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The Hořava theory depends on several coupling constants. The kinetic term of its Lagrangian depends on
one dimensionless coupling constant λ. For the particular value λ ¼ 1=3 the kinetic term becomes
conformal invariant, although the full Lagrangian does not have this symmetry. For any value of λ the
nonprojectable version of the theory has second-class constraints that play a central role in the process of
quantization. Here we study the complete nonprojectable theory, including the Blas-Pujolàs-Sibiryakov
interacting terms, at the kinetic-conformal point λ ¼ 1=3. The generic counting of degrees of freedom
indicates that this theory propagates the same physical degrees of freedom of general relativity. We analyze
this point rigorously, taking into account all the z ¼ 1, 2, 3 terms that contribute to the action describing
quadratic perturbations around the Minkowski spacetime. We show that the constraints of the theory and
equations determining the Lagrange multipliers are strongly elliptic partial differential equations, an
essential condition for a constrained phase-space structure in field theory. We show how their solutions lead
to the two independent tensorial physical modes propagated by the theory. We also obtain the reduced
Hamiltonian. These arguments strengthen the consistency of the theory. We find the restrictions on the
space of coupling constants to ensure the positiveness of the reduced Hamiltonian. We obtain the
propagator of the physical modes, showing that there are not ghosts and that the propagator effectively
acquires the z ¼ 3 scaling for all physical degrees of freedom at the high-energy regime. By evaluating the
superficial degree of divergence, taking into account the second-class constraints, we show that the theory
is power-counting renormalizable. We analyze, in the path-integral formulation of the theory, the measure
associated to the second-class constraints both in the canonical and the Lagrangian (foliation-preserving
diffeomorphisms group-covariant) formalisms.
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I. INTRODUCTION

Hořava theory is a proposition of a perturbatively
renormalizable and unitary quantum field theory of gravity
in 3þ 1 spacetime dimensions (although the general
principles can be applied to other dimensions as well).
The original formulation was done in Ref. [1], with related
concepts previously considered in Ref. [2]. The main idea
is to break the relativistic symmetry (at least in the
gravitational sector) by introducing a timelike direction
into the spacetime, with absolute physical meaning, with
the hope of obtaining a renormalizable theory. The space-
time is foliated in terms of spacelike hypersurfaces along
this direction. The allowed coordinate transformations,
instead of the general transformations between time and
space characteristic of general relativity (GR), are the ones
that preserve the given foliation. The gauge symmetry
group of the theory is then the foliation-preserving diffeo-
morphisms group (FDiff). A FDiff-covariant Lagrangian
allows the inclusion of interacting terms with higher order
spatial derivatives of the metric field (which is dimension-
less), without the need of increasing the order in time

derivatives. Thus, the central aim is that the higher spatial
curvature terms that contribute to the propagators improve
the renormalization properties of the theory while keeping
under control the number of poles since no higher time
derivatives are added. This program is reminiscent of the
relativistic higher curvature theories. However, the crucial
difference is that in the latter theories, in order to preserve
the relativistic symmetry, the order of the time derivatives
must be increased as higher curvature terms are included.
Among the added poles there arise ghosts that break the
unitarity of the theory [3].
Since its original formulation in [1], the theory has

evolved in several directions. Initially the potential was
restricted by the so-called detailed balance principle, which
basically postulates that the potential of the 3þ 1 theory
must be derived from a purely spatial three-dimensional
Lagrangian. Currently many authors prefer to abandon this
principle and instead consider the general, potentially
renormalizable theory that includes in the potential all
the terms compatible with the FDiff gauge symmetry.
Besides this, the theory has two separate main versions,
the projectable and the nonprojectable versions. These two
ways of formulating the theory, already studied in [1], are
characterized by the lapse function being a function only of
the time coordinate (projectable version) or a general
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function of time and space (nonprojectable version).
Among other developments, the projectable version has
been modified by including an extra Uð1Þ gauge symmetry
[4], eliminating in this way the extra degree of freedom. On
the nonprojectable side, a wide class of interacting terms
compatible with the FDiff symmetry was incorporated in
Ref. [5]. These terms make the potential dependent on the
lapse function N via the FDiff-covariant vector
ai ¼ ∂i lnN. Following the spirit of renormalizable gauge
theories, the Lagrangian should include all the terms, up to
the order required for renormalization, compatible with the
underlying gauge symmetry. We refer as the nonprojectable
Hořava theory to the theory including the ai terms. An
Uð1Þ extension similar to the one of the projectable case
was proposed for the nonprojectable version in [6]. The
truncation of the nonprojectable theory to second order in
derivatives has been found [7–9] to be related to the
Einstein-aether theory [10]; specifically the solutions of
the latter having a hypersurface-orthogonal aether vector
are solutions of the former (but the converse is not true in
general [9]). Recently the Hořava theory, both in the
projectable and the nonprojectable versions, has been
reproduced by gauging (making dynamical) the Newton-
Cartan geometry [11].
In the nonprojectable case, including the ai terms of [5],

the closure of the algebra of constraints of the classical
Hamiltonian formulation has been shown [12] (see also
[13]). There the crucial role of the ai terms in improving the
structure of the constraints was noticed. Indeed, one of
the motivations of [5] to include these terms was to improve
the mathematical structure of the field equations in the
Lagrangian scheme. Implicitly assuming the invertibility of
the Legendre transformation, in the Hamiltonian analysis of
Refs. [12], the presence of an extra degree of freedom was
corroborated. The extra mode was previously identified in
Ref. [5] with a well-behaved dispertion relation (under
suitable restrictions on the space of parameters). Among
several features that have been studied for the extra mode, it
has been found that, whenever one forces the kinetic term
to adopt the relativistic version at low energies, it suffers
from the so-called strong-coupling problem [14]. A
feasible resolution of this problem is to demand that the
scale of activation of higher order operators is low
enough [7].
In Ref. [15] the case in which the invertibility of the

Legendre transformation does not hold was analyzed. This
happens when the independent (dimensionless) coupling
constant arising in the kinetic term, λ, acquires the specific
value λ ¼ 1=3. At this value the kinetic term acquires a
conformal invariance [1], but the whole theory is not
conformally invariant since in general the terms in the
potential break the conformal symmetry [unless only
specific terms, like ðCottonÞ2, are included in the potential
such that it is rendered conformally invariant]. For this
reason we call the point λ ¼ 1=3 the kinetic-conformal

(KC) point, and use the same name for the Hořava theory
formulated at this point.
At the KC point there arise two extra second-class

constraints [15]. Qualitatively, one may regard the presence
of these new constraints as a consequence of the lack of
invertibility of the Legendre transformation at the KC
point. The two constraints eliminate precisely the extra
mode. We consider this a very interesting property, since
the number of degrees of freedom of the KC Hořava theory
coincides with the one of GR [the Uð1Þ extensions also
eliminate the extra mode [4,6]]. In Ref. [15] the closure of
the algebra of constraints assuming a general, unspecified,
potential was shown. In addition, a model with soft
breaking of the conformal invariance was considered there,
corroborating the consistent structure of constraints and
conditions for the Lagrange multipliers with explicit
equations. Moreover the perturbative version of the effec-
tive large-distance action of the KC theory at quadratic
order in perturbations is physically equivalent to perturba-
tive GR.
We devote this paper to deepening the features of the

nonprojectable Hořava theory at the KC point. We pose
ourselves two main objectives. The first one is to further
advance the knowledge of the classical Hamiltonian for-
mulation, which is fundamental for the consistency of the
theory. We would like to get explicit expressions for all the
constraints and conditions for the Lagrange multipliers
when the potential contains all the possible interacting
terms up to z ¼ 3, the minimal order to get renormaliz-
ability in 3þ 1 spacetime dimensions. To this end we adopt
a perturbative approach, taking in the potential all the terms
that contribute to the quadratic action.
Our second objective is to enter into the process of

quantization of the KC Hořava theory. From the results in
the linearized classical theory we obtain the reduced
Hamiltonian and study the conditions needed to guarantee
the positiveness of its spectrum. Then we study the
propagator of the physical modes. Getting explicitly the
independent propagators is one of the first tasks to do in
the Hořava theory since in this way one elucidates if the
theory really possesses the ultraviolet (UV) improved and
ghost-free propagators heuristically proposed in the origi-
nal paper of Hořava [1]. Indeed, without the KC condition,
there is a sector of the space of parameters where the extra
mode becomes a ghost [5]. Another counterexample is that
in the theory with detailed balance the operator with the
highest derivative does not contribute to the propagator of
the extra mode.
On the basis of the physical propagators, we give

arguments on the power-counting renormalizability of
the theory, specifically by computing the superficial degree
of divergence of one-particle-irreducible (1PI) diagrams.
Our interest is in evaluating the power of divergences
directly on the gravitational variables. This is more acute
than, for example, using toy models like scalar-field
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theories since in these models precisely the constraints are
not represented.
Another question we address about the quantization of

the theory is what happens when it is formulated in the
nonreduced phase space, as it is typically done in gauge
theories. Here the main point is that the nonprojectable
Hořava theory, with or without the KC condition, has
second-class constraints. Whenever these constraints are
not solved, which is by definition the formulation in the
nonreduced phase space, one is forced to take into account
their second-class nature under any scheme of quantization.
In this work we study the path-integral quantization, where
the presence of second-class constraints requires the
modification of the measure. We consider both the
Hamiltonian and the Lagrangian (FDiff-covariant) formu-
lation of the path integral. In particular, it is important to
conciliate the Lagrangian path integral with the canonical
one since if one starts solely with the Lagrangian formu-
lation then one does not know the correct measure
associated to the second-class constraints.
Several authors have made computations in the quan-

tized Hořava gravity or in related toy models without the
KC condition. Among them, power-counting renormaliz-
ability criteria have been proposed in [16,17] (actually,
these papers provide a general framework applicable to the
KC case). The propagator for a nonprojectable model with
z ¼ 1 and z ¼ 3 terms was studied in Ref. [18]. In that
paper several considerations about the bounds imposed by
the coupling to matter, where the experimental restrictions
on Lorentz violations are very strong, were considered. In
Refs. [19] the renormalization of the projectable theory
with detailed balance was considered with the methods of
stochastic quantization. The one-loop renormalization of
the conformal reduction of the projectable theory in 2þ 1
dimensions was analyzed in [20]. Gaussian and non-
Gaussian fixed points in the renormalization flow as well
as their consequences on asymptotic freedom and asymp-
totic safety have been investigated in the projectable
Hořava theory and its couplings in Refs. [21]. The
power-counting renormalizability of models with mixed
time and spatial derivative terms has been considered in
Refs. [22,23]. Recently, the authors of Ref. [24] showed the
complete perturbative renormalizability of the projectable
theory (without detailed balance). To this end they used
nonlocal gauge-fixing conditions. The quantization of
Hořava theory has also been connected to causal dynamical
triangulations [25].
This paper is organized as follows: in Sec. II we study the

consistency of the classical Hamiltonian formulation. We
first present the general results for the Hamiltonian for-
mulation with an unspecified potential. Then we address
the solutions of the constraints in a perturbative approach.
In Sec. III we perform the quantum computations. This
section is divided in three parts. In the first one we study the
reduced Hamiltonian and the positiveness of its spectrum.

In the second one we present the propagator of the physical
modes and consider power-counting renormalizability. In
the last one we study the path integral in the nonreduced
phase space. We devote Sec. IV to highlighting the fact that
the nonprojectable theory without the KC condition also
has second-class constraints and the measure is affected by
them. Finally, we present some discussion and conclusions
about our results. There is also some appended material
relevant for the themes discussed in this paper.

II. CONSISTENCY OF THE CLASSICAL
HAMILTONIAN

A. The general canonical theory

The formulation of the theory starts with the assumption
that in the spacetime there is a timelike direction and a
foliation in terms of spacelike hypersurfaces along it with
absolute physical meaning. The underlying symmetry of
the theory is not the set of general coordinate trans-
formations between time and space but the restricted set
of coordinate transformations that do not change the
absolute timelike direction and its associated foliation.
Thus, the gauge symmetry group is the group of diffeo-
morphisms over the spacetime that preserves the given
foliation (FDiff) [1]. Its action on the coordinates ðt; ~xÞ is

δt ¼ fðtÞ; δxi ¼ ζðt; ~xÞ: ð2:1Þ

The gravitational part of the theory is formulated in the
Arnowitt-Deser-Misner (ADM) variables, gij, N, and Ni.
Under FDiff these variables transform as

δN ¼ ζk∂kN þ f _N þ _fN;

δNi ¼ ζk∂kNi þ Nk∂iζ
k þ _ζjgij þ f _Ni þ _fNi;

δgij ¼ ζk∂kgij þ 2gkði∂jÞζk þ f _gij; ð2:2Þ

where the dot denotes time derivative, _N ¼ ∂N
∂t . The action

of the FDiff group allows two different formulations of the
theory, each one characterized by the kind of dependence
the lapse function N has. In one version, called the
projectable version, N is a function of only the time and
this condition is preserved by FDiff [which can be deduced
from (2.2)]. The other version, in which N depends both in
time and space, is called the nonprojectable case. The
theory we study in this paper belongs to the nonprojectable
case. In this case the Hamiltonian constraint is present as a
local constraint, like in GR. On the other hand, due to the
reduced symmetry group, the behavior of the Hamiltonian
constraint is different to GR.
With the aim of getting renormalizability while avoiding

unitarity loss, the theory is designed in such a way that at
high energies it should naturally exhibit an anisotropic
scaling between time and space,
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t → bzt; ~x → b~x: ð2:3Þ

The parameter z characterizes the degree of anisotropy.
Power-counting arguments lead us to consider z ¼ 3 in
3þ 1 spacetime dimensions as the minimal degree of
anisotropy to get a renormalizable theory [1]. Under this
scenario the dimensionality (in momentum powers) of the
coordinates and field variables is postulated as [1]

½t� ¼−z; ½~x� ¼−1; ½gij� ¼ ½N� ¼ 0; ½Ni� ¼ z−1

ð2:4Þ

(for the intrinsic formulation of the quantum theory it is not
essential to have the structure of a four-dimensional
spacetime metric, but in any case it can be recovered by
a suitable rescaling of the time coordinate using an
emerging light-speed constant [1]).
The action of the complete nonprojectable theory is [1,5]

S ¼
Z

dtd3x
ffiffiffi
g

p
N

�
1

2κ
GijklKijKkl − V

�
; ð2:5Þ

where

Kij ¼
1

2N
ð_gij − 2∇ðiNjÞÞ; ð2:6Þ

Gijkl ¼ 1

2
ðgikgjl þ gilgjkÞ − λgijgkl ð2:7Þ

and λ is a dimensionless constant. Two comments are in
order: first, if z ¼ d ¼ 3, κ becomes a dimensionless
coupling constant [1]. Second, in a relativistic theory, we
would have λ ¼ 1, z ¼ 1 and κ would be dimensionful.
We do not put a constant in front of the potential V because
we are going to include an independent coupling constant
for each one of its terms.
The potential V can be, in principle, any FDiff scalar

made with the spatial metric gij, the vector

ai ¼
∂iN
N

ð2:8Þ

and their FDiff-covariant derivatives (curvature tensors and
their derivatives for gij). The potential contains no time
derivatives and does not depend on Ni. In particular, the
z ¼ 1 potential, which is the most relevant one for the
large-distance physics, is

Vðz¼1Þ ¼ −βR − αaiai; ð2:9Þ

where β and α are coupling constants.
The particular formulation of the Hořava theory we

study in this paper is related to the behavior of the kinetic
term under anisotropic conformal transformations. If the

constant λ is fixed at the KC point λ ¼ 1=3, then under the
anisotropic conformal transformations

gij → e2Ωgij; N → e3ΩN;

Ni → e2ΩNi; Ω ¼ Ωðt; ~xÞ; ð2:10Þ

the kinetic term
ffiffiffi
g

p
NðKijKij − λK2Þ remains invariant [1].

In general the whole theory is not conformally invariant
except for the specific case in which the potential itself is
conformally invariant under (2.10), a situation that we do
not consider here. Our interest in bringing the nonproject-
able Hořava theory at the KC point comes from the fact that
at this point the extra mode is eliminated and the theory
acquires the same degrees of freedom of GR [15]. As we
have already commented, this is due to the emerging of two
second-class constraints at the KC point. We remark that at
the KC point λ ¼ 1=3 these constraints are always present
regardless of the fact that the potential, and hence the full
theory, is not conformally invariant.
In the following we present the Hamiltonian formulation

of the nonprojectable Hořava theory at the KC point for a
general, unspecified potential V [15]. We denote by πij the
momentum conjugated of gij and by PN the one of N,
whereas we regard the shift vector Ni as a Lagrange
multiplier. We study the asymptotically flat case, under
which the canonical field variables behave asymptotically as

gij−δij¼Oð1=rÞ; πij¼Oð1=r2Þ; N−1¼Oð1=rÞ:
ð2:11Þ

The only local constraint associated to gauge symmetries
that are homotopic to the identity, and hence of first class, is
the momentum constraint Hi,

Hi ≡ −2∇jπ
ij þ PN∂iN ¼ 0; ð2:12Þ

which generates the purely spatial diffeomorphisms. The
second-class constraints are

PN ¼ 0; ð2:13Þ

π ≡ gijπij ¼ 0; ð2:14Þ

H≡ 2κffiffiffi
g

p πijπij þ
ffiffiffi
g

p
U ¼ 0; ð2:15Þ

C≡ 3κffiffiffi
g

p πijπij −
ffiffiffi
g

p
W ¼ 0: ð2:16Þ

U and W are derivatives of the potential defined by1

1We have modified the original definition of C given in
Ref. [15] by dividing it by N.
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U ≡ 1ffiffiffi
g

p δ

δN

Z
d3y

ffiffiffi
g

p
NV

¼ V þ 1

N

X
r¼1

ð−1Þr∇i1���ir

�
N

∂V
∂ð∇ir���i2ai1Þ

�
; ð2:17Þ

W ≡ gijWij; Wij ≡ 1ffiffiffi
g

p
N

δ

δgij

Z
d3y

ffiffiffi
g

p
NV: ð2:18Þ

∇ij���k stands for∇i∇j � � �∇k. Adopting the nomenclature of
GR, Hi ¼ 0 is called the momentum constraint and H ¼ 0
the Hamiltonian constraint.
The π ¼ 0 constraint is the primary constraint that

emerges when the theory is formulated at the KC point.
Indeed, the conjugated momentum πij obeys the general
relation

πijffiffiffi
g

p ¼ 1

2κ
GijklKkl: ð2:19Þ

At λ ¼ 1=3 the hypermatrix Gijkl becomes degenerated,
gijGijkl ¼ 0, which leads directly to the π ¼ 0 constraint.
As a consequence, the secondary constraint C ¼ 0 emerges
when the preservation in time of π ¼ 0 is demanded. Thus,
π and C are the two second-class constraints that emerge at
the KC point. Unlike GR, in the nonprojectable Hořava
theory the Hamiltonian constraint H is of second-class
behavior, which is associated to the fact that it lacks its role
as generator of gauge symmetry. Finally, the PN ¼ 0
constraint must be added since in this theory (with
λ ¼ 1=3 or not) we are forced to included the lapse function
N as part of the canonical variables.2

Unlike GR, the “bulk” part of the Hamiltonian does not
arise as a sum of constraints directly from the Legendre
transformation. Instead, it arises in the form

H ¼
Z

d3x

�
2κNffiffiffi

g
p πijπij þ

ffiffiffi
g

p
NV þ NiHi

�
: ð2:20Þ

In addition, the boundary term corresponding to the ADM
energy [27],

EADM ≡
I

dΣið∂jgij − ∂igjjÞ; ð2:21Þ

must be incorporated because it is needed for the differ-
entiability of the Hamiltonian under the most general
asymptotic variations compatible with asymptotic flatness
[28,29]. Specifically, this is a consequence of a contribution
of the z ¼ 1 term −βR, which asymptotically is of
order Oð1=r3Þ.
By incorporating the constraints PN and π, we finally

cast the classical Hamiltonian in the form

H ¼
Z

d3x

�
2κNffiffiffi

g
p πijπij þ

ffiffiffi
g

p
NV þ NiHi þ σPN þ μπ

�

þ βEADM; ð2:22Þ

where Ni, σ, and μ are Lagrange multipliers. This classical
Hamiltonian is subject to the constraints (2.15) and (2.16),
which have not been added with Lagrange multipliers. In
Appendix A we show that if we do so, then the classical
condition of preserving the second-class constraints fixes
their corresponding Lagrange multipliers equal to 0.
Therefore, (2.22) is the final classical Hamiltonian and
for the classical initial value problem it is enough to impose
(2.15) and (2.16) only initially (although in the quantum
theory there are no such restrictions on the Lagrange
multipliers).
The form (2.22) of the Hamiltonian is quite suitable for

quantization since its bulk part remains nonzero on the
constrained phase space. On the other hand, if one wishes
to stay as close as possible to GR, then by using the
constraint H ¼ 0 this Hamiltonian can also be brought to
the form of a sum of constraints in the bulk part plus
nontrivial boundary terms. This can be achieved because
the difference between

ffiffiffi
g

p
NV and

ffiffiffi
g

p
NU is a sum of exact

divergences, see (2.17), and the only one of these that
survives upon integration is the z ¼ 1 divergence. Thus, we
have the identity

Z
d3x

ffiffiffi
g

p
NU ¼

Z
d3x

ffiffiffi
g

p
NV þ 2αΦN; ð2:23Þ

where

ΦN ≡
I

dΣi∂iN: ð2:24Þ

The version of the Hamiltonian with a sum-of-constraint
bulk part results in3

H ¼
Z

d3xðNHþNiHi þ σPN þ μπÞ þ βEADM − 2αΦN:

ð2:25Þ

In particular, this form is useful to obtain a simple
expression for the energy. It is also useful to address the
preservation of all the constraints.
Since the momentum constraint is of first class it is

automatically preserved in the totally constrained phase
space. In the classical theory, the preservation of the
second-class constraints leads to conditions on their asso-
ciated Lagrange multipliers. In Appendix A we show that

2An exception for this rule is the model considered in Ref. [26].

3The presence of the ΦN term can also be regarded as a
requirement for the differentiability of the Hamiltonian (2.25)
under general δN variations, since U has a 2α∇iai term that
asymptotically is of order Oð1=r3Þ.
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the preservation of PN and π requires the vanishing of the
multipliers of H and C, as we have already mentioned.
Finally, the preservation of H and C leads to the following
equations for the Lagrange multipliers σ and μ:

Z
d3yσ

δ

δN

Z
d3w

ffiffiffi
g

p
Uδwxþ

Z
d3yμgij

δ

δgij

Z
d3w

ffiffiffi
g

p
Uδwx

−
3κπijπijffiffiffi

g
p μþ4κ

Z
d3y

Nπijffiffiffi
g

p δ

δgij

Z
d3w

ffiffiffi
g

p
Uδwx

−4κπijWij¼0; ð2:26Þ
Z

d3yμgij
δ

δgij

Z
d3w

ffiffiffi
g

p
Wδwx

þ
Z

d3yσ
δ

δN

Z
d3w

ffiffiffi
g

p
Wδwx þ

9κπijπij
2

ffiffiffi
g

p μ

þ 4κ

Z
d3y

πijffiffiffi
g

p δ

δgij

Z
d3w

ffiffiffi
g

p
Wδwx þ 6κπijWij ¼ 0:

ð2:27Þ

In these expressions we have labeled spatial points with
single letters like w, δwx is the Dirac delta δð3Þðw − xÞ, and
the spatial point x labels the point at which these equations
are evaluated. When the potential is of z ¼ 3 order the
analysis of Eqs. (2.26) and (2.27) shows that they are
inhomogeneous elliptic partial differential equations of
sixth order for σ and μ [15].
The equations of motion in the Hamiltonian formalism

are

_N ¼ Nk∂kN þ σ; ð2:28Þ

_gij ¼
4κNffiffiffi

g
p πij þ 2∇ðiNjÞ þ μgij; ð2:29Þ

_πij ¼ −
4κNffiffiffi

g
p

�
πikπk

j −
1

4
gijπklπkl

�
−

ffiffiffi
g

p
NWij

− 2∇kNðiπjÞk þ∇kðNkπijÞ − μπij: ð2:30Þ

In the counting of the independent degrees of freedom
we have 14 nonreduced canonical variables in the set
fðgij; πijÞ; ðN;PNÞg, three components of the first-class
constraint Hi, and four second-class constraints in the set
fPN; π;H; Cg. The number of independent degrees of
freedom is given by

ð14 can: var:Þ − ½2 × ð3 first-cls: c:Þ þ ð4 second-cls: c:Þ�
¼ 4 indep: can: var: ð2:31Þ

Thus, there are two even physical modes in the theory; that
is, two modes that propagate themselves with a complete
pair of canonical variables. This is the same number of

degrees of freedom of GR; there are no extra modes in this
theory. This property naturally raises the question whether
the dynamics of this theory is able to reproduce the
dynamics of GR for suitable large distances, i.e., at least
in a perturbative regime for both theories. This was
analyzed for the perturbatively linearized theory in
Ref. [15]; we take again this point in Sec. III A.

B. Perturbative approach

In the previous section we summarized the general
Hamiltonian formulation applicable to any potential V.
In this section we formulate the constraints and the
equations for the Lagrange multipliers in an explicit form
with the aim of studying rigorously their solutions.
Although a complete z ¼ 3 potential has a huge number
of terms, a perturbative approach may render the problem
tractable.4 In Ref. [22] Colombo et al. found that within a
z ¼ 3 potential the nonequivalent terms that contribute to
the action quadratic in perturbations (around Minkowski
spacetime) are

−Vðz¼1Þ ¼ βRþ αaiai; ð2:32Þ

−Vðz¼2Þ ¼ α1R∇iai þ α2∇iaj∇iaj þ β1RijRij þ β2R2;

ð2:33Þ

−Vðz¼3Þ ¼ α3∇2R∇iai þ α4∇2ai∇2ai

þ β3∇iRjk∇iRjk þ β4∇iR∇iR; ð2:34Þ

where ∇2 ≡∇i∇i and all the alphas and betas are coupling
constants.5

We start the perturbations around Minkowski spacetime
by introducing the variables hij, pij, and n in the way

gij ¼ δij þ ϵhij; πij ¼ ϵpij; N ¼ 1þ ϵn: ð2:35Þ
Weuse the orthogonal transverse/longitudinal decomposition

hij ¼ hTTij þ 1

2
ðδij − ∂ij∂−2ÞhT þ ∂ðihLjÞ; ð2:36Þ

where ∂ij���k stands for ∂i∂j � � � ∂k, ∂2 ¼ ∂i∂i and
∂−2 ¼ 1=∂2. hTTij is subject to ∂ihTTij ¼ hTTii ¼ 0. We make
an analogous decomposition on pij. We impose the trans-
verse gauge,

4A perturbative study of a λ ¼ 1=3 nonprojectable model
without the ai terms was done in Ref. [30]. A perturbative
analysis of a projectable model was done in Ref. [31].

5In addition to these terms, mixed derivative terms that
combine spatial with time derivatives of the spatial metric can
be included [18]. They also contribute to the second-order action;
actually the main focus of Ref. [22] was on them. These terms
could lead to interesting extensions of the Hořava theory. Here we
do not consider mixed derivative terms.
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∂ihij ¼ 0; ð2:37Þ

under which all the longitudinal sector of the metric is
eliminated.
We study the constraints (2.12)–(2.16) of the theory at

linear order in perturbations adopting the potential defined
in (2.32)–(2.34). The momentum constraint (2.12), sim-
plified by using PN ¼ 0 explicitly, eliminates the longi-
tudinal sector of pij,

∂ipij ¼ 0; ð2:38Þ

whereas the π ¼ 0 constraint dictates that pij is traceless,
hence pT ¼ 0. So far we are left with the set
fhTTij ; pTT

ij ; h
T; ng as the set of remaining canonical

variables.
Now we move to theH and C constraints. To present the

results in a compact form, we introduce the vector ϕ of
scalars and the functional matrix M in the way

ϕ ¼
�
hT

n

�
; M ¼

�
D1 D2

D2 D3

�
; ð2:39Þ

where

D1≡1

8
ðð3β3þ8β4Þ∂6− ð3β1þ8β2Þ∂4þβ∂2Þ;

D2≡1

2
ðα3∂6þα1∂4þβ∂2Þ; D3≡α4∂6−α2∂4þα∂2:

ð2:40Þ

Thus, with the potential given in (2.32)–(2.34), theH and C
constraints at linear order become

Mϕ ¼ 0; ð2:41Þ

where the first row of this vectorial equation represents the
C constraint and the second row the H constraint. With
(2.41) we confirm the consistency of the structure of
constraints: (2.41) is a system of sixth-order elliptic partial
differential equations for hT and n (after imposing the
appropriated positivity conditions on the matrix of coupling
constants).
To solve the constraints (2.41) we start by decoupling

them; that is, we want two separate equations in which hT

and n are not mixed. To this end we multiply Eq. (2.41)
with

�
D3 −D2

−D2 D1

�
ð2:42Þ

from the left and get a diagonal matrix acting on ϕ, which
we write as

Lϕ ¼ 0; L≡ D1D3 − D2
2: ð2:43Þ

Equation (2.43) represents two decoupled equations for hT

and n and, moreover, the equations are the same (with the
same boundary conditions).
Given the values of all the coupling constants, the

generic case is when the operator L is a sixth-order
polynomial on ∂2. We can always factorize it; in particular,
we may write it as

L ¼ Kð∂2 − z1ÞPð5Þð∂2Þ; ð2:44Þ

where Pð5ÞðuÞ is a fifth-order polynomial on u, z1 stands for
any one of the roots of L, and we first suppose that K ¼
ð1=8Þðα4ð3β3 þ 8β4Þ − 2α23Þ is not 0. By combining (2.44)
with (2.43) we write the constraints in the form

∂2Pð5Þð∂2Þϕ ¼ z1Pð5Þð∂2Þϕ: ð2:45Þ

The decoupled equation (2.45) implies that Pð5Þð∂2Þϕ is an
eigenfunction of the Laplacian ∂2. Since we are studying
the asymptotically flat case, the spatial domain of the
problem is the whole R3 and the boundary condition is that
ϕ and its derivatives are 0 at spatial infinity. Actually, on a
noncompact domain, the flat Euclidean Laplacian ∂2 has no
nonzero eigenfunctions that go asymptotically to 0 in all
angular directions. Thus, the only solution of (2.45) that
satisfies the boundary condition is

Pð5Þð∂2Þϕ ¼ 0 ð2:46Þ

everywhere.
Let us present the same argument in another form.

Consider the operator ∂2 − z1, with z1 ∈ C, acting on
the space of functions ψ whose domain is the whole R3

and that go asymptotically to 0 [see (2.11)]. Thus,
Eq. (2.45) can be cast as

ð∂2 − z1Þψ ¼ 0: ð2:47Þ

In the space of functions ψ , ∂2 has a continuum spectrum
valued in ð−∞; 0�; it has no eigenvalues. With the pre-
scribed asymptotic behavior the inverse ð∂2 − z1Þ−1 exists
for any value of z1, but it behaves in different ways
depending on whether z1 belongs to the spectrum or not.
If z1 ∉ ð−∞; 0� the inverse ð∂2 − z1Þ−1 is a bounded
operator. In this case Eq. (2.47) automatically implies
ψ ¼ 0, as stated in (2.46). If z1 ∈ ð−∞; 0�, ð∂2 − z1Þ−1
still exists but it is an unbounded operator. However, the
right-hand side of Eq. (2.47) is 0; ð∂2 − z1Þ−1 acting on it
gives 0 anyway. Therefore, for any value of z1, Eq. (2.47)
has the function ψ ¼ 0 as its only solution satisfying the
prescribed asymptotic behavior.
Coming back to Eq. (2.46), it turns out that it poses

another eigenfunction problem for the Laplacian since its
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left-hand side is another polynomial on ∂2, such that we
may factorize it again,

ð∂2 − z2ÞPð4Þð∂2Þϕ ¼ 0: ð2:48Þ

Since the same arguments hold to solve this equation, we
have Pð4Þð∂2Þϕ ¼ 0 as the unique solution. We may
proceed iteratively continuing with this last equation to
finally show that the linear-order versions for the variables
hT and n are equal to 0.
We remark that it is the noncompactness of the domain

and the prescribed asymptotic conditions of the problem
posed in (2.45) that force the everywhere-vanishing func-
tion to be the unique eigenfunction.
If L is a lower order polynomial (K ¼ 0), an analogous

eigenfunction problem for the Laplacian arises since we
may factorize the given polynomial. By applying the same
reasoning of above, we eventually arrive at the same 0
solution. Therefore, we conclude that the unique solution of
the linearized H and C constraints, which are expressed in
(2.41), is

hT ¼ n ¼ 0: ð2:49Þ

There remains a condition in the space of parameters: we
require that the whole operator L is not completely 0 since
otherwise the number of constraints effectively reduces and
additional modes appear. In addition, we know that the
perturbatively linearized version of the purely z ¼ 1 theory
is equivalent to perturbatively linearized GR [15]. To
combine these two facts, we require that the fourth-order
coefficient of L, associated to the z ¼ 1 operators of the
theory, is nonzero,

βð2β − αÞ ≠ 0: ð2:50Þ

We regard this as a condition for the continuity in the
number of degrees of freedom and for having a weak
regime that tends to GR.
The perturbative version of Eqs. (2.26) and (2.27) is

obtained by regarding the Lagrange multipliers as variables
of first order in perturbations. The linearized version of
(2.26) and (2.27) forms a system equivalent to (2.41),

M

�
μ

σ

�
¼ 0: ð2:51Þ

Thus, by applying the same procedure as above, we obtain
that σ and μ are 0 at linear order in perturbations.
With all this information we may evaluate directly on

Eq. (2.29) the condition of preservation in time of the
transverse gauge (2.37) (which is a canonical gauge).
Considering the perturbation Ni ¼ ϵni, Eq. (2.29) at linear
order in perturbations yields

∂2ni þ ∂i∂knk ¼ 0: ð2:52Þ

This equation, combined with the boundary condition
nij∞ ¼ 0, implies ni ¼ 0. We stress that this restriction
and (2.51) are requirements of the classical formulation.
They do not arise in the quantum theory.
We finally have that, when all the constraints have been

solved and the gauge has been fixed at linear order, there
remains the pair fhTTij ; pTT

ij g as the set of free canonical
variables. This confirms rigorously the number of two
propagating degrees of freedom that the generic and non-
perturbative Hamiltonian analysis anticipated.

III. FOCUSING THE QUANTIZATION

A. The reduced Hamiltonian and its spectrum

Once we know the solutions of all the constraints in the
transverse gauge, we may compute the reduced canonical
Hamiltonian of the linearized theory. Since in this theory we
have the version (2.22) for the Hamiltonian with a non-
vanishing bulk part, the reduced Hamiltonian is obtained by
simple substitution of the solutions of the constraints at linear
order into the second-order Hamiltonian density [the boun-
dary term of (2.22) cancels itself after the substitution]. We
have seen that at linear order in the transverse gauge it holds
hLi ¼ hT ¼ n ¼ pL

i ¼ pT ¼ pn ¼ 0. The substitution of
these solutions yields

HRED ¼
Z

d3x
�
2κpTT

ij p
TT
ij þ 1

4
hTTij Vh

TT
ij

�
; ð3:1Þ

where

V ¼ −β∂2 − β1∂4 þ β3∂6: ð3:2Þ

Alternatively, it is interesting to see how this reduced
Hamiltonian can be obtained from the version (2.25) of the
exact Hamiltonian whose bulk part is a sum of constraints
but there remains the boundary terms. In Appendix B we
show that this can be effectively achieved in a quite similar
fashion to the asymptotically flat reduced Hamiltonian of
GR. In particular, this requires considering the solutions of
the constraints at second order in perturbations. In that
appendix we show that the boundary terms give the correct
reduced Hamiltonian despite the fact that this is a theory
with higher order derivatives.
There is a further connection between this theory and

GR. The largest-distance dynamics of the perturbatively
linearized theory can be obtained from the reduced
Hamiltonian (3.1) by neglecting the higher order deriva-
tives against the lowest order one. By doing so we obtain
the effective Hamiltonian for the tensorial modes

Heff
RED ¼

Z
d3x

�
2κpTT

ij p
TT
ij −

β

4
hTTij ∂2hTTij

�
: ð3:3Þ
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This is equivalent to taking only the z ¼ 1 potential (2.9)
and then linearizing it [15]. Thus, the perturbatively
linearized version of the large-distance effective action is
physically equivalent to linearized GR. Here one of the key
features is the vanishing of the variables hT and n at linear
order in perturbations. The evolution equations arising
from (3.3) constitute the wave equation for hTTij ; thus the
perturbative large-distance theory around Minkowski
spacetime propagates gravitational waves exactly as lin-
earized GR does. However, the nonperturbative dynamics
of both theories are different, even considering only the
z ¼ 1 order in the side of the Hořava theory, since the
nonperturbative field equations are different.
The requirement of positivity of the reduced Hamiltonian

imposes constraints on the coupling constants β, β1, and β3
(we assume that κ is positive). We require that V ≥ 0.
Consequently, from the dominant term in the low-energy
range we have that β > 0 and from the one of the high-
energy range it follows β3 < 0 [β ¼ 0 is excluded by (2.50)
and β3 ¼ 0 is excluded in order to have a genuine z ¼ 3
Hamiltonian]. There is also a bound on β1, whose all
possible values we consider in the following.
(1) Case β1 ≤ 0. In this case V ≥ 0 automatically at all

ranges of energy.
(2) Case β1 > 0. We address this case by proposing the

factorization of V ,

V ¼ β3∂2ð∂2 − zþÞð∂2 − z−Þ; ð3:4Þ

where

z� ¼ 1

2β3

�
β1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21 þ 4ββ3

q �
: ð3:5Þ

(a) If the discriminant is nonpositive, β21þ
4ββ3 ≤ 0, we have that z− ¼ z̄þ. The potential
V is positive, since, for a test function ψ , its
integral can be written as

β3

Z
d3xψ̄∂2ð∂2 − z̄þÞð∂2 − zþÞψ

¼ −β3
Z

d3xjð∂2 − zþÞ∂iψ j2: ð3:6Þ

(b) If the discriminant is positive, β21 þ 4ββ3 > 0, z�
are real and, due to the signs of the coupling
constants, both are negative. The Fourier trans-
form (FT) of V , which is

~Vðk2Þ ¼ jβ3jk2ðk2 − jzþjÞðk2 − jz−jÞ; ð3:7Þ

is useful for determining whether the spectrum
of V , given by all the values ν for which there is
no solution ψ of the equation

ðV − νÞψ ¼ g; ð3:8Þ

is positive. The function (3.7) is a real-valued third-
order polynomial of k2. In Fig. 1 we show a plot of ~V
exhibiting its characteristic form in this case. It has a
global minimum, which we denote as ~V0, and it does
not have a global maximum. For our purposes we
also need to know that ~V0 is always negative, as
indicated in the plot.
The solutions of (3.8) for all ν ∈ C go as follows:

if ν has a nonzero imaginary part, then the solution
of (3.8) exists and its FT is given by

~ψ ¼ ~g
~V − ν

: ð3:9Þ

If ν is real and satisfies ν < ~V0 then the solution of
(3.8) is also given by (3.9). Finally, if ν is real and
satisfies ν ≥ ~V0 then the expression (3.9) has a pole;
the solution of (3.8) does not exist. We conclude that
in this case the spectrum is formed by all the real
values ν that satisfy ν ≥ ~V0. Since ~V0 is negative, the
spectrum is not positive definite.

Case 2.1 can be cast as the range in β1 given by
0 < β1 ≤ 2

ffiffiffiffiffiffiffiffiffiffi
βjβ3j

p
. Therefore, the union of cases 1 and

2.1, which are the ones with a positive spectrum of V ,
is β1 ≤ 2

ffiffiffiffiffiffiffiffiffiffi
βjβ3j

p
.

In summary, the restrictions on the coupling constants
needed for the continuity in the number of degrees of
freedom, weakest regime approaching to GR and positivity,
and z ¼ 3 behavior of the Hamiltonian are

α ≠ 2β; β > 0; β3 < 0; β1 ≤ 2
ffiffiffiffiffiffiffiffiffiffi
βjβ3j

p
: ð3:10Þ

FIG. 1. The Fourier transform of the operator V in the case 2.2.
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B. The propagator of the physical modes

Upon the results of the previous sections on the
linearized theory, in this section we obtain the propagators
of the independent physical modes in the transverse gauge,
which for the full z ¼ 3 KC Hořava theory it has not been
considered previously. With the propagator at hand and
with the knowledge of the generic structure of the inter-
actions we may compute the superficial degree of diver-
gence of 1PI diagrams and discuss the power-counting
renormalizability.
The path integral in terms of the reduced phase space is6

Z0 ¼
Z

DhTTij DpTT
ij exp

�
i
Z

dtd3xðpTT
ij

_hTTij −HREDÞ
�
;

ð3:11Þ

where the reduced Hamiltonian density HRED can be read
from (3.1). After a Gaussian integration in pTT

ij we obtain
the path integral in the noncanonical form

Z0 ¼
Z

DhTTij

× exp

�
i
4

Z
dtd3x

�
1

2κ
_hTTij _hTTij − hTTij VhTTij

��
:

ð3:12Þ

Consequently, the full propagator of the physical modes is

hhTTij hTTkl i ¼
PTT
ijkl

ω2=2κ − β~k2 þ β1~k
4 þ β3~k

6
; ð3:13Þ

where

PTT
ijkl ≡ 1ffiffiffi

2
p ðθikθjl þ θilθjk − θijθklÞ; θij ≡ δij −

kikj
~k2

:

ð3:14Þ

Notice that only some terms of the potential (2.32)–(2.34)
contribute to the propagator of the physical modes. The
independent propagator (3.13) of this theory behaves just as
was the aim in the original formulation of Hořava for
having a renormalizable and unitary theory of quantum
gravity [1]: for high ω and ~p it is dominated by the z ¼ 3
mode ðω2=2κ þ β3 ~p6Þ−1 and there are no more indepen-
dent propagators other than (3.13).
With the aim of analyzing UV divergences, we now

study qualitatively the structure of the interactions. This
requires us to go beyond the linear order. In particular,
under the scheme of dealing with reduced variables, the
constraints must be solved at higher orders in perturbations.

We concentrate ourselves in the second-class constraints
since for the first-class one the standard techniques of
quantization of gauge systems can, in principle, be applied.
Among the set of second-class constraints of the theory,

H and C possess the more involved structure since they are
partial differential equations. At higher orders in perturba-
tions their solutions require the inverse of a nonlocal
operator.7 The operator is the matrix M given in (2.39).
To illustrate this, we may present the Hamiltonian con-
straint H at second order in perturbations, which is

2ϵðD2hT þ D3nÞ ¼
ϵ2

4
½−8κpTT

ij p
TT
ij þ β1∂2hTTij ∂2hTTij

þ β3∂2∂ihTTjk ∂2∂ihTTjk

þ ðβ þ α1∂2 þ α3∂4Þð4hTTij ∂2hTTij

þ 3∂ihTTjk ∂ihTTjk − 2∂ihTTjk ∂khTTij Þ�;
ð3:15Þ

where D2 and D3 were defined in (2.40). In all the terms
weighted by a power of ϵ2 we have substituted the linear-
order solutions for the variables that are restricted by the
constraints. Note that in the left-hand side member of this
constraint we have the second row of the matrix M acting
on the vector ϕ (2.39). As usual in a perturbative approach,
at any order in perturbations the solutions for hT and n
corresponding to the previous orders must be substituted
everywhere except on the term of lowest order in ϵ, which is
always the one arising in the left-hand member of (3.15).
Therefore, theH and C constraints become linear equations
on these variables at any order in perturbations and the
operator acting on them is M.
Thus, we see that the solutions of theH and C constraints

require the use of a nonlocal operator, which in general is
difficult to represent. However, for our purposes we only
need to know the distribution of momenta at the UV
regime. We may then approximate the solutions by taking
only the terms that contribute with the highest power of
momenta in the Fourier space. To achieve this we make the
following observation: at any order in perturbations, the
highest number of spatial derivatives that the H and C
constraints have is the same both for the scalars hT and n
and for the tensorial modes hTTij . This a consequence of two
facts: (i) in the decomposition (2.36) hTTij and hT enter with
the same order in derivatives (or the same power of Fourier-
space momentum, if one whishes),8 and (ii) we are

6In formulas like (3.11) we omit product symbols likeQ
i≤jDhTTij , etc.

7Renormalization of gravity theories with nonlocal terms has
been considered in Ref. [32], getting super-renormalizable
theories.

8Some derivatives that act on hT are missed in hTTij since it
satisfies ∂ihTTij ¼ 0. However, there remain other combinations
that are not divergences on hTTij . In this discussion we are
interested only in the powers of momenta, regardless of their
origin.
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considering the presence of all the inequivalent FDiff-
covariant interaction terms till order z ¼ 3, which implies
that the highest number of derivatives of the lapse function
N is equal to the one of the spatial metric gij. As an
example, Eq. (3.15) has a maximum of six derivatives
acting on hT , n, and hTTij . In addition, the H and C
constraints have no spatial derivatives of the conjugate
momenta. Thus, for second and higher orders in perturba-
tions, the UV-dominant part of the solutions can be
modeled in the schematic form

hT; n ∼
�

1

ð∂mÞ2z
ð∂nÞ2z

�
ðhTTij � � � hTTkl Þ;

1

ð∂mÞ2z
ðhTTij � � � hTTkl pTT

pqpTT
rs Þ: ð3:16Þ

At the highest order in derivatives, the matrix M can be
expressed as the operator ∂2z times a matrix of dimension-
less coupling constants, whose determinant is K ¼
ð1=8Þðα4ð3β3 þ 8β4Þ − 2α23Þ. We assume that K ≠ 0. We
keep the dependence on pTT

ij in quadratic form at any order
in ϵ since H and C only have quadratic dependence on the
exact momentum πij. Moreover, solving the constraints Hi

and π for pL
i and pT does not increase or lower the power in

pTT
ij . In Appendix C we develop this last argument.
In dþ 1 spacetime dimensions the canonically conju-

gated variable pTT
ij scales9 with the UV cutoff in momenta

Λ as Λd. In this theory we intentionally have z ¼ d. Then,
from the schematic relation (3.16) we deduce that the
solutions hT and n do not contribute with powers of
momenta in the vertices at any order in perturbations.
For example, in a 2z-order cubic interaction like
hThTTij ∂6hTTij , after substituting the solution for hT, the
vertex still contributes with 2z ¼ 6 powers of momenta.
Therefore, after taking into account the nonlocal nature of
the solutions of the second-class constraints, we see that the
power counting is not altered by the process of solving
them.
Upon these considerations and since we have a genuine

z ¼ 3 propagator we may now discuss the power-counting
renormalizability guided by the superficial degree of
divergence of general 1PI diagrams over the reduced phase
space. For this computation we follow Refs. [16,17].
Further developments on the renormalization of Lorentz-
violating theories, in particular, studies on the behavior of
the subdivergences, were made in Refs. [33]. From the
propagator (3.13) we deduce that if Λ is an UV cutoff for
the momenta, then Λz is the cutoff for the energy (up to
some constants of proportionality that are irrelevant for our
purposes), with z ¼ 3. Therefore, for each loop in the UV
regime we have the contribution

Z
dωddk → Λdþz; ð3:17Þ

while for each propagator

I ¼ Λ2z: ð3:18Þ

In any vertex we can have at most a contribution of 2z
powers of loop momenta coming from the vertex itself (for
vertices that are of 2z order in spatial derivatives). If in a 1PI
Feynman diagram L is the number of loops, I is the number
of internal lines, and V is the number of vertices, its
superficial degree of divergence D is bounded by

D ≤ ðdþ zÞLþ 2zðV − IÞ ð3:19Þ

¼ ðd − zÞLþ 2zðLþ V − IÞ: ð3:20Þ

Now the identity L − 1 ¼ I − V for graphs is used and in
addition in this theory we have z ¼ d. Therefore, the
superficial degree of divergence is bounded by

D ≤ 2z: ð3:21Þ

This is the bound (8) of Ref. [17], where Lorentz-violating
theories with interactions depending on spatial derivatives
were considered. This degree of divergence coincides with
the highest order operators already included in the bare
action (once we extend our potential to include all the z ≤ 3
terms, not only the operators that contribute to the quadratic
action). This leads to the conclusion that the theory is
power-counting renormalizable. Unitarity and the criterion
of power-counting renormalizability are safe in this theory.

C. The path integral in the nonreduced phase space

1. Canonical formulation

If, unlike the procedure in the previous sections, one
wants to avoid the problem of solving the constraints and
deals with nonreduced variables, then all of the unsolved
constraints must be incorporated into the quantization
procedure. At least there are two ways to address the
quantization of theories with second-class constraints in
nonreduced variables: the Dirac brackets in the operator
formalism and the adapted measure in the path-integral
formalism [34]. Here we study the path integral.
Let us introduce a common notation for the second-class

constraints: θ1 ≡ π, θ2 ≡ PN , θ3 ≡ C, and θ4 ≡H; and let
χi denote a gauge-fixing condition for the freedom of
performing spatial diffeomorphisms. The path integral in
terms of the nonreduced canonical variables is

Z0 ¼
Z

DVδðHiÞδðχiÞδðθmÞeiSCAN ; ð3:22Þ
9We recall that the assignments of dimensions for coordinates

and field variables in Hořava gravity are intentionally made to
make the coupling constant κ dimensionless [1].
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where the measure and the action are given by

DV ≡DgijDπijDNDPN × detfHk; χlg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
;

ð3:23Þ

SCAN ¼
Z

dt

�Z
d3x

�
πij _gij þ PN

_N

−
2κNffiffiffi

g
p πijπij −

ffiffiffi
g

p
NV

�
þ βEADM

�
: ð3:24Þ

In the canonical formalism the shift vector Ni is a Lagrange
multiplier, hence it does not arise in the path integral
[unless one wants to “raise” the δðHiÞ up to the
Lagrangian].
There is an important simplification in the matrix of

Poisson brackets between the second-class constraints that
helps to implement the path integral: all the combinations
of brackets between the constraints PN and π vanish. Thus,
the matrix of brackets acquires the triangular form

fθp; θqg ¼
�

0 M

−Mt N

�
; ð3:25Þ

whereM is the submatrix of brackets corresponding to the
sector fθp¼1;2; θq¼3;4g andN is the submatrix of the sector
fθp¼3;4; θq¼3;4g. Consequently, the measure for the second-
class constraints simplifies,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
¼ detM: ð3:26Þ

On the basis of this relation we can incorporate the measure
to the Lagrangian by means of fermionic ghosts. For a
potential V the entries of M are the equal-time brackets

fPNðxÞ;HðyÞg ¼ −
δ

δNðxÞ
Z

d3w
ffiffiffi
g

p
Uδwy; ð3:27Þ

fPNðxÞ; CðyÞg ¼ δ

δNðxÞ
Z

d3w
ffiffiffi
g

p
Wδwy; ð3:28Þ

fπðxÞ;HðyÞg¼ 3κffiffiffi
g

p πijπijδxy−
�
gij

δ

δgij

�
x

Z
d3w

ffiffiffi
g

p
Uδwy;

ð3:29Þ

fπðxÞ;CðyÞg¼ 9κ

2
ffiffiffi
g

p πijπijδxyþ
�
gij

δ

δgij

�
x

Z
d3w

ffiffiffi
g

p
Wδwy:

ð3:30Þ
The vanishing of the brackets between PN and π suggests

that perhaps this theory could be reformulated as a theory
without second-class constraints and with enhanced gauge
symmetries. This technique consists of promotingPN and π

to first-class constraints; H and C are regarded as gauge-
fixing conditions for the associated gauge symmetries and
the Hamiltonian is modified without altering the physics. In
Appendix D we study this possibility for the linearized
theory, finding eventually that this procedure simply leads
to the reduced theory with a trivial gauge symmetry.
With the aim of getting explicit formulas, we now

consider the path integral of the linearized theory. We
introduce the perturbative variables according to (2.35) and
adding PN ¼ ϵpn. We perform the transverse-longitudinal
decomposition (2.36) in hij and pij. We consider all the
constraints up to linear order in ϵ on the measure and deltas
and consider the action up to second order in ϵ.
Some variables that we are not interested in can be quickly

eliminated along the same lines of Sec. II B. The transverse
gauge (2.37) and the linearized constraints, exceptH and C,
yield hLi ¼ pL

i ¼ pT ¼ pn ¼ 0. Recalling our analysis of
the linearizedH and C constraints of Sec. II B, we have that
the delta factors in the linearized theory become

δðHiÞδðχiÞδðθmÞ ¼ δðpL
i ÞδðhLi ÞδðpnÞδðpTÞδðMϕÞ; ð3:31Þ

where ϕ andM were defined in (2.39). In the passage to the
variables hLi and pL

i the factor detfHk; χlg of (3.23) is
automatically canceled. Taking advantage of the four first
deltaswe automatically perform the integration inpL

i ,h
L
i ,pn,

and pT . This leaves us with the variables hT and n as the
remaining scalars, keeping in mind that the integration in pT

and pn has already eliminated their propagation.
Because of linearity, the submatrix M introduced in

(3.26) becomes equal to the matrix M defined in (2.39).
Thus, for the linearized theory we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
¼ detM: ð3:32Þ

After these steps the path integral of the linearized theory
becomes

Z0 ¼
Z

DVδðMϕÞ

× exp

�
iϵ2

Z
dtd3xðpTT

ij
_hTTij −HRED − ϕtMϕÞ

�
;

ð3:33Þ

where now

DV ¼ DhTTij DpTT
ij Dϕ × detM ð3:34Þ

and HRED can be extracted from (3.1). There is no time
derivative for the scalars hT and n, as we anticipated. This
reflects the fact that the only propagating degrees of
freedom are the transverse-traceless tensorial modes. We
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also remark on the determinant role of the measure
associated to the second-class constraints: since the combi-
nation detM × δðMϕÞ is equivalent to δðϕÞ, in (3.33) we
can perform directly the integration in ϕ. The resulting path
integral is exactly expressed in terms of the reduced
variables with weight 1 in the measure, as it should be,
coinciding with (3.11).
In the linearized theory we may write the measure detM

in terms of ghosts. To this end we use two ghost fields c1,
c2 and two antighost fields c̄1, c̄2. Their contribution to the
action is

Z
dtd3xðc̄1D1c1 þ c̄1D2c2 þ c̄2D2c1 þ c̄2D3c2Þ: ð3:35Þ

The operators D1;2;3, which were defined in (2.40), are
third-order polynomials of the flat Laplacian. Thus, these
ghosts/antighosts acquire propagators with a z ¼ 3 scaling
in the spatial momenta, but they do not get dependence on
the frequency when representing the measure.
We have seen that in the linearized theory the part of the

measure corresponding to the second-class constraints is
the factor detM, which has no consequence on the
dynamics because it is independent of the fields.
However, at higher order in perturbations (or in the non-
perturbative theory) the measure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

p
depends in

a highly nontrivial way on the fields, as can be deduced
from (3.27)–(3.30). Thus, the second-class constraints
together with their associated measure must be carefully
considered.

2. Recovering the quantum FDiff-covariant action

In this section we perform an important check of
consistency of the quantization procedure: we ask ourselves
whether the canonical path integral of the previous section
reproduces the action in FDiff-covariant variables and
simultaneously we find the appropriated measure for this
formalism. To this end it is convenient to avoid the delta in
ϕ that the canonical path integral (3.33) has since we want
to keep the scalars hT and n as nonzero variables inside the
FDiff-covariant action.
By introducing a linear-order Lagrange multiplier ϵb,

where b is a two-component vector of scalars, the delta
δðMϕÞ in (3.33) can be “raised up” to the Lagrangian,

Z0 ¼
Z

DVDb exp

�
iϵ2

Z
dtd3xðpTT

ij
_hTTij

−HRED − ðϕ − bÞtMϕÞ
�
: ð3:36Þ

By virtue of the self-adjointness of M, the following
identity holds:

Z
d3xðϕ− bÞtMϕ

¼
Z

d3x

��
ϕ−

1

2
b

�
t
M

�
ϕ−

1

2
b

�
−
1

4
btMb

�
: ð3:37Þ

Thus, in the path integral (3.36) we may perform the
following change of variables

ϕ → ϕ −
1

2
b; ð3:38Þ

which has unit Jacobian. After this change ϕ and b are not
mixed in the action. The only dependence the resulting
action has in b is in the last term of (3.37). Since b is a real
bosonic field the integration over it yields a factor
ð ffiffiffiffiffiffiffiffiffiffiffi

detM
p Þ−1 in the measure. Therefore, we have that the
path integral with nonzero hT and n fields take the form

Z0 ¼
Z

DhTTij DpTT
ij Dϕ

ffiffiffiffiffiffiffiffiffiffiffi
detM

p

× exp
�
iϵ2

Z
dtd3xðpTT

ij
_hTTij −HRED − ϕtMϕÞ

�
:

ð3:39Þ

By contrasting this version with (3.33) we see that the
change consists in dropping the delta in ϕ at the price of
changing the measure. This version of the canonical path
integral is also consistent with the formulation in the
reduced phase space since the integration over ϕ
can be directly performed in (3.39) yielding a factor of
ð ffiffiffiffiffiffiffiffiffiffiffi

detM
p Þ−1 that cancels itself with the measure.
We now compare with the action written in noncanonical

variables (the FDiff-covariant variables). Although those
variables give a complete covariant formulation, for sim-
plicity we do the comparison in the transverse gauge, under
which (3.39) is written. The support for this simplification
is the fact that the gauge symmetry of pure spatial diffeo-
morphisms is present in both the Lagrangian and the
canonical formulations. The FDiff-covariant variables are
the ADM variables gij, N, and Ni and the action is given in
(2.5). The ghosts associated to the gauge fixing should be
included, but they decouple in the linearized theory; thus
we do not consider them in this analysis. We introduce the
perturbative variables according to (2.35) and adding

Ni ¼ ϵðui þ ∂iBÞ; ð3:40Þ

with ∂iui ¼ 0.
The linearized version of the action (2.5) in the trans-

verse gauge is given by
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S ¼ ϵ2
Z

dtd3x

�
1

8κ
_hTTij _hTTij þ 1 − 2λ

16κ
ð _hTÞ2 þ λ

2κ
_hT∂2B

þ 1 − λ

2κ
ð∂2BÞ2 − 1

4κ
ui∂2ui −

1

4
hTTij Vh

TT
ij − ϕtMϕ

�
;

ð3:41Þ

where V is defined in (3.2). To arrive at these expressions
we have integrated hLi out. According to (3.39), in the
measure of the path integral one must include the factorffiffiffiffiffiffiffiffiffiffiffi
detM

p
. Next, integration in ui can be performed yielding

an irrelevant factor in the denominator of the path-integral
integrand. B can also be easily integrated after completing
squares, which yields the action

S ¼ ϵ2
Z

dtd3x

�
1

8κ
_hTTij _hTTij þ 1 − 3λ

16κð1 − λÞ ð
_hTÞ2

−
1

4
hTTij Vh

TT
ij − ϕtMϕ

�
: ð3:42Þ

The crucial fact about the propagating degrees of freedom
at the KC point in the scenario of nonreduced, FDiff-
covariant variables can be seen in this action. Recalling that
in this theory λ ¼ 1=3, we have that the action loses the
time derivative of hT , whereas the one of n is absent from
the very beginning. The goal we pursue in this section is
achieved once we compare (3.42) with (3.39): with λ ¼ 1=3
the canonical path integral reproduces the FDiff-covariant
Lagrangian since the Gaussian integration of (3.39) over
the momenta pTT

ij yields the action (3.42). With this
procedure we have learned that the factor

ffiffiffiffiffiffiffiffiffiffiffi
detM

p
must

be included in the measure of the path integral in the FDiff-
covariant formulation (this factor is not equal to the
measure of the second-class constraints in canonical
variables). Again, it is at the level of higher orders in
perturbations where this factor affects the dynamics.

IV. THE NONKINETIC-CONFORMAL THEORY

Since the nonprojectable Hořava theory with λ ≠ 1=3
also has second-class constraints, in this section we want to
consider it briefly with the aim of highlighting the need of
incorporating the measure of these constraints to the path
integral, as in the case of the KC theory.
The action is of the same form as (2.5), but now with

λ ≠ 1=3 (and λ otherwise arbitrary, except for requirements
of stability of the linearized theory), such that the metric
Gijkl has the inverse given by

Gijkl ¼
1

2
ðgikgjl þ gilgjkÞ −

λ

3λ − 1
gijgkl: ð4:1Þ

For our purposes it is enough to take the large-distance
effective action, which has the second-order potential

V ¼ −βR − αaiai: ð4:2Þ

The theory shares with the KC theory the fact that the
momentum constraint Hi is the only first-class constraint.
On the other hand, the only second-class constraints are
PN ¼ 0 and the Hamiltonian constraint

H≡ 2κffiffiffi
g

p Gijklπ
ijπkl þ ffiffiffi

g
p

U ¼ 0; ð4:3Þ

where

U≡ 1ffiffiffi
g

p δ

δN

Z
d3y

ffiffiffi
g

p
NV ¼−βRþαð2∇iaiþaiaiÞ: ð4:4Þ

The Hamiltonian in the nonzero-bulk version takes the
form

H ¼
Z

d3x

�
2κNffiffiffi

g
p Gijklπ

ijπkl −
ffiffiffi
g

p
N

× ðβRþ αaiaiÞ þ NiHi þ σPN

�
: ð4:5Þ

The preservation in time of H ¼ 0 yields a second-order,
linear, elliptic partial differential equation for σ. With this
step the Dirac procedure for analyzing the structure of
constraints closes. Since the theory possesses the momen-
tum constraint Hi as the first-class constraint and the
constraints PN and H as the second-class ones it results
that the theory propagates three even physical modes. Two
of them correspond to the two tensorial modes that are also
propagated in the KC theory and GR and the other one is
the extra scalar mode.
Thus, we have that in this theory there are fewer second-

class constraints than in the KC theory. However, as
happened in the KC theory, the matrix of Poisson brackets
acquires a triangular form since the constraint PN has a
vanishing bracket with itself. Then the measure for the
second-class constraints takes the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
¼ detfPN;Hg: ð4:6Þ

It can be directly elevated to the Lagrangian by means of
fermionic ghosts. The Poisson bracket we need for the
measure (evaluated on the constrained phase space) is

fPNðxÞ;HðyÞg ¼ 2α

ffiffiffi
g

p
N

ð∇iðδxyaiÞ −∇2δxyÞ: ð4:7Þ

The lesson we extract from this discussion is the fact that
also in the nonprojectable Hořava theory with λ ≠ 1=3 the
measure of the second-class constraints is needed (as well
as the first-class sector), and that it has a nontrivial
dependence on the fields whenever one goes beyond the
linearized level, which is of course necessary for evaluating
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interactions. Notice also that, for simplicity, we have
restricted ourselves to the large-distance effective action.
The measure gets more involved once high-order operators
are considered.

V. DISCUSSION AND CONCLUSIONS

The nonprojectable Hořava theory [1,5] possesses
second-class constraints. When it is formulated at the
kinetic-conformal point, λ ¼ 1=3, there are four of them,
which, together with the momentum constraint, leaves two
propagating degrees of freedom. The presence of second-
class constraints must be carefully considered in any
quantization procedure, since standard techniques for
gauge theories that have no second-class constraints could
not apply.
One route to deal with the second-class constraints is to

solve them. In this direction we have analyzed the pertur-
bative linearized theory in the transverse gauge, taking all
the z ¼ 1, 2, 3 terms that contribute to the quadratic action.
We have found the propagator for the two transverse-
traceless tensorial modes. Our perturbative approach con-
firms that there are no extra modes or ghosts. Moreover, the
physical propagator at the UV regime effectively has the
scaling in momenta for which the theory was designed.
From this and from the qualitative analysis of the vertices
we have shown the power-counting renormalizability of the
theory. In addition, within the linearized approach we have
rigorously corroborated the consistency of the Hamiltonian
formulation of the classical theory. We have confirmed that
all the differential-equation constraints and conditions for
the Lagrange multipliers have elliptic structures and can be
consistently solved. We have found conditions on the space
of coupling constants needed to ensure the positiveness of
the spectrum of the physical Hamiltonian.
To get more insight on the renormalizability of the theory

it would be interesting to study the extension of the analysis
of Anselmi and Halat, who considered the behavior of
subdivergences on Lorentz-violating scalar and fermionic
field theories [33], to this theory. Those authors found the
interesting result that subdivergences in Lorentz-violating
theories can be canceled in a similar way as the relativistic
theories.
There can be other ways of solving the constraints that

could apply even for the nonperturbative theory. These
techniques are typically noncovariant (under general spatial
transformations). For example, in general relativity this has
been broadly undertaken with the light-front coordinates
[35]. This approach introduces nonlocal operators in the
Lagrangian as a consequence of solving the constraints.
The light-front quantization of quantum chromodynamics
uses similar ideas related to null coordinates; see for
example [36,37]. This has also been applied to electroweak
theory [38]. Under this approach the quantization of non-
perturbative and perturbative QCD has been focused; even
the one-loop renormalization has been obtained [37]. Thus,

it would be interesting to explore the possibility of solving
the second-class constraints of the nonprojectable Hořava
theory using a special coordinate system.
The other route to deal with second-class constraints,

which is largely more popular for gauge theories, is to work
in the nonreduced phase space. In gauge theories without
second-class constraints the standard techniques (Faddeev-
Popov and Becchi-Rouet-Stora-Tyutin procedures) have
allowed a great advance in establishing their renormaliz-
ability (whenever they are so). This has been applied even
for general relativity with higher curvature terms [3].
However, the point with second-class constraints is that
they have no associated gauge symmetry (we have even
considered the transformation to a gauge system, but with
trivial results).
To start from first principles, we have analyzed the

formulation of the path integral with the second-class
constraints. We have evaluated the prescription for the
measure in the canonical theory, finding that there is a
simplification since the square root disappears. We have
also found the measure for the nonreduced linearized
theory, which confirmed the correctness of the prescribed
measure since it leads directly to the reduced canonical
theory with measure 1. The measure can, in principle, be
incorporated to the Lagrangian with ghosts, but the
propagation of them must be considered carefully since
this kind of ghost is not directly connected to gauge
symmetries. Indeed, we have seen that they arise with a
z ¼ 3 UV scaling in momenta directly from the measure,
but without dependence on the frequency. It would be
interesting to explore if at higher orders in perturbations,
where the dependence of the constraints on the canonically
conjugate momenta (and hence on time derivatives) is
activated, one can obtain more information about the
dependence on the frequency of the propagation of these
ghosts. In general, extracting the consequences the measure
associated to second-class constraints has in the dynamics
of a given theory is a delicate issue.10

In the nonreduced scheme we have also applied an
approach to reproduce the path integral in terms of FDiff-
covariant variables (simply the Lagrangian approach), in
the linearized theory in this case. This procedure yielded
the appropriated measure for the Lagrangian formalism.
This is a rather nontrivial issue, since if one starts with the
pure Lagrangian formulation of the path integral in a theory
with second-class constraints, then one has no general
recipe for the measure.
Throughout this paper we have used the transverse gauge

due to the great simplifications in computations it provides.
However, other gauge-fixing conditions can be more
convenient for establishing renormalization or for other

10There are exceptions to this rule, for example, the massive
Yang-Mills theory, whose measure is dynamically trivial (in the
exact theory), such that one can ignore it [34].
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quantum features. For example, the authors of [24] found
that with a nonlocal gauge-fixing condition they could
show the renormalizability of the projectable Hořava
theory. The essence of their approach is that with the
nonlocal gauge condition they could arrive at regular
propagators for all the relevant (nonreduced) variables.
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APPENDIX A: THE FULL SET
OF LAGRANGE MULTIPLIERS

Here we consider the incorporation of all the secondary
constraints to the Hamiltonian. We may start with adding
theH and C constraints in the form

R
d3xðAH − BCÞ to the

Hamiltonian (2.25), where A and B are Lagrange multi-
pliers (signs are for convenience). We obtain the
Hamiltonian in the form

H ¼
Z

d3xððN þ AÞHþ NiHi þ σPN þ μπ − BCÞ

þ βEADM − 2αΦN: ðA1Þ

We assume that A and B go asymptotically to 0 fast enough
such that the differentiability of the z ¼ 1 terms of the
Hamiltonian is ensured. Once all the constraints have been
incorporated to the Hamiltonian with Lagrange multipliers,
the first-class constraint is automatically preserved (weakly
vanishing bracket with the Hamiltonian), whereas the
preservation of the second-class constraints leads to con-
ditions on the Lagrange multiplier associated to them (σ, μ,
A, and B). The expression of the Ni multiplier is associated
to the chosen gauge-fixing condition.
Preservation of the PN ¼ 0 and π ¼ 0 constraints

yields the following equations for the Lagrange multipliers
A and B:

δ

δN

Z
d3y

ffiffiffi
g

p ðAU þ BWÞ ¼ 0; ðA2Þ

gij
δ

δgij

Z
d3y

ffiffiffi
g

p ðAU þ BWÞ − 3κffiffiffi
g

p πijπij

�
A −

3

2
B

�
¼ 0:

ðA3Þ

Although these are very involved equations, we can
perform a qualitative analysis of their forms, since the
structure of the highest derivative terms of Eqs. (A2)–(A3)
can be deduced from inspection. The considerations we
make are similar to those done in Ref. [15] to conclude that
the differential equations for the other Lagrange multi-
pliers, σ and μ, are elliptic equations (which we have
explicitly checked in the current paper in Sec. II B). The

main point is that (A2) and the first term of (A3) contain
second-order functional derivatives of the potential V. The
several terms of the potential behave in two ways under
these derivatives: there are terms that combine all of their
spatial derivative on their coefficients, which are either A or
B, and terms that yield lower order spatial derivatives on A
and B. Let us illustrate this with some examples.
Employing a nonrigorous but schematic notation, the
two z ¼ 3 terms

δ2

δg2ij
½ ffiffiffi

g
p

Bð∇iRjkÞ2�;
δ2

δN2
½ ffiffiffi

g
p

A∇kak∇2∇lal� ðA4Þ

yield the cubic Laplacian ∇6 acting on B and A, respec-
tively. On the other hand, a term like

δ2

δN2
½ ffiffiffi

g
p

AðakakÞ3� ðA5Þ

does not yield a sixth-order derivative onA, but a lower order
one. Despite this, we have that Eqs. (A2) and (A3) yield the
operator∇6 acting onA andB as their highest order operator
because terms like (A4) must be included in the potential
either directly or by other terms that give them after
integration by parts or using curvature identities.
Therefore, we conclude that for a general z ¼ 3 potential
Eqs. (A2) and (A3) are elliptic equations for A and B (once a
condition of positivity of the matrix of coupling constants is
imposed). The second crucial property is that Eqs. (A2) and
(A3) form a homogeneous system for A and B, unlike the
system (2.26) and (2.27) for σ and μ that is inhomogeneous.
Third, we have the boundary conditionsA;Bj∞ ¼ 0; thus we
expect no other solution than A ¼ B ¼ 0.
Let us see how this is verified explicitly in the linearized

theory with its general potential. For the linearized theory
with the potential (2.32)–(2.34), Eqs. (A2) and (A3) take
the form

M

�
B

A

�
¼ 0; ðA6Þ

where M is defined in (2.39). Thus, we effectively get a
system of sixth-order elliptic equations for A and B
(imposing the necessary conditions of signs in the coupling
constants). This is the same system of equations we studied
in Sec. II B for hT and n, with the same boundary condition
A;Bj∞ ¼ 0. Thus, we have that A ¼ B ¼ 0.

APPENDIX B: THE REDUCED HAMILTONIAN
FROM BOUNDARY TERMS

Similarly to the asymptotically flat case of GR, the
reduced Hamiltonian (3.1) of the linearized theory can be
obtained from the version (2.25) of the exact Hamiltonian if
one inserts the solution of the constraints at second order in
perturbations into the boundary terms. From Eqs. (2.24)
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and (2.25) we have that these boundary terms, evaluated at
second order in perturbations and in the transverse gauge,
yield

H ¼ −
Z

dΣiðβ∂ihT þ 2α∂inÞ

¼ −
Z

d3xðβ∂2hT þ 2α∂2nÞ: ðB1Þ

Although the linear-order solutions for the variables hT and
n are everywhere vanishing, their second-order versions do
not. Since they are involved in the energy, we see that the
role of the pair fhT; ng at second order is analogous to the
role the second-order variable hT has in linearized
GR [27,28].
There is a simplification in the evaluation of (B1): the

combination β∂2hT þ 2α∂2n arises directly inside the
second-order Hamiltonian constraint H. Indeed, the con-
straint H at second order is written in (3.15); here we
expand its left-hand side,

β∂2hTþ2α∂2nþðα1∂4þα3∂6ÞhT −2ðα2∂4−α4∂6Þn
¼ ϵ

4
½−8κϵ2pTT

ij p
TT
ij þβ1∂2hTTij ∂2hTTij þβ3∂2∂ihTTjk ∂2∂ihTTjk

þðβþα1∂2þα3∂4Þð4hTTij ∂2hTTij þ3∂ihTTjk ∂ihTTjk

−2∂ihTTjk ∂khTTij Þ�: ðB2Þ

In the left-hand side of this constraint there are other terms
that depend on hT and n, but they are all exact divergences
of higher (fourth and sixth) order that vanish upon volume
integration. There are other divergences in the right-hand
side that vanish upon integration and also one term cancels
itself after the integration due to the transverse gauge.
Thus, we can solve the second-order combination

β∂2hT þ 2α∂2n in terms of fhTTij ; pTT
ij g directly from the

H ¼ 0 constraint, with no need of using any other con-
straint. This is related to the fact that the boundary terms of
the Hamiltonian (2.25) are needed specifically for the
differentiability of the z ¼ 1 terms of

R
d3xNH. The

solution of the second-order Hamiltonian constraint H is

Z
d3xðβ∂2hT þ 2α∂2nÞ

¼ −
Z

d3x

�
2κpTT

ij p
TT
ij þ 1

4
hTTij Vh

TT
ij

�
: ðB3Þ

Therefore, the reduced Hamiltonian coincides with (3.1).

APPENDIX C: THE Hi AND π CONSTRAINTS
AT HIGHER ORDERS

Our interest in this appendix is to show that the solutions
of theHi and π constraints for pL

i and p
T at higher orders in

perturbations are always linear in the transverse-traceless

component pTT
ij and that they are of zero order in momen-

tum in the Fourier space. These results are direct conse-
quences of the facts thatHi ¼ 0 and π ¼ 0 are linear in the
conjugate momentum πij and that pTT

ij , p
T , and ∂ipL

j are of
the same weight in Fourier momentum in the decomposi-
tion of pij.
Let us start with solving the momentum constraintHi for

the longitudinal component pL
i . The covariant divergence

of πij has the expression

∇iπ
ij ¼ ∂iπ

ij þ Γi
ikπ

kj þ Γj
ikπ

ik þ Γk
ikπ

ij: ðC1Þ
We make the perturbation (2.35) together with the decom-
position (2.36) in the momentum constraint Hi. The first
term in the right-hand side of (C1) is always of linear order
in ϵ. This is the term used to solve for pL

i since the terms
Γ × π are of quadratic order and higher in ϵ. Thus, at any
order in ϵ the Hi constraint can be solved in the following
way:

ϵðδij∂2 þ ∂ijÞpL
i

¼ ϵðΓi
ikpkj þ Γj

ikpik þ Γk
ikpijÞjlower order sol: ðC2Þ

We must take into account that the minimum order in ϵ of
Γk
ij is 1. The solution for ∂ipL

j in terms of pTT
ij does not

contribute with powers of momenta in Fourier space since
there arises the inverse of a linear-derivative operator
multiplied by a factor of Γm

kl. Schematically,

∂ipL
j ∼

1

∂k
ðΓn

lmppqÞ: ðC3Þ

Therefore, the solution for ∂ipL
j satisfies two conditions at

any order in perturbations: (i) it is linear in pTT
ij and (ii) it is

of zero order in powers of momenta in the Fourier space.
The solution of the π ¼ gijπij constraint can be cast in

the following way:

ϵðpT þ ∂ipL
i Þ ¼ −ϵ2hijpijjlower order sol: ðC4Þ

In the left-hand side one must substitute the solution for
∂ipL

i of the same order of pT that is obtained from (C2).
Thus, the solution for pT from the π ¼ 0 constraint satisfies
the same two conditions of ∂ipL

j at any order in
perturbations.
Therefore, when the solutions for ∂ipL

j and pT are
inserted into the H and C constraints these remain of
quadratic order in pTT

ij and the power in the momentum of
the Fourier space is neither increased nor lowered.

APPENDIX D: TRIVIAL REFORMULATION
AS A SYSTEM WITH ONLY FIRST-CLASS

CONSTRAINTS

The fact that the matrix of brackets between second-class
constraints acquires a triangular form suggests that this
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theory could be reformulated as a theory with only first-
class constraints, that is, a theory with enhanced gauge
symmetries. There are cases in which this procedure leads
to an interesting reformulation of the original theory [39].
In this appendix we study this possibility, showing even-
tually that this procedure for the linearized theory leads to a
trivial reformulation of the already known reduced theory.
The scenario is the following: since PN and π have

vanishing brackets between themselves, they could play the
role of first-class constraints whereas H and C could be
regarded as gauge-fixing conditions for the associated
gauge symmetries. This approach requires that the con-
straints that are going to be promoted to first class acquire
(weakly) vanishing Poisson brackets with some convenient
Hamiltonian. In the case of PN and π their brackets with the
original Hamiltonian yield the other second-class con-
straints H and C. To achieve the required condition one
may add to the original Hamiltonian terms proportional to
H and C such that they cancel the brackets between PN and
π and the Hamiltonian. Since the added terms vanish under
H ¼ C ¼ 0, the interpretation is that the modified theory,
which is a gauge theory, under the gauge H ¼ C ¼ 0
coincides with the original theory; thus both theories are
physically equivalent.
In the linearized theory the π ¼ 0 constraint becomes

also a constraint solely in the momenta, pT ¼ 0 (with pL ¼
0 due to the momentum constraint). Notation simplifies if
we also group the two linearized constraints pn and pT into
a vector of momenta,

p ¼
�
pT

pn

�
: ðD1Þ

In this notation the linearized H and C constraints are Mϕ.
The part of the original linearized Hamiltonian that is
relevant for the present discussion is

H ¼
Z

d3xðHRED þ ϕtMϕÞ: ðD2Þ

The bracket between the momenta p and H is
fp;Hg ¼ −2Mϕ. To get a vanishing bracket the
Hamiltonian must be modified with a term proportional
to the Mϕ constraint,

~H ¼ H −
Z

d3xϕtMϕ; ðD3Þ

but this subtraction leads precisely to the reduced
Hamiltonian, which does not depend on ϕ. Therefore, this
procedure leads to a trivial reformulation of the linear
reduced theory: the reduced theory trivially possesses the
gauge symmetry generated by pT and pn since they
generate full redefinitions of hT and n and the reduced
theory does not depend on these variables.
Trying to apply this procedure to the exact theory is

much more difficult due to the involved dependence the
constraints H and C have in the fields.
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causal dynamical triangulations, Phys. Rev. D 85, 044027
(2012); D. Benedetti and J. Henson, Spacetime condensa-
tion in (2þ 1)-dimensional CDT from a Hořava-Lifshitz
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