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We examine gravitational wave memory in the case where sources and detector are in an expanding
cosmology. For simplicity, we treat the case where the cosmology is de Sitter spacetime, and discuss the
possibility of generalizing our results to the case of a more realistic cosmology. We find results very similar
to those of gravitational wave memory in an asymptotically flat spacetime, but with the magnitude of the
effect multiplied by a redshift factor.
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I. INTRODUCTION

Gravitational wave memory, a permanent displacement
of the gravitational wave detector after the wave has passed,
has been known since the work of Zel’dovich and Polnarev
[1], extended to the full nonlinear theory of general
relativity by Christodoulou [2], and treated by several
authors [3–15]. As is usual in the treatment of isolated
systems, all these works considered asymptotically flat
spacetimes. However, we do not live in an asymptotically
flat spacetime, but rather in an expanding universe. For
sources of gravitational waves whose distance from the
detector is small compared to the Hubble radius, modeling
the system as an asymptotically flat spacetime should be
sufficient. However, some of the most powerful sources of
gravitational waves (e.g. the collision of two supermassive
black holes following the merger of their two host galaxies)
are at cosmological distances where the asymptotically flat
treatment is not sufficient.
In this paper we will treat gravitational wave memory in

an expanding universe. To avoid the complications of the
full nonlinear Einstein equations, our treatment will use
perturbation theory. There is a well-developed theory of
cosmological perturbations (see e.g. the textbook treatment
in Ref. [16]). However, this standard cosmological pertur-
bation theory uses metric perturbations, and we have found
[11] that the properties of gravitational memory are made
more clear when using a manifestly gauge-invariant per-
turbation theory based on the Weyl tensor. Cosmological
perturbation theory using the Weyl tensor was developed

by Hawking [17]. We will use a treatment similar to that of
Ref. [17], but also, using the conformal flatness of
Friedman-Lemaître-Robertson-Walker (FLRW) space-
times, a treatment that draws heavily on the techniques
used in Ref. [11].
Cosmological perturbations depend on the equation of

state of the matter. The universe, both at the current time
and at any previous times from which a realistic source of
gravitational wave memory could come, is dominated by
dust and a cosmological constant. For simplicity, in this
treatment we will treat only the case of a cosmological
constant, leaving the more general case of dust and a
cosmological constant for subsequent work. Thus this work
treats gravitational waves in an expanding de Sitter space-
time. The perturbation equations are developed in Sec. II,
the cosmological memory effect is calculated in Sec. III,
and the implications of the results are discussed in Sec. IV.

II. EQUATIONS OF MOTION

From the Bianchi identity ∇½ϵRαβ�γδ ¼ 0 we have

gϵα∇ϵCαβγδ ¼ ∇½γSδ�β; ð1Þ
where Sαβ ¼ Rαβ − 1

6
Rgαβ and R ¼ gαβRαβ. Using the

Einstein field equation with a cosmological constant

Rαβ −
1

2
Rgαβ þ Λgαβ ¼ 8πTαβ; ð2Þ

we find that Eq. (1) becomes

gϵα∇ϵCαβγδ ¼ 8π∇½γXδ�β: ð3Þ

Here Xαβ ¼ Tαβ − 1
3
Tgαβ and T ¼ gαβTαβ.
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Both the Weyl tensor, and Tαβ vanish in de Sitter
spacetime. It then follows that when we perturb Eq. (3)
from a de Sitter background, the perturbed equation takes
the same form with the Weyl tensor and stress-energy
replaced by their (gauge-invariant) perturbations and the
metric and derivative operator replaced with their back-
ground values. We will rewrite this perturbed equation in a
convenient form making use of the conformal flatness of de
Sitter spacetime. Recall that the line element in a spatially
flat FLRW spacetime takes the form

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: ð4Þ

Then introducing the usual conformal time η by
η≡ R

dt=a, we find that the line element takes the form

ds2 ¼ a2½−dη2 þ dx2 þ dy2 þ dz2�: ð5Þ

That is, the de Sitter metric takes the form gαβ ¼ a2ηαβ
where ηαβ is the Minkowski metric with Cartesian coor-
dinates (η, x, y, z). It then follows that the perturbed Eq. (3)
takes the form

∂αða−1CαβγδÞ ¼ 8π½a∂ ½γXδ�β þ Xβ½γ∂δ�aþ ηβ½γXδ�λ∂λa�:
ð6Þ

Here ∂α is the coordinate derivative operator with respect to
the Cartesian coordinates (η, x, y, z). Also here and in what
follows we use the convention that indices are raised and
lowered with the Minkowski metric ηαβ.
Following the method of Ref. [11] we now decompose

all quantities in terms of spatial tensors as follows, using
latin letters for spatial indices:

Eab ≡ a−1Caηbη; ð7Þ

Bab ≡ ða−1Þ 1
2
ϵefaCefbη; ð8Þ

μ ¼ Tηη; ð9Þ

qa ¼ Tηa; ð10Þ

Uab ¼ Tab: ð11Þ

Here ϵabc ¼ ϵηabc where ϵαβγδ is the Minkowski spacetime
volume element. Then Eq. (6) yields two constraint
equations

∂bEab ¼ 4πa

�
1

3
∂að2μþUc

cÞ − ∂ηqa

�
; ð12Þ

∂bBab ¼ 4πaϵefa∂eqf; ð13Þ

and two equations of motion

∂ηEab −
1

2
ϵa

cd∂cBdb −
1

2
ϵb

cd∂cBda

¼ 4πa

�
∂ðaqbÞ −

1

3
δab∂cqc − ∂η

�
Uab −

1

3
δabUc

c

��

þ 4πa0
�
Uab −

1

3
δabUc

c

�
; ð14Þ

∂ηBab þ
1

2
ϵa

cd∂cEdb þ
1

2
ϵb

cd∂cEda

¼ 2πaðϵacd∂cUdb þ ϵb
cd∂cUdaÞ: ð15Þ

Here a0 ¼ da=dη and δab, the Kronecker delta, is the spatial
metric of Minkowski spacetime.
We now want to decompose the spatial tensors into

tensors on the two-sphere. We introduce the usual spherical
polar coordinates (r, θ, ϕ) with the usual relation to the
Cartesian coordinates (x, y, z). We use capital latin letters to
denote two-sphere components. From the electric part of
the Weyl tensor Eab we obtain a scalar Err as well as a
vector and a symmetric, trace-free tensor given by

XA ¼ EAr; ð16Þ

~EAB ¼ EAB −
1

2
HABEC

C: ð17Þ

Here HAB is the metric on the unit two-sphere, and all two-
sphere indices are raised and lowered with this metric.
Similarly, the decomposition of the magnetic part of the
Weyl tensor yields Brr and

YA ¼ BAr; ð18Þ

~BAB ¼ BAB −
1

2
HABBC

C: ð19Þ

The decomposition of the spatial vector qa yields a two-
sphere scalarqr and vectorqA, while the decomposition of the
spatial tensor Uab yields two-sphere scalars Urr and
N ≡ Uc

c, vectorVA ≡UAr and a symmetric trace-free tensor

WAB ¼ UAB −
1

2
HABUC

C: ð20Þ

Then the constraint equations [Eqs. (12) and (13)] become

∂rErr þ 3r−1Err þ r−2DAXA

¼ 4πa

�
1

3
∂rð2μþ NÞ − ∂ηqr

�
; ð21Þ

∂rBrr þ 3r−1Brr þ r−2DAYA ¼ 4πar−2ϵABDAqB; ð22Þ

∂rXA þ 2r−1XA −
1

2
DAErr þ r−2DB ~EAB

¼ 4πa

�
1

3
DAð2μþ NÞ − ∂ηqA

�
; ð23Þ

BIERI, GARFINKLE, and YAU PHYSICAL REVIEW D 94, 064040 (2016)

064040-2



∂rYA þ 2r−1YA −
1

2
DABrr þ r−2DB ~BAB ¼ 4πaϵABðDBqr − ∂rqBÞ: ð24Þ

HereDA is the derivative operator and ϵAB is the volume element of the unit two-sphere. The evolution equations [Eqs. (14) and
(15)] become

∂ηBrr þ r−2ϵABDAXB ¼ 4πar−2ϵABDAVB; ð25Þ

∂ηErr − r−2ϵABDAYB ¼ 4πa
�
∂rqr − ∂ηUrr þ

1

3
∂ηðN − μÞ

�
þ 4πa0

�
Urr −

1

3
ð2N þ μÞ

�
; ð26Þ

∂ηYA þ 1

2
r−2ϵCDDC

~EDA þ 1

4
ϵA

Cð3DCErr − 2∂rXCÞ ¼ 2πa

�
ϵA

C

�
1

2
DCð3Urr − NÞ − ∂rVC

�
þ r−2ϵBCDBWCA

�
; ð27Þ

∂ηXA −
1

2
r−2ϵCDDC

~BDA −
1

4
ϵA

Cð3DCBrr − 2∂rYCÞ ¼ 2πaðDAqr þ ∂rqAÞ − 4πaðr−1qA þ ∂ηVAÞ þ 4πa0VA; ð28Þ

∂η
~BAB þ 1

2
ϵA

CðDCXB þ r−1 ~ECB − ∂r
~ECBÞ þ

1

2
ϵB

CðDCXA þ r−1 ~ECA − ∂r
~ECAÞ þ

1

2
HABϵ

CDDCXD

¼ 2πaϵACðDCVB þ r−1WCB − ∂rWCBÞ þ 2πaϵBCðDCVA þ r−1WCA − ∂rWCAÞ þ 2πaHABϵ
CDDCVD; ð29Þ

∂η
~EAB −

1

2
ϵA

CðDCYB − ∂r
~BCB þ r−1 ~BCBÞ −

1

2
ϵB

CðDCYA − ∂r
~BCA þ r−1 ~BCAÞ −

1

2
HABϵ

CDDCYD

¼ 4πa

�
DðAqBÞ −

1

2
HABDCqC

�
− ∂ηWABÞ þ 4πa0WAB: ð30Þ

III. CALCULATION OF MEMORY

We now consider the behavior of the fields at large
distances from the source. Unlike the asymptotically flat
case, we cannot make use of the formal definition of null
infinity: de Sitter conformal infinity is spacelike, and all
gravitational radiation is negligible there. Instead we define
the optical scalar u ¼ η − r and consider the case of large r
and moderate values of u. Note that in this case “large r”
means large compared to the wavelength of the gravita-
tional waves emitted by the source, but not large compared
to the Hubble length. That is, we treat the case where ra0 is
of order 1. In the case of Minkowski spacetime, it was
shown in Ref. [11] that stress-energy gets to large r and
moderate u by traveling in null directions: that is, the
dominant component of the stress-energy takes the form

Tαβ ¼ A∂αu∂βu: ð31Þ

In the Appendix we will show that in our case Eq. (31)
continues to hold, but that now A takes the form A ¼
La−2r−2 where L is a function of u and the two-sphere
coordinates. In physical terms, the quantity L is the power
radiated per unit solid angle. That is we have

μ ¼ N ¼ Urr ¼ −qr ¼ La−2r−2 þ… ð32Þ

with all other components of the stress-energy falling off
more rapidly. Here…means “terms higher order in r−1.” It

was shown in Ref. [11] that in the asymptotically flat case,
the electric and magnetic parts of the Weyl tensor behave as
follows:

~EAB ¼ eABrþ…; ð33Þ

~BAB ¼ bABrþ…; ð34Þ

XA ¼ xAr−1 þ…; ð35Þ

YA ¼ yAr−1 þ…; ð36Þ

Err ¼ Pr−3 þ…; ð37Þ

Brr ¼ Qr−3 þ… ð38Þ

where the coefficient tensor fields are functions of u and the
two-sphere coordinates; and that in the limit as juj → ∞ the
only one of these coefficient tensor fields that does not
vanish is P. In the Appendix we show that these relations
continue to hold. Note that because of the relation between
Cartesian and spherical coordinates ~EAB behaving like r
corresponds to Cartesian components of the electric part of
the Weyl tensor behaving like r−1. The conditions of
Eqs. (33)–(38) are reminiscent of the usual peeling theorem
for asymptotically flat spacetimes; however the context is
somewhat different. The peeling theorem of Ref. [18] is a
consequence of conformal compactification at null infinity.
In contrast, de Sitter spacetime has a spacelike conformal
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completion, and the corresponding peeling theorem [19]
essentially says that at sufficiently late times all physical
curvatures decay exponentially with time. In contrast, we
want to look at the behavior of fields in null directions in de
Sitter spacetime at a time that is not large compared to the
Hubble time. In-depth treatments of this issue are contained
in recent works of Ashtekar et al. [20–23].
Now keeping only the dominant terms in Eqs. (21)–(24)

and using the fact that ra0 is of order unity, we obtain

− _PþDAxA ¼ −8πLa−2ðaþ ra0Þ; ð39Þ

− _QþDAyA ¼ 0; ð40Þ

−_xA þDBeAB ¼ 0; ð41Þ

−_yA þDBbAB ¼ 0: ð42Þ

Here an overdot means a derivative with respect to u.
Similarly, keeping only the dominant terms in
Eqs. (25)–(30) yields

_Qþ ϵABDAxB ¼ 0; ð43Þ

_P − ϵABDAyB ¼ 8πLa−2ðaþ ra0Þ; ð44Þ

_yA þ 1

2
ϵCDDCeDA þ

1

2
ϵA

C _xC ¼ 0; ð45Þ

_xA −
1

2
ϵCDDCbDA −

1

2
ϵA

C _yC ¼ 0; ð46Þ

_bAB þ ϵA
C _eCB ¼ 0; ð47Þ

_eAB − ϵA
C _bCB ¼ 0: ð48Þ

From here, the analysis proceeds essentially as in
Ref. [11]. By convention, the scale factor a is unity at
the present time. Therefore at the position of the detector, η
is the same as the usual time, Eab [despite the factor of a−1

in Eq. (7)] is equal to the physical electric part of the Weyl
tensor and thus is directly related to the tidal force, and a0 is
equal to H0, the Hubble constant. Note that Eq. (48) is
redundant, since it is equivalent to Eq. (47). Since eAB and
bAB vanish as u → −∞, it follows from Eq. (47) that
bAB ¼ −ϵACeCB. This can be used to eliminate bAB from
Eqs. (42) and (46) which then become

_yA þ ϵCDDCeDA ¼ 0; ð49Þ

_xA −
1

2
DCeCA −

1

2
ϵA

C _yC ¼ 0: ð50Þ

Combining Eq. (49) with Eq. (45) then yields

_yA þ ϵA
B _xB ¼ 0: ð51Þ

However, since xA and yA vanish as u → −∞, it then
follows from Eq. (51) that

yA ¼ −ϵABxB: ð52Þ

Thus, we can eliminate yA from Eqs. (40) and (44) which
then become

_Qþ ϵABDAxB ¼ 0; ð53Þ

_P −DAxA ¼ 8πLð1þ rH0Þ: ð54Þ

But these equations are then redundant, since they are
equivalent to Eqs. (43) and (39) respectively. Thus the only
independent quantities are eAB, xA, P, Q and L. These
quantities satisfy the following equations:

DBeAB ¼ _xA; ð55Þ

ϵBCDBeCA ¼ ϵA
C _xC; ð56Þ

DAxA ¼ _P − 8πLð1þ rH0Þ; ð57Þ

ϵABDAxB ¼ − _Q: ð58Þ

Now let us consider how to use Eqs. (55)–(58) to find the
memory. Recall that eAB is (up to a factor involving the
distance and the initial separation) the second time deriva-
tive of the separation of the masses. Thus we want to
integrate eAB twice with respect to u. Define the velocity
tensor vAB, memory tensor mAB and a tensor zA by

vAB ≡
Z

u

−∞
eABdu; ð59Þ

mAB ≡
Z

∞

−∞
vABdu; ð60Þ

zA ≡
Z

∞

−∞
xAdu: ð61Þ

Now consider two masses in free fall whose initial
separation is d in the B direction. Then after the wave
has passed they will have an additional separation. Call the
component of that additional separation in the A direction
Δd. Then it follows from the geodesic deviation equation
that

Δd ¼ −
d
r
mA

B: ð62Þ
To find mAB we first integrate Eqs. (55) and (56) to obtain

DBvAB ¼ xA; ð63Þ
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ϵBCDBvCA ¼ ϵA
CxC: ð64Þ

Then by integrating again from −∞ to ∞ we obtain

DBmAB ¼ zA; ð65Þ

ϵBCDBmCA ¼ ϵA
CzC: ð66Þ

Now integrating Eqs. (57) and (58) from −∞ to ∞ yields

DAzA ¼ ΔP − 8πFð1þ rH0Þ; ð67Þ

ϵABDAzB ¼ 0; ð68Þ

where the quantities ΔP and F are defined by ΔP ¼
Pð∞Þ − Pð−∞Þ and F ¼ R

∞
−∞ Ldu. In physical terms, F is

the amount of energy radiated per unit solid angle. In
deriving Eq. (68) we have used the fact that Q vanishes in
the limit as juj → ∞. Since zA is curl-free, there must be a
scalar Φ such that zA ¼ DAΦ. Then by using Eqs. (67) and
(65) we find

DADAΦ ¼ ΔP − 8πFð1þ rH0Þ; ð69Þ

DBmAB ¼ DAΦ: ð70Þ

IV. DISCUSSION

We now consider the physical implications of these
results, and in particular of Eqs. (69)–(70). As in the
asymptotically flat case, there are two kinds of gravitational
wave memory: an ordinary memory due to sources that do
not get out to infinity and a null memory due to sources that
do get out to infinity. The ordinary memory is sourced by
ΔP, that is the change in the radial component of the
electric part of the Weyl tensor. The null memory is sourced
by F, the energy per unit solid angle radiated to infinity.
However, in contrast to the asymptotically flat case, there is
a factor of 1þ rH0 multiplying F. Note that in cosmology,
the wavelength of light from distant sources is redshifted by
a factor of 1þ z and that to first order in z we have
1þ z ¼ 1þ rH0. Thus, expressed in terms of F and r it
seems that the null memory is enhanced by a factor of
1þ z. However, r is not a directly observed property of a
distant object: instead we observe the luminosity of the
object and infer a luminosity distance dL related to r by
dL ¼ rð1þ zÞr. Since the observed memory is given by
Eq. (62) which has a factor of r−1, it follows that when
expressed in terms of F and dL, the null memory is
enhanced by a factor of ð1þ zÞ2. However, F is the energy
radiated per unit solid angle as measured by the observer,
who is at cosmological distance from the source. Instead,
one might want to calculate the local F (which we will call
Floc) as measured by an observer who is sufficiently far
from the source to be in its wave zone but still at a distance

small compared to the Hubble radius. That is, Floc is the F
that source would have in Minkowski spacetime. Because
the energy of radiation is diminished by a factor of
1=ð1þ zÞ, it follows that F ¼ Floc=ð1þ zÞ. Therefore,
when expressed in terms of Floc and the luminosity
distance, the memory is enhanced by a factor of 1þ z.
This behavior of memory in the cosmological setting is

what would be expected from the properties of gravitational
waves treated in the geometric optics (i.e. short-wave-
length) approximation, as done by Thorne [24]. This issue
will be covered in depth elsewhere [25]. In particular, in
Ref. [25] we use the geometric optics approximation to
extend our treatment of cosmological memory to the case
with both dust and a cosmological constant. As shown by
Hawking [17] the inclusion of dust leads to a set of coupled
equations involving the Weyl tensor and the shear of the
fluid. However, we show that in the geometric optics
approximation these equations decouple leading to a simple
result for the gravitational wave memory.
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APPENDIX: STRESS-ENERGY AND WEYL
TENSORS AT LARGE r

We now consider the behavior of the stress-energy tensor
and the Weyl tensor at large r. Since the metric can be
written as gαβ ¼ a2ηαβ it follows that for any vector ωα we
have

∇αωβ ¼ ∂αωβ − Γγ
αβωγ; ðA1Þ

where the Christoffel symbols are given by

Γγ
αβ ¼

a0

a
ðδγβ∂αηþ δγα∂βη − ηαβ∂γηÞ: ðA2Þ

It then follows that the conservation of stress-energy
gαγ∇γTαβ ¼ 0 becomes

∂αða2TαβÞ − aa0T∂βη ¼ 0: ðA3Þ

where T ¼ ηαβTαβ. Define u≡ η − r and lα ≡ −∇αu. In
Ref. [11] it was shown that in the asymptotically flat case,
the stress-energy tensor at large distances takes the form
Tαβ ¼ Alαlβ þ… where þ… means plus terms that are
higher order in powers of r−1. Flat space conservation of
energy (i.e. ∂αTαβ ¼ 0) implies that A takes the form r−2L
where L is a function of u and the angular coordinates.
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However, in de Sitter spacetime conservation of stress-
energy takes the form given in Eq. (A3). This is still
compatible with Tαβ ¼ Alαlβ þ… but now implies that A
takes the form A ¼ a−2r−2L where L is a function of u and
the angular coordinates. That is, the stress-energy has the
form

Tαβ ¼ a−2r−2Llαlβ þ… ðA4Þ

and therefore its components have the properties given
in Eq. (32).
We now turn to the properties of the Weyl tensor. Denote

the right-hand sides of Eqs. (12)–(15) as respectively αa,
βa, γab and λab. Then by applying ∂η to Eq. (14) and using
the other three equations we obtain

∂μ∂μEab ¼
3

2

�
∂ðaαbÞ −

1

3
δab∂cαc

�
−
1

2
ϵa

cd∂cλdb

−
1

2
ϵb

cd∂cλda − ∂ηγab: ðA5Þ

Similarly, by applying ∂η to Eq. (15) and using the other
three equations we obtain

∂μ∂μBab ¼
3

2

�
∂ðaβbÞ −

1

3
δab∂cβc

�
þ 1

2
ϵa

cd∂cγdb

þ 1

2
ϵb

cd∂cγda − ∂ηλab: ðA6Þ

Thus we have that the electric and magnetic parts of the
Weyl tensor satisfy the flat spacetime wave equation with a
source that consists of derivatives of components of the
stress-energy tensor. It then follows that the Cartesian
components of the electric and magnetic parts of the
Weyl tensor go like r−1 at large r and moderate u. Note
that the relation between Cartesian coordinates and angular
coordinates then implies that the angular components EAB
and BAB go like r. We now demonstrate that radial
components of the electric and magnetic parts of the
Weyl tensor must fall off faster than Cartesian components.
First note that ∂au ¼ −ra where ra is a unit vector in the

radial direction. Now consider Eab as a power series in r−1

with coefficients that depend on u and the angular
coordinates. Then it follows that

∂cEab ¼ −rc
∂
∂uEab þOðr−2Þ: ðA7Þ

But the electric part of the Weyl tensor satisfies ∂aEab ¼ αb
from which [using Eq. (A4) to establish the appropriate
falloff of αb] it follows that Era goes like r−2 and therefore
that ErA goes like r−1. Now defining va ¼ Era the same
line of reasoning shows that rava must fall off one power of
r faster than va and therefore that Err goes like r−3. Finally,
the same argument that we have used for the electric part of
the Weyl tensor also applies to the magnetic part. Thus, we
have established the falloff rates given in Eqs. (33)–(38).
We now consider the behavior of the asymptotic Weyl

tensor at large juj. Wewill assume that at both early and late
times the matter consists of widely separated objects
moving at constant velocity. Therefore the Weyl tensor
is a linear combination of translated and boosted
Schwarzschild perturbations of de Sitter spacetime (essen-
tially Schwarzschild–de Sitter spacetime with small mass).
But in our coordinates, the Weyl tensor of Schwarzschild–
de Sitter falls off like r−3. This property also holds under
translations and boosts. It then follows that eAB, bAB, xA and
yA vanish as juj → ∞. In the rest frame, Schwarzschild–de
Sitter has a purely electric Weyl tensor, and while this
changes under boosts, the Brr component remains zero.
Therefore as juj → ∞, we have that Q vanishes but P does
not. In principle, our widely separated objects should be
treated as boosted Kerr perturbations of de Sitter spacetime
if they are black holes, or as boosted perturbations with
some other gravitational multipole structure if they are not
black holes. However, in general higher multipoles
(whether of Kerr black holes or of nonspherical objects)
give effects that are higher order in powers of r−1.
Therefore we expect that our treatment using boosted
Schwarzschild perturbations of de Sitter is sufficient for
our purposes.
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