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In this paper, we show that there exists a class of dilaton models with nontrivial scalar-Ricci and scalar-
matter couplings that strongly reduces observational deviations from general relativity in the dust limit.
Essentially, depending on the coupling between the dilaton and the fundamental matter fields, various
strengths of decoupling can appear. They range from no decoupling at all to a total decoupling state. In this
latter case, the theory becomes indistinguishable from general relativity (in the dust limit), as all dilatonic
effects can be reabsorbed through a simple change of unit. Furthermore, for particular decouplings, we
show that the phenomenology used to constrain theories from the universality of free fall observations is
significantly different from what is commonly used. Finally, from a fundamental perspective, the class of
nondynamical decouplings proposed in this paper might play a role in the current nonobservation of any
deviation from general relativity (in both tests of the equivalence principle and of the parametrized post-
Newtonian formalism).
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I. INTRODUCTION

A general feature of all string and superstring theory
models is the presence of a massless scalar partner to the
metric called the dilaton [1]. Perturbative calculations in the
context of string theory show that the effective bosonic
action should correspond to a “general” scalar-tensor
theory [2,3]. This means that the dilaton field has gravi-
tational strength, that it couples to the Ricci in the effective
action (in the string frame) and that its kinetic term is not
necessarily canonical. Besides, the dilaton is nonminimally
coupled to the gauge-matter sector [1,3,4]. Unfortunately,
the precise form of the various couplings in the effective
action is not known and therefore it is impossible to make
accurate predictions. However, one can derive the rich
phenomenology resulting from such nonminimal couplings
and constrain them with observations and experiments.
In [5,6], Damour and Donoghue introduced a specific

modeling for the coupling between the dilaton and matter at
the microscopic level. In their model, the interaction
between matter and the dilaton is parametrized by five
dimensionless parameters that are related to fundamental
parameters of the Standard Model: the fine structure
constant; the masses of the fermions (electron, quark up
and quark down); and the quantum chromodynamics
(QCD) mass scale Λ3 (see also [7] for similar consider-
ations). The matter Lagrangian is therefore the sum of the
Standard Model Lagrangian LSM and of the interacting

Lagrangian Lint. In natural units, this interacting
Lagrangian reads

Lint ¼
�
DeðφÞ
4e2

FμνFμν −
DgðφÞβ3

2g3
GA

μνG
μν
A

−
X

i¼e;u;d

ðDmi
ðφÞ þ γmi

DgðφÞÞmiψ̄ iψ i

�
; ð1Þ

with Fμν the standard electromagnetic Faraday tensor, e the
electric charge of the electron, GA

μν the gauge invariant
gluon strength tensor, g3 is the QCD gauge coupling, β3
denotes the β function for the running of g3, mi the mass of
the fermions, γmi

the anomalous dimension giving the
energy running of the masses of the QCD-coupled fermions
and ψ i the fermions’ spinor. The functionsDiðφÞ character-
ize the interaction between the dilaton scalar field φ and
different matter sectors:De characterizes the dependence of
the fine structure constant on the dilaton, Dmu

=Dmd
=Dme

characterize the dependence of the fermions’ mass (quarks
up and down and electron) on the dilaton andDg character-
izes the dependence of the QCD mass scale Λ3 on the
dilaton (see [6]). In this paper, following Damour and
Donoghue [6], we neglect strange quarks’ contribution.
The Lagrangian (1) is a straightforward nonlinear gener-
alization of the Lagrangian from [6], which is recovered
when DiðφÞ ¼ diφ.

1 We suppose here that Diðφ0Þ ¼ 0
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1Note that the scalar field φ is dimensionless and is related to
the scalar field ϕ used in [6] by φ ¼ ~κϕ with ~κ2 ¼ 4πG=c4.
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with φ0 the background value of the scalar field. A
nonvanishing value of Diðφ0Þ would simply lead to an
unobservable rescaling of the five parameters: the fine-
structure constant, the masses of the electron and of the
quarks up and down, and the QCD mass scale Λ3.
In [5,6], a simple gravitational part of the action, formed

only by the Ricci scalar (i.e. the standard Einstein-Hilbert
action), is used to derive observational consequences of the
dilaton-matter coupling. More precisely, they introduced
linear couplings between matter and the dilaton in the so-
called Einstein frame. But in principle, nothing prevents us
from considering such linear couplings with a more general
gravitational action. In particular, actual string loops’
expansion seems to indicate a more complicated gravita-
tional sector in the string frame [2,3], with a Ricci-dilaton
coupling and a noncanonical kinetic term for the dilaton.
In this paper, we show that within this general class of

dilaton theories, a decoupling can arise when the dilaton-
Ricci coupling is exactly related to the coupling between
the dilaton and the QCD trace anomaly. This decoupling
leads to a strong reduction of deviations from general
relativity (GR) for all weak field observations: violation of
the universality of free fall (UFF), space-time evolution of
the constants of nature, tests of the gravitational redshift
and measurements of the parametrized post-Newtonian
(PPN) parameters. This kind of decoupling could be part
of the reasons explaining why no deviation from GR has
been observed so far in tests of the equivalence principle or
in the PPN formalism (see [8,9] and references therein for a
review of some tests of GR).

II. MODEL

In the following, we consider a general gravitational part
of the action, such that the action reads

S ¼ 1

c

Z
d4x

ffiffiffiffiffiffi−gp
2κ

�
fðφÞR −

ωðφÞ
φ

ð∂φÞ2
�

þ Smat½gμν;φ;Ψi�; ð2Þ

with κ ¼ 8πG=c4 and Smat ¼ 1=c
R
d4x

ffiffiffiffiffiffi−gp ðLSM þ LintÞ.
The gravitational part of this action is slightly more general
than the one used by Damour and Donoghue [6] that is
characterized by fðφÞ ¼ 1 and ωðφÞ ¼ 2φ. Except for the
scalar-matter coupling, it corresponds to a generalized
Brans-Dicke action [10].
Damour and Donoghue have shown that the action used

to model matter at the microscopic level (including the
dilaton interaction) from Eq. (1) can phenomenologically
be replaced at the macroscopic level by a standard point
mass (or dust) action

Smat½gμν;φ;Ψi� ¼ −c2
X
A

Z
A
dτmAðφÞ; ð3Þ

where dτ is the proper time defined by c2dτ2 ¼
−gαβdxαdxβ. Each mass A can have its own composition
such that the function mAðφÞ will be different. The effects
produced by the coupling of the dilaton to matter are
encoded in the coupling function

αAðφÞ ¼
∂ lnmAðφÞ

∂φ : ð4Þ

Damour and Donoghue have derived a semianalytical
expression for the coupling αAðφÞ. An approximation that
is sufficient for our purpose can be written as [6]

αAðφÞ ¼ D�
g
0ðφÞ þ ᾱAðφÞ; ð5Þ

where the prime denotes a derivative with respect to the
scalar field and

D�
gðφÞ ¼ DgðφÞ þ 0.093ðDm̂ðφÞ −DgðφÞÞ

þ 0.00027DeðφÞ; ð6Þ

with Dm̂ðφÞ ¼ ðmdDmd
ðφÞ þmuDmu

ðφÞÞ=ðmd þmuÞ and

ᾱAðφÞ ¼ ½ðD0
m̂ðφÞ −D0

gðφÞÞQ0
m̂ þD0

eðφÞQ0
e�A: ð7Þ

The coupling function αA is explicitly written such that it is
split into one composition independent term (D�

g
0) and a

term that is composition dependent (ᾱA). Indeed, the
dilatonic charges ½Q0

m̂�A and ½Q0
e�A depend explicitly on

the composition of the body A. Their expressions can be
found in [6] (see notably Table I from [6]): −Q0

m̂ ranges
typically from 5 × 10−3 to 2 × 10−2 while Q0

e ranges from
3 × 10−4 to 4 × 10−3. It has to be noted that the specific
splitting in Eq. (5) between composition dependent and
independent terms is no longer valid when the ratio of the
atomic numbers Z=A of the considered elements is not 1=2.
For simplicity, in this paper we shall assume that it is the
case. The exact formula for Eq. (5) can be found in [6] from
which other situations (e.g. nucleuses alone or light
isotopes) can be worked out likewise.

III. EINSTEIN FRAME

One can use a conformal transformation in order to write
the action in a form where the kinetic part related to the
metric is the one of GR. Such a conformal frame is called
the Einstein frame. Moreover, one can rescale the scalar
field such that its kinetic part becomes canonical. In this
frame, the action with the rescaled scalar field reads

S ¼ 1

c

Z
d4x

ffiffiffiffiffiffiffiffi−g�
p
2κ�

½R� − 2ð∂�ϕÞ2�

þ 1

c

Z
d4x

ffiffiffiffiffiffiffiffi
−g�

p
L�
mat

�
f0
fðφÞ g

�
μν;ϕ;Ψi

�
ð8Þ
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where the stars denote Einstein frame quantities. The
conformal transformation is defined by

g�μν ¼
fðφÞ
f0

gμν; L�
mat ¼

�
f0
fðφÞ

�
2

Lmat; ð9aÞ

κ� ¼
κ

f0
; and

dϕ
dφ

¼
ffiffiffiffiffiffiffiffiffiffi
ZðφÞ
2

r
; ð9bÞ

where all quantities with a subscript 0 are evaluated at the
background value of the dilaton, e.g. f0 ¼ fðφ0Þ, and
where the function ZðφÞ is defined by

ZðφÞ ¼ ωðφÞ
φfðφÞ þ

3

2

�
f0ðφÞ
fðφÞ

�
2

: ð9cÞ

The resulting field equations are written [3,11,12]

R�
μν ¼ κ�

�
T�
μν −

1

2
g�μνT�

�
þ 2∂νϕ∂μϕ; ð10aÞ

□�ϕ ¼ −
κ�
2
σ� ð10bÞ

where

T�
μν ¼ −

2ffiffiffiffiffiffiffiffi−g�
p δ

ffiffiffiffiffiffiffiffi−g�
p

L�
mat

δgμν�
¼

X
A

ρ�Au
μ
�Au

ν
�A ð11aÞ

σ� ¼ δL�
mat

δϕ
¼ −

X
A

ρ�Aα
�
A; ð11bÞ

with

ρ�A ¼ m�
Aδ

ð3Þðx − xAÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
−g�u0�

q
ð11cÞ

the Einstein frame matter density for the body A with the
Einstein frame mass given by

m�
AðφÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0=fðφÞ

p
mAðφÞ: ð11dÞ

The coupling appearing in the source term σ� (11b) of
the Klein-Gordon equation (10b) is given by

α�AðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2

ZðφÞ

s �
D�

g
0ðφÞ − 1

2

f0ðφÞ
fðφÞ þ ᾱAðφÞ

�
: ð12Þ

As one can see from Eqs. (10b) and (11b), α�A controls
the coupling between matter and the dilaton in the field
equations. Therefore, a decoupling appears when α�A is (or
becomes) close to zero. For instance, Damour and
Nordtvedt—and later on Damour and Polyakov—
described a decoupling mechanism such that α�A is driven
toward zero during the evolution of the universe [3,13–15].

The mechanism is such that ZðφÞ is dynamically driven
toward infinity as the Universe expands. (Note that a
qualitative description of such a mechanism had already
been proposed by Steinhardt and Acceta in [16]). Here, we
explore a different nondynamical decoupling scenario in
which the value of α�A is strongly reduced. Essentially,
decoupling scenarios arise when the first two terms in the
square brackets of Eq. (12) cancel out (or almost do). As we
shall see, this cancellation turns out to strongly reduce
deviations from GR. With an exact cancellation, the whole
phenomenology becomes similar to the GR one when the
last term of Eq. (12) also tends toward 0.

IV. POST-NEWTONIAN PHENOMENOLOGY

Dilaton theories predict deviations for nearly all weak
field observations at the Newtonian and post-Newtonian
level. For example, the Newtonian equations of motion of a
test mass orbiting a central mass (see [12] for a detailed
derivation) are given by

d2xT
dt2

¼ −
~GMA

r3AT
xATð1þ δT þ δATÞ; ð13Þ

where xT is the vector position of the test mass T,
xAT ¼ xT − xA, rAT ¼ jxAT j with xA the vector position
of the central body, MA is its mass and ~G is the observed
Newton constant which differs from the ones appearing in
the action. The coefficients δT and δAT parametrize viola-
tions of the UFF. Their expressions are given by

δT ¼ α0 ~αT0
1þ α20

; δAT ¼ ~αA0 ~αT0
1þ α20

; ð14Þ

where α0 is a universal constant2

α0 ¼
ffiffiffiffiffi
2

Z0

s �
d�g −

f00
2f0

�
; with d�g ¼ D�

g
0ðφ0Þ: ð15Þ

The coefficients ~αT0 depend explicitly on the composition
of the body T

~αT0 ¼
ffiffiffiffiffi
2

Z0

s
ᾱT0; ð16Þ

with ᾱT defined by Eq. (7). As we shall see, our decoupling
scenarios are such that the two terms in the square brackets
of Eq. (15) almost cancel out such that one gets α0 ∼ 0.
Let us note that, as far as we know, the parameters δAB

have not been considered in the literature so far. In most
cases, they can safely be neglected. Indeed, since the

2In what follows, we generically use the abbreviation
dX ¼ D0

Xðφ0Þ.
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dilaton charges −Q0
m̂ and Q0

e have values lower than 10−2,
the UFF violating parameters δAT are in general two orders
of magnitude smaller than δT . However, as we shall see, the
parameters δAT become preponderant in some of the
decoupling limits we are interested in. In those situations,
the important point to notice is that they lead to a drastic
modification of the UFF phenomenology. Indeed, while the
parameters δT induce an additional term in the equation of
motion (13) that depends on the composition of the test
mass falling in the gravitational field, at the Newtonian
level, the parameters δAT induce additional terms that
depend on both the composition of the falling body and
the composition of the source. As far as we know, this
unusual prospect has not been considered either from a
theoretical or from a phenomenological perspective so far.
Therefore, this new type of phenomenology remains to be
explored and constrained by observations.
The dilaton-matter coupling modifies also the behavior

of atomic clocks. Observables relying on atomic clocks
depend explicitly on the following parameters,

δ̂I ¼
α0 ~χI0
1þ α20

; δ̂IA ¼ ~αA0 ~χI0
1þ α20

; ð17Þ

where the quantity ~χI0 depends on the atomic species and
particular atomic transition used in the clock. As for the
UFF violating term δAT , δ̂IA becomes numerically signifi-
cant in some decoupling limits only (see below). For clocks
working on a hyperfine transition, and neglecting strange
quark contributions, the ~χI0 coefficient is given by [12]

~χI0 ¼
ffiffiffiffiffi
2

Z0

s
½−2dme

þ 5.5 × 10−4ðdme
− dgÞ

− ð4þ Krel − 4.1 × 10−4Þde − 0.0017ðdδm − dgÞ
− ðκq þ 0.056Þðdm̂ − dgÞ�; ð18Þ

where di ¼ D0
iðφ0Þ; dδm ¼ ðmddmd

−mudmu
Þ=ðmd −muÞ;

and Krel comes from the Casimir factor and reads (at
the s-wave approximation3) Krel ¼ ðZαEMÞ2ð12λ2 − 1Þ=
ðλ2ð4λ2 − 1ÞÞ−1, where λ ¼ ½1 − ðαEMZÞ2�1=2, while κq
comes from the nuclear magnetic moment and is computed
in [18].
For example, the gravitational redshift between two

clocks located at two different altitudes around Earth is
given by

Δν
ν

����
grav

¼ νA − νB
νB

����
grav

¼
~GM⊕

rA
ð1þ δ̂A þ δ̂A⊕Þ

−
~GM⊕

rB
ð1þ δ̂B þ δ̂B⊕Þ; ð19Þ

where the subscripts A=B refer to the positions and
composition of the two clocks.
Similarly, the frequency ratio of two clocks located at the

same place will evolve with time because of the variation of
the gravitational potential (see for instance [19] and
references therein). Considering only the gravitational
potential of the Sun, dilaton theories predict the following
[12,20,21]:

δ

�
ln
νI
νJ

�
¼ ðδ̂I − δ̂J þ δ̂I⊙ − δ̂J⊙Þ

δW⊙
c2

: ð20Þ

At the post-Newtonian level, the usual PPN formalism
can be used [6,12]. In particular, the universal γ PPN
coefficient measured for example with the Shapiro time
delay is written

γ − 1 ¼ −
2α20

1þ α20
: ð21Þ

V. DECOUPLING SCENARIOS

Different decoupling scenarios can arise in the general
theory parametrized by the action (2). The idea is to
identify theories that intrinsically produce a small value
for the coupling α�AðφÞ from Eq. (12). In the following
scenarios, observational deviations from GR are strongly
reduced:
(1) e2DgðφÞ ∝ fðφÞ: In this case, one has

α0 ¼
ffiffiffiffiffiffiffiffiffiffi
2=Z0

p ð0.093ðdm̂ − dgÞ þ 0.000 27deÞ. As-
suming dm̂, dm̂ − dg and dg are of same order of
magnitude, the value of α0 is reduced by one order of
magnitude with respect to the general case—see
Eqs. (15) and (6). It means that the Einstein
equivalence principle (EEP) violating parameters
δT and δ̂T are also reduced by about one order of
magnitude. However, they still remain dominant
compared to the other EEP violating parameters
δAT and δ̂AT . On the other hand, the deviation to
unity of the PPN parameter γ is reduced by two
orders of magnitude.

(2) e2DgðφÞ ∝ e2Dmi
ðφÞ ∝ fðφÞ: In this case, one has α0 ¼ffiffiffiffiffiffiffiffiffiffi

2=Z0

p
0.000 27de and only the electromagnetic

contribution plays a role in EEP violations. Assum-
ing de and dg are of same order of magnitude, the

3Numerical many-body calculations give more accurate results
[17].
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EEP violating parameters δT and δ̂T are reduced by
almost 4 orders of magnitude, while the PPN
parameter γ is reduced by around 7 orders of
magnitude. Since the electromagnetic dilatonic
charge Q0

e is of order of 10−3 for most materials (see
Table I in [6]), the EEP violating parameters δAT and
δ̂AT are no longer negligible compared to the EEP
violating parameters δT and δ̂T . Even more, they
become predominant.
For instance, for test bodies made of platinum and

titanium orbiting a celestial body made of silica
(which is approximately the configuration of the
MICROSCOPE mission [22]) the UFF violating
coefficients read δPt ≈ 2 × 10−6d2e=Z0, δPt SiO2

≈
10−5d2e=Z0 and δTi ≈ 10−6d2e=Z0, δTi SiO2

≈ 5×
10−6d2e=Z0. Therefore, the differential acceleration
η ¼ Δa=a between the two test masses is given by
[12] η ¼ 6 × 10−6d2e=Z0. This coefficient will be
constrained at the level of 10−15 with MICRO-
SCOPE [22].
Similarly, considering a gravitational redshift test

using a Caesium clock orbiting a celestial body
made of silica (which is approximately the configu-
ration of the ACES mission [23]), the EEP violating
coefficients read δ̂Cs ≈ −10−3deðdme

þ 2.4deÞ=Z0

and δ̂Cs SiO2
≈ −5.4 × 10−3deðdme

þ 2.4deÞ=Z0. The
ACES mission will constrain the sum of these two
parameters −6.4 × 10−3deðdme

þ 2.4deÞ=Z0 at the
level of 10−6 [23]. This shows the complementarity
of both types of observations, UFF tests being more
sensitive to de while gravitational redshift tests bring
information on dedme

.
(3) e2DgðφÞ ∝ e2Dmi

ðφÞ and de ¼ 0: In this case, all UFF
violating parameters are vanishing but the PPN
parameters γ and β are not equal to one in general
(i.e. ᾱA0 ¼ 0 but α�A0 ¼ α0 ≠ 0).

(4) e2DgðφÞ ∝ e2Dmi
ðφÞ ∝ fðφÞ, and de ¼ 0: In this case

the decoupling is total (i.e. α�A0 ¼ α0 ¼ ᾱA0 ¼ 0).
All EEP violating parameters are vanishing and the
PPN parameters γ and β are exactly equal to one—
regardless of the (nonsingular) dilaton kinetic term
in the original action (2).

Of course, there is a whole spectrum of decouplings in
between the four simplified situations described above.
Moreover, it is important to notice that such nondynamical
decouplings can come on top of the Damour and Nordtvedt
dynamical decoupling [3,13–15].
Among those decouplings, an intriguing case is the total

decoupling scenario (fourth case). Indeed, it means that
there can exist dilaton models with nontrivial nonminimal
dilaton-matter coupling in the action that produce exactly
the phenomenology of GR. Let us remember that in this
situation, the dilaton-matter coupling term in the action
reads

Lint ¼ DgðφÞ
�
−

β3
2g3

ðFAÞ2

−
X

i¼e;u;d

ð1þ γmi
Þmiψ̄ iψ i

�
: ð22Þ

A close look at the equations in this case allows one to see
that such models reduce at the macroscopic level to

fðφÞ ∝ m2
AðφÞ: ð23Þ

Therefore, one recovers the decoupling studied in [24],
where a phenomenological multiplicative coupling
between the scalar field and the rest mass energy density
was assumed. The present study shows one specific way to
justify the macroscopic phenomenology studied in [24] by
a microphysics action of matter (1). But it has to be noted
that Eq. (23) equivalently reads as follows:

MPlanckðφÞ ∝ mAðφÞ; ð24Þ

where MPlanck is the Planck mass. Therefore, one can
explain the total decoupling by the fact that all dilatonic
effects can be reabsorbed via a simple change of units.
Therefore the theory is indeed indistinguishable from
general relativity in the dust limit. In some sense, it is
nothing but a “veiled” general relativity [25].
Although the decouplings presented in this paper seem to

require some fine-tuning of the dilaton-matter coupling [see
e.g. Eq. (24)], one can make the conjecture that such
apparent fine-tunings may potentially arise from an under-
lying symmetry of nature.
Let us note otherwise that with the effective relation

Eq. (23), the whole action (2) can be made conformally
invariant for specific kinetic terms—namely fðφÞ ¼ φ2 and
ωðφÞ ¼ −6φ. However, it has to be stressed that the field
equations are singular when the gravitational part of the
action is invariant under conformal transformation. This
can be witnessed through the vanishing value of the
function ZðφÞ defined in (9c) in this case. This is in
accordance with the fact that conformal invariance in
scalar-tensor theories is a “sham” symmetry that does
not add any degree of freedom compared to GR [26]. In
other words, the decoupling studied in the present paper is
not related to some conformal invariance of the gravita-
tional part of the action density.

VI. CONCLUSION AND DISCUSSION

In this paper, we showed that there exists a whole
spectrum of nondynamical decouplings between the dilaton
and matter that arise directly from the nonminimal cou-
plings in the action density. We studied the implications of
such decouplings on the dilaton post-Newtonian phenom-
enology. Accordingly, one of the main findings of this
article is to show that the equations of motion of a test mass
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orbiting a central mass have to be modified at the
Newtonian level according to

d2xT
dt2

¼ −
~GMA

r3AT
xATð1þ δTÞ

→
d2xT
dt2

¼ −
~GMA

r3AT
xATð1þ δT þ δATÞ: ð25Þ

Indeed, although the parameters δAT are negligible with
respect to the parameters δT in most models, they become
preponderant in models that lead to some of the non-
dynamical decouplings studied in this paper. As a conse-
quence, such terms should be added when constraining the
phenomenology of UFF violations from observations.
Because the decouplings are not dynamical, but rather

take their roots from the specific form of the dilaton-matter
and dilaton-Ricci couplings in the action density, they work
whether the dilaton has a potential or not. In particular, they
can happen for dilatonic dark matter models [27–30] as
well. However, a self-interaction of the dilaton can lead to
departure (with various strength) from general relativity’s
phenomenology, even if the dilaton is not (or weakly)
sourced by matter fields [14,15].
It has to be noted that the decoupling scenarios require

various degrees of apparent fine-tuning in the action
density. The most obvious example is for the total decou-
pling scenario that turns out to originate from the simple
relation between the Planck mass and all the other particles’
masses [see Eq. (24)]. The only way to avoid this
shortcoming is to make the conjecture that one of the
apparent tunings hypothetically originates from something
more fundamental. For instance, the theory presented in
[31] may be one possible justification from a fundamental
perspective. There, the universal coupling would come
from the way matter and geometry are made intrinsically
inseparable in an original fðR;LmÞ action. Otherwise, let
us note that a universal coupling is also one of the
conditions that are required in order to have a dynamical
decoupling during the evolution of the Universe as well [3].
It has to be stressed however that in this study we used

the usual dust field approximation in order to model matter.
The reason is that one knows how to make the link between
the (semi)fundamental matter Lagrangian from Eq. (1) and
its effective point particles realization from Eq. (3), thanks
notably to the works of Damour and Donoghue [5,6].
Nevertheless, the nonminimal scalar-matter coupling can
eventually lead to nontrivial effects when considering

pressureful fluids. For instance, it has been argued that
taking into account the pressure can soften the various
decouplings in comparison to the dust case considered in
this paper [15,24]. Extending the results of the present
study to pressureful cases could be an important step.
However several theoretical issues have to be addressed
first. Indeed, because of the nonminimal scalar-matter
coupling in the action density, parts of the material
Lagrangian appear explicitly in the field equations and it
is a difficult task to derive from first principles the value of
these on-shell parts when one eventually wants to consider
effective pressureful fluids. This problem is left for further
studies.
Also, taking into account quantum electrodynamics

(QED) effects, through the QED trace anomaly, may shift
the space of parameters [7], such that the decoupling would
be total for e2DgðφÞ ∝ e2Dmi

ðφÞ ∝ e2DeðφÞ ∝ fðφÞ, instead of
e2DgðφÞ ∝ e2Dmi

ðφÞ ∝ fðφÞ, and de ¼ 0. However, the split-
ting between purely QCD and QED effects is ambiguous
when QED is turned on [32]. Therefore a precise derivation
of the QED and QCD contributions to the particles’ masses
demands involved quantum field theory calculations that
are out of the scope of this paper.
Finally, it has been shown in [33] that once the fields

with gravitational strength are included in the quantum
loops, the equivalence principle is violated at the quantum
level, even if the scalar field φ does not appear in the
material Lagrangian [i.e. DXðφÞ ¼ DX in (1)]. The reason
behind this is that no symmetry protects the structure of the
scalar-matter coupling of the original action, such that
radiative corrections generate terms with explicit couplings
between the scalar field φ and matter, while the coupling
between the metric and matter is protected by diffeo-
morphism invariance [33]. However, those corrections
are expected to be extremely small. For instance, when
DXðφÞ ¼ DX, they have been estimated to be at best
proportional to ðκÞ−3=2 ∼M−3

P , where MP is the Planck
mass [33].
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