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The concordance model of cosmology favors a universe with a tiny positive cosmological constant. A
tiniest positive constant curvature profoundly alters the asymptotic structure, forcing a relook at a theory of
gravitational radiation. Even for compact astrophysical sources, the intuition from Minkowski background
is challenged at every step. Nevertheless, at least for candidate sources such as compact binaries, it is
possible to quantify the influence of the cosmological constant, as small corrections to the leading order
Minkowski background results. Employing suitably chosen Fermi normal coordinates in the static patch of
the de Sitter background, we compute the field due to a compact source to first order in Λ. For contrast, we

also present the field in the Poincaré patch where the leading correction is of order
ffiffiffiffi
Λ

p
. We introduce a

gauge invariant quantity, deviation scalar, containing polarization information and compute it in both
charts for a comparison.
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I. INTRODUCTION

Asymptotically flat space-times as a model for space-
times with compactly supported sources are fashioned after
the choice of the Minkowski space-time as the background
space-time. This choice constitutes a special case of
maximally symmetric background space-times. We could
also have a cosmological constant, Λ, in the Einstein
equation and take the de Sitter (Λ > 0) or the anti-de
Sitter (Λ < 0) solutions as background. The conformal
completion à la Penrose immediately reveals the qualita-
tively different structure of the infinity. In particular,
irrespective of the nonzero value of the cosmological
constant, the null infinity—the set consisting of the
beginnings and the ends of all inextendible null curves-
is spacelike for de Sitter and timelike for anti-de Sitter [1,2].
This has a drastic effect on the kinds of fluxes that can be
used as measures of radiation at infinity in these back-
grounds. The asymptotic symmetry groups are different,
too [3,4]. It is important to note that these qualitative
differences are independent of the numerical value (in any
suitably chosen units) of the cosmological constant. The
quantitative estimates of the deviations from Minkowski
background are sensitive to the numerical value. This
raises the question that, if we choose a background
space-time with a nonzero cosmological constant, how
does the linearized theory work out? In particular, what are
the modifications to the “quadrupole formula(s)?” Can the
modifications be obtained as “small” corrections in powers
of the cosmological constant?
At this stage, it is worth noting the different facets of the

gravitational fields far away from dynamical sources such as
astrophysical bodies. The most basic question is: what is the

field due to a source at large separations? The very
characterization of compact sources presumes a source-free
region where vacuum equations, possibly including the
cosmological term, hold. Thus, at large separations, we have
a natural split of the field into a background and a small
deviation caused by the source. The simplest approach is
then to linearize the Einstein equation about a background
and study its solutions, keeping in mind the inherent
nonlinear nature of the theory and hoping for reliable
estimates. The linearized equation is a wave equation with
a finite propagation speed. Among these linear waves are
also the fields due to sources which are computed from the
retarded Green function. The Green functions of course
depend on the choice of “gauge conditions” on the linear
fields, and their explicit form depends on the choice of
coordinate chart on the background space-time.
The next level of physical questions relates to physicality

of the wave solutions. The general covariance of the theory
manifests as a gauge equivalence at the linearized level,
and this complicates the identification of physical (gauge
invariant) attributes of the wave solutions. In the
Minkowski background, the linearized Riemann tensor is
gauge invariant, and consequently the induced geodesic
deviation or tidal distortion is a physical effect of the waves.
In the de Sitter background, the linearized Riemann tensor
itself is not gauge invariant, but thanks to its conformal
flatness, a certain deviation scalar can be constructed
which is gauge invariant. It, too, is related to tidal
distortions and contains information about physical attrib-
utes of the waves. To the extent that there exists fully gauge
fixed solutions with a nonzero tidal distortion, the gravi-
tational waves are “real.” All the interferometric detectors
measure these distortions in some form or other. Since the
waves are capable of doing work, we could ask for a
measure of the energy carried by the waves.
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The natural strategy for defining a measure of energy
through a stress tensor does not work for gravity. There is
simply no gauge invariant, tensorial definition of a gravi-
tational stress tensor. There are two approaches taken for a
measure of the flux of gravitational energy. One is based on
an effective gravitational stress tensor tailored for the
context wherein there are two widely separated scales,
λ ≪ L, of spatiotemporal variations of the metric which are
used to identify the L-scale component of the metric as a
background metric and λ-scale component as a small ripple
[5]. The other approach directly defines the flux of
gravitational radiation in reference to the null infinity
using the canonical structure of the space of asymptotically
flat/de Sitter solutions of the Einstein equation. This is
applicable for all spatially compact sources [6].
A spatially compact source has two natural scales: its

physical size R and the scale of its time variation T. For R
sufficiently small compared to the distance to the source, d,
it is essentially the scale T that is relevant for gravitational
radiation, and we may take the corresponding equivalent
length scale as λ ∼ T (c ¼ 1 units). On the other hand, the
curvature scale of the ambient geometry sufficiently far
away from the source provides the scale L. For Minkowski
space-time background, L ¼ ∞, whereas for nonzero
cosmological constant, L ∼ jΛj−1=2. A sufficiently rapidly
varying source is one which has its time scale of variation
or equivalent spatial scale λ ≪ L, while a source is distant
if λ=d ≪ 1.
Our focus in this work is on sufficiently rapidly varying,

distant, spatially compact sources. For current interfero-
metric detectors, the scale λ ∼ 104–105 meters, the dis-
tances d are in the range of kilo to hundreds of mega
parsecs (∼1019–1024 meters), while the spatial extents, R,
vary over light seconds or less (≲108 meters). We would
like to note that induced tidal distortions are needed in the
direct detection of gravitational waves, regardless of a
measure of the energy carried, while for indirect detection
based on energy loss due to gravitational radiation, reliable
flux measures are crucial. In this work, we focus on the
gravitational field and the induced tidal distortion.
Computation of flux(es) will be presented in a separate
publication. The quadrupole flux based on the canonical
approach is already available in Ref. [7].
In obtaining the field due to a compact source, we

follow the basic steps which are well known and well
understood for Minkowski background: (a) set up the
linearized equations; (b) choose a suitable gauge, and
obtain a retarded Green function; (c) identify the physical
solutions for subsequent computation of geodesic deviation
and power radiated; and (d) relate the physical field to
appropriate source multipole moments. At each of these
steps, we encounter new features compared to the compu-
tations in the Minkowski background.
Unlike the Minkowski space-time which admits a

natural, global Cartesian chart, de Sitter space-time has

several charts appropriate for different situations. The
de Sitter space-time defined as the hyperboloid in five-
dimensional Minkowski space-time, has a global chart of
coordinates ðτ; χ; θ;ϕÞ, as shown in Fig. 1. There are
natural “Poincaré patches” which constitute the causal
future (past) of observers and cover “half” of the global
chart. For instance, an observer represented by the world
line DA has its causal future Jþ spanning the region DBA
and is one of the Poincaré patches. Since it is appropriate
for the cosmological context, we focus on this Poincaré
patch. Its boundary denoted by the line AB is the future null
infinity, J þ. There are two natural coordinate charts for the
Poincaré patch, e.g., a conformal chart ðη; xiÞ and a
cosmological chart ðt; xiÞ. A half of the Poincaré patch
admits a timelike Killing vector and is referred to as a static
patch. This is a natural patch for an isolated body or a black
hole with a stationary neighborhood. We present compu-
tations in two different charts: suitably defined Fermi
normal coordinates (FNC) covering the static patch and
a conformal chart covering the Poincaré patch; see Fig. 1.
While physical implications should not depend on the

choice of charts, their explicit computations do depend on
the chosen chart. For convenience as well as for building up
intuition, different charts could have different advantages.
For instance, the time coordinate of the FNC chart is the
Killing parameter of the stationary Killing vector. This
reduces the Lie derivative with respect to the Killing vector
to a simple coordinate derivative. The metric, too, is
obtained as a Taylor series in the curvature, and hence
effects due to the cosmological constant can naturally be
expected to appear as a power series in Λ. However, this
advantage is not available outside the static patch. By
contrast, in the conformal chart, the metric is conformal to
the Minkowski metric which considerably simplifies the
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FIG. 1. ABCD denotes the global chart, ABD is a Poincaré
patch, while AED is a static patch. The angular coordinates, θ, ϕ
are suppressed. The metric in global chart is given by
ds2 ¼ 3

Λ sec
2τ½−dτ2 þ dχ2 þ sin2χðdθ2 þ sin2θdϕ2Þ�.
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computations. It is possible to scale out Λ by a suitable
choice of variables. However, to get corrections in terms of
Λ, one needs to go to the cosmological chart. A priori, it is
not clear which chart(s) is (are) convenient for what aspect,
and we present computations for two choices of charts—
the FNC and the conformal chart.
After obtaining the linearized equation, the next step is to

choose “a gauge.” The natural choice (also used in the
Minkowski background) is the transverse, traceless (TT)
gauge. But there has been another gauge choice [8], which
in the conformal chart simplifies the linearized equations as
well as subsequent analysis due to its similarity with the
Minkowski space-time. This is a gauge which imposes a
variant of the transversality condition. We present the
solutions in both gauges. The wave propagation has a tail
term in both gauges. The TT gauge computations are
performed in a FNC system and are restricted to order Λ.
The tail term is of order Λ2. In the second gauge, in a large
separation regime, the tail integral can be computed explicitly.
Next, to identify the physical fields, one chooses the

so-called synchronous gauge which sets all fields with at
least one temporal index to zero. This steps needs a
generalization when the background has a curvature and
needs a suitable timelike vector field. Fortunately, such a
generalization is available [9] in a neighborhood of a
Cauchy surface.
In a curved space-time, the notion of source multipole

moments needs to be defined appropriately. In the
Minkowski background, the coordinates of the global chart
are vectors under spatial rotations on a constant t hyper-
surface. In a curved background, the local coordinates have
no such property. A suitable definition can be constructed
by setting up Fermi normal coordinates. We show that in
the FNC chart with TT gauge, the physical fields, and the
source moments can be obtained as the Minkowski back-
ground results with corrections in powers of Λ ×
ðdistant to the sourceÞ2 and present the first correction.
The computations are useful and reliable at best up to a
distance of about Λ−1=2 and certainly not up to the null
infinity, J þ. The FNC chart is contained within a static
patch. For the subset of compact sources we limit ourselves
to, this is adequate. Unlike the Minkowski background, the
correction terms contain additional types of moments as
well as lower order time derivatives of the moments.
The paper is organized as follows. In Sec. II, we recall the

linearization procedure together with the associated notion
of gauge freedom. We collect the expression for the Ricci
tensor up to the quadratic order and give the linearized wave
equation for the metric perturbations. We discuss the gauge
choices and residual gauge invariance. Section III is divided
in two subsections. In the first subsection, we choose the
usual transverse, traceless gauge. We present the Hadamard
form of the retarded Green function and simplify
the expression for field due to a localized source, using
the FNC. The leading contribution of the order Λ0 to the

quadrupole field is the same as that in the Minkowski
background, and we present the order Λ contributions.
Here, appropriate source moments are defined, and the
solution in a synchronous gauge is presented. For contrast,
in the second subsection, we summarize the computation of
the quadrupole field in an alternative gauge [8]. The
solution in the synchronous gauge is presented in terms
of analogously defined source moments. Here, using the
cosmological chart, the corrections appear in powers offfiffiffiffi
Λ

p
. In Sec. IV, we present a suitably defined, gauge

invariant deviation scalar and compute it for the suitably
projected fields. In the final section, Sec. V, we summarize
and discuss our results. Some of the technical details are
given in the three Appendixes.

II. LINEARIZATION ABOUT
DE SITTER BACKGROUND

As noted above, there are several natural patches and
charts available in the de Sitter space-time. To introduce
perturbations without referring to coordinates,1 consider a
one parameter family of metrics, gμνðϵÞ, which is differ-
entiable with respect to ϵ at ϵ ¼ 0, and let ḡμν ≔ gμνð0Þ be a
given solution of the exact Einstein equation. Define a

perturbation of the exact solution as hμν ≔
dgμνðϵÞ

dϵ jϵ¼0. As
the one parameter families of metrics are varied, we
generate the space of perturbations from the corresponding
hμν. If every member of the family of metrics solves
Einstein equation (with sources and cosmological con-
stant), then the perturbation satisfies a linear equation
obtained by differentiating the exact equation with respect
to ϵ and setting ϵ to zero. Thus, every one parameter family
of exact solutions of the Einstein equation gives a solution
of the linearized equation. The converse is not always true
and is known as the linearization instability problem. In our
context, this is not a concern. The general covariance of the
Einstein equation implies that every one parameter family
of metrics, obtained by diffeomorphisms generated by a
vector field on a solution to the Einstein equation, also
solves the equation and leads to a corresponding perturba-
tion satisfying the linearized equation. However, these
families give the same physical space-time. The corre-
sponding perturbations do not give physically distinct,
nearby space-times and therefore do not represent physical
perturbations. These perturbations have the form hμν ¼
Lξḡμν where Lξ denotes the Lie derivative. To identify
the physical perturbations, we have to “mod out” these
perturbations, generated by diffeomorphisms. In other
words, physical perturbations are equivalence classes of
perturbations:

1Sometimes a coordinate system is presumed in which the
metric is split into a background plus small perturbations. This
obscures the tensorial nature of the perturbation and is avoided as
discussed, for example, in Ref. [10].
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½hμν� ≔ fh0μν=h0μν ¼ hμν þ Lξḡμν∀ vector fields ξg:

More commonly, the expression h0μν ¼ hμν þ Lξḡμν is
referred to as a gauge transformation, and the equivalence
classes are of course the physical perturbations. Thus, by
definition of gauge transformations, the linearized equation
is gauge invariant. While the perturbations are subjected to
these gauge transformations, it should be borne in mind that
they are tensors with respect to general coordinate
transformations.
While the linearization can be specified in a coordinate-

free manner, explicit computations of solutions need
coordinates to be introduced. In practice, one begins by
writing gμνðϵ; xÞ ≈ ḡμνðxÞ þ ϵhμνðxÞ and obtains the linear-
ized equation by substituting this in the full equation and
keeping terms to order ϵ. Since we consider perturbations of
the source-free de Sitter solution, the matter stress tensor is
of order ϵ, while the cosmological constant is of order ϵ0.
Under an infinitesimal diffeomorphism generated by a
vector field ξμðxÞ, x0μ ¼ xμ − ϵξμðxÞ, the Lie derivative
of the background metric, ḡμνðxÞ, is given by Lξḡμν ¼
∇̄μξν þ ∇̄νξμ. Here, the ∇̄ denotes the covariant derivative
with the Riemann-Christoffel connection of ḡ and
ξμ ≔ ḡμνξν. The gauge transformations thus take the form
h0μνðxÞ ¼ hμνðxÞ þ ∇̄μξν þ ∇̄νξμ.
We begin by summarizing the expansions of the

connection and Ricci tensor to oðh2Þ.
In the following, the indices are raised and lowered using

the background metric which is taken to be a maximally
symmetric one. Background quantities carry an overbar,

gμν ¼ ḡμν − ϵhμν þ ϵ2hμαhαν ð1Þ

Γλ
μν ¼ Γ̄λ

μν þ ϵ

�
1

2
ḡλαð∇̄νhαμ þ ∇̄μhαν − ∇̄αhμνÞ

�

− ϵ2
�
1

2
hλαð∇̄νhαμ þ ∇̄μhαν − ∇̄αhμνÞ

�
ð2Þ

Rμν ¼ R̄μν þ ϵRð1Þ
μν þ ϵ2Rð2Þ

μν

Rð1Þ
μν ¼ −

1

2
□̄hμν −

1

2
∇̄μ∇̄νhþ 1

2
ð∇̄μ∇̄αhαν þ ∇̄ν∇̄αhαμÞ

þ 1

2
ðR̄μαhαν þ R̄ναhαμÞ

þ R̄μαβνhαβ; h ≔ ḡαβhαβ; ð3Þ

Rð2Þ
μν ¼ 1

2
hαβ½∇̄ν∇̄μhαβ þ ∇̄α∇̄βhμν − ∇̄α∇̄μhβν − ∇̄α∇̄νhβμ�

−
1

4
f2∇̄αhαβ − ∇̄βhgf∇̄μhνβ þ ∇̄νhμβ − ∇̄βhμνg

þ 1

4
ð∇̄μhαβ þ ∇̄αhβμ − ∇̄βhαμÞ

× ð∇̄νhαβ þ ∇̄αhβν − ∇̄βhανÞ ð4Þ

ḡμνRð1Þ
μν ¼ −□̄hþ ∇̄μ∇̄νhμν; ð5Þ

Gμν þ Λgμν ¼ ½Ḡμν þ Λḡμν� þ ½Gð1Þ
μν þ Λhμν�

Gð1Þ
μν þ Λhμν ¼ −

1

2
□̄hμν −

1

2
ð∇̄μ∇̄ν − ḡμν□̄Þh

þ hμν

�
Λ −

1

2
R̄

�
þ 1

2
ð∇̄μ∇̄αhαν

þ ∇̄ν∇̄αhαμ − ḡμνð∇̄α∇̄βhαβÞÞ þ R̄μαβνhαβ

þ 1

2
ðR̄μαhαν þ R̄ναhαμ þ ḡμνR̄αβhαβÞ: ð6Þ

The expressions simplify further for the maximally
symmetric solution of the background equation,
Ḡμν þ Λḡμν ¼ 0. Maximal symmetry implies R̄μαβν ¼
Kðḡμβḡνα − ḡμνḡαβÞ, while the background equation fixes
K ¼ Λ=3 and the linearized equation becomes2

−
1

2
□̄hμν −

1

2
ð∇̄μ∇̄ν − ḡμν□̄Þhþ Λ

3
hμν þ

Λ
6
ḡμνh

þ 1

2
ð∇̄μ∇̄αhαν þ ∇̄ν∇̄αhαμ − ḡμνð∇̄α∇̄βhαβÞÞ ¼ 8πTμν:

ð7Þ

It is customary and convenient to use the trace-reversed
combination: ~hμν ≔ hμν − 1

2
ḡμνh. Denoting, Bμ ≔ ∇̄α

~hαμ,
in terms of the tilde variables, the linearized equation takes
the form

1

2
½−□̄ ~hμν þ f∇̄μBν þ ∇̄νBμ − ḡμνð∇̄αBαÞg�

þ Λ
3
½ ~hμν − ~hḡμν� ¼ 8πTμν: ð8Þ

The divergence of the left-hand side, ∇̄μ½LHS�μν, is
identically zero, and thus the source tensor is conserved
automatically as it should be. For Λ ¼ 0, the equation goes
over to the flat background equation. Under the gauge
transformations, ~hμν transforms as

δ ~hμνðxÞ ¼ ∇̄μξν þ ∇̄νξμ − ḡμν∇̄αξ
α;

and the linearized equation (8) is explicitly invariant under
these as it should be. It is well known that, availing this
freedom, it is possible to impose the transversality con-
dition, ∇̄α

~hαμ ¼ 0. The trace can be further gauged away
[11] in the absence of sources (or for the traceless stress
tensor). The particular choice of arranging ∇̄α

~hαμ ¼ 0 ¼ h

2From now on, the background is taken to be the de Sitter
space-time with Λ > 0, and the units are chosen so that
G ¼ 1 ¼ c.
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is the TT gauge. It simplifies Eq. (8) to (for the traceless
stress tensor)

−
1

2
□̄ ~hμν þ

Λ
3
~hμν ¼ 8πTμν: ð9Þ

The transversality condition still allows residual gauge
transformations generated by vector fields ξμ satisfying

δð∇̄μ
~hμνÞ ¼ ∇̄μðδ ~hμνÞ ¼ □̄ξν þ R̄ανξ

α ¼ ð□̄þ ΛÞξν ¼ 0:

ð10Þ

If, in addition, the trace (zero or nonzero) is to be preserved,
then ξμ must further satisfy ∇̄αξ

α ¼ 0, and this is consistent
with the above equation.
While it is common to choose the TT gauge, it is also

possible to make a different choice of gauge [8] in the
Poincaré patch of the de Sitter space-time. This will be
done in Sec. III B below.
The task now is to obtain the particular solution of the

linearized, inhomogeneous equation (8) and extract the
physical solutions, i.e., solutions satisfying conditions
which leave no gauge transformations possible, in the
source-free region. Within the perturbative framework, this
is obtained at the leading order by using a suitable Green
function for the linearized equation on the de Sitter back-
ground. The retarded Green functions will be determined
after some gauge fixing simplifying Eq. (8).

III. RETARDED GREEN FUNCTION

There have been several computations of two point
functions for scalar, vector, and tensor fields on de Sitter
background [8,11–13]. We will consider two retarded
Green functions. In Sec. III A, we impose first the trans-
versality condition and then also the tracelessness con-
dition. We refer to these as the transverse gauge and the TT
gauge respectively. In Sec. III B, following Ref. [8], we
choose a gauge which changes the transversality condition
by making its right-hand side nonzero. We refer to it as
generalized transverse gauge. With the tracelessness con-
dition imposed, we refer to it as generalized TT gauge.
The two computations will provide different views of the
physical solutions, in particular the form of the manifes-
tation of the Λ dependence. The computations in the
transverse gauge, employing the Hadamard construction
[14], follow Ref. [15], while the generalized transverse
gauge computations are based on Ref. [8].

A. Transverse and TT gauges

It turns out to be convenient to separate the trace part of
the equation and construct the retarded Green function in
the TT gauge directly with a source which is traceless.
Imposing the transversality condition, Bμ ¼ 0 in Eq. (8)

gives

□̄ ~hμν −
2Λ
3

½ ~hμν − ~hḡμν� ¼ −16πTμν; ð11Þ

and taking the trace of the above equation gives an equation
for the trace, ~h,

ð□̄þ 2ΛÞ ~h ¼ −16πT; T ≔ ḡμνTμν: ð12Þ

Subtracting 1
4
ḡμν× Eq. (12) from Eq. (11), we get

□̄ ~h0μν −
2Λ
3

~h0μν ¼ −16πT 0
μν; ~h0μν ≔ ~hμν −

1

4
~hḡμν;

T 0
μν ≔ Tμν −

1

4
Tḡμν: ð13Þ

Equation (12) for ~h is a scalar equation, and its solution
is determined by a corresponding Green function with a
source which is the trace of the stress tensor. However, we
know that in the source-free region, we can make a gauge
transformation to set the ~h to zero. Hence, in the region of
observational interest, we can gauge away the effect of the
trace T. With this understood, we take ~h ¼ 0 which gives
~h0μν ¼ ~hμν and use the traceless T 0

μν as the source. For
notational simplicity, we drop the prime from the stress
tensor. Thus, we focus on the TT gauge equation (9) with a
trace-free stress tensor as the source.
The equation for the Green function is

□̄Gαβ
μ0ν0 ðx; x0Þ −

2Λ
3

Gαβ
μ0ν0 ðx; x0Þ

¼ −4πJαβμ0ν0δ4ðx; x0Þ; where ð14Þ

Jαβμ0ν0 ðx; x0Þ ≔
gαμ0gβν0 þ gαν0gβμ0

2

−
1

4
ḡαβðxÞḡμ0ν0 ðx0Þ; and ð15Þ

gαμ0 ðx; x0Þ denotes the parallel propagator along the
geodesic connecting x, x0. The tensor Jαβμ0ν0 is symmetric
and traceless in the pairs of indices αβ and μ0ν0. The Green’s
function is obtained using the Hadamard ansatz.
The Hadamard ansatz for the retarded Green function for

a general wave equation is [14]

Gαβ
μ0ν0 ðx; x0Þ ¼ Uαβ

μ0ν0 ðx; x0Þδþðσ þ ϵÞ
þ Vαβ

μ0ν0 ðx; x0Þθþð−σ − ϵÞ; ð16Þ

where the space-time points x, x0 belong to a convex normal
neighborhood with x in the chronological future of x0;
σðx; x0Þ is the Synge world function which is half the
geodesic distance squared between x and x0 [15,16]; θþ, δþ
are distributions, viewed as functions of x, having support
in the chronological future and future light cone of x0
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respectively. The small parameter ϵ is introduced to permit
differentiation of the distribution and is to be taken to zero
in the end. The bitensors U, V are determined by inserting
the ansatz in Eq. (14).
Using the relation ḡαβ∇̄ασ∇̄βσ ¼ 2σ and the distribu-

tional identities [15],

ðσ þ ϵÞδ0ðσ þ ϵÞ ¼ −δðσ þ ϵÞ;
ðσ þ ϵÞδ00ðσ þ ϵÞ ¼ −2δ0ðσ þ ϵÞ
as ϵ → 0∶ϵδ0ðσ þ ϵÞ → 0; ϵδ00ðσ þ ϵÞ → 2πδ4ðx; x0Þ;

ð17Þ
leads to four equations by equating the coefficients of
θð−σÞ, δðσÞ, δ0ðσÞ, and δ4ðx; x0Þ to zero. The respective
equations are

□̄Vαβ
μ0ν0 ðx; x0Þ −

2Λ
3
Vαβ

μ0ν0 ðx; x0Þ ¼ 0; σðx; x0Þ < 0;

ð18Þ

2σλ∇̄λVαβ
μ0ν0 þ ð□̄σ − 2ÞVαβ

μ0ν0 ¼ □̄Uαβ
μ0ν0 −

2Λ
3
Uαβ

μ0ν0 ;

σðx; x0Þ ¼ 0; ð19Þ

ð2σλ∇̄λ þ ð□̄σ − 4ÞÞUαβ
μ0ν0 ¼ 0; σðx; x0Þ ¼ 0; ð20Þ

½Uαβ
μ0ν0 � ¼ ½Jαβμ0ν0 � ¼ δðα

0

μ0 δ
β0Þ
ν0 −

1

4
ḡα

0β0 ḡμ0ν0 ; x ¼ x0: ð21Þ

In the above, the quantity enclosed within square brackets
denotes its coincidence limit—evaluation for the x ¼ x0 and
super- (sub-)script on σ denotes its covariant derivative.
The last two equations uniquely determine Uαβ

μ0ν0 ðx; x0Þ
on the light cone through x0, while the first two equations
uniquely determine Vαβ

μ0ν0 ðx; x0Þ inside and on the light
cone through x0. The cosmological constant appears
explicitly in these two equations.

1. Determination of Uαβ
μ0ν0

Equation (20) is a homogeneous, first order, linear
differential equation, and its solution is completely deter-
mined by the initial condition provided by Eq. (21). Noting
that σλ∇̄λ on the parallel propagator and the metric gives
zero, we get σλ∇̄λJαβμ0ν0 ¼ 0.
Hence, the ansatz Uαβ

μ0ν0 ðx; x0Þ ≔ Jαβμ0ν0 ~Uðx; x0Þ in
Eqs. (20) and (21) leads to

ð2σα∇α þ ð□̄σ − 4ÞÞ ~U ¼ 0;

½ ~U� ¼ 1 ⇒ ~Uðx; x0Þ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðx; x0Þ

p
; ð22Þ

where Δðx; x0Þ is the (scalarized) Van Vleck determinant
or Van Vleck biscalar defined as Δðx; x0Þ ≔
− detð−σαβ0 ðx; x0ÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞgðx0Þp

, with g in the denominator

denoting the modulus of the determinant of the metric [15].
The biscalar ~U, being de Sitter invariant, depends on x, x0
only through the world function σðx; x0Þ which means that
value of ~U along the light cone is the same as its value in the
coincidence limit, i.e., ~Ujσ¼0 ¼ ½ ~U� ¼ 1ð¼ Δðx; x0Þjσ¼0Þ
and we need the solution only on the light cone. Thus,

Uαβ
μ0ν0 ðx; x0Þjσ¼0 ≔ Jαβμ0ν0 jσ¼0:

We cannot similarly factor out Jαβμ0ν0 from Vαβ
μ0ν0 ðx; x0Þ.

The reason is that Eq. (19) is an inhomogeneous equation
and the tensor structure of its right-hand side is not the same
as that of Uαβ

μ0ν0 . Indeed, to order ðσÞ2, we find [15]

�
□̄ −

2Λ
3

�
Uαβ

μ0ν0 ¼
�
−
Λ
6
ð4 − □̄σÞ − Λ2σ

9

�
Jαβμ0ν0 ð23Þ

þ Λ2

18
fḡαβσμ0σν0 þ σασβḡμ0ν0

− σðgαμ0gβν0 þ gαν0gβμ0 Þ
þ ðgαμ0σβσν0 þ gβμ0σασν0 þ gαν0σβσμ0

þ gβν0σασμ0 Þg

≔ ΦðσÞJαβμ0ν0 þ
Λ2

18
Kαβ

μ0ν0 þ oðσ3Þ:
ð24Þ

Note that the bitensor Kαβ
μ0ν0 is traceless, and just as the

bitensor Jαβμ0ν0, it, too, is annihilated by σλ∇̄λ.
Noting the coincidence limits, ½□̄σ� ¼ 4, ½σ� ¼ 0,

½σα� ¼ 0, we see that ½Φ� ¼ 0 ¼ ½Kαβ
μ0ν0 �, and hence the

coincidence limit of the left-hand side vanishes.
The coincidence limit of Eq. (19) then implies

½Vαβ
μ0ν0 ðx; x0Þ� ¼ 0. However, this does not imply

Vαβ
μ0ν0 ðx; x0Þjσ¼0 ¼ 0. To order σ2, we can write

Vαβ
μ0ν0 ðx; x0Þ ≔ ~V1ðσÞJαβμ0ν0 þ ~V2ðσÞKαβ

μ0ν0 :

This leads to two inhomogeneous differential equations
for the biscalars ~V1, ~V2. The coincidence limits of these
equations, combined with ½Φ� ¼ 0, leads to ½ ~V1� ¼ 0 and
½ ~V2� ¼ Λ2

108
. Once again, these values determine these

biscalars everywhere on the light cone. Hence, to order σ2,

Vαβ
μ0ν0 ðx; x0Þjσ¼0 ¼

Λ2

108
Kαβ

μ0ν0 jσ¼0 þ oðσ3Þ: ð25Þ

This shows clearly that the data for characteristic
evolution off the light cone are nonzero and hence the tail
term is nonzero as well. Equally well, it also shows that the
tail term is at least of order Λ2. The Green function is then
given by
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Gαβ
μ0ν0 ðx; x0Þ ¼ Jαβμ0ν0 ðx; x0ÞδþðσÞ þ Vαβ

μ0ν0θþð−σÞ:

We will be computing corrections to order Λ, and hence
we do not compute the effect of the tail term in this work.
From now on, we restrict to the sharp propagation term
only, and only the trace-free part of the source stress tensor
contributes.
Using the sharp term of the Green function above, the

solution to the inhomogeneous equation becomes

~hαβðxÞ ¼ 4

Z
source

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
δþðσÞJαβμ0ν0 ðx; x0ÞTμ0ν0 ðx0Þ

ð26Þ

¼ 4

Z
source

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
δþðσÞgαμ0 ðx; x0Þ

× gβν0 ðx; x0ÞTμ0ν0 ðx0Þ: ð27Þ

In the second line, we have substituted for Jαβμ0ν0 and used
the fact that the stress tensor is trace free and symmetric.
To proceed further, we employ FNC and Riemann

normal coordinates (RNC). These coordinate charts are
based on the choice of a timelike reference curve γ, a
reference point P0 on it, and an orthonormal tetrad Eα

a at P0

such that Eα
0 equals the normalized tangent to γ, at P0. To be

definite, let us take the world tube of the spatially compact
source to be around the line AD of Fig. 1. The line AD is a
timelike geodesic, and we naturally choose the reference
curve, γ, to be this line. Denoting the proper time along γ by
τ, we choose P0 ¼ γðτ ¼ 0Þ, as the reference point. Let Eα

a
denote an orthonormal tetrad at P0 chosen such that Eα

0 is
the normalized, geodesic tangent to γ. Fermi transport the
tetrad along γ (which is same as parallel transport since γ is
a geodesic). Thus, we have an orthonormal tetrad,
eαaeβbḡαβ ¼ ηab, with eα0 equal to the geodesic tangent
to γ, all along γðτÞ. The corresponding orthonormal
cotetrad is denoted as eaα. It follows that, all along γðτÞ,
ḡαβ ¼ ηαβ and the Christoffel connection is zero. With these
choices, the FNC and the RNC are set up as follows
(see Fig. 2).
To define the Fermi coordinates of a point P off γ, let β

be the unique (spacelike) geodesic from P, orthogonally
meeting γ at a pointQ ¼ γðτPÞ, with a unit affine parameter
interval. Its tangent vector, nα, at Q can be resolved
along the triad of spacelike vectors at Q as nα ≔ ξieαi.
Its norm gives the proper distance between P and Q,
s2≔nαnβηαβ¼ξiξjδij. The FNC of P are then defined to be
ðτP; ξiÞ. Evidently, for points along γ, the spatial coordi-
nates ξi are zero. To define the RNC for the same point P as
above, construct the unique geodesic starting from P0 and
reaching P in a unit affine parameter interval. This fixes the
geodesics tangent vector Nα at P0. The normal coordinates
of P, Xa are then defined throughNα ≔ XaEα

a. Wewill use
them in intermediate computations.

Generally, the FNC and the RNC have a domain
consisting of points P which have the required unique
geodesics from the reference curve/point. By examining the
geodesic equation in the global chart, it is easy to see that
the RNC’s and the FNC’s would be valid in the static patch
(see also Ref. [17]). In effect, the computations of this
subsection are restricted to the static patch.
Our task is to evaluate the terms in the integrand of

Eq. (27). The final answer will be expressed in terms of the
FNC introduced above.

2. Computation of σðx;x0Þ
Let P, P0 denote the observation point and a source point

respectively. With the base point P0, we get a geodesic
triangle P0PP0 with the P0P geodesic being null and future
directed. Let Xa, X0a denote the RNCs of P and P0
respectively. In terms of the RNC set up in this manner,
we have to obtain σðP0; PÞ. For this, we follow Chap. II
of Ref. [16].
The idea is to construct a surface spanning family of

geodesics (Fig. 3), interpolating between the geodesics
P0P, P0P0, all originating at P0 and ending on a point p on
the geodesic connecting P0P0. Each of these have their
affine parameters, v’s, running from 0 to 1. Choose points
q0 and q on the geodesics P0P0 and P0P respectively and
having the same value of affine parameter, 0 ≤ v ≤ 1. The
world function σðq0; qÞ depends only on v and gives the
desired answer for v ¼ 1. When the Riemann tensor is
small, i.e., can be treated as order 1 (different from the
orders used in the metric expansion), the σðq0; qÞ is
expressed as a Taylor expansion, in v, to third order
together with the remainder. This gives

0

γ

FIG. 2. The definition of Fermi normal coordinates. The dotted
line from P to P0 is the unique null geodesic for which the parallel
propagator is computed in Appendix B. The geodesics P0P, P0P0
are used in setting up the Riemann normal coordinates. P and P0
denote the observation and the source points respectively.
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σðP0; PÞ ¼ σðP0; P0Þ þ σðP0; PÞ

−
�
gαβ

∂σðy; P0Þ
∂yα

∂σðy; PÞ
∂yβ

�				
P0

þ 1

6

Z
1

0

dvð1 − vÞ3 D
4σðq0; qÞ
Dv4

: ð28Þ

The last term comes from the remainder in the Taylor
expansion and contains the modifications due to the non-
zero Riemann tensor. This is computed to the first order in
the curvature. For maximally symmetric space-time, the
computation simplifies. The steps are sketched in
Appendix A, and here is the final result expressed in terms
of the RNCs of P, P0:

2σðP;P0Þ ¼ ðX − X0Þ · ðX − X0Þ − Λ
9
fðX · XÞðX0 · X0Þ

− ðX · X0Þ2g þ oðΛ2Þ: ð29Þ

Here, the dot product is the Minkowski dot product,
X · Y ≔ ηabXaYb, etc.
At this stage, we convert the above expression from RNC

to FNC. The coordinate transformation between the RNC
and the FNC is given by [18]

X0ðτ; ~ξÞ ¼ τ þ τ
R0

ij0 þ R0
ji0

6
ξiξj þ � � �

¼ τ

�
1 −

Λs2

9

�
ð30Þ

Xiðτ; ~ξÞ ¼ ξi þ Ri
0j0

6
ξjτ2 þ Ri

jk0

3
ξjξkτ

¼ ξi
�
1 −

Λτ2

18

�
ð31Þ

In the second lines, we have used the de Sitter curvature.

Substitution in (29) leads to

2σðτ; ~ξ; τ0; ~ξ0Þ ¼ f−ðτ − τ0Þ2 þ ð~ξ − ~ξ0Þ2g

þ Λ
9
fðτ − τ0Þ2ð~ξ2 þ ~ξ02 þ ~ξ · ~ξ0Þ

− ðτ~ξ0 þ τ0~ξÞ2 − ð−τ2 þ ~ξ2Þð−τ02 þ ~ξ02Þ
þ ð−ττ0 þ ~ξ · ~ξ0Þ2g; ð32Þ

3. Solving the δþðσÞ
We have to solve the δþðσðP;P0ÞÞ for τ0 and eliminate

the dτ0 integration. The solution is sought in the form of
τ0 ¼ τ0 þ Λτ1. The τ0 is determined by the vanishing of the
first braces, and the retarded condition picks out one

solution, namely, τ0 ¼ τ − j~ξ − ~ξ0j. The full solution is
obtained as

τ0ret ≔ τ0 þ Λτ1; where

τ0 ¼ τ − j~ξ − ~ξ0j ð33Þ

τ1 ¼ −
1

18

1

j~ξ− ~ξ0j
fj~ξ− ~ξ0j2ð~ξ2 þ ~ξ02 þ ~ξ · ~ξ0Þ

− ðτð~ξþ ~ξ0Þ− j~ξ− ~ξ0j~ξÞ2 − ð−τ2 þ ~ξ2Þ
× ð~ξ02 − ðτ− j~ξ− ~ξ0jÞ2Þ þ ð−τ2 þ τj~ξ− ~ξ0j þ ~ξ · ~ξ0Þ2g:

ð34Þ
Now, we introduce the approximation that the source

size is much smaller than its distance from observers, i.e.,
~ξ02 ≪ ~ξ2 ↔ s0 ≪ s.3 With this assumption,

j~ξ0 − ~ξj ≈ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s02

s2
− 2ξ̂ · ξ̂0

s0

s

s
≈ s;

and keeping only the leading term in powers of s, we get

τ0ret ≔ τ −
�
sþ Λ

18
s3
�

≕τ − s̄ðsÞ ≕ τret: ð35Þ

(v = 0 )P0

(v = 1)

(v = 1 )

(v = v)

(v = v)

FIG. 3. All lines are the unique geodesics in the Riemann
normal neighbourhood. As the point p slides between P0 and P, a
two-dimensional surface is generated.

3The spatial coordinates are proportional to the proper dis-
tance along the corresponding spatial geodesics. This distance is
related to but not equal to the “physical distance” equaling the
scale factor times the comoving distance. The explicit relation is
given in Eq. (C15). Nevertheless, s0 ≪ s reflects the assumption
of the source size being much smaller than the distance to the
observer. The cosmological horizon bounding the static chart is at
a physical distance of

ffiffiffiffiffiffiffiffiffi
3=Λ

p
, and all our s0, s are within the static

chart.
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From this, it follows that

∂σðτ; ~ξ; τ0; ~ξ0Þ
∂τ0

				
τ0¼τ−s−Λs3

18

≈ −s
�
1 −

Λs2

18

�
⇒

				 ∂σ∂τ0
				−1

≈
1

s

�
1þ Λ

18
s2
�
: ð36Þ

Note that the τretðτ; sÞ defined above in terms of s̄ reflects
the non-Minkowskian metric and exactly corresponds to
the light cone.

4. Metric and its determinant in FNC

In terms of the FNC, the metric to first order in the
curvature is given as [15]

g00ðτ; ~ξÞ ¼ −1þ Λs2

3
; g0i ¼ 0;

gij ¼ δij −
Λ
9
ðδijs2 − ξiξjÞ: ð37Þ

The metric is static, and its determinant is given by

ffiffiffiffiffiffi
−g

p jFNC ≈ 1 −
5

18
Λs2 ¼

�
1 −

Λs2

6

��
1 −

Λs2

9

�
: ð38Þ

The second factor is the square root of the determinant of
the induced metric on a constant τ hypersurface. The metric
being static (independent of τ with g0i ¼ 0) also means that
∂τ is the stationary Killing vector in the FNC chart.

5. Riemann-Christoffel connection in FNC

We compute this from the metric. Noting that the
metric is of the same form as the perturbation about the
flat metric, gμν ¼ ημν þ δgμν with δg00 ¼ Λs2=3, δg0i ¼ 0,

δgij ¼ − Λ
9
ðδij~ξ2 − ξiξjÞ, we obtain

Γμ
αβ ¼

1

2
ð∂αδgμβ þ ∂βδgμα − ∂μδgαβÞ: ð39Þ

Using

δgμα ¼ −
Λs2

3
δμ0δ

0
α −

Λ
9
ðδμi δiαÞðξjξjÞ þ

Λ
9
ðδμi ξiÞðδjαξjÞ;

we get

Γμ
αβ ¼

Λ
18

½−6fδμ0ðδ0αδiβξi þ δ0βδ
i
αξiÞ þ δ0αδ

0
βδ

μ
i ξ

ig
−2fδμi ðδiαδjβξj þ δiβδ

j
αξjÞ − 2δiαδ

i
βδ

μ
jξ

jg�: ð40Þ

For future reference, we also give the derivative of the
connection,

∂γΓμ
αβ ¼

Λ
18

½−6fδμ0ðδ0αδiβδγi þ δ0βδ
i
αδγiÞ þ δ0αδ

0
βδ

μ
i δ

i
γg

−2fδμi ðδiαδjβδγj þ δiβδ
j
αδγjÞ − 2δiαδ

i
βδ

μ
jδ

j
γg�: ð41Þ

The parallel propagator gμα0 ðP;P0Þ is given in Eq. (B4).
It involves the coordinate differences ðx0 − xÞβ while the
coefficients are evaluated at xα. We need the parallel
propagator at the retarded time and in the regime of
s ≫ s0. The coordinate differences are then given as

ðx0 − xÞ0 ¼ τ0 − τ ≈ −s; ðx0 − xÞi ¼ ξ0i − ξi:

Thus, the parallel propagator depends only on ðτ; ~ξÞ.
At this stage, we recall that in the Minkowski back-

ground, a simplification is achieved by further imposing the
synchronous gauge condition, ~h0α ¼ 0, which removes the
residual gauge freedom of the TT gauge completely, and
we are left with only the physical solution: the components
~hij satisfying ∂i ~hij ¼ 0 ¼ δij ~hij. Is such a simplification
available in the de Sitter background?
As amatter of fact, it is a general result [9] that in a globally

hyperbolic space-time, given any Cauchy surface, Σ, the
normalized, timelike geodesic vector field, ηα, orthogonal to
the Cauchy surface allows us to impose the synchronous
gauge condition ~hαβηβ ¼ 0 in a normal neighborhood of Σ.
The vector field also provides us with a convenient way to
identify the physical components of the solution.
For the static patch we are working in, the hypersurface

of constant τ corresponding to the horizontal line through
the point E of Fig. 1 is a Cauchy surface, and the required
ηα field can be constructed easily to order Λ. For instance,
let τ ¼ τ0 be the surface Σ0, with a normalized normal
given by n̂α ≔ ð1þ Λ

6
s2Þδα0. Then, the vector field η is

determined as the solution of an initial value problem:

0 ¼ ηβð∂βη
α þ Γα

βγη
γÞ; ηαjΣ0

¼ n̂α ⇒ ð42Þ

ηα ¼ δα0 þ
Λ
3

�
s2

2
δα0 þ ðτ − τ0Þξiδαi

�
þ oðΛ2Þ: ð43Þ

From this, it follows that in the synchronous gauge,

~hαβηβ ¼ 0 ⇒ ~h00 ¼ Λ
3
ðτ − τ0Þ ~h0iξi;

~h0i ¼ Λ
3
ðτ − τ0Þ ~hijξj: ð44Þ

Clearly, ~h00 ∼ oðΛ2Þ and can be set to be zero while ~h0i is
completely determined by ~hij. It will turn out in the next
section that for TT-projected ~hij, ~h0i ¼ 0. Therefore, we
now specialize to the spatial components, μ ¼ m, ν ¼ n.
Keeping only the leading powers in s0=s, the expressions

simplify, and we obtain the parallel propagator as
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gmα0 ðτ; ~ξ;τ0ret; ~ξ0Þ≈ δmα0 þ
Λs2

18

�
δmα0 þ 3δ0α0

ξm

s
− δjα0

ξjξ
m

s2

�
:

ð45Þ

Note that it is independent of the source point ðτ0; ~ξ0Þ,
thanks to the leading s0=s approximation. It is also
independent of τ.
Now, we have assembled all the terms in Eq. (27). The τ0

integration exhausts the first factor in the
ffiffiffiffiffiffi−gp

, and we get

~hμνðτ; ~ξÞ ¼ 4

s

�
1þ Λs2

18

�
gμα0 ð~ξÞgνβ0 ð~ξÞ

×
Z

d3ξ0
ffiffiffiffiffiffiffiffiffiffiffiffi
g3ðξ0Þ

p
Tα0β0 ðτret; ~ξ0Þ: ð46Þ

The integral over the source is usually expressed in terms
of time derivatives of moments, using the conservation of
the stress tensor. To make these integrals well defined, it is
convenient and transparent to introduce a suitable ortho-
normal tetrad and convert the coordinate components to
frame components. The frame components are coordinate
scalars (although they change under Lorentz transforma-
tions), and their integrals are well defined. In the FNC
chart, there is a natural choice provided by the τ0 ¼
constant hypersurface passing through the source world
tube. At any point on this hypersurface, we have a unique
orthonormal triad obtained from the triad on the reference
curve by parallel transport along the spatial geodesic. The
unit normal, nα, together with this triad, eαm, m ¼ 1, 2, 3,
provides the frame, eαa. Explicitly, to order Λ,

nτðτ; ~ξ0Þ ¼ 1þ Λs02

6
; ni ¼ 0; eτmðτ; ~ξ0Þ ¼ 0;

eimðτ; ~ξ0Þ ¼
�
1þ Λs02

18

�
δim −

Λ
18

ξ0iξ0m:

In a more compact form (underlined indices denote frame
indices),

eα
0
a ≔

�
1þ Λs02

6

�
δα

0
τδ

0
a þ δα

0
i δ

j
a

�
δij

�
1þ Λs02

18

�

−
Λ
18

ξ0iξ0j

�
: ð47Þ

It is easy to check that eα
0

a e
β0
b gα0β0 ¼ ηa b. It follows

that

gmα0 ðxÞeα
0
aðx0Þ≃ δma

�
1þ Λs2

18

�
þ Λ

6
δ
0
asξm

−
Λ
18

δ
j
aξjξ

m: ð48Þ

Defining the frame components of the stress tensor
through the relation Tμν ≔ eμaeνbΠab and substituting for

gmα0e
α0
a ðτ; ~ξ; τ0; ~ξ0Þ, we obtain the final expression for the

solution in the synchronous gauge, to leading order in s0=s
and to oðΛÞ, as

~hmnðτ; ~ξÞ ¼ 4

s

�
1þΛs2

18

���
1þΛs2

9

�
δmmδ

n
n

×
Z ffiffiffiffiffiffiffiffiffiffiffiffi

g3ð~ξ0Þ
q

Πmnðτret; ~ξ0Þ

þΛs
6

�
ξmδnn

Z ffiffiffiffiffiffiffiffiffiffiffiffi
g3ð~ξ0Þ

q
Π0nþ ξnδmm

×
Z ffiffiffiffiffiffiffiffiffiffiffiffi

g3ð~ξ0Þ
q

Π0m

�
−
Λ
18

�
ξmδnnξk

×
Z ffiffiffiffiffiffiffiffiffiffiffiffi

g3ð~ξ0Þ
q

Πknþ ξnδmmξk

Z ffiffiffiffiffiffiffiffiffiffiffiffi
g3ð~ξ0Þ

q
Πkm

��
:

ð49Þ

The stress tensor is a function of (τret; ~ξ
0), τret being

defined in Eq. (35). The terms in the last three lines will
drop out when a suitable TT (transverse, traceless) projec-
tion is applied to the above solution to extract its gauge
invariant content, in Sec. IV. Each of these integrals over
the source on a τ0 ¼ constant hypersurface are well defined
and give a quantity which is a function of the retarded time
and carry only the frame indices. The explicit factors of the
mixed-indexed δ’s are a constant triad which serve to
convert the integrated quantities from frame indices to
coordinate indices.
To express the source integrals in terms of moments, we

have to consider the conservation equation.

6. Conservation equation

The conservation equation is ∂μTμν¼−Γμ
μλTλν−Γν

μλTμλ,
and we have computed the connection in FNC in Eq. (40).
Recalling that the stress tensor is trace free, Tμνḡμν ¼
Tμνðημν þ δgμνÞ ¼ð−T00 þ Tj

jÞ þ Tμνδgμν ¼ 0, we elimi-
nate the spatial trace by using Tj

j ¼ T00 − Tμνδgμν. The
second term is order Λ. To within our approximation and
momentarily suppressing the primes on the coordinates,
we find

∂0T00 þ ∂iTi0 ¼ 11Λ
9

T0iξi ð50Þ

∂0T0i þ ∂jTji ¼ Λ
9
ð7Tijξj þ T00ξiÞ: ð51Þ
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Taking second derivatives and eliminating T0i, we get

∂2
ijT

ij¼ ∂2
0T

00þΛ
9
f10T00þξj∂jT00þ18ξi∂jTijg: ð52Þ

Introducing the notation, ρ ≔ Π00, π ≔ Πijδij, we
express the coordinate components of the stress tensor in
terms of the frame components as

T00 ¼ δ00δ
0
0

�
1þ Λs2

3

�
ρ;

T0i ¼ δ00

��
1þ 2Λs2

9

�
δij −

Λ
18

ξiξj

�
Π0j

Tij ¼
��

1þ Λs2

9

�
δikδ

j
l −

Λ
18

ðδikξjξl þ δjlξ
iξkÞ

�
Πkl:

ð53Þ

In terms of the frame components, the conservation
equations take the form (the constant tetrad are suppressed)

∂τΠ00 ¼ −
�
1 −

Λs2

9

�
∂jΠ

0j þ Λ
18

ξjξ
i∂iΠ

0j þ ΛΠ0jξj

ð54Þ

∂τΠ0i ¼ −
�
1 −

Λs2

9

�
∂jΠji

þ Λ
18

fξjξ · ∂Πji þ 15Πijξj þ 3ρξig: ð55Þ

Eliminating Π0i and using π ¼ ρ thanks to the trace-
free stress tensor, we get the second order conservation
equation as

∂2
τρ ¼

�
1 −

2Λs2

9

�
∂2
ijΠ

ij −
Λ
9
½ξiξj∂2

ikΠ
jk þ 19ξi∂jΠ

ij

þ 2ξj∂jρþ 12ρ�: ð56Þ

The usual strategy is to define suitable moments of
energy density/pressures and, taking moments of the above
equation, express the integral of Πij in terms of the
moments and its time derivatives. To maintain coordinate
invariance, the moment variable (analog of xi in the
Minkowski background) must also be a coordinate scalar.
Note that in FNC (as in RNC), ξi is a contravariant vector.
Its frame components naturally provide coordinate scalars.
We still have the freedom to multiply these by suitable
scalar functions. It is easy to see that the frame components
of ξ are the same as the coordinate components at best

up to permutations, i.e., ξi ≔ eijξ
j ¼ δ

i
jξ

j. It is also true

that gijξiξj ¼ ξiξjδij ¼ s2. Hence, suitable functions of s2

would qualify to be considered as coordinate scalars.

In Eq. (49), we need
R
d3ξ0

ffiffiffiffiffiffiffiffiffiffiffiffi
g3ð~ξ0Þ

q
. To get this from

Eq. (56), we introduce a moment variable ζið~ξÞ and define
moments of ρ as

Mi1i2…inðτÞ ≔
Z
source

d3ξ
ffiffiffiffiffiffiffiffiffiffiffi
g3ð~ξÞ

q
ζi1 � � � ζin ρðτ; ~ξÞ;

ζið~ξÞ ≔
�
1þ Λs2

9

�
ξi; ð57Þ

where the integration is over the support of the source on
the constant—τ hypersurface.

Multiplying Eq. (56) by
ffiffiffiffiffiffiffiffiffiffiffiffi
g3ð~ξ0Þ

q
ζi1…ζin and integrating

over the source, we get

M̈i1…in ¼
Z

d3ξΠij∂2
ij

��
1þ ðn − 3ÞΛs2

9

�
ξi1…in

�

−
Λ
9

�Z
d3ξΠj

k∂2
ikðξiξjξi1…inÞ

þ 19

Z
d3ξΠij∂jðξiξi1…inÞ

þ 2

Z
d3ξ ρ∂jðξjξi1…inÞ þ 12

Z
d3ξ ρξi1…in

�
:

ð58Þ

There are no factors of ð1 − Λs2=9Þ in the terms enclosed
by the square brackets since there is already an explicit
prefactor of Λ.
The first few moments satisfy,

∂2
τM ¼ Λ

3
M; ð‘Mass conservation’Þ ð59Þ

∂2
τMi ¼ 2Λ

3
Mi þ 2Λ

3

Z
d3ξΠijξj;

ð‘Momentum conservation’Þ ð60Þ

∂2
τM

ij ¼ 2

Z
source

d3ξ
ffiffiffiffiffiffiffiffiffiffiffi
g3ð~xÞ

q
Πij þ ΛMij

þ Λ
Z

d3ξξkðΠkiξj þ ΠkjξiÞ: ð61Þ

There are additional types of integrals over Π0n and
ξ · Π · ξ in Eq. (49). But these come with an explicit factor
of Λ which simplifies the calculation. These can be
expressed in terms of different moments using both the
second order conservation equation (56) and the first order
one (54). In particular, taking the fourth moment and
tracing over a pair gives [to order ðΛÞ0],

GRAVITATIONAL WAVES FROM COMPACT SOURCES IN A … PHYSICAL REVIEW D 94, 064039 (2016)

064039-11



Z
d3ξξkðΠkmξn þ ΠknξmÞ ¼ 1

4
½δrs∂2

τMmnrs

− 2Mmn − 2N mn�; where

N mn ≔
Z

d3ξ
ffiffiffiffiffiffiffiffiffiffiffi
g3ð~ξÞ

q
Πmns2: ð62Þ

Likewise, taking the first moment of Eq. (54), we getZ
d3ξ

ffiffiffiffiffiffiffiffiffiffiffi
g3ð~ξÞ

q
Π0n ¼ ∂τMn: ð63Þ

Collecting all these, we write the solution in the form

~hmnðτ; ~ξÞ ¼ δmmδ
n
n

��
2

s
∂2
τMmn

�

−
Λ
3s

�
ξk

ξm∂2
τMkn þ ξn∂2

τMkm

3
− s2∂2

τMmn

�

þ Λ
s

�
−Mmn þN mn −

1

2
δrs∂2

τMmnrs

�

þ 2Λ
3

ðξm∂τMn þ ξn∂τMmÞ
�
: ð64Þ

The moments on the right-hand side are all evaluated at the
retarded τ, and we have displayed the constant triad. The
constant triad plays no role here, but a similar one in the
next subsection is important.
There are several noteworthy points:
(1) The leading term has exactly the same form as for

the usual flat space background. The correction
terms involve the first, the second, and the fourth
moments as well as a new type of momentN mn. We
will see in the next section that the term involving ξi

will drop out in a TT projection.
(2) There are terms which have no time derivative of any

of the moments and hence can have constant (in
time) field. This is a new feature not seen in the
Minkowski background. A priori, such a term is
permitted even in the Minkowski background. For
instance, if ∂τTαβ ¼ 0, i.e., the source is static, then
Eq. (46) or Eq. (49) implies that ∂τ

~hmn ¼ 0, and
hence the solution can have a τ-independent piece.
However, in this case (Λ ¼ 0), the conservation
equation (61) equation relates the field to the double
τ derivative of the quadrupole moment which
vanishes for a static source. It reflects the physical
expectation that a static source does not radiate.
Does this expectation change in a curved back-
ground?
In a general curved background, “staticity” could

be defined in a coordinate invariant manner only if
there is a timelike Killing vector, say, T. A source
would then be called static if the Lie derivative of the
stress tensor vanishes, LTTαβ ¼ 0. In the de Sitter

background, in the static patch we are working in,
the stationary Killing vector is precisely ∂τ. Hence,
from the definition of moments (57), (47), it follows
that for a static source, ∂τTαβ ¼ 0, all its moments
would be τ independent. However, the conservation
equations (59) for the zeroth moment4 contradict
this, unless M itself vanishes. Hence, we cannot
even have strictly static (test) sources in a curved
background. Thus, in the specific case of the de
Sitter background, the nonderivative terms in
Eq. (61) do not indicate the possibility of the
time-independent field ~hmn.
For a very slowly varying source—so that we can

neglect the derivative terms—we can have a leftover,
slowly varying field, falling off as ∼Λ=s. Such a
field has a very long wavelength and is not “radi-
ative” in the static patch. To isolate radiative fields,
one should probe the vicinity of the null infinity
which is beyond the extent of the static patch. For
typical rapidly changing sources (λ ≪ s) the τ-
derivative terms dominate over these terms, and in
the context of present focus, we drop them hereafter.
The remaining terms that survive the TT projec-

tion all have a second order τ derivative. Similar
features also arise in the cosmological chart in the
next subsection.

(3) The mass conservation equation can be immediately
integrated and have exponentially growing and
decaying components. The scale of this time varia-
tion is ∼ðΛÞ−1=2 which is extremely slow, about the
age of the Universe. These equations do not depend
on the Green function at all and are just conse-
quences of the matter conservation equation for
small curvature. We are working in a static patch
of the space-time, so the time variation is not driven
by the time dependence of the background geometry.
It is the background curvature that is responsible for
the changes in the matter distribution and hence its
moments. In effect, this confirms that test matter
cannot remain static in a curved background even if
the background is static. In a flat background, there
is no work done on the test matter, and hence
the sources’ mass and linear momenta are con-
served (the zeroth and the first moment are time
independent).
For contrast, in the next subsection, we recall the

computation in the generalized transverse gauge [8].
This subsection has the tail contribution explicitly
available, and the correction terms are in powers
of

ffiffiffiffi
Λ

p
.

4The nonzero curvature always does “work” on the test matter,
and the “mass of the matter” alone is not conserved.
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B. Generalized transverse gauge in Poincaré patch

The computation takes advantage of the conformally flat
form of the metric in the conformal chart and makes a
choice of a generalized transverse gauge to simplify the
linearized equation. We summarize them for convenience
and present the radiative solution.
In the conformal chart (see Fig. 4), the coordinates and

the metric take the form

z0 ¼H−1sinhðHtÞ þHr2
eHt

2
;

z1 ¼H−1coshðHtÞ−Hr2
eHt

2
; ð∴ z0 þ z1 > 0Þ;

zi ¼ eHtxi; i¼ 2;3;4; r2 ≔
X
i

ðxiÞ2; t; xi ∈R;

ð65Þ

ds2 ¼ −dt2 þ e2Ht
X4
i¼2

ðdxiÞ2: The substitution;

η ≔ −H−1e−Ht ⇒; ð66Þ

ds2 ¼ 1

H2η2

�
−dη2 þ

X
i

ðdxiÞ2
�
; η ∈ ð−∞; 0Þ;

H ≔
ffiffiffiffi
Λ
3

r
: ð67Þ

The conformally flat form leads to a great deal of
simplification. The J þ is approached as η → 0−, while
the η → −∞ corresponds to the Friedmann-Lemaître-
Robertson-Walker singularity.
In this chart, the de Sitter d’Alembertian can be

conveniently expressed in terms of the Minkowski
d’Alembertian, leading to

0 ¼ Ω−2
�
□ ~hμν þ

2

η
fðδ0μ∂σ ~hσν þ δ0ν∂σ ~hσμÞ

þ ð−∂0
~hμν þ ∂μ

~h0ν þ ∂ν
~h0μÞg

þ 2

η2
fδ0μδ0ν ~hαβηαβ þ ημν ~h00 þ 2ðδ0μ ~h0ν þ δ0ν ~h0μÞg

�

−
�
2Λ
3

�
½ ~hμν − ημν ~hαβηαβ�

−
�
ð∂μBν þ ∂νBμ − ημν∂αBαÞ þ

2

η
ðδ0μBν þ δ0νBμÞ

�
;

Ω2 ≔
1

H2η2
¼ 3

Λη2
: ð68Þ

The left-hand side will be −16πTμν in the presence of
matter.
While the transverse gauge will eliminate the Bμ terms, it

still keeps the linearized equation in a form that mixes
different components of ~hμν. A different choice of Bμ

achieves decoupling of these components. Taking Bμ of the

form fðηÞ ~h0μ shows that for the choice fðηÞ ≔ 2Λ
3
η, the

equation (with source included) simplifies to [8]

−16πTμνΩ2 ¼ □ ~hμν −
2

η
∂0

~hμν −
2

η2
fδ0μδ0ν ~hαα − ~hμν

þ δ0μ ~h0ν þ δ0ν ~h0μg; with ð69Þ

0 ¼ ∂α ~hαμ þ
1

η
δ0μ ~h

α
α; ~hαα ≔ ~hαβηαβ

ðgauge fixing conditionÞ: ð70Þ

From now on in this subsection, the tensor indices are
raised/lowered with the Minkowski metric.
It turns out to be convenient to work with new variables,

χμν ≔ Ω−2 ~hμν. All factors of Ω2 and Λ drop out of the
equations, and χμν satisfies [8]

r1 r2

η = η
2

1η = η

η = 0

r 
=

 0

FIG. 4. The full square is the Penrose diagram of de Sitter
space-time with generic point representing a 2-sphere. The
Poincaré patch labeled ABD is covered by the conformal chart
ðη; r; θ;ϕÞ. The line BD does not belong to the chart. The line AB
is the future null infinity, J þ, and the line AE is the cosmological
horizon. Two constant η spacelike hypersurfaces are shown with
η2 > η1. The two constant r timelike hypersurfaces have r2 > r1.
The two dotted lines at 45 deg denote the paths of gravitational
waves emitted at η ¼ η1; η2 on the world line at r ¼ 0, through
the source. During the interval (η1; η2), the source is “active,” i.e.,
varying rapidly enough to be in the detectable range of frequen-
cies. The region AED is a static patch.
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− 16πGTμν ¼ □χμν þ
2

η
∂0χμν

−
2

η2
ðδ0μδ0νχαα þ δ0μχ0ν þ δ0νχ0μÞ; ð71Þ

0 ¼ ∂αχαμ þ
1

η
ð2χ0μ þ δ0μχα

αÞ

ðgauge conditionÞ: ð72Þ

Under the gauge transformations generated by a vector
field ξμ, the χμν transform as

δχμν ¼ ð∂μξν þ ∂νξμ − ημν∂αξ
α
Þ − 2

η
ημνξ0;

ξ
μ
≔ Ω−2ξμ ¼ ημνξ

ν: ð73Þ

The gauge condition (72) is preserved by the trans-
formation generated by a vector field ξμ satisfying

□ξ
μ
þ 2

η
∂0ξμ −

2

η2
δ0μξ0 ¼ 0; ð74Þ

and Eq. (71) is invariant under the gauge transformations
generated by these restricted vector fields.
It is further shown in Ref. [8] that the residual invariance

is exhausted by setting χ0i ¼ 0 ¼ χ̂ð≔ χ00 þ χi
iÞ. The

gauge condition (72) then implies ∂0χ00 ¼ 0, and by
choosing it to be zero at some initial η ¼ constant hyper-
surface, we can take χ00 ¼ 0 as well. Thus, the physical
solutions satisfy conditions ∂iχij ¼ 0 ¼ χii, and it suffices
to focus on Eq. (71) for μ; ν ¼ i; j.
To obtain the inhomogeneous solution, we return to the

equations satisfied by the χ00; χ0i, and χij, which are
decoupled, and we are interested only in the χij equation:

□χij þ
2

η
∂0χij ¼ −16πTij; ∂iχ

i
j ¼ 0 ¼ χi

i:

The corresponding, retarded Green function is defined by

�
□þ 2

η
∂0

�
GRðη; x; η0; x0Þ ¼ −

Λ
3
η2δ4ðx − x0Þ ð75Þ

and is given by [8]

GRðη; x; η0x0Þ ¼
Λ
3
ηη0

1

4π

δðη − η0 − jx − x0jÞ
jx − x0j

þ Λ
3

1

4π
θðη − η0 − jx − x0jÞ: ð76Þ

The particular solution is given by

χijðη;xÞ¼ 16π

Z
source

dη0d3x0
Λ
3
η02

GRðη;x;η0x0ÞTijðη0;x0Þ ð77Þ

¼ 4

Z
dη0d3x0

η

η0
δðη−η0− jx−x0jÞ

jx−x0j Tijðη0;x0Þ

þ4

Z
dη0d3x0

1

η02
θðη−η0− jx−x0jÞTijðη0;x0Þ

ð78Þ

¼ 4

Z
d3x0

η

jx− x0jðη− jx− x0jÞTijðη0; x0Þjη0¼η−jx−x0j

þ 4

Z
d3x0

Z
η−jx−x0j

−∞
dη0

Tijðη0; x0Þ
η02

: ð79Þ

The spatial integration is over the matter source confined to
a compact region and is finite. The second term in Eqs. (78)
and (79) is the tail term.
It is possible to put the solution in the same form as in the

case of flat background, in terms of suitable Fourier
transforms with respect to η [8]. However, we work with
the ðη; ~xÞ-space.
For j~xj ≫ j~x0j, we can approximate j~x − ~x0j ≈ r ≔ j~xj.

This allows us separate out the ~x0 dependence from the
η − jx − x0j. In the first term, this leads to the spatial integral
over Tijðη − r; x0Þ, while in the second term, we can
interchange the order of integration again leading to the
same spatial integral. The spatial integral of Tij can be
simplified using moments. This is done through the matter
conservation equation using the conformally flat form of
the metric,

∂μTμ0 þ
1

η
ðT00 þ Ti

iÞ ¼ 0; ∂μTμi þ
2

η
T0i ¼ 0: ð80Þ

Taking derivatives of these equations to eliminate T0i, we
get

∂i∂jTij ¼ ∂2
ηT00 −

1

η
∂ηðT00 þ Ti

iÞ þ 3

η2
ðT00 þ Ti

iÞ

−
2

η
∂ηT00: ð81Þ

As in the previous section, we introduce a tetrad to define
the frame components of the stress tensor. The conformal
form of the metric suggests a natural choice, (

ffiffiffiffiffiffiffiffiffi
Λ=3

p
≕ H),

fα0 ≔ −Hηð1; ~0Þ; fαm ≔ −Hηδαm ⇔ fαa ≔ −Hηδαa;

ð82Þ
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The corresponding components of the stress tensor are
given by

ρ ≔ P00 ¼ Tαβfα0f
β
0 ¼ H2η2T00δ

0
0δ

0
0;

Pij ≔ Tαβfαif
β
j ¼ H2η2Tijδ

i
iδ

j
j; ð83Þ

P0i ≔ Tαβfα0f
β
i; π ≔ Pijδ

ij: ð84Þ

In terms of these, the conservation equations take the
form (suppressing the constant tetrad)

0 ¼ ∂ηP00 þ ∂iPi0 −
1

η
ð3P00 þ πÞ ð85Þ

0 ¼ ∂ηP0i þ ∂jP
ji −

1

η
4P0i: ð86Þ

It is convenient to go over to the cosmological chart ðt; ~xÞ
and convert the ∂η to ∂t using the definitions:
η ≔ −H−1e−Ht. This leads to ∂η ¼ eHt∂t ≔ aðtÞ∂t,

0 ¼ ∂tρþ
1

a
∂iP0i þHð3ρþ πÞ; ð87Þ

0 ¼ ∂tP0i þ 1

a
∂jP

ij þ 4HP0i; ð88Þ

0 ¼ ∂2
t ρ −

1

a2
∂2
ijP

ij þ 8H∂tρþH∂tπ þ 5H2ð3ρþ πÞ:
ð89Þ

As before, we define the moments of the two rotational
scalars, ρ; π, by integrating over the source distribution at
η ¼ constant hypersurface. The determinant of the induced
metric on these hypersurfaces is a3ðηÞ. The tetrad compo-

nents of the moment variable are given by x̄i ≔ fiαxα ¼
−ðηHÞ−1δijxj ¼ aðtÞxi. The moments are defined by

Qi1���inðtÞ ≔
Z
SourceðtÞ

d3xa3ðtÞρðt; ~xÞx̄i1 � � � x̄in ; ð90Þ

Q̄i1���inðtÞ ≔
Z
SourceðtÞ

d3xa3ðtÞπðt; ~xÞx̄i1 � � � x̄in : ð91Þ

Taking the second moment of Eq. (81) and lowering the
frame indices, we getZ

d3xa3ðtÞPijðt; xÞ ¼
1

2
½∂2

t Qij − 2H∂tQij þH∂tQ̄ij�:

ð92Þ

Let us write the solution, Eq. (79), in terms of the
cosmological chart, incorporating the approximation
j~x0j ≪ j~xj,

χijðη; xÞ ¼ 4
η

rðη − rÞ
Z

d3x0Tijðη0; x0Þj
η0¼η−r

þ 4

Z
d3x0

Z
η−r

−∞
dη0

Tijðη0; x0Þ
η02

: ð93Þ

Define the retarded time, tret, through ðη − rÞ ≔
−H−1e−Htret , and set ā ≔ aðtretÞ. Then, we have
η ¼ −ðaHÞ−1, ðη − rÞ ¼ −ðāHÞ−1. Using these,

η

η − r
Tijðη − r; x0Þ ¼ aðtÞ−1ā3Pijðtret; x0Þ;

dη0
1

η02
Tijðη0; x0Þ ¼ H2dt0a3ðt0ÞPijðt0; x0Þ: ð94Þ

All terms involve only the
R
a3Pij which is obtained above.

With these, the solution takes the form

χijðt; rÞ ≈
2

raðtÞ ½∂
2
t0Qij − 2H∂t0Qij þH∂t0Q̄ij�jtret

þ 2H2f∂t0Qij − 2HQij þHQ̄ijgjtret
− 2H2f∂t0Qij − 2HQij þHQ̄ijgj−∞: ð95Þ

We have restored the constant triad and used the definition
χij ≔ δi

iδj
jχij. The first term in Eq. (95) is the contribution

of the sharp term, and the remaining terms are from the tail.
The tail contribution has separated into a term which
depends on the retarded time just as the sharp term does,
and the contribution from the history is given by the
limiting value in the last line.
This expression is valid as a leading term for j~xj ≫ j~x0j.

(For the Hulse-Taylor system, the physical size is about 3
light seconds, and it is about 20,000 light years away,
giving jx0j=jxj ∼ 10−12.) We work with this expression in
the following and suppress the ≈ sign.
We write a−1 ¼ ā−1ðāaÞ ¼ ā−1ð1 −HrāÞ¼ ā−1 − rH in

the first term to make manifest the dependence on retarded
time tret. The solution is then expressed as

χijðt; rÞ ≈
2

rā
f∂2

t Qij − 2H∂tQij þH∂tQ̄ijg
− 2Hf∂2

t Qij − 3H∂tQij þH∂tQ̄ij

þ 2H2Qij −H2Q̄ijg
− 2H2f∂t0Qij − 2HQij þHQ̄ijgj−∞: ð96Þ

A few remarks are in order:
(1) In the conformal chart, there is no explicit depend-

ence on the cosmological constant, and it is not a
suitable chart for exploring the subtle limit of
vanishing cosmological constant [6,7]. Hence, we
changed to the cosmological chart and exhibited the
solution with explicit powers of H. Although the
solution in Eq. (79) showed the presence of a tail
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term as an integral over the history of the source, in
the final expression, the field depends only on the
properties of the source at the retarded time tret
which was defined through ðη − rÞ except for the
limiting value in the last line.

(2) Unlike the FNC chart, here the tail contribution
has moments without a time derivative which
naively indicates that for “static” sources, there
could be a nonzero field. A coordinate invariant
way of specifying staticity of a source is to refer to
the Killing parameter of a stationary Killing vector
in its vicinity, e.g., T · ∂ ≔ −Hðη∂η þ xi∂iÞ ¼∂t −Hxi∂i. (This also equals the ∂τ of the
FNC.) A static source satisfies LTTμν ¼
T · ∂Tμν − 2HTμν ¼ 0. Explicitly, LTfαa ¼ 0, and
hence for a static source, LTPab ¼ 0. Furthermore,
the Lie derivative of the moment variable xi ¼ axi

also vanishes as does that of the volume element.
Hence, LTQij ¼ 0. Since the moments are coordi-

nate scalars and independent of spatial coordinates,
their Lie derivative is just ∂t. Hence, for static
sources, ∂tQij ¼ 0 ¼ ∂tQ̄ij (indeed all moments

will be independent of t). For constant moments,
there is a cancellation between the terms in the
second and the third line of Eq. (95), and the field
vanishes. The boundary term at t ¼ −∞ is essential
for this cancellation.
However, the conservation equations for the

zeroth and the first moments are

∂tQþHQ̄ ¼ 0;

∂2
t Qi þH∂tQ̄i −H2ðQi − Q̄iÞ ¼ 0: ð97Þ

The equation for the zeroth moment can be derived
directly from (87). These again show that in a curved
background, test matter cannot remain static.
For very slowly varying moments, the sharp

contribution is negligible, while the tail has a con-
tribution, not falling off as r−1. In FNC, the slowly
varying contribution is in the sharp term but could not
be thought of as “radiation.” The absence of such a
contribution in the sharp term in Eq. (95) suggests
that the slowly varying sharp term of FNC [Eq. (64)]
would not survive as radiation at J þ, though of
course this cannot be analyzed within the FNC chart.
The surviving tail contribution has been thought of as
inducing a linear memory effect in Ref. [19].
The contribution from the t ¼ −∞ boundary is in

any case a constant and does not play any role in any
physical observables which typically involve time
derivatives. With this understood, we now suppress
these boundary contributions.

(3) To link with Ref. [7], the final step involves
replacement of ∂t by the Lie derivative with respect

to the stationary Killing vector. Using LTQijðtretÞ ¼
ð∂t −Hxi∂iÞðtretÞ∂tretQijðtretÞ ¼ ∂tretQijðtretÞ and

LTδi
i ¼ T · ∂δii −Hδi

i, we get

LTQij ¼ LTðδiiδjjQijÞ
¼ ðLTδi

iδj
jÞQij þ δi

iδj
j∂tretQij

¼ ∂tretQij − 2HQij: ð98Þ

This is where the constant triad plays a role, unlike
in the FNC chart where LT ¼ ∂τ on all tensors. With
these translations, our solution in Eq. (96) takes the
forms

χijðt;rÞ¼
2

rā
δi

iδj
j½∂2

t Qij−2H∂tQijþH∂tQ̄ij�ðtÞ
−2Hδi

iδj
j½∂2

t Qij−3H∂tQijþ2H2Qij

þH∂tQ̄ij−H2Q̄ij�ðtÞ; ð99Þ

¼ 2

rā
½L2

TQijþ2HLTQijþHLTQ̄ijþ2H2Q̄ij�
−2H½L2

TQijþHLTQijþHLTQ̄ijþH2Q̄ij�:
ð100Þ

The terms on the right hand side are evaluated at
t ¼ tret. Both terms have the same derivatives of
moments appearing in them and, on combining, lead
to a coefficient of the form ððrāÞ−1 −HÞ. Thus, in
each order in H, the effect of the tail is to reduce the
amplitude. Equation (100) matches with the solution
given by Ashtekar et al. [7], and the Λ → 0 limit of
the solution goes over to the Minkowski background
solution.

In the next section, we define the gauge invariant
deviation scalar to compare the computations done in
the two charts.

IV. TIDAL DISTORTIONS

The two solutions presented above were obtained in two
different gauges. With a further choice of synchronous
gauge, we could restrict the solutions to the spatial
components alone. While these conditions fix the gauge
completely, these spatial components still have to satisfy
certain “spatial transversality and trace-free” conditions.
The solutions obtained above do not satisfy these con-
ditions and hence do not represent solutions of the original
linearized Einstein equation. Their dependence on the
retarded time and the “radial” coordinate, however, offers
an easy way to construct solutions which do satisfy these
spatial-TT conditions [18]. In flat background, this is
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achieved by the algebraic TT projector (defined below),
and the method extends to the de Sitter background as well.
For χij, the spatial-TT conditions have the form

∂jχji ¼ 0 ¼ δijχij, which has exactly the same form as
in the case of the Minkowski background. To deduce their
form for the ~hij, consider ~hμν satisfying the TT gauge
condition and the synchronous gauge condition:
∇̄μ

~hμν ¼ 0 ¼ ~hμνḡμν; ~h
α0 ¼ Λ

3
ðτ − τ0Þ ~hαiξjδij. These imply

~hμν ¼ hμν,

h00 ¼ oðΛ2Þ; h0i ¼ Λ
3
ðτ − τ0Þhijξkδjk;

hijδij ¼ −
Λ
9
hijξiξj: ð101Þ

Furthermore,

∇̄μhμν ¼ ∂μhμν þ Γ̄μ
μλhλν þ Γ̄ν

μλhμλ ¼ 0 ⇒

∂μhμν ¼
5Λ
9
hiνξi þ

2Λ
3

δν0h
0iξi

þ 2Λ
9

δνi ðhij − hklδklδijÞξj ⇒ ð102Þ

∂jðhjiξiÞ ¼ −
Λ
3
ðτ − τ0Þ∂τðhijξiξjÞ þ

5Λ
9

ξiξjhji ðν ¼ 0Þ
ð103Þ

∂jhji¼−
Λ
3
ðτ−τ0Þ∂τðhijξjÞþ

4Λ
9
ξjhji ðν¼ iÞ: ð104Þ

Multiplying (104) by ξi, subtracting from (103), and using
(101) implies that hijξiξj ¼ 0 ¼ hijδij. The ξi× (103) then
implies that ∂jðhijξiÞ ¼ 0, satisfying Eq. (103) identically.
Provided hijξj ¼ 0, the spatial transversality condition
∂jhij ¼ 0 will be satisfied. The TT projector defined below
will ensure hijξj ¼ 0 to the leading order in s−1. Hence, the
spatial transversality will also hold for the projected hij to
the leading order in s−1. The projector being local (alge-
braic) in space-time while the spatial TT conditions are
nonlocal (differential), the projector ensures the condition
only for large s. Elsewhere, the condition must be satisfied
by adding solutions of the homogeneous wave equation.
However, we need the explicit forms of the solution only in
the large s regions for which the projector suffices.
As in the case of theMinkowski background, correspond-

ing to each spatial, unit vector n̂, define the projectors,

Pi
jðn̂Þ ≔ δij − n̂in̂j;

Λij
kl ≔

1

2
ðPi

kPj
l þ Pi

lPj
k − PijPklÞ: ð105Þ

Contraction with n̂ gives zero, and the trace of Λ projector
in either pair of indices vanishes. From any Xkl, the Λ
projector gives Xij

TT ≔ Λij
klXkl which is trace free and is

transverse to the unit vector n̂. For the FNC fields, we

choose n̂i ≔ ~ξi=s, and for the conformal chart fields, we
choose n̂i ¼ −Hη~xi=r. When ~hijTT is substituted in
Eq. (104), the condition reduces to the spatial transversality,
∂j

~hijTT ¼ 0. The χTTij also satisfies the same condition:
∂jχTTij ¼ 0.
Since n̂ is a radial unit vector, It follows that ∂jΛij

kl ¼
1
2r ðPi

kn̂l þ Pi
ln̂kÞ which is down by a power of r (or s for

FNC). Therefore, to the leading order in r−1, ∂j
~hijTT ¼

Λij
kl∂j

~hkl.
Noting that the retarded solutions have a form

∼fijðτ − sÞ=s, we get

∂j

�
fijðτ − sÞ

s

�
¼ −

1

s2
ξjð∂τfij þ s−1fijÞ

≈ −ξ̂j∂τ

�
fijðτ − sÞ

s

�
þ o

�
1

s2

�
;

ξ̂j ≔ s−1ξj:

It follows immediately that to the leading order in s−1 (or
r−1), ∂j

~hijTT ≈ −∂τðξ̂j ~hijTTÞ ¼ 0 (and likewise ∂jχTTij ¼ 0).
Note that, although to begin with the spatial TT conditions
in FNC look different from those of the conformal chart,
they have the same form after the corresponding Λ
projections. Thus, for the Λ-projected hij, too, hα0 ¼ 0,
∀ α. There is no plane wave assumption or spatial Fourier
transform needed for this projection. Of course, the Λ
projector only ensures that the gauge conditions are
satisfied to the leading order in r−1ðs−1Þ. These Λ-projected
fields represent physical perturbations, and gauge invariant
observables of interest can be computed using these.
From now on, the solutions will be in the synchronous

gauge and with TT projection implicit: ~hτβ ¼ 0, ~hij ↔ ~hijTT
and χηα ¼ 0, χij ↔ χTTij . In particular, ~hij ¼ hij.
As an illustration, we consider the deviation induced in

the nearby geodesics, as tracked by a freely falling
observer. Thus, we consider a congruence of timelike
geodesics of the background space-time and consider the
tidal effects of a transient gravitational wave.
We begin with the observation that for all space-times

satisfying Rμν ¼ Λgμν (which include the de Sitter back-
ground as well as its linearized perturbations in source-free
regions) and for vectors u; Z; Z0 satisfying u · Z ¼ u · Z0 ¼
Z · Z0 ¼ 0, the definition of the Weyl tensor implies

Cαβμν − Rαβμν ¼ −
Λ
3
ðgαμgβν − gανgβμÞ ⇒ ð106Þ

RαβμνZ0αuβZμuν ¼ CαβμνZ0αuβZμuν

þ Λ
3
fðu · uÞðZ0 · ZÞ − ðu · Z0Þðu · ZÞg

ð107Þ
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∴ Dðu; Z; Z0Þ ≔ −RαβμνZ0αuβZμuν

¼ −CαβμνZ0αuβZμuν: ð108Þ

The last equation shows the gauge invariance of
Dðu; Z0; ZÞ. This is because the gauge transform of the
Weyl tensor for the background is zero and the gauge
transform of the Z0uZu factor (it depends on the perturba-
tion through the normalizations) does not contribute since
the Weyl tensor of the de Sitter background itself is zero.
Notice that Dðu; Z; Z0Þ is symmetric in Z ↔ Z0 and is the
component of acceleration of one deviation vector Z, along
another orthogonal deviation vector.
A suitably chosen congruence of timelike geodesics,

uα∂α, provides a required pair of orthogonal deviation
vectors for the gauge invariant observable Dðu; Z0; ZÞ
which we now refer to as deviation scalar. Since deviation
vectors are always defined with respect to a geodesic
congruence, we leave the argument u implicit and restore it
in the final expressions. The deviation scalar is related to
Weyl scalars as noted in Ref. [20]. We compute this for the
Λ-projected solutions given in (64) and (96). Note that the
dot products in the above equations involve the perturbed
metric, ðḡþ hÞμν. For the explicit choices that we will make
below, we denote the observer and the deviation vectors in
the form u ¼ ūþ δu; Z ¼ Z̄ þ δZ; Z0 ¼ Z̄0 þ δZ0 with the
“barred” quantities normalized using the background met-
ric while the “delta” quantities are treated as of the same
order as the perturbed field. Thus,

ū · ∇̄ūα ¼ 0; ū · ∂Z̄α ¼ Z̄ · ∂ūα; ū · ∂Z̄0α ¼ Z̄0 · ∂ūα;
ū · ū ¼ −1; ū · Z̄ ¼ ū · Z̄0 ¼ Z̄0 · Z̄ ¼ 0: ð109Þ

The delta quantities have to satisfy conditions so that the
full quantities satisfy the requisite orthogonality relations
with respect to the perturbed metric.
The deviation scalar is then given by

−DðZ0; ZÞ ≔ ðḡαβ þ hαβÞðR̄α
λμν þ Rð1Þα

λμνÞ
× ðZ̄0βūλZ̄μūν þ δðZ0βuλZμuνÞÞ

¼ ḡαβR̄α
λμνZ̄0βūλZ̄μūν þ ḡαβRð1Þα

λμνZ̄0βūλZ̄μūν

þ ḡαβR̄α
λμνδðZ0βuλZμuνÞ

þ hαβR̄α
λμνZ̄0βūλZ̄μūν ð110Þ

∴ DðZ0;ZÞ¼−Rð1Þα
λμνZ̄0

αūλZ̄μūνþΛ
3
ḡαβðZ̄0βδZαþδZ0βZ̄αÞ

þΛ
3
hαβZ̄0αZ̄β

¼−Rð1Þα
λμνZ̄0

αūλZ̄μūνþΛ
3
δðgαβZ0αZβÞ: ð111Þ

Here, Rð1Þ refers to the Riemann tensor linear in hμν. In
Eq. (110), the first term vanishes thanks to the properties of
the barred quantities, while in the third term, only one
factor has a delta quantity. The only contributions that
survive in the third and the fourth terms are the ones with
ū2 ¼ −1. These terms combine (note the full metric in the
last term), and Eq. (111) reflects this. Next,

Rð1Þα
λμν ¼ ∇̄μΓð1Þα

νλ − ∇̄νΓð1Þα
μλ ð112Þ

Γð1Þα
νλ ¼

1

2
ḡαβð∇̄λhβν þ ∇̄νhβλ − ∇̄βhνλÞ; ð113Þ

∴ Dðu; Z0; ZÞ ¼ −
1

2
½Z̄0αūλZ̄μūνð∇̄μ∇̄λhαν − ∇̄μ∇̄αhνλ

− ∇̄ν∇̄λhαμ þ ∇̄ν∇̄αhμλ

þ ½∇̄μ; ∇̄ν�hαλÞ� þ
Λ
3
δðgαβZ0αZβÞ: ð114Þ

Evaluating the commutator in the last term within the
square brackets, we write it as Λ

3
hαβZ̄0αZ̄β. To proceed

further, we need to make the choice of the congruence, the
deviation vectors, and the delta quantities. This is done in
the respective charts.
A natural class of timelike geodesics of the background

geometry is suggested in the conformal chart. From
Eq. (C5), we know that the curves xi ¼ xi0 are timelike
geodesics. The corresponding, normalized velocity is given

by ūαðη; xiÞ ≔ −Hηð1; ~0Þ. The same family of geodesics is

given in FNC as ūα ¼ ð1þ Λs2=3;
ffiffiffiffiffiffiffiffiffi
Λ=3

p
~ξÞ. From now on,

we will use Λ=3 ≕ H2 for ease of comparison.

A. FNC chart of the static patch

From the explicit choice of the freely falling observer, we
get the following consequences:

ū · Z̄ ¼ 0 ⇒ Z̄0 ¼ H~ξ · ~̄Z;

ū · Z̄0 ¼ 0 ⇒ Z̄00 ¼ H~ξ · ~̄Z
0
; ð115Þ

~ξ · ~̄Z ¼ 0 ¼ ~ξ · ~̄Z
0
⇒ Z̄0 ¼ 0 ¼ Z̄00; ð116Þ

Z̄ · Z̄0 ¼ 0 ⇒ ~̄Z
0
· ~̄Z ¼ 0; ð117Þ

ū · ∂Z̄α ¼ Z̄ · ∂ūα ⇒ ū · ∂Z̄i ¼ HZ̄i;

ū · ∂Z̄0α ¼ Z̄0 · ∂ūα ⇒ ū · ∂Z̄0i ¼ HZ̄0i; ð118Þ

∂τZ̄i ¼ HðZ̄i − ~ξ · ~∂Z̄iÞ;
∂τZ̄0i ¼ HðZ̄0i − ~ξ · ~∂Z̄0iÞ: ð119Þ

In the second equation above, we have made the further
choice; namely, the spatial parts of Z̄; Z̄0 are orthogonal to
the radial direction ~ξ as well.
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The idea is to bring the deviation vectors across the
derivatives. Using the properties above and ~hijūi ¼ 0
which holds thanks to the TT projection, Eq. (114) gives

DðZ0; ZÞ − Λ
3
δðgαβZ0αZβÞ

¼
�
1

2
ðū · ∇̄Þ2 −Hðū · ∇̄Þ

�
ð ~hTTij Z̄0iZ̄jÞ: ð120Þ

The second term on the left-hand side of the above equation
vanishes.
To see this, we collect the equations satisfied by the δ

quantities,

gαβuαuβ ¼ −1 ⇒ ūαδuα ¼ 0 ð121Þ

gαβuαZβ ¼ 0 ⇒ ūαδZα þ Z̄iδui ¼ 0

gαβuαZ0β ¼ 0 ⇒ ūαδZ0α þ Z̄0
iδu

i ¼ 0

u · ∇uα ¼ 0 ⇒ ū · ∇̄δuα ¼ −δu · ∇̄ūα ð122Þ

u · ∂Zα − Z · ∂uα ¼ 0 ⇒ ū · ∇̄δZα

¼ Z̄i∇̄iδuα þ δZ · ∇̄ūα − δu · ∇̄Z̄α

u · ∂Z0α − Z0 · ∂uα ¼ 0 ⇒ ū · ∇̄δZ0α

¼ Z̄0i∇̄iδuα þ δZ0 · ∇̄ūα − δu · ∇̄Z̄0α

gαβZαZ0β ¼ 0 ⇒ Z̄αδZ0α þ Z̄0
iδZ

i

þ ~hTTij Z̄0iZ̄j ¼ 0: ð123Þ

Equations (121) serve to give the zeroth components of
the δ-vectors in terms of their spatial components.
Equations (122) are evolution equations along the geodesic
for the δ-vectors and preserve the previous three equations.
The last equation (123) is needed for the gauge invariance
of the deviation scalar. The spatial components of δ-vectors
are still free. Demanding that Eq. (123) is preserved along
the observer geodesic leads to

ðZ̄0
iZ̄

j þ Z̄iZ̄0jÞ∇̄jδui ¼ −ðū · ∇̄ − 2HÞð ~hTTij Z̄0iZ̄jÞ: ð124Þ

Here, we have used the evolution equations for δZ; δZ0,
Eq. (123), and ∇̄jūi ¼ Hδij þ oðH3Þ. This equation
together with the evolution equation for δui can be taken
to restrict δui, and we are still left free with the δZi, δZ0i
subject only to Eq. (123). This equation precisely sets the
second term on the left-hand side of Eq. (120) to zero.
Thus, we obtain the deviation scalar as a simple

expression,

Dðu; Z0; ZÞ ¼
�
1

2
ðū · ∇̄Þ2 −Hðū · ∇̄Þ

�
Q;

Q ≔ ð ~hTTij Z̄0iZ̄jÞ with;

ū · ∇̄Q ¼ ū · ∂Q ¼ ðð1þH2s2Þ∂τ þHξi∂iÞQ: ð125Þ
For subsequent comparison, it is more convenient to take

the deviation vectors across the derivatives, using
ū · ∇̄Z̄i ¼ HZ̄i, etc. The deviation scalar is then given by

Dðu; Z0; ZÞ ¼ Z̄0iZ̄j

�
1

2
ðū · ∇̄Þ2 þHðū · ∇̄Þ

�
~hTTij with

ð126Þ

ū · ∇̄ ~hTTij ¼ ū · ∂ ~hTTij þ oðH3Þ: ð127Þ

Substituting the solution (64) gives

Dðu; Z0; ZÞ ¼ 1

s

��
1 − 2Hsþ 7

2
H2s2

�
∂4
τMTT

ij

−H2s∂3
τMTT

ij −H2∂2
τMTT

ij

−
3H2

4
∂4
τMTT

ijklδ
kl

�
Z̄0iZ̄j: ð128Þ

The τ derivatives are evaluated at the retarded time
ðτ − s̄ðsÞÞ defined in Eq. (35).

B. Conformal chart of the Poincaré patch

For the solution in the generalized transverse gauge,
the full metric has the form gμν ¼ Ω2ðημν þ χμνÞ,
Ω2 ¼ 3Λ−1η−2 ¼ H−2η−2. We can then use the Weyl
transformation property of the Riemann tensor and obtain
the full curvature in terms of the curvature of ðηþ χÞmetric
plus extra terms depending on derivatives of lnðΩÞ. From
these derivatives, Λ drops out, and the full curvature (and
hence the relative acceleration) is completely independent
of Λ. Explicitly,

Rαλμν½Ω2ðηþ χÞ� ¼ Ω2

�
Rαλμν½ηþ χ� þ 1

η2
fĝαμĝνλ − ĝανĝμλg

þ 1

η
fĝανΓ̂0

μλ − ĝαμΓ̂0
νλ þ ĝμλĝαβΓ̂β

0ν

− ĝνλĝαβΓ̂β
0μg

�
where;

ĝμν ¼ ημν þ χμν;

Γ̂α
μνjoðχÞ ¼

1

2
ð∂νχ

α
μ þ ∂μχ

α
ν − ∂αχμνÞ: ð129Þ

The definition of the deviation scalar and its invariance
remains the same. We also choose the same geodesic
congruence in the background space-time so that
uα ¼ −Hηδα0 . As before, we choose two mutually
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orthogonal deviation vectors, Z; Z0 and write DðZ0; ZÞ ¼ −RαβμνZ0αuβZμuν. Using the Weyl transformation given above,
we write

D̂ðẐ0; ẐÞ ¼
�
Rαλμν½ĝ� þ

1

η2
fĝαμĝνλ − ĝανĝμλgþ

1

η
fĝανΓ̂0

μλ − ĝαμΓ̂0
νλ þ ĝμλĝαβΓ̂

β
0ν − ĝνλĝαβΓ̂

β
0μg

�
Ẑ0αûλẐμûν; ð130Þ

where we have defined new scaled variables as uα≔ jΩj−1ûα, Zα≔ jΩj−1Ẑα, Z0α≔ jΩj−1Ẑ0α, and DðZ0;ZÞ≔Ω−2D̂ðẐ0;ẐÞ.
This removes all the explicit factors ofΩ2, and we get an expression for the scaled deviation scalar, defined by perturbations
about Minkowski background, with explicit additional terms.
For notational simplicity, we will suppress the hats in the following and restore them in the final equation. The

background quantities, denoted by overbars refer to the Minkowski metric, and the corresponding δ quantities are treated as
of the same order as the perturbation χTTij . In particular, ūα ¼ δα0, ū · ∂ūα ¼ 0, ū · ∂Z̄α ¼ Z̄ · ∂ūα and similarly for Z̄0α.
Proceeding exactly as before, we deduce

ūi ¼ Z̄0 ¼ Z̄00 ¼ Z̄iZ̄0jδij ¼ 0; ∂ηZ̄i ¼ ∂ηZ̄0i ¼ 0; ð131Þ

δu0 ¼ 0 ¼ δZ0 − Z̄iδui ¼ δZ00 − Z̄0
iδu

i; Z̄0
iδZ

i þ Z̄iδZ0i þ χijZ̄0iZ̄j ¼ 0; ð132Þ

∂ηδZα ¼ Z̄i∂iδuα − δui∂iZ̄i; ∂ηδZ0α ¼ Z̄0i∂iδuα − δui∂iZ̄0i; ð133Þ

ðZ̄0
iZ̄

j þ Z̄iZ̄0jÞ∂jδui ¼ −∂ηðχijZ̄0iZ̄jÞ; ∂ηδui ¼ 0: ð134Þ

As before, demanding preservation of the last of the normalization conditions in (132) under η evolution gives conditions on
δui given in Eq. (134). These are used in simplifying Eq. (130). The η−2 term of this equation vanishes as before, while the
η−1 coefficient gives only one contribution. In the first term, RðĝÞ gets replaced by Rð1Þ which is linear in χTTij . This leads to
(restoring the hats)

D̂ðẐ0; ẐÞ ¼ 1

2

�
∂2
ηχ

TT
ij −

1

η
∂ηχ

TT
ij

�
¯̂Z0i ¯̂Zj: ð135Þ

Noting that χij is a function of η only through ηret ¼ η − r, we can replace ∂η by ∂ηret ≕ ∂ η̄. Going to the cosmological
chart via the definitions η ¼ −H−1e−Ht ≕ −H−1a−1 and η̄ ≔ η − r ≔ −H−1ā−1 which defines the retarded time t̄ through
ā ¼ aðt̄Þ, we replace ∂̄η ¼ ā∂ t̄. This leads to

D̂ðẐ0; ẐÞ ¼
¯̂Z0i ¯̂Zj

2
ā2
�
∂2
t̄ þH

�
1þ a

ā

�
∂ t̄

�
χTTij with χij from Eq: ð99Þ:

To express the deviation scalar in terms of the Killing time τ, we observe that on scalars,LTf ¼ T · ∂f, while on tensorial
functions of the retarded time,

LTQijðt̄Þ ¼ ðð∂t −Hxi∂iÞðt̄ÞÞð∂ t̄Qijðt̄ÞÞ − 2HQijðt̄Þ; with ð∂t −Hxi∂iÞðt̄Þ ¼ 1:

After a straightforward computation, we get

D̂ðu; Ẑ0; ẐÞ ¼ ð ¯̂Z0i ¯̂ZjÞ
�
ā2

ra

�
½L4

TQij þ 6HL3
TQij þ 11H2L2

TQij þ 6H3LTQij

þHL3
TQ̄ij þ 6H2L2

TQ̄ij þ 11H3LTQ̄ij þ 6H4Q̄ij�: ð136Þ

To compare the deviation scalars computed above, we need to ensure that we use the “same” deviation vectors. Since
the same observer is used, the deviation vectors are defined the same way with the only exception of their normalization.
So let us use5 normalized deviation vectors Zi ≔ γẐi where ẐiẐjδij ¼ 1. Then, Z2 ¼ 1 determines γ. In the FNC,

5We now suppress the overbars on the deviation vectors to avoid cluttering.
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γ ¼ ð1þH2s2=6Þ, whereas in the conformal chart,
γ ¼ jΩj−1. Thus, in the conformal chart, the hatted
deviation vectors are already normalized. In the FNC,
we need to replace the deviation vectors by
ð1þH2s2=6Þ × Ẑ, and in the conformal chart, we write

D̂ðẐ0; ẐÞ ¼ Ω2DðZ0; ZÞ. In the conformal chart, we retain
terms up to order H2 only, and since the FNC calculation
uses a traceless stress tensor, we take Q̄ moments to equal
the Q moments. The two expressions are given below
(recall that in FNC, LT on all tensors reduces to ∂τ):

DFNCðu;Z0;ZÞ ¼ 1

s

�
1þH2s2

3

���
1−2Hsþ7

2
H2s2

�
∂4
τMTT

ij −H2s∂3
τMTT

ij −H2∂2
τMTT

ij −
3H2

4
∂4
τMTT

ijklδ
kl

�
Ẑ0iẐj

¼ 1

s

�
1−2Hsþ23

6
H2s2

��
∂4
τMTT

ij −H2s∂3
τMTT

ij −H2∂2
τMTT

ij −
3H2

4
∂4
τMTT

ijklδ
kl

�
Ẑ0iẐj ð137Þ

DConfðu; Z0; ZÞjoðH2Þ ¼
�
ā2

a2
1

ra

�				
oðH2Þ

½L4
TQij þ 7HL3

TQij þ 17H2L2
TQijþ17H3LTQij þ 6H4Qij�Ẑ0iẐj

¼ 1

s

�
1 − 2Hsþ 19

6
H2s2

�
½L4

TQ
TT
ij þ 7HL3

TQ
TT
ij þ 17H2L2

TQ
TT
ij �Ẑ0iẐj: ð138Þ

Equations (128) and (136) give the deviation scalars in
the two charts. The comparable expressions are given
in (137) and (138). These are obtained for the specific
choice of the congruence of the de Sitter background:

ūαðη; xiÞ ≔ −Hηð1; ~0Þ.
We have obtained two different looking expressions for

the same, gauge invariant deviation scalar. The difference
can be attributed to the definition of moments. They have
been defined on two different spatial hypersurfaces—the
τ ¼ constant in FNC and the η ¼ constant in the conformal
chart. In the conformal chart solution, there is no truncation
of powers of H (in the leading r approximation), and it
includes the contribution of both the sharp and the tail
terms. By contrast, the FNC chart computation is obtained
as an expansion in H only up to the quadratic order.
Furthermore, it includes only the contribution of the sharp
term. While it is possible to relate the frame components of
the stress tensor in the two charts, the relation among the
moments is nontrivial and is not obtained here.
We have defined a gauge invariant quantity and illus-

trated how to compute it. It depends on a timelike geodesic
congruence and two mutually orthogonal deviation vectors.
At the linearized level, it also depends on the n̂ direction
used in the TT projection. What information about the wave
does it contain? To see this, consider the simpler case of
Minkowski background, and choose the congruence so that

ūα ¼ ð1; ~0Þ. It follows that at the linearized level, the
quantity

Aαβðημν þ hμνÞ ≔ −Rαμβνðημν þ hμνÞuμuν

≈ −Rð1Þ
αμβνðhÞūμūν ¼ −Rð1Þ

α0β0ðhÞ ð139Þ
is symmetric in α ↔ β and spatial, i.e., A00 ¼ 0 ¼ A0i.
When the transient wave hμν is in synchronous gauge and

TT projected, the matrix AijðhTTkl Þ is also transverse. This is
because the Λ projector can be taken across the derivatives
up to terms down by powers of r. Explicitly,

AijðhTTÞ ≈
1

2
Λ kl
ij ðn̂Þ∂2

0hkl; Aijδ
ij ¼ 0: ð140Þ

Since the deviation vectors, too, are taken to be transverse,

in effect the deviation scalar reduces to Dðu; Z0; ZÞ ≈
ˆ̄Z0aAabðhÞ ˆ̄Zb where a; b take two values and the real,
symmetric matrix Aab is traceless. With respect to an
arbitrarily chosen basis fê1; ê2g in the plane transverse
to the wave direction, n̂, we can define the þ and the ×

polarizations by setting the matrix A ≔ hþσ3 þ h×σ1. If
ˆ̄Z

makes an angle ϕ with ê1, then the unit deviation vectors

are given by ˆ̄Z¼ðcosðϕÞ;sinðϕÞÞ, ˆ̄Z0 ¼ ð− sinðϕÞ; cosðϕÞÞ.
It follows that

Dðu; Z0; ZÞ ¼ −hþ sinð2ϕÞ þ h× cosð2ϕÞ: ð141Þ

Thus, for a pair of bases ðê1; ê2Þ and ð ˆ̄Z; ˆ̄Z0Þ, determination
of the deviation scalar gives one relation between the
amplitudes of the two polarizations. A similar determina-
tion at another detector location gives a second relation,
thereby providing amplitudes of individual polarizations.
A natural choice for ê1; ê2 would be the unit vectors

provided by the Right Ascension/Declination coordinate
system used by astronomers, at the n̂ direction. The basis of
unit deviation vectors could be constructed in many ways,
for instance, by using the wave direction n̂ and one of the
arms of the interferometer which form a plane. Its unit

normal may be taken as ˆ̄Z, and then n̂ × ˆ̄Z can be taken as
ˆ̄Z0. To avoid the exceptional case where the wave is incident
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along the chosen arm of the interferometer, one could
repeat the procedure with the other arm. The construction
gives ϕ at the detector location. Suffice it to say that
measurement of the deviation scalar for appropriate
deviation vectors at two or more detectors would constitute
a measurement of the amplitudes of individual polariza-
tions of a gravitational wave.
To be useful in observations, the deviation scalar must be

computed for congruence related to a specific interferom-
eter (Earth-based ones are not in freefall, and the space-
based ones would be) and related to the waveform. These
details are beyond the scope of the present work.

V. SUMMARY AND DISCUSSION

Let us begin by recalling the main motivation for this
work. The concordance model of cosmology favors dark
energy modelled conveniently in terms of a positive
cosmological constant which is about 10−29 gm=cc or
about 10−52m−2 in the geometrized units with G¼1¼c.
In the vicinity of any astrophysical sources, this density is
extremely small, and only over vast distances of matter-free
regions, we may expect its effects to be felt. Over distances
of typical, detectable compact sources of gravitational
waves—about megaparsecs—its effect may be estimated
to be of order

ffiffiffiffi
Λ

p
r ∼ 10−4. (This is comparable to the

fourth order Post-Newtonian corrections for a v=c ∼
0.2–0.3 and is relevant for direct detection of gravitational
waves.) On the other hand, the asymptotic structure of
J þ—the final destination for all massless radiation—is
qualitatively different for arbitrarily small values of Λ and
has a significant impact on asymptotic symmetry groups
and the fluxes associated with them. Does this affect
indirect detection of gravitational waves, e.g., in the orbital
decays of binary pulsars? To the extent that the Hulse-
Taylor pulsar observations have already vindicated the
quadrupole formula computed in Minkowski background,
one does not expect the radically different nature of J þ to
play any significant role in such indirect detections. A
physically relevant question then is how the effects of
positive Λ are to be estimated quantitatively. Our main
motivation has been to address this question.
In the Introduction, we noted the different features and

issues that arise: multiple charts, gauges, identification of
physical perturbations, source multipole moments, and
energy measures. We considered two different charts
(FNC and conformal) and two different gauge choices
(TT and generalized TT) and defined the corresponding
synchronous gauges to identify the physical components,
and these were expressed in terms of the appropriately
defined source moments.
A strategy to determine of the waveform of a transient

gravitational waves, e.g., using an interferometer, always
selects a frequency window of sensitivity and correspond-
ing class of sources. For the class of sources we have
assumed (rapidly varying and distant), it seems sufficient to

confine attention to a region maximally up to the cosmo-
logical horizon. The physical distance (e.g., luminosity
distance) from the source to the cosmological horizon, e.g.,
η ¼ −r in the conformal chart, is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=Λη2

p
r ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

. This
contains typical, currently detectable sources and thus
should suffice for estimation. We obtained the correspond-
ing fields, to order Λ, using Fermi normal coordinates
based near the compact source, and this is given in Eq. (64).
For a subsequent comparison, we also computed the field in
the conformal/cosmological charts. It is given in Eq. (96).
By contrast, an indirect detection via observation of

orbital decays of binary systems is premised on the energy
lost due to gravitational radiation. This is typically the
inspiral phase of the binary system and has much lower
frequencies (about 10−5 Hz for Hulse-Taylor). This is
beyond the capabilities of Earth-based interferometers,
and one has to appeal to the energy carried away by
gravitational waves. The energy flux calculations are
ideally done at infinity. For these, done in the con-
formal/cosmological chart, we refer the reader to
Refs. [6,7]. As mentioned in the Introduction, there are
two distinct prescriptions, and it would be useful to
compare them. Flux computations and comparisons will
be dealt with in a separate publication.
In the Minkowski background analysis, tail terms appear

at higher orders of perturbations, and these are understood
to be due to scattering off the curvature generated at the
lower orders. In the de Sitter background, curvature effects
are felt by the perturbations at the linear order itself. This is
manifested in both the gauges. In the generalized transverse
gauge, the tail term is explicitly available and plays a
crucial role at the null infinity [7]. In the TT gauge,
however, the tail term itself is order Λ2 and within the
FNC patch does not seem likely to give significant
contribution by cumulative effects. However, it remains
to compute this explicitly.
As a byproduct of expressing the retarded solution in

terms of the source moments, we also saw (not surpris-
ingly) that the “mass” (zeroth moment) and the “momen-
tum” (first moment) are not conserved, thanks to the
curvature of the de Sitter background. More generally, it
also implied that static (test) sources cannot exist in a
curved background. This is just a consequence of the
conservation equation in a curved background, quite
independent of any gravitational waves.
In the Minkowski background, geodesic deviation accel-

eration, to the linearized order, is gauge invariant and is
used to infer the waveform. In a general curved back-
ground, its gauge invariance is lost. However, for a
conformally flat background, the component of a deviation
vector along another, orthogonal deviation vector defines a
gauge invariant function,Dðu; Z; Z0Þ, which we termed as a
deviation scalar. In the simpler context of a flat background,
we saw that its measurement at two or more detectors
would give the amplitudes of individual polarizations. Its
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determination could provide useful information on the
polarization of gravitational waves even for a nonzero
cosmological constant.
We computed the deviation scalar, for the solutions given

in the two charts. This is a new result. The expressions
obtained (137), (138) are different. The comparison is
expected to be possible when both charts overlap and only
up to order Λ ∼H2. In FNC, we have computed only the
sharp term. However, it is not clear if the “sharp”
contribution can be identified in a chart-independent
manner. So in the conformal chart, we took the full field
and restricted its contribution to orderΛ. While we compute
the same observable, a chart dependence or, more precisely,
a dependence on the spatial hypersurface enters through the
definition of source moments. There is also a choice of
moment variable involved (ζi in FNC). Thus, the solutions
are given in terms of source moments which are defined on
different spatial hypersurfaces. As such, they cannot be
compared immediately. An explicit model system for
which the two different moments are computed should
help clarify some of these aspects and show the equality of
the deviation scalar computed in twoways. This needs to be
checked.
Lastly, we comment on the lessons from these compu-

tations. Even a smallest cosmological constant (positive or
negative) immediately brings up the more than one “natu-
ral” choices of charts in a given patch. Quite apart from the
qualitatively distinct structure of the respective J þ, even
the local (near source) analysis reveals different issues to be
faced. The FNC is very natural to the local analysis and
goes through the same way for anti-de Sitter as well. It
naturally gives the answer as corrections to the correspond-
ing Minkowski answer, in powers ofΛ. This is also seen the
Bondi-Sachs chart [20]. From the intuition from
Minkowski background analysis, neighborhood of infinity
is the natural place for characterizing radiation in a gauge
invariant manner. Then, the conformal chart (for de Sitter)
is a natural choice. And here the corrections to the
Minkowski answer are obtained in powers of

ffiffiffiffi
Λ

p
. This

difference in the powers of Λ was seen in the solutions
obtained in Eqs. (64) and (96). However, it is meaningless
to compare the gauge fixed fields. For this purpose, the
gauge invariant deviation scalar was computed and com-
pared. The manifest dependence of the corrections on Λ
does distinguish a local (neighborhood of source) form
from the one in the asymptotic region.
To conclude, linearization about the de Sitter background

provides a simplified arena for an extension of the
computational steps from a flat background to a curved
background. The weak gravitational waves can be com-
puted as corrections in powers of the cosmological con-
stant. There is a gauge invariant observable that could
provide information about the amplitudes of the two
polarizations. More precise computations at least for a
model source are needed for a quantitative estimate of

corrections to the waveforms. If the Λ corrections could be
identified from the signal, it could provide an independent
measurement of the cosmological constant.
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APPENDIX A: TRIANGLE LAW
FOR WORLD FUNCTION

We sketch the steps that go in the computation of the
world function between the observation event and a source
event, σðP0; PÞ, given in Eq. (29). In reference to Fig. 3, we
want to compute ϕ ≔ 1

3

R
1
0 dvð1 − vÞ3 D4σðq0;qÞ

Dv4 [16].
Let u denote the parameter along the geodesics con-

necting q0; q as they vary along the geodesics P0P0 and
P0P. These geodesics are all parametrized such that they
begin at q0ðu1; vÞ and end at qðu2; vÞ. In general, σðq0; qÞ is
a function of u1; u2; v. But since u1; u2 are the same for all
such pairs, we have σðq0; qÞ ¼ σðvÞ. Therefore,

DσðvÞ
Dv

¼ dx0α

dv
∂σ
∂x0α þ

dxα

dv
∂σ
∂xα ≔ σα0Vα0 þ σαVα: ðA1Þ

The V’s denote the tangent vectors at the respective end
points, while the prime on the component labels indicates
which end point is implied. The suffix on the σ denotes the
covariant derivative at the corresponding point. Since σ
is a (bi)scalar, its covariant derivative equals the partial
derivative.
The second and higher derivatives of σ with respect to v

are computed similarly, noting that DVα

Dv ¼ DVα0

Dv ¼ 0 since
P0 → P0, P0 → P are both geodesics and v is the affine
parameter along them. We also note the property of the
world function [16], σα0β ¼ σβα0 . This leads to

D2σ

Dv2
¼ σα0β0Vα0Vβ0 þ σαβVαVβ þ 2σα0βVα0Vβ ðA2Þ

D4σ

Dv4
¼ σα0β0μ0ν0Vα0Vβ0Vμ0Vν0 þ 4σα0β0μ0νVα0Vβ0Vμ0Vν

þ 6σα0β0μνVα0Vβ0VμVν þ 4σα0βμνVα0VβVμVν

þ σαβμνVαVβVμVν: ðA3Þ

We have not written the third derivative as we do not
need it.
The desired world function is, using Taylor expansion

with a remainder, about P0 (v ¼ 0),
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σðP0; PÞ ¼ σðv̄Þ ¼ σð0Þ þ v̄
Dσ

Dv

				
0

þ 1

2
v̄2
D2σ

Dv2

				
0

þ 1

6
v̄3
D3σ

Dv3

				
0

þ 1

6

Z
1

0

dvð1− vÞ3D
4σðq0; qÞ
Dv4

: ðA4Þ

It is known that σð0Þ ¼ 0 ¼ Dσ
Dv ð0Þ ¼ D3σ

Dv3 ð0Þ. The
coincidence limits of the second derivatives of σ are given
by ½σα0β0 � ¼ ½σαβ� ¼ gαβ and ½σα0β� ¼ ½σαβ0 � ¼ −gα0β ¼ −gαβ0
and v̄Vα0 ¼ −gα0β0σβ0 and v̄Vα ¼ þgαβσβ [16]. This leads to

v̄2
Dσ

Dv2

				
0

¼ gαβðv̄VαÞðv̄VβÞ þ gα0β0 ðv̄Vα0 Þðv̄Vβ0 Þ

− 2gα0βðv̄Vα0 Þðv̄VβÞ
¼ gαβσασβ þ gα

0β0σα0σβ0 þ 2gα
0βσα0σβ

¼ 2σðP0; PÞ þ 2σðP0; P0Þ
− 2σαðP0; P0ÞσαðP0; PÞ: ðA5Þ

In the last line, we have used 2σ ¼ gαβσασβ. Substituting in
Eq. (A4), we get

σðP0; PÞ ¼ σðP0; P0Þ þ σðP0; PÞ

−
�
gαβ

∂σðy; P0Þ
∂yα

∂σðy; PÞ
∂yβ

�				
P0

þ 1

6

Z
1

0

dvð1 − vÞ3 D
4σðq0; qÞ
Dv4

: ðA6Þ

To compare with the triangle law, we denote PQ
⟶ 2

≔
2σðP;QÞ. Then, the above equation can be written as

P0P
⟶ 2 ¼ P0P0⟶ 2 þ P0P

⟶ 2
− 2P0P0⟶

· P0P


!þ ϕ: ðA7Þ

To evaluate ϕ, we need to evaluate the fourth order
covariant derivatives of the world function. These are
obtained in terms of the parallel propagator and integrals
of curvature. To state the result, we introduce the notation

Parallel propagator∶ Xα
∥ðpÞ ≔ gαβ0 ðp0; pÞXβ0

∥ ðp0Þ where

Vγ∇γXα
∥ ¼ 0; ðA8Þ

Symmetrized Riemann : Sαβμν ≔ −
1

3
ðRαμβν þ RανβμÞ:

ðA9Þ

The parallel propagator gαβ0 ðp0; pÞ is a bitensor, and its
indices are raised/lowered by the metric at the respective
points.
It is convenient to introduce a tetrad basis, Eα

a, Ea
α, at p0

and define it at p by parallel transporting it along
the geodesic from p0 to p. The parallel propagator is then

given by gαβ0 ðp0; pÞ ¼ Eα
aðpÞEa

β0 ðp0Þ. Denoting the
components with respect to these parallelly transported
tetrad by Latin indices, the second order covariant deriv-
atives of the world function are given by (Eq. (97) of
Ref. [16])

σa0b0 ðq0; qÞ ¼ ga0b0 ðq0Þ þ
3

2

1

u2 − u1

Z
u2

u1

duðu2 − uÞ2

× SabcdðuÞUcUdðuÞ ðA10Þ

σa0bðq0; qÞ ¼ ga0bðq0Þ þ
3

2

1

u2 − u1

Z
u2

u1

duðu2 − uÞðu − u1Þ

× SabcdðuÞUcUdðuÞ ðA11Þ

σabðq0; qÞ ¼ gabðq0Þ þ
3

2

1

u2 − u1

×
Z

u2

u1

duðu − u1Þ2SabcdðuÞUcUdðuÞ: ðA12Þ

Note that the tetrad components of the parallel propagator
are just ηab while the tetrad components of the geodesic
tangent vectors Ua are constant along the geodesics and
may be taken out of the integration. These expression have
corrections at the second order in curvature.
The fourth covariant derivatives have a similar form but

now involve covariant derivatives of the symmetrized
Riemann tensor. In our context of maximally symmetric
background, all these covariant derivatives of the Riemann
tensor vanish, and the expressions simplify drastically. In
particular, the third covariant derivatives are all absent as
they involve the covariant derivatives of the Riemann tensor
and the index distribution also gets restricted thanks to the
symmetries of the Riemann tensor. This leads to (Eq. (117)
of Ref. [16])

σa0b0c0d0 ðq0; qÞ ¼
3

ðu2 − u1Þ3
Z

u2

u1

duðu2 − uÞ2SabcdðuÞ;

ðA13Þ

σa0b0c0dðq0; qÞ ¼ −
3

ðu2 − u1Þ3
Z

u2

u1

duðu2 − uÞ2SabcdðuÞ;

ðA14Þ

σa0b0cdðq0; qÞ ¼
3

ðu2 − u1Þ3
Z

u2

u1

duðu2 − uÞ2SabcdðuÞ:

ðA15Þ

These again have a correction at the second order in
curvature. Note that the tetrad components refer to the
tetrad derived from an arbitrary choice at q0, by parallel
transport along the geodesic q0 → q.

GHANASHYAM DATE and SK JAHANUR HOQUE PHYSICAL REVIEW D 94, 064039 (2016)

064039-24



In Sec. III, we choose a tetrad at the base point of the
RNC, P0, and set it up elsewhere by parallel transporting
along the geodesics emanating from P0. This gives the
tetrad Eα0

a0 at q0. However, the tetrad at q, Eα
a is not equal

to ~Eα
a—the one obtained from Eα0

a0 by parallel transport
along the q0 → q geodesic. They are related through the
holonomy group element along the closed curve
q → P0 → q0 → q: ~Ea

α ¼ Hβ
α
~Ea

β. Because of the small-
ness of the curvature, Hβ

α differs from the identity element
by a term of order Λ. In short, the error committed in
replacing the tetrad components of curvature relative to the
q0 → q parallelly transported tetrad by those derived from
tetrad at P0 will be of second order in the curvature, i.e.,
order Λ2.

With this understood, we regard all the tetrad compo-
nents in the fourth covariant derivatives to be relative to the
tetrad derived from P0. Equation (136) of Ref. [16] then
gives

ϕ ¼ ϕ0 ¼
3

ðu2 − u1Þ3
Z

1

0

dwð1 − wÞ3
Z

u2

u1

du

× fðu2 − uÞ2 þ ðu − u1Þ2g
× fSa0b0cdv̄4Va0Vb0VcVdgðu; wÞ: ðA16Þ

The tetrad components of the symmetrized Riemann
tensor simplify further thanks to the maximal symmetry.

Sabcdðu; wÞ ¼ −
1

3
ðRαμβν þ RανβμÞEα

aEβ
bEμ

cEν
dðu; wÞ: ðA17Þ

¼ −
Λ
9
ðgαβgμν − gανgμβ þ gαβgνμ − gαμgνβÞEα

aEβ
bEμ

cEν
dðu; wÞ ðA18Þ

¼ −
Λ
9
½2ðEa · EbÞðEc · EdÞ − ðEa · EdÞðEb · EcÞ − ðEa · EcÞðEb · EdÞ�

¼ −
Λ
9
½2ηabηcd − ηadηbc − ηacηbd� ∵ ðorthonormality of the tetradÞ: ðA19Þ

Consequently, the symmetrized Riemann tensor comes out of the integrals. The vectors Va; Va0 are independent of u
because they come from the expansion of σðvÞ and are independent of v since they are geodesic tangents and refer to the
parallelly transported tetrad. The terms enclosed in the second pair of braces come out of the integration, and we get

ϕ ¼ 3

ðu2 − u1Þ3
�Z

1

0

dwð1 − wÞ3
Z

u2

u1

dufðu2 − uÞ2 þ ðu − u1Þ2g
�
fSa0b0cdv̄4Va0Vb0VcVdg ðA20Þ

¼
�
1

2

�
fSa0b0cdXa0Xb0XcXdg; v̄V� ≕ X�ð¼ correspondingRNCÞ ðA21Þ

¼ −
Λ
9
ðX2X02 − ðX · X0Þ2Þ: ðA22Þ

Notice that the reference to the choice of the tetrad Eα
a

has disappeared.

APPENDIX B: CALCULATION
OF THE PARALLEL PROPAGATOR

In the main text, we needed the parallel propagator
gμα0 ðx; x0Þ along the null geodesic from the observation
point P to a source point P0. To this end, introduce an
arbitrary tetrad eμaðPÞ and its inverse cotetrad eaαðPÞ which
is parallel transported along the null geodesic. These
will drop out at the end. The parallel propagator is then
given by

gμαðx; x0Þ ¼ eμaðxÞeaαðx0Þ:

The geodesic satisfies the equation

d2xμ

dλ
þ Γμ

αβðxðλÞÞ
dxα

dλ
dxβ

dλ
¼ 0; xμð0Þ ¼ xμðPÞ ≔ x̂μ;

_xμð0Þ ¼ t̂μ:

The parallel transported cotetrad satisfies the equation

deaα
dλ

− Γγ
αβ

dxβ

dλ
eaγ ¼ 0; eaαð0Þ ¼ eaαðPÞ ≔ êaα:
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These are solved by Taylor expanding in the affine
parameter λ and determining the coefficients. Denoting the
evaluations at λ ¼ 0 by hatted quantities, we write

eaαðλÞ ¼ êaα þ λ_eaαð0Þ þ
λ2

2
ëaαð0Þ � � � ðB1Þ

xμðλÞ ¼ x̂μ þ λt̂μ þ λ2

2
ð−Γ̂μ

αβ t̂αt̂βÞ

þ λ3

6
ð−∂γΓ̂μ

αβ t̂αt̂β t̂γÞ þ � � � ðB2Þ

In the last equation, we have used the geodesic equation.
By differentiating the geodesic equation, the higher order
terms in xμðλÞ are determined. We note that the connection
is order Λ and linear in coordinates. So more than the first
derivative of the connection is not needed. In the Taylor
expansion of xμ, we have shown only the terms to order Λ.
Substituting these expansions in the parallel transport
equation determines the solution as

eaαðλÞ ¼ êaμ

�
δμα þ ðλt̂βÞΓ̂μ

αβ þ
1

2
ðλt̂γÞðλt̂βÞ∂γΓ̂μ

αβ

�
: ðB3Þ

From the Taylor expansions of xμ and eaα, we eliminate
λt̂ and obtain the parallel tetrad in terms of the coordinates.
To the linear order in Λ, this simply replaces λt̂β by
ðx0 − xÞβ. The parallel propagator is then given by

gμα0 ðP; P0Þ ¼ δ̂μα0 þ Γ̂μ
α0β0 ðx0 − xÞβ0

þ 1

2
∂γ0 Γ̂μ

α0β0 ðx0 − xÞγ0 ðx0 − xÞβ0

þ oðΛ2Þ: ðB4Þ

We have used primed indices for notational consistency for
bitensors. The hatted quantities are the coincidence limits.
Notice that the arbitrary tetrad introduced at the begin-

ning has disappeared. We have not used any specific
property of the Fermi or Riemann normal coordinates,
except for the order Λ. In the main text, we have used the
Fermi normal coordinates, and the connection together with
its derivative are given in Eqs. (40) and (41).

APPENDIX C: FNC ↔ CONFORMAL
CHART TRANSFORMATIONS

We used two different charts in presenting the quadru-
pole field, the FNC restricted to the static patch and the
conformal coordinates covering the Poincaré patch which
overlaps with the static patch. To relate these two sets of
coordinates, ðτ; ξiÞ and ðη; xiÞ, consider the geodesic
equation in the conformal coordinates. In conformal
coordinates,

ds2 ¼ α2

η2

�
−dη2 þ

X
i

ðdxiÞ2
�
; α2 ¼ 3

Λ
; ðC1Þ

Γ0
00 ¼ −

1

η
; Γ0

0j ¼ 0; Γ0
ij ¼ −

δij
η
; ðC2Þ

Γi
00 ¼ 0; Γi

0j ¼ −
1

η
δij; Γk

ij ¼ 0: ðC3Þ

The geodesic equation splits as

0 ¼ d2η
dλ2

−
1

η

�
dη
dλ

�
2

−
δij
η

dxi

dλ
dxj

dλ
; ðC4Þ

0 ¼ d2xi

dλ2
−
2

η

dη
dλ

dxi

dλ
; ⇒

d~x
dλ

¼ η2 ~C;

∴ ~xðλÞ ¼ ~C
Z

λ

0

dλ0η2ðλ0Þ þ ~x0;

where ~C is a constant vector; and ðC5Þ

0 ¼ d2η
dλ2

−
1

η

�
dη
dλ

�
2

− ~C2η3: ðC6Þ

The choice ~x0 ¼ ~0 corresponds to radial geodesics.
To define FNC, we have to choose one timelike geodesic

of which the proper time provides the time coordinate, τ.
We choose this to be the line AD in Fig. 1. This corresponds

to the choice ~x0 ¼ 0 and ~C ¼ 0. The η equation can be
immediately integrated to give the reference geodesic as

η�ðτÞ ¼ −
ffiffiffiffi
3

Λ

r
e−τ

ffiffiffiffiffiffi
Λ=3

p
; ~x�ðτÞ ¼ ~0: ðC7Þ

For future convenience, we have chosen an integration
constant to be−

ffiffiffiffiffiffiffiffiffi
3=Λ

p
, while the integration constant in the

exponent is determined by the proper time condition
(norm ¼ −1) which makes τ to be one of the FNC.
To determine ξi coordinates, we consider spatial geo-

desics, emanating orthogonally from the reference geo-

desic. Clearly, we consider a radial geodesic, ~x0 ¼ ~0, and

defining ~xðσÞ ≔ ĈrðσÞ where Ĉ ≔ ~C=j~Cj. The geodesic
is determined by solving the equation for ηðσÞ with
initial conditions reflecting the orthogonality, −dτη�dση þ
dτr�dσr ¼ 0,

d2ση −
ðdσηÞ2

η
− ~C2η3 ¼ 0; ηð0Þ ¼ η�ðτÞ;

dσηð0Þ ¼ 0; rð0Þ ¼ 0;

dσrð0Þ ¼ γ: ðC8Þ
Let P be the point with conformal coordinates ðηP; rPÞ

and FNC ðτ; sÞ. Taking the norm of the initial tangent
vector to be s2, the pairs of coordinates are related as
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ηP ≔ ηðσ ¼ 1Þ; rP ≔ rðσ ¼ 1Þ; s2 ¼ 3

Λη2ð0Þ γ
2:

Using the first integral of the r-equation, we get

dσrð0Þ ¼ j~Cjη2ð0Þ ¼ γ ¼
ffiffiffiffi
Λ
3

r
jηð0Þjs

¼ se−τ
ffiffiffiffiffiffi
Λ=3

p
⇒ j~Cj ¼ s

Λ
3
eτ

ffiffiffiffiffiffi
Λ=3

p
: ðC9Þ

To obtain ðηP; rPÞ, we need to solve the η-equation.
For this, we first take out a scale ζ by defining ηðσÞ ≔

ζyðσÞwhich gives y″ − y02=y − j~Cj2ζ2y3 ¼ 0, and choosing

ζ ¼ η�ðτÞ, we get j~Cj2ζ2 ¼ Λs2=3 ≕ ϵ. The desired coor-
dinates are then given by

rP ≔ rðσ ¼ 1Þ ¼ se−τ
ffiffiffiffiffiffi
Λ=3

p Z
1

0

dσ0y2ðσ0Þ ðC10Þ

ηP ≔ ηðσ ¼ 1Þ ¼ −
ffiffiffiffi
3

Λ

r
e−τ

ffiffiffiffiffiffi
Λ=3

p
yðσ ¼ 1Þ with; ðC11Þ

0 ¼ y″ −
y02

y
− ϵy3; yð0Þ ¼ 1; y0ð0Þ ¼ 0;

ϵ ≔
Λ
3
s2: ðC12Þ

To order ϵ, the solution for yðσÞ ≔ y0ðσÞ þ ϵy1ðσÞ is
obtained as yðσÞ ¼ 1þ ϵσ2=2 which leads to the coordi-
nate transformation,

rðτ; sÞ ¼ se−τ
ffiffiffiffiffiffi
Λ=3

p �
1þ Λs2

9

�
;

ηðτ; sÞ ¼ −
ffiffiffiffi
3

Λ

r
e−τ

ffiffiffiffiffiffi
Λ=3

p �
1þ Λs2

6

�
: ðC13Þ

For inverting the transformation, it is more convenient to

use the combinations aðηÞ ≔ −
ffiffiffiffiffiffiffiffiffi
3=Λ

p
η−1, AðτÞ ≔ eτ

ffiffiffiffiffiffi
Λ=3

p

so that

rðA; sÞ ¼ s
A

�
1þ Λ

9
s2
�
;

aðA; sÞ ¼ A

�
1 −

Λ
6
s2
�

ðC14Þ

sða; rÞ ¼ ðraÞ
�
1þ Λ

18
ðraÞ2

�
;

Aða; rÞ ¼ a
�
1þ Λ

6
ðraÞ2

�
: ðC15Þ

Note that ra is physical distance such as the commonly
used luminosity distance in cosmology, while s is
also a physical distance but along a spatial geodesic.
Equation (C15) gives the relation between them.
From these relations, it is easy to verify that the

stationary Killing vector field

−
ffiffiffiffiffiffiffiffiffi
3=Λ

p
T ≔ η∂η þ xi∂i ¼ η∂η þ r∂r ¼ ∂τ: ðC16Þ

For completeness, we list the transformations between
the conformal chart and the FNC chart in the static patch,
up to order H2,

ηðτ; ξiÞ ≔ −
e−Hτ

H

�
1þH2s2

2

�
;

xiðτ; ξiÞ ≔ ξie−Hτ

�
1þH2s2

3

�
ðC17Þ

e−Hτðη; xiÞ ≔ −ηH
�
1 −

r2

2η2

�
;

ξiðη; xiÞ ≔ −
xi

ηH

�
1þ r2

6η2

�
: ðC18Þ

With these, it can be checked that the two metrics go into
each other.
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