Ψ3

3 − 36Ψ2
2Ψ

2
3 ¼ 0: ð66Þ

According to the value of Ψ4, we distinguish two cases:

A. Case Ψ 4 = 0: The vector l is a PND

In the case when Ψ4 ¼ 0, the null vector field
l ¼ − 1

2
grr∂r þ ∂u − gri∂i is a principal null direction (in

addition to the single PND k ¼ ∂r), see Sec. VI E. The
condition (66) for the algebraically special spacetime (i.e.,
type II admitting a degenerate PND) simplifies substan-
tially to

9Ψ2
2Ψ

2
3 ¼ 16Ψ1Ψ3

3: ð67Þ

There are now three possible subcases of such geometries:

1. Subcase Ψ 3 ≠ 0 with a single PND l

In such a case, the principal null directions k ¼ ∂r and l
given by (56) are both single, so that the remaining distinct
PND must be a doubly degenerate. Indeed, the key
equation (39) reduces to

2Ψ3K2 þ 3Ψ2K þ 2Ψ1 ¼ 0: ð68Þ

The discriminant 9Ψ2
2 − 16Ψ1Ψ3 of this quadratic equation

vanishes due to (67), so that there is a double root

K ¼ −
3Ψ2

4Ψ3

; ð69Þ

uniquely determining the additional double PND k0
via (38).

2. Subcase Ψ 3 = 0, Ψ 2 ≠ 0 with a double PND l

Clearly, the vector field l given by (56) is now a doubly
degenerate PND, and the key equation (68) reduces to
3Ψ2K þ 2Ψ1 ¼ 0. The additional single PND k0 is thus
determined by (38) with

K ¼ −
2Ψ1

3Ψ2

: ð70Þ

3. Subcase Ψ 3 = 0, Ψ 2 = 0 with a triple PND l (type III)

The only nonvanishing Weyl scalar is Ψ1. This means
that the optically privileged null vector field k ¼ ∂r is a
single (nondegenerate) PND while the null vector field

l ¼ − 1
2
grr∂r þ ∂u − gri∂i is triply degenerate principal null

direction of the Weyl tensor.

B. Case Ψ 4 ≠ 0: The vector l is not a PND

This seems to be the most peculiar situation. Although
the condition (66) is now very complicated when we
explicitly substitute the structural functions (16)–(20) using
(9) and (11)–(15), it is still possible to determine the
corresponding multiple PND, distinct from k ¼ ∂r.
Indeed, the fundamental quartic equation (39) whose

three roots K ≠ 0 determine the remaining three PNDs
must have the following factorized form:

KΨ4ðK − aÞ2ðK − bÞ ¼ 0: ð71Þ

By comparing the coefficients of different powers of K in
(39) and (71), we obtain three conditions

2aþ b ¼ A; a2 þ 2ab ¼ B; a2b ¼ C; ð72Þ

where

A ¼ −4
Ψ3

Ψ4

; B ¼ 6
Ψ2

Ψ4

; C ¼ −4
Ψ1

Ψ4

: ð73Þ

The first two conditions imply b ¼ A − 2a and thus
3a2 − 2Aaþ B ¼ 0, so that

a ¼ 1

3
ðA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 3B

p
Þ; b ¼ 1

3
ðA ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 3B

p
Þ:
ð74Þ

Straightforward calculation now shows that the third
condition of (72) is automatically satisfied provided the
relation (66) is applied, selecting just one of the possible
signs (upper or lower) in (74). For example, when A > 0,
B ¼ 0 the first relation (74) reduces to a ¼ 1

3
ðA� AÞ. This

excludes the lower sign because with a ¼ 0 the condition
a2b ¼ C ≠ 0 of (72) can not be satisfied.
We also assume b ≠ 0 since the case b ¼ 0 of (71),

implying C ¼ 0 ⇔ Ψ1 ¼ 0, represents type D Robinson-
Trautman geometries discussed in Sec. VI G. Notice that
for Ψ1 ¼ 0 the condition (66) reduces to 3Ψ2Ψ4 ¼ 2Ψ2

3 ⇔
A2 ¼ 4B, which is exactly the condition (64).

1. Subcase a ≠ b with a double PND k0 ≠ l (type II)

In such a case, we have a specific unique solution for the
principal null directions: there is a doubly degenerate PND
k0 ≠ l given by K ¼ a ≠ 0, and a different single PND
given by K ¼ b ≠ 0. These are both distinct from the
optically privileged single PND k ¼ ∂r (and also distinct
from l ¼ − 1

2
grr∂r þ ∂u − gri∂i).
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2. Subcase a = b with a triple PND k0 ≠ l (type III)

In the special case a ¼ b ⇔ A2 ¼ 3B ≠ 0, the funda-
mental quartic equation (71) takes the form

KΨ4ðK − aÞ3 ¼ 0: ð75Þ

Clearly, there is the optically privileged single PND k ¼ ∂r

and a triply degenerate PND k0 ≠ l given by K ¼ a ¼ 1
3
A,

that is

K ¼ −
4Ψ3

3Ψ4

: ð76Þ

Such type III geometries occur if, and only if, A2 ¼ 3B
which is equivalent to

8Ψ2
3 ¼ 9Ψ2Ψ4; ð77Þ

with Ψ4, Ψ3, Ψ2, Ψ1 all nonvanishing.

VIII. THE KUNDT GEOMETRIES

We would like to emphasize at this point that all the
conditions and expressions for specific algebraic types of
the Weyl tensor presented in previous Secs. IV–VII are also
valid for the Kundt geometries with vanishing expansion of
the nontwisting, shear-free null vector field k ¼ ∂r: it just
suffices to set Θ ¼ 0. In view of (2), (21), (22) this
immediately implies

Gij ¼ gij;r ¼ 0; ð78Þ

Gui ¼ gui;r; ð79Þ

Guu ¼ guu;r; ð80Þ

and, without loss of generality, (3) simplifies to
gijðu; xkÞ ¼ ϱ2ðu; xkÞδij.

IX. APPLICATION OF OUR RESULTS ON
EXPLICIT EXAMPLES

We will now illustrate the usefulness of these general
results concerning algebraic classification of Robinson-
Trautman geometries on several interesting classes of such
spacetimes.

A. Algebraically special spacetimes in Einstein’s
general relativity

Algebraically special spacetimes of the Robinson-
Trautman class in Einstein’s theory of gravity have
been extensively studied for decades since their introduc-
tion in the original papers [1,2]. These classic results are
summarized—and specific references are given—in the

monographs [5,6], namely in Chaps. 28 and 19, respec-
tively (see also [8–10,21] for more recent results).
They include vacuum spacetimes, possibly with any

value of the cosmological constant Λ, aligned electromag-
netic field, or pure radiation field (null fluid). Indeed, the
Goldberg–Sachs theorem and its generalizations guarantee
that all such Robinson-Trautman geometries must be
algebraically special, with the optically privileged null
vector field k ¼ ∂r (at least) doubly degenerate PND, that
is the case Ψ1 ¼ 0 described in Sec. VI. The corresponding
metrics can always be written in the form

ds2 ¼ gijðr; u; xkÞdxidxj − 2dudrþ guuðr; u; xkÞdu2;
ð81Þ

which is the line element (1) with gui ¼ 0, i.e., (24). In such
a case, the key functions determining the algebraic structure
of the spacetimes take simple explicit forms

Ni ¼ Θ;i ¼ 0; ð82Þ

S ¼ 1

2
SRþ 1

2
Guu;r − 2Θ;u; ð83Þ

Fij ¼ 0; ð84Þ

Vi ¼ −
1

2
Guu;i − gjkgj½i;u∥k�; ð85Þ

Wij ¼ −
1

2
guu∥ij −

1

2
gij;uu þ

1

4
gij;uGuu þ

1

4
gklgik;ugjl;u;

ð86Þ

see (26)–(30). Let us also recall relation (31), namely that it
is always possible to assume

gij ¼ ϱ2ðr; u; xkÞδij; ð87Þ

in which case, using (23) with the Christoffel symbols SΓl
ik

for the spatial metric (87),

gjkgj½i;u∥k� ¼ −ðlog ϱÞ;ui; ð88Þ

and guu∥ij in (86) can also easily be evaluated, yielding

guu∥22 ¼ guu;22 − guu;2ðlog ϱÞ;2 þ guu;3ðlog ϱÞ;3; ð89Þ

guu∥33 ¼ guu;33 þ guu;2ðlog ϱÞ;2 − guu;3ðlog ϱÞ;3; ð90Þ

guu∥23 ¼ guu;23 − guu;2ðlog ϱÞ;3 − guu;3ðlog ϱÞ;2 ¼ guu∥32:

ð91Þ

Moreover, the vectors mðiÞ have simple components
mk

ðiÞ ¼ ϱ−1δki , so that the null frame (5) is
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k ¼ ∂r; l ¼ 1

2
guu∂r þ ∂u; mðiÞ ¼ ϱ−1∂i: ð92Þ

In this frame, the only nonvanishing Weyl scalars [see
expressions (11)–(15)] are

Ψ2S ¼
1

3
S; ð93Þ

Ψ3i ¼
1

2
ϱ−1Vi; ð94Þ

Ψ4ij ¼ ϱ−2
�
Wij −

1

2
δijδ

klWkl

�
: ð95Þ

Since Wij ¼ − 1
2
guu∥ij þ 1

4
δij½ðϱ−1ðϱ2Þ;uÞ2 − 2ðϱ2Þ;uu þ

ðϱ2Þ;uGuu�, we clearly have

Ψ422 ¼
1

2
ϱ−2ðW22 −W33Þ ¼

1

4
ϱ−2ðguu∥33 − guu∥22Þ; ð96Þ

Ψ423 ¼ ϱ−2W23 ¼ −
1

2
ϱ−2guu∥23: ð97Þ

Recall that Ψ433 ¼ −Ψ422 and Ψ423 ¼ Ψ432 .

1. Spacetimes of the Ricci type I

Almost all algebraically special Robinson-Trautman
spacetimes studied in general relativity so far have had a
special form of the energy-momentum tensor Tab such that
in the null frame its highest boost weight vanishes—
namely, that it satisfies the condition

Tabkakb ¼ Trr ¼ 0: ð98Þ

Due to Einstein’s equations and the fact that grr ¼ 0, this
immediately implies Rrr ¼ Rabkakb ¼ 0, i.e., the space-
times are of aligned Ricci type I. Since Rrr ¼
−2ðΘ;r þ Θ2Þ, this puts a constraint Θ;r ¼ −Θ2 on the
expansion function which can readily be integrated as
Θ ¼ ðrþ ψðu; xiÞÞ−1. Since Θ;i ¼ 0, see (82), the integra-
tion function ψ must be independent of the spatial coor-
dinates xi. However, any such functionψðuÞ can be removed
by thegauge transformation r → r − ψðuÞof themetric (81).
Without loss of generality, we thus obtain, using (3),

Θ ¼ 1

r
⇔ ϱ ¼ r

Pðu; xiÞ ; ð99Þ

and the key Weyl scalars (93)–(97) reduce to

Ψ2S ¼
1

6
ðGuu;r þ SRÞ; ð100Þ

Ψ3i ¼ −
P
4r

ðGuu;i þ 2ðlog ϱÞ;uiÞ; ð101Þ

Ψ422 ¼
P2

4r2
ðguu∥33 − guu∥22Þ; ð102Þ

Ψ423 ¼ −
P2

2r2
guu∥23: ð103Þ

For an important large class of Robinson-Trautman
(electro)vacuum spacetimes with Λ, the metric coefficient
guu takes the explicit form

guu ¼ −Kþ 2rðlogPÞ;u þ
2m
r

− κ
jQj2
2r2

þ Λ
3
r2 ð104Þ

[see expressions (28.8), (28.37), (28.78) in [5], or [8,9] ].
Here

K≡ Δ logP ¼
SR
2
r2 ð105Þ

is the Gaussian curvature of the transverse 2-space with the
metric gij ¼ ðr2=P2Þδij, and Δ is the corresponding
Laplace operator (in fact, SR ¼ Rr−2, where R is the
Ricci scalar calculated with respect to the r-independent
part of the spatial metric gij, that is P−2δij). The parameter
m represents the mass while Q typically represents the
charge. In view of (22), the function Guu ¼ guu;r −
ð2=rÞguu is thus

Guu ¼ −2ðlogPÞ;u þ
2K
r

−
6m
r2

þ 2κ
jQj2
r3

: ð106Þ

Putting this into expressions (100), (101), and relations
(89)–(91) where now ðlog ϱÞ;i ¼ −ðlogPÞ;i into (102),
(103), we finally obtain

Ψ2S ¼
2m
r3

− κ
jQj2
r4

; ð107Þ

Ψ3i ¼ −
P
2r

�
K
r
−
3m
r2

þ κ
jQj2
r3

�
;i
; ð108Þ

Ψ422 ¼
P2

4r2
ððguu;33 − guu;22Þ − 2guu;2ðlogPÞ;2
þ 2guu;3ðlogPÞ;3Þ; ð109Þ

Ψ423 ¼ −
P2

2r2
ðguu;23 þ guu;2ðlogPÞ;3 þ guu;3ðlogPÞ;2Þ;

ð110Þ

where guu is given by (104).
In literature it has been a common approach to use a

complex notation for the two transverse spatial coordinates
xk, namely
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ζ ¼ 1ffiffiffi
2

p ðx2 þ ix3Þ; so that ∂ζ ¼
1ffiffiffi
2

p ð∂2 − i∂3Þ: ð111Þ

The metric (81) thus becomes

ds2 ¼ 2
r2

P2
dζdζ̄ − 2dudr

þ
�
−Kþ 2rðlogPÞ;u þ

2m
r

− κ
jQj2
2r2

þ Λ
3
r2
�
du2;

ð112Þ

with P2ðu; ζ; ζ̄Þ. The only nonvanishing Weyl scalars in the
complex null frame (8), (92), that is

k ¼ ∂r; l ¼ 1

2
guu∂r þ ∂u; m ¼ P

r
∂ζ; ð113Þ

are immediately obtained using (9) and (107)–(110) as

Ψ2 ¼ −
m
r3

þ κ
jQj2
2r4

; ð114Þ

Ψ3 ¼ −
P
2r2

K;ζ̄ þ
3P
2r3

m;ζ̄ −
κP
2r4

ðjQj2Þ;ζ̄; ð115Þ

Ψ4 ¼ −
1

2r2
ðP2guu;ζ̄Þ;ζ̄

¼ 1

2r2
ðP2K;ζ̄Þ;ζ̄ −

1

r
ðP2ðlogPÞ;uζ̄Þ;ζ̄

−
1

r3
ðP2m;ζ̄Þ;ζ̄ þ

κ

4r4
ðP2ðjQj2Þ;ζ̄Þ;ζ̄: ð116Þ

These Newman-Penrose scalars are in full agreement with
expressions (28.10) and (28.38) in [5].

2. Spacetimes of a general Ricci type: Scalar field

Recently, an interesting Robinson-Trautman solution
with minimally coupled free scalar field ϕ was found
and studied in [11]. It satisfies the Einstein equations
Rab − 1

2
Rgab ¼ Tab where Tab ¼ ϕ;aϕ;b − 1

2
gabgcdϕ;cϕ;d

(or, equivalently, Rab ¼ ϕ;aϕ;b), and □ϕ ¼ 0. The explicit
metric is

ds2 ¼ r2U2 − C2

Up2ðx; yÞ ðdx
2 þ dy2Þ − 2dudr

−
�
kðx; yÞ
U

þ r
U;u

U

�
du2; ð117Þ

with

UðuÞ ¼ γ expðω2u2 þ ηuÞ; ð118Þ

Δ logp ¼ k; Δk ¼ 4C2ω2; ð119Þ

ϕðr; uÞ ¼ 1ffiffiffi
2

p log

�
rU − C
rU þ C

�
; ð120Þ

where C, γ, ω, η are positive constants. For C ¼ 0, the
scalar field vanishes, ϕ ¼ 0, and vacuum spacetime is
recovered by solving the standard Robinson-Trautman field
equation ΔΔ logp ¼ 0 (withm ¼ 0, see [5,6]). Notice also
that ϕ → 0 as u → ∞.
In fact, we now rewrite this solution using the gauge

transformation

u ¼ FðūÞ; r ¼ r̄
F;ū

; where

F;ū ¼
ffiffiffiffi
U

p
⇒ ūðuÞ ¼ 1ffiffiffi

γ
p

Z
exp

�
−
ω2

2
u2 −

η

2
u

�
du;

ð121Þ

after which the metric (117) takes an alternative form

ds2 ¼ r̄2 − C2U−1

p2ðx; yÞ ðdx2 þ dy2Þ − 2dūdr̄ − kðx; yÞdū2:

ð122Þ

This looks simpler, however at the expense of a more
complicated form of the function UðūÞ which is obtained
by substituting the transcendent function uðūÞ from (121)
into (118).
Now, it is obvious from (120) that

Rabkakb ¼ Rrr ¼ Trr ¼ ðϕ;rÞ2 ¼
2C2U2

ðr2U2 − C2Þ2 ≠ 0;

ð123Þ

so that the highest boost weight of the scalar field energy-
momentum tensor Tab is nonvanishing, and consequently,
the corresponding Robinson-Trautman spacetime is of a
general Ricci type.
Comparing (117) with (81), (87) we infer

ϱ2ðr; u; x; yÞ ¼ r2U2 − C2

Up2ðx; yÞ ;

guuðr; u; x; yÞ ¼ −
kðx; yÞ
U

− r
U;u

U
: ð124Þ

The corresponding expansion scalar Θ ¼ ϱ;r=ϱ ¼
1
2
ðϱ2Þ;r=ϱ2 is thus

Θ ¼ rU2

r2U2 − C2
⇒ Θ;i ¼ 0; Θ;u ¼ −

2C2rUU;u

ðr2U2 − C2Þ2 ;

ð125Þ
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and since Ψ1i ¼ 1
2
ϱ−1Ni ¼ 1

2
ϱ−1Θ;i ¼ 0, the spacetime is

(at least) of Weyl type II.
Notice also that for C ¼ 0, we obtain Θ ¼ 1=r and

recover the vacuum case (99), and the same behavior is
obtained for a general C as r → ∞. Due to (22),

Guu ¼
r2U2 þ C2

r2U2 − C2

U;u

U
þ 2krU
r2U2 − C2

: ð126Þ

Evaluating Guu;r, Guu;i, using expressions (83)–(97) where
ðlog ϱÞ;ui ¼ 0, ðlog ϱÞ;i ¼ −ðlogpÞ;i, gij;u ¼ ðϱ2Þ;uδij, and
the identity

SR ¼ 2kU
r2U2 − C2

; ð127Þ

we obtain

Ψ2S ¼
2

3
C2U

rU;u − k
ðr2U2 − C2Þ2 ; ð128Þ

Ψ3i ¼ −
rU3=2p

2ðr2U2 − C2Þ3=2 k;i; ð129Þ

Ψ422 ¼
p2

4ðr2U2 − C2Þ ððk;22 − k;33Þ

þ 2k;2ðlogpÞ;2 − 2k;3ðlogpÞ;3Þ; ð130Þ

Ψ423 ¼
p2

2ðr2U2 − C2Þ ðk;23 þ k;2ðlogpÞ;3 þ k;3ðlogpÞ;2Þ:

ð131Þ

The corresponding Newman-Penrose scalars (9) are

Ψ2 ¼
1

3
C2U

k − rU;u

ðr2U2 − C2Þ2 ; ð132Þ

Ψ3 ¼ −
rU3=2p

2ðr2U2 − C2Þ3=2 k;ζ̄; ð133Þ

Ψ4 ¼
1

2ðr2U2 − C2Þ ðp
2k;ζ̄Þ;ζ̄: ð134Þ

They agree with [11] with identification ζ ¼ 1ffiffi
2

p ðxþ iyÞ
and Ψ2 ↔ −Ψ̄2, Ψ3 ↔ −Ψ̄1, Ψ4 ↔ −Ψ̄0 due to different
choice of the null vectors and the sign convention of the
Weyl tensor.4

These Weyl scalars can be used for explicit discussion of
the possible algebraic types of the Robinson-Trautman
spacetimes with free scalar field (117)–(120). Clearly, the

optically privileged vector field k ¼ ∂r is a double PND of
the Weyl tensor. Such type II spacetimes are fully classified
in Sec. VI. For C ≠ 0, however, Ψ2 ¼ 0 ⇔ k ¼ 0 ¼ U;u.
From (119), (118) it then follows that ω2 ¼ 0 ⇒ UðuÞ ¼
γ expðηuÞ, and U;u ¼ 0 requires γη ¼ 0 which does not
allow any nontrivial form UðuÞ. Therefore, there are no
type III, N, or O solutions of the form (117)–(120), i.e., such
spacetimes are of genuine type II or D.
The spacetimes are of type D if, and only if,

3Ψ2Ψ4 ¼ 2Ψ2
3, see (64). Using (132)–(134), this reads

C2ðk − rU;uÞðp2k;ζ̄Þ;ζ̄ ¼ r2U2p2ðk;ζ̄Þ2. The coefficients of
all powers of r must vanish, so that necessarily k;ζ̄ ¼ 0.
Consequently, the spacetimes are of type D ⇔ k ¼ const,
i.e., the transverse 2-space has a constant Gaussian
curvature. The only nonvanishing Weyl scalar is

Ψ2 ¼
1

3
C2U

k − rU;u

ðr2U2 − C2Þ2 ; ð135Þ

and the two double degenerate PNDs are k ¼ ∂r,
l ¼ − 1

2
ðkþ rU;uÞ=U∂r þ ∂u. Using the gauge (121), such

type D metrics can be rewritten in the form (122) with
constant k. It is a warped-product spacetime, somewhat
resembling direct-product (Kundt) type D electrovacuum
spacetimes of Plebański and Hacyan [23], see [6].
Notice finally that by setting C ¼ 0, we recover (special)

vacuum Robinson-Trautman spacetime, with the only
nonvanishing Weyl scalars (133), (134)

Ψ3 ¼ −
p

2r2U3=2 k;ζ̄; Ψ4 ¼
1

2r2U2
ðp2k;ζ̄Þ;ζ̄: ð136Þ

With the gauge transformation (121), implying r ¼ r̄=
ffiffiffiffi
U

p
,

the line element (122) now reads

ds2 ¼ r̄2

p2
ðdx2 þ dy2Þ − 2dūdr̄ − kdū2: ð137Þ

This is the metric (112) for the case Pðx; yÞ, m ¼ 0 ¼ Q,
Λ ¼ 0 if we identify r̄=p ¼ r=P, so that p ¼ P

ffiffiffiffi
U

p
and

k ¼ K. Substituting these relations into (136), we obtain

Ψ3 ¼ −
P
2r̄2

K;ζ̄; Ψ4 ¼
1

2r̄2
ðP2K;ζ̄Þ;ζ̄; ð138Þ

which are exactly the relations (115), (116) after dropping
the bar over r. Such vacuum spacetimes are clearly of type
III, N, or O.

B. Algebraically general spacetimes in Einstein’s
general relativity

To our knowledge, an exact Robinson-Trautman-type
solution of Einstein’s field equations of genuine type I is not
known. The authors would be grateful if anybody brings

4There are typos in Eq. (5.2) of [11], namely missing factors P
and 2 in Ψ0, and a missing factor 1=4 in Ψ1.
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our attention to an explicit example of such an interesting
four-dimensional spacetime.

C. Black holes in the Einstein-Weyl gravity

As the last example of nontrivial Robinson-Trautman
geometries, we will now investigate a remarkable class of
static, spherically symmetric solutions representing black
holes in the pure Einstein-Weyl gravity, presented last year
in [13,14]. It was demonstrated by numerical methods that
such a class contains further black hole solutions over and
above the Schwarzschild solution.
The action of the Einstein-Weyl gravity contains an

additional quadratic curvature term, namely I ¼ R ðR−
αCabcdCabcdÞ ffiffiffiffiffiffi−gp

d4x, where α is a constant. The corre-
sponding field equations are then Rab− 1

2
Rgab ¼ 4αBab,

where Bab ¼ ð∇c∇d þ 1
2
RcdÞCacbd is the trace-free Bach

tensor. The static, spherically symmetric ansatz of [13]
reads

ds2 ¼ −hðr̄Þdt2 þ dr̄2

fðr̄Þ þ r̄2ðdθ2 þ sin2θdϕ2Þ; ð139Þ

where the spatial part can be written, using the standard
stereographic representation

x2 þ ix3 ¼
ffiffiffi
2

p
ζ ¼ 2 tan

θ

2
expðiϕÞ;

as dθ2 þ sin2θdϕ2 ¼ δijdxidxj

ð1þ 1
4
δklxkxlÞ2

: ð140Þ

This is equivalent to a special case of the Robinson-
Trautman metric (81), (87) by performing the coordinate
transformation

r̄ ¼ ρðrÞ; ð141Þ

t ¼ u −
Z

dr
guuðrÞ

; ð142Þ

see [24]. Indeed, the metric (139), (140) becomes

ds2 ¼ ϱ2ðr; xkÞδijdxidxj − 2dudrþ guuðrÞdu2; ð143Þ
where

ϱðr; xkÞ ¼ ρðrÞ
1þ 1

4
δklxkxl

; ð144Þ

with the identification

hðr̄Þ ¼ −guuðrÞ; ð145Þ

fðr̄Þ ¼ hðr̄Þðρ;rÞ2: ð146Þ
For the simplest choice ρðrÞ ¼ r ⇒ ρ;r ¼ 1 we obtain

r̄ ¼ r and

f ¼ h ¼ −guuðrÞ: ð147Þ

The corresponding expansion scalar is Θ ¼ ϱ;r=ϱ ¼ 1=r,
and the Ricci tensor component is trivial, Rabkakb ¼ Rrr ¼
−2ðΘ;r þ Θ2Þ ¼ 0, which means that the spacetime is
(at least) of aligned Ricci type I, cf. expression (99). It
is an analogue of the classic Schwarzschild black hole
solution from the Einstein gravity (α ¼ 0), as described in
Sec. IX A 1. It is well-known that such spherically sym-
metric vacuum spacetime is of Weyl type D [see expres-
sions (114)–(116) which, for a constant Gaussian curvature
K, simplify to Ψ2 ¼ −m=r3].
Interestingly, as has been demonstrated numerically in

[13,14], in the pure Einstein-Weyl gravity with quadratic
curvature terms (α ≠ 0), there exists an additional branch
of static, spherically symmetric solutions distinct from the
Schwarzschild black holes. These non-Schwarzschild black
holes have

f ≠ h ⇔ ρ;r ≠ 1; ð148Þ

i.e., ϱ given by (144) can not be simply linear in the
geometrically privileged coordinate r. To apply the general
results of this paper, we can now determine the algebraic
type of such solutions.
The expansion scalar is now Θ ¼ ϱ;r=ϱ ¼ ρ;r=ρ ≠ 1=r.

The component Rrr ¼ −2ðΘ;r þ Θ2Þ is thus nontrivial,
Rrr ¼ Rabkakb ≠ 0, which means that the spacetime is
of a general Ricci type.
The Weyl type follows from explicit expressions (83)–

(97) which simplify considerably to

Ψ2S ¼
1

6
ðSRþ Guu;rÞ ¼

1

6

�
2

ρ2
þ
�
ρ2
�
guu
ρ2

�
;r

�
;r

�
; ð149Þ

where we have used the fact that the Ricci scalar of the
transverse 2-space of a positive constant curvature is
SR ¼ 2K=ρ2 with K ¼ 1, cf. (105), and Guu ¼ guu;r−
2ðρ;r=ρÞguu ¼ ρ2ðguu=ρ2Þ;r. The spacetime is clearly of
Weyl type D.
The corresponding Newman-Penrose scalarΨ2¼−1

2
Ψ2S

can be rewritten using the relations (141), (145), (146),
implying ∂r ¼

ffiffiffiffiffiffiffiffi
f=h

p
∂r̄, as

Ψ2 ¼
1

12

�
−

2

r̄2
þ

ffiffiffi
f
h

r �
r̄2

ffiffiffi
f
h

r �
h
r̄2

�0�0�

¼ 1

12

�
2

r̄2

�
−1þ f

h

�
h − r̄h0 þ 1

2
r̄2h00

��

−
1

r̄

�
f
h

�0�
h −

1

2
r̄h0

��
; ð150Þ

where the prime denotes the derivative with respect to r̄.
For the simpler Schwarzschild-like case (147), that is f ¼ h
and r̄ ¼ r, this reduces to
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Ψ2 ¼
1

6r̄2

�
−1þ h − r̄h0 þ 1

2
r̄2h00

�
: ð151Þ

For f ¼ h ¼ 1 − 2m=r̄, we obtain Ψ2 ¼ −m=r3, in full
agreement with expression (114).
Moreover, we observe from (150) that the general black

hole spacetime in the Einstein-Weyl gravity is asymptoti-
cally flat (Ψ2 → 0) when f → 1 and h → const as r̄ → ∞.

X. SUMMARY

We found and described the possible algebraic structures
of a general class of nontwisting and shear-free spacetimes
in four dimensions (1), that is, the complete Robinson-
Trautman (and Kundt) family. Our discussion was based on
the explicit Weyl scalars (10)–(15) with (16)–(20) which
we obtained by projecting the Weyl tensor components
onto the most suitable null tetrad.
Generically, such geometries are of Weyl type I, and the

optically privileged null vector field k ¼ ∂r is always a
principal null direction of the Weyl tensor.
We derived the necessary and sufficient conditions for all

possible algebraically special types such that the null
direction k is a multiple PND. These identify the spacetimes
of type II, subtypes II(a) and II(d), type III, N, O, IIIi and D,
see the explicit conditions given in the corresponding
subsections of Sec. VI. In the subsequent Sec. VII. we also
analyzed the exceptional case when the optically privileged
null direction k remains a single PND. Such geometries can
be of type I, II, or III. For all these algebraic types, we found
the corresponding four principal null directions.
These conditions can also immediately be applied to

nonexpanding Kundt geometries, see Sec. VIII. Moreover,

all our results can be used in any metric theory of gravity
that admits nontwisting and shear-free geometries.
The field equations impose specific constraints on

admissible algebraic types. Therefore, we investigated
several examples in Sec. IX. We analyzed (Weyl) alge-
braically special spacetimes of the Robinson-Trautman
class in Einstein’s general relativity, namely the Ricci
type I solutions (vacuum spacetimes, possibly with Λ,
aligned electromagnetic field, or pure radiation in
Sec. IX A 1), and spacetimes of a general Ricci type (free
scalar field in Sec. IX A 2). Recently identified static,
spherically symmetric black holes in the pure Einstein-
Weyl gravity were studied in Sec. IX C.
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APPENDIX: THE WEYL TENSOR

The Weyl tensor components for the general Robinson-
Trautman metric (1), (2) are

Crirj ¼ 0; ðA1Þ

Criru ¼
1

4
ð−Gui;r þ 2Θ;iÞ; ðA2Þ

Crikj ¼ −
1

2
gi½kGj�u;r þ gi½kΘ;j�; ðA3Þ

Cruru ¼ −
1

3

�
1

2
SRþ 1

2
Guu;r þ

1

2
gijGui∥j þ

1

2
griðGui;r − 2Θ;iÞ − 2Θ;u

�
; ðA4Þ

Criuj ¼
1

2

�
1

6
gijSRþ Gu½i∥j� þ

1

6
gijðGuu;r þ grlGul;r þ gklGuk∥lÞ −

1

2
guiGuj;rþguiΘ;j −

2

3
gijΘ;u −

1

3
gijgrlΘ;l

�
; ðA5Þ

Cruij ¼ Gu½i∥j� −
1

2
gu½iGj�u;r þ gu½iΘ;j�; ðA6Þ

Ckilj ¼
1

6
ðgklgij − gkjgilÞ

�
SRþGuu;r − 2gmnGum∥n − 2grnðGun;r − 2Θ;nÞ −

3

2
gmnGumGun − 4Θ;u

�

þ 1

4
gklð2Guði∥jÞ þ GuiGujÞ þ

1

4
gijð2Guðk∥lÞ þ GukGulÞ−

1

4
gkjð2Guði∥lÞ þ GuiGulÞ −

1

4
gilð2Guðk∥jÞ þ GukGujÞ;

ðA7Þ

Cruui ¼
1

2
Gu½u;i� þ

1

4
gklGukðgui∥l − gil;uÞ −

1

4
gkleklGui −

1

4
grlgulGui;r þ

1

2
gklðgk½i;u∥l� þ gu½k;i�∥lÞ þ

1

4
grlð3Gu½l∥i� −Guði∥lÞÞ

þ 1

2
grlgulΘ;i−

1

6
gui

�
SR −

1

2
Guu;r −

1

2
ðgrlGul;r þ gklGuk∥lÞ þ 2Θ;u þ grlΘ;l

�
; ðA8Þ
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Cuikj ¼ gi½k;u∥j� þ gu½j;k�∥i þ ei½kGj�u −
1

2
ðGui∥½kgj�u þ gu½jGk�u∥i þ GuiGu½kgj�uÞ

þ 1

2
½−grrgi½kGj�u;r − Guu;½jgk�i þ 2grrΘ;½jgk�i þ gi½kGj�u;uþgrlðGul∥½jgk�i − 2gi½kGj�u∥l − Gulgi½kGj�uÞ

þglnðGulgun∥½jgk�i þ gikgl½j;u∥n� − gijgl½k;u∥n�þgikgu½l;j�∥n − gijgu½l;k�∥n − elngi½kGj�uÞ�

þ 1

3
gi½kgj�u

�
1

2
SRþ 4Θ;u − 4grlΘ;l−Guu;r þ 2grlGul;r þ

3

2
glnGulGun þ 2glnGul∥n

�
; ðA9Þ

Cuiuj ¼ −
1

2
guu∥ij −

1

2
gij;uu þ guði;u∥jÞ −

1

2
Guueij þ

1

2
guu;ðiGjÞu þ gmnEmiEnj

−
1

2
gijgkl

�
−
1

2
guu∥kl −

1

2
gkl;uu þ guk;u∥l−

1

2
Guuekl þ

1

2
guu;kGul þ gmnEmkEnl

�

þ 1

6
ðguugij − guigujÞ

�
SRþ Guu;r − 2grlGul;r −

3

2
gklGukGul − 2gklGuk∥l

�

−
1

4
guugijðSRþ Guu;r − gklGukGulÞþ

1

4
grlgulGuiGuj þ

1

2
guuGuði∥jÞ − grlElðiGjÞu

þ 1

2
gijgrl

�
1

2
gulGuu;r þ Guu;l − Gul;u−

1

2
GumðgmnGungul − grmGul − 4gmngu½l;n�Þ

�

þ 1

2
ð−grrguðjGiÞu;r − Guu;ðigjÞu þ guðjGiÞu;uþgrlGul∥ðigjÞu − 2grlguðjGiÞu∥l − grlGulguðjGiÞuÞ

þ 1

2
gkl

�
Gukgul∥ðigjÞu − eklguðjGiÞu þ guðjgiÞk;u∥l − gkl;u∥ðigjÞuþ

1

2
ðgujguk∥il þ guiguk∥jlÞ − guðjgiÞu∥kl

�

þ 1

3
Θ;uðguugij þ 2guiguj − 3grlgulgijÞþgrrguðiΘ;jÞ þ

2

3
grlΘ;lðguugij − guigujÞ: ðA10Þ
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