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We study quantummechanical tunneling using complex solutions of the classical field equations. Simple
visualization techniques allow us to unify and generalize previous treatments, and straightforwardly show
the connection to the standard approach using Euclidean instanton solutions. We demonstrate that the
negative modes of solutions along various contours in the complex time plane reveal which paths give the
leading contribution to tunneling and which do not, and we provide a criterion for identifying the negative
modes. Central to our approach is the solution of the background and perturbation equations not only along
a single path, but over an extended region of the complex time plane. Our approach allows for a fully
continuous and coherent treatment of classical evolution interspersed by quantum tunneling events and is
applicable in situations where singularities are present and also where Euclidean solutions might not exist.
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I. INTRODUCTION

Quantum tunneling follows as a direct consequence of
wavemechanics and can be calculated accurately by solving
the Schrödinger equation, if needed via numerical methods.
Thewave function on one side of a potential barrier is found
to have (or to develop over time) nonzero support on the
other side of the barrier too, resulting in a nonzero prob-
ability for observing a particle on the other side of the barrier
even if its kinetic energy is lower than the potential energy of
the barrier. Quantum tunneling thus provides a striking
contrast with classical physics, in which the barrier is strictly
unsurpassable given insufficient kinetic energy.
There exists a highly useful (semiclassical) approxima-

tion scheme to describe tunneling, which takes its roots in
Feynman’s path integral reformulation of quantum theory
[1]. This is the Euclidean instanton method, and its
usefulness stems from the fact that it can be extended to
quantum field theory [2–5] and even to gravity [6]. We are
particularly interested in the situation where the system
under consideration [here a particle with position xðtÞ] can
be described classically to a good approximation before
and after the tunneling event. In Feynman’s formulation,
the transition amplitude from an initial state where xðtiÞ ¼
xi to a final state where xðtfÞ ¼ xf is given by the integral
over all paths that link the two events,1

hxf; tfjxi; tii ¼ N
Z

xf;tf

xi;ti

D½xðtÞ�eiS; ð1Þ

whereN is a normalization factor and the action S of a unit
mass particle moving in a potential VðxÞ is given by

S ¼
Z

dt

�
1

2
_x2 − VðxÞ

�
; ð2Þ

where we use the notation ⋅ ≡ d
dt. Coleman has discussed in

detail how, after performing a Wick rotation to Euclidean
time, the associated path integral can be approximated by
the saddle point method to determine the energy of a
minimum of the potential and to deduce the decay rate out
of a local minimum [7]. The dominant field configuration
contributing to the Euclidean-time path integral goes by the
name of bounce or instanton, depending on the boundary
conditions [bounces [4] are used in the description of the
decay of a metastable vacuum with xðtiÞ ¼ xðtfÞ ¼ xmin,
while instantons, which correspond to “half-bounces”,
describe either the splitting of energy levels for potentials
with degenerate minima, or tunneling across a potential
barrier [3]]. These solutions are finite action solutions of the
Wick-rotated Euclidean equations of motion.
The standard description goes as follows: imagine a

particle with insufficient kinetic energy to overcome a
potential barrier. A good approximation is then to treat the
particle classically as it runs up the potential barrier until it
comes to a momentary stop on the slope of the potential
when all its kinetic energy has been converted to potential
energy. Here the possibilities bifurcate: the particle can
either roll back down classically, or one can use the
Euclidean time instanton solution to describe the tunneling
of the particle to the other side of the barrier. The probability
for this tunneling event to happen will be determined to
leading order by the action of the instanton solution. The
particle then emerges on the other side of the potential barrier
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with zero velocity, whence it can roll down the other side of
the barrier classically. Thus the overall classical evolution in
Lorentzian time is interrupted at an instant where the
Euclidean time “instanton” solution is inserted.
As has often been discussed, this method works well but

it is conceptually not very clear: how do we know that we
can just put in the instanton solution between classical
solutions? This procedure after all seems rather ad hoc. In
the present paper we will attempt to answer that question by
deriving a continuous and generalized formulation of
classical-to-quantum-to-classical transitions. Our approach
will allow one to identify the most relevant solutions for
such transitions and will largely constitute both a justifi-
cation and an extension of the instanton method.
Conceptually our approach is clearer and more intuitive.
Moreover, as we will argue, our methods will be useful in
more complicated situations, in particular when gravity is
included, when singularities are present and when
Euclidean time instanton solutions might not exist.

II. TUNNELING VIA COMPLEX TIME PATHS

Instead of employing only solutions of the equations of
motion in either Lorentzian/real time or in Euclidean/
imaginary time, we will consider solutions in terms of
general complexified time. As discussed by many authors
(in particular Levkov and Sibiryakov [8], Bender et al.
[9–12], Dunne et al. [13–15], Ilderton et al. [16] and Turok
[17]) complex solutions of the classical field equations
capture salient features of quantum theory. Moreover, as

shown by Cherman and Ünsal [18] and by Turok [17],
deformations of Euclidean time instanton solutions to a
“rotated” time coordinate that approaches Lorentzian time
seem to offer a sort of real time description of tunneling. In
the present work we unify and extend these approaches. We
arrive at the following picture—see Fig. 1.
Purely classical evolution corresponds to evolution along a

line parallel to the real time axis, with all field values (and
derivatives) taking real values. These are the green lines in
Fig. 1. It is important to realize that, if the fields take real
values, it is not necessary for the evolution to be represented
exactly on the real time axis, rather any line parallel to it will
do equally fine since the differential dt is also real on that line,
and hence the momenta will also be real. The upper left panel
then illustrates the picture suggested by standard instanton
methods: from a classical solution one can tunnel via a
Euclidean time instanton solution (indicated by a dashed red
line) to a different classical history. The idea here is that in the
classically forbidden region, the leading approximation to the
transition amplitude (1) is given by a saddle point of theWick-
rotated (τ ¼ −it) Euclidean action

SE ¼ −iS ¼
Z

dτ

�
1

2
ðx;τÞ2 þ VðxÞ

�
; ð3Þ

that is to say by a classical solution of theEuclidean equations
of motion with finite action SE;instanton. Moreover, to leading
approximation the probability for this tunneling to take place
is given by the factor e−2SE;instanton.We can picture this sequence

Re(t)

Im(t)

Re(t)

Im(t)

Re(t)

Im(t)

Re(t)

Im(t)

FIG. 1. An overview of old and new approaches to describing classical to quantum and back to classical transitions. Green lines denote
classical histories, while dashed red lines indicate Euclidean respectively fully complex tunneling paths. Blue dots show the location of
initial and final conditions, while purple crosses indicate the location of singularities. For a full description of this figure see the
main text.
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of events in the complexified time plane, as shown in the
figure: two classical histories in real time are joined by a
Euclidean solution mediating the tunneling. The fact that the
transition is classically forbidden is reflected in a shift along
the Euclidean time axis. As soon as one has this picture in
mind, it becomes clear that the path taken in the complex time
plane may also be deformed, as long as it does not pass any
singularities of the solutions of the complexified classical
equations of motion. This brings us to the lower left panel,
which illustrates the approach of Cherman-Ünsal [18] where
the tunneling path is rotated so as to be alignedmore andmore
with the classical histories it is meant to join. In [18] only the
tunneling part is considered, and rotations arbitrarily close to
the real line are advocated, but as our graph indicates, the
boundary conditionswill limit towhat extent such a rotation is
feasible. The upper right panel illustrates the point of view
advocated here: a classical history can tunnel to various other
classical histories via various paths in the complex time plane.
These paths are equivalent as long as their deformations do
not encircle singularities (marked by purple crosses) and of
course as long as they respect the specified initial and final
conditions (in the figure we show three paths with different
final conditions). What is not shown here is that paths that
differ in how they circle singularities can take the evolution
onto a different sheet of the solution function, and on this new
sheet both the singularities and the loci of classical histories
may differ from other sheets. We will discuss this in more
detail in Sec. III and present an example illustrating these
concepts. The lower right panel shows a situation in which
our method will be of clear advantage over existing ones:
there exist classical histories which cannot be joined via
purely Euclidean time instanton solutions.Moreover a variety
of singularities are present. In this case our method will
nevertheless allow one to determine which complex time
paths can mediate a quantum transition between different
classical histories.
The crucial question we have not discussed yet is which

paths actually provide the leading contribution to tunneling
and which do not. The standard instanton method employs
a single path, but how do we know that this is the dominant/
relevant path? Evidently, by Cauchy’s theorem we can
deform a path in the complex time plane as long as it does
not cross any singularities. Such deformed paths are
entirely equivalent to the original one and should not be
counted multiple times. However, in general singularities
will be present, and then there exist inequivalent paths that
encircle the singularities in various ways. Should we then
sum over all possible (inequivalent) complex paths between
fixed initial and final conditions? As we will now argue, the
answer to this question is “no”. Not all such paths are
equally relevant for tunneling, and we will now identify a
criterion for identifying the relevant path(s).
The crucial notion here is to look at fluctuations around

all possible interpolating paths. For purely Euclidean
instantons this analysis was first performed by Callan

and Coleman in [5]. Consider again the saddle point
approximation. Around the saddle point, where the solution
to the Euclidean equation of motion is denoted by xcc, to
quadratic order the action can be approximated by

SE½x; x;τ� ¼ SE½xcc� þ
1

2

Z
xf;δxðτfÞ¼0

xi;δxðτiÞ¼0

dτððδx;τÞ2

þ V 00ðxccÞðδxÞ2Þ þ…; ð4Þ
where V 00 ¼ V;xx, and where the term linear in δx vanishes
precisely because we expand around an extremum. Given
the boundary conditions on δx (vanishing at the end points),
we can expand any fluctuation into a complete set of
eigenfunctions of the fluctuation operator,

δx ¼
X
n

cnδxn; ð5Þ

where
R
dτδxnδxm ¼ δnm, and obeying the eigenvalue

equation
�
−

d2

dτ2
þ V 00ðxccÞ

�
δxn ¼ ωnδxn; ð6Þ

where the ωn are the (real) eigenvalues. The integral above
then turns into simple Gaussian integrals, which can be
performed to yield the approximation2

hxf; tfjxi; tii ¼ N
Z

xf;tf

xi;ti

D½xðtÞ�eiS ∼ e−SEðxccÞ
1ffiffiffiffiffiffiffiffiffiffiffi
Πnωn

p :

ð7Þ
The Gaussian integrals result in a prefactor that involves the
square root of the product of eigenvalues of the fluctuation
operator. If all eigenvalues are positive, then any fluctuation
around the saddle point solution will increase the action,
resulting in a lower probability. In this case we have found
the dominant path. On the other hand, if some of the
eigenvalues are negative, then there exist fluctuations that
can lower the Euclidean action. Such solutions are thus not
actual extrema and must be discarded.3 (For a related
discussion see [19].) How do we know whether negative

2When zero modes are present, they must be treated separately.
A proper inclusion of the zero modes results in an additional
prefactor which is irrelevant for our discussion [5].

3A Euclidean solution which describes the decay of a meta-
stable vacuum, i.e. a bounce, has exactly one negative mode,
which justifies the decay picture. Here we are interested in
tunneling solutions, i.e. instantons, which should have at most
zero modes in their spectrum of linear perturbations. As resur-
gence theory showed, the contributions of higher order (complex)
saddles can sometimes play an important role e.g. in order to
obtain consistency of the semiclassical expansion with the
supersymmetry algebra [15]. Here we will be identifying sol-
utions providing the leading contribution to tunneling, i.e. having
the least Euclidean action and no negative modes. We call such
solutions “relevant”, as opposed to “irrelevant” higher order
saddles, which we discard in the leading approximation.
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modes exist? After all, it might be difficult to find the
associated eigenfunctions numerically. Here the nodal
theorem helps (see e.g. [20] and references therein): we
can solve the perturbation equation (6) for the zero eigen-
value ω ¼ 0, with the boundary conditions δxðτiÞ ¼ 0,
δx;τðτiÞ ¼ �1 (since this is not necessarily an eigenfunction
we do not care about normalizability and can in principle
choose δx;τ to take any nonzero value). The number of nodes
of the corresponding solution, which we refer to as the
perturbation function, will tell us the number of negative
modes.4 In this way we can determine whether we have
found themost relevant tunneling solutionwithout having to
find the eigenfunctions and eigenvalues of (6) explicitly.
Now we want to adapt this argument to the case where

the paths under consideration are complex. In fact, we will
retain the Euclidean formulation, but where one should
now consider both the Euclidean time coordinate and the
fields to be complexified (it may appear baroque to rotate to
Euclidean time before complexifying, but this avoids the
use of slightly awkward factors of i—we will discuss how
to get back to Lorentzian time below). By analytically
continuing, the eigenfunctions will become complex but
the eigenvalues ωn remain real as these are simply con-
stants. The problem is that the nodes in the analytically
continued perturbation functions will in general disappear,
and thus it looks like we might lose our simple criterion for
determining which paths are relevant and which are not.
However, we can find a resolution of this issue by thinking
about the nodes in a little more detail: if a node is present in
the Euclidean zero-eigenvalue perturbation function δx0 at
τ0 then because of the boundary conditions we can expand
the perturbation function between τi and τ0 using purely sin
functions,

δx0 ¼
X
k

ck sin

�
kπ

ðτ0 − τiÞ
ðτ − τiÞ

�
; ð8Þ

where k ∈ N runs over integer values. Now imagine that we
deform the solution path by shifting it along the Lorentzian
time direction by a constant amount Δτ ¼ iΔt, where
Δt ∈ R. Then along the Lorentzian time direction starting
from the node at τ0 we have

sin ðkπ þ iΔtÞ
¼ sin ðkπÞ cos ðiΔtÞ þ cos ðkπÞ sin ðiΔtÞ
¼∓ sin ðiΔtÞ ¼∓ i sinh ðΔtÞ: ð9Þ

From a node, and along the Lorentzian time direction, the
change in the perturbation function will therefore be purely

imaginary. This implies that if we look at the real part of the
zero-eigenvalue perturbation function it will still contain a
node. Thus we can essentially retain the same criterion for
deciding whether solutions are relevant or not as in the pure
Euclidean case, with the proviso that we must look only at
the real part of the perturbation function. There is one
possible caveat: could the complex perturbation function
accidentally develop a zero in its real part, i.e. a zero not
related to an actual node? This certainly seems conceivable,
but in practice it is easy to avoid any ambiguity: the above
arguments imply that if one solves for the zero-eigenvalue
perturbation function over an extended region in the
complex time plane, then there will be an entire line of
zeros associated with an actual node. Such a line of zeros is
thus the unmistakeable signature of solutions that must be
discarded. Furthermore, the freedom to deform the contour
in the complex time plane implies that one can always
deform the solution path such that it crosses such a line of
zeros and then comes back. Our criterion for finding the
dominant tunneling solution may therefore be stated more
carefully as follows: if the real part of the zero eigenvalue
perturbation function unavoidably crosses a line of zeros,
this signals the presence of a negative mode and the
solution must be discarded. If the real part of the zero
eigenvalue perturbation function does not cross any such
line of zeros, the solution is relevant to tunneling.
Wemay now go back to Lorentzian time and reformulate

this calculation in terms of complexified real time t.
The zero-eigenvalue perturbation function ψ must then
satisfy the following equation of motion and boundary
conditions

�
d2

dt2
þ V 00ðxccÞ

�
ψ ¼ 0; ψðtiÞ ¼ 0; _ψðtiÞ ¼ �i:

ð10Þ

Since we have also transformed the boundary conditions in
accordance with the change of time coordinate, our
criterion above remains unchanged and we must look for
lines of nodes of ReðψÞ, as we will do in Sec. III. The
presence of such a line of zeros will imply that a particular
solution must be discarded, while a solution without any
such nodes in its perturbation function will be relevant to
tunneling.
A couple of additional comments: the existence of

solutions with more and more negative modes is reminis-
cent of gravitational oscillating bounces [21–25], which
also seem to represent excited states not contributing
dominantly to the description of vacuum decay. The
existence of such oscillating instantons is usually explained
by arguments about Hubble friction and antifriction, while
here we will see that qualitatively similar solutions can exist
even in the absence of gravity. Further works discussing
the importance of negative modes in quantum tunneling
include [26–34].

4Think about the energy eigenfunctions in a potential well:
with each increasing eigenvalue an additional node is present.
Hence if the solution with zero eigenvalue has n nodes, there
must exist n eigenfunctions with lower, i.e. negative, eigenvalues.
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III. EXAMPLES

The discussion so far might have seemed rather generic
and abstract. We will now illustrate the ideas discussed
above with concrete examples.
The core of our approach is the solution of the back-

ground and perturbation equations over an extended region
of the complex time plane, and the visualization of the
results by means of relief plots. Let us briefly describe how
exactly this is done. First we note that the Lorentzian action
(2) can be written in a reparametrization invariant way

S ¼
Z

ndλ
�

1

2n2
ðx;λÞ2 − VðxÞ

�
; ð11Þ

where nðλÞ is the (complex) “lapse function” and λ is a
(real) parameter. Choosing a particular form for nðλÞ then
allows one to follow a specified path in the complex time
plane. For instance, nðλÞ ¼ 1 corresponds to evolving
along the Lorentzian time direction, while nðλÞ ¼ i corre-
sponds to the Euclidean direction—more general choices of
nðλÞ will allow evolution along any desired curve in the
complex time plane.
We solve the equations of motion, starting from purely

classical boundary conditions. The solution along the
Lorentzian time axis then gives the classical solution, with
real (conserved) energy, which in the case of a barrier
potential means the solution that rolls up the potential until
all kinetic energy is converted to potential energy; sub-
sequently the particle simply rolls back down the potential.
From this reference solution we branch out in both
perpendicular directions, integrating the equation of motion
as we go along while periodically sampling the values thus
obtained. By repeating this procedure, and shifting the
integration path by a small amount every time, we obtain
the solution over a dense grid of points in the complex time
plane. If no singularities are present, this prescription
already gives us the full solution over the required time
domain (with a resolution limited by the accuracy of the
numerical computation). If singularities are present, then
the reference path can be deformed repeatedly so as to
encircle the singularities in various ways (where now
branch cuts automatically appear “behind” the singularities
after branching out from the reference path), until all
possible paths are explored. A detailed example of this
latter situation will be presented in Sec. III C. The same
procedure can then also be repeated for the perturbed
equation of motion, imposing the boundary conditions
specified in (10). We then employ relief plots to visually
represent the real and imaginary parts of the background
and perturbation solutions. The three examples below will
illustrate this procedure.

A. Inverted harmonic oscillator

As a first example consider a particle moving in an
inverted harmonic oscillator potential (see Fig. 2)

VðxÞ ¼ −
1

2
Ω2x2 þ V0; ð12Þ

where Ω, V0 are constants. This potential is unbounded
from below, but one might imagine that it gets deformed so
as to develop a minimum at large field values—in any case,
we are just interested in energy differences here. The
potential has the advantage that analytic solutions to both
the background equation of motion (ẍ ¼ Ω2x) and pertur-
bation equation (ψ̈ ¼ Ω2ψ) can be found easily. They are
both given by

xðtÞ; ψðtÞ ¼ c1eΩt þ c2e−Ωt; t ∈ C; ð13Þ

where c1, c2 are complex integration constants to be
determined. The solution is exponential when t is purely
real and periodic when t is imaginary. If we choose the
origin of time t ¼ 0 to correspond to the moment just
before tunneling, then the background solution is

xðtÞ ¼ c coshΩt; t ∈ C ð14Þ

where the constant c is the particle’s location at the classical
turnaround at t ¼ 0.
Even though for this particular case analytic solutions are

available, this will of course in general not be the case. For
this reason we will in general solve the equations of motion
numerically over an extended region of the complex time
plane. Here we do this in Fig. 3 (where we have taken
c ¼ −3=2), so that we can directly compare our numerical
methods with the analytic results. As explained above, the
figures are obtained by solving the equations of motion
over a dense grid of points in the complex time plane, and
then representing the results with relief plots. Then, by
taking a look at log jImðxÞj one can immediately identify
where the solutions are purely real: note that log jImðxÞj
blows up to large negative values for small imaginary
values of x and thus the locations where x has a tiny or zero

FIG. 2. Plot of an inverted harmonic oscillator potential,
VðxÞ ¼ 1 − 1

2
x2.
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imaginary part will be represented by very dark colors. In
this way the regions of classicality become obvious by
inspection. There are infinitely many lines parallel to the
real time axis along which the solution is real and classical.
Tunneling then corresponds to considering complex time
paths that join different such (horizontal) classical solutions
by traversing regions of nonclassicality. One path is singled
out in the graph, namely the Euclidean instanton solution,
which is the vertical dark line in Fig. 3, center panel. This
solution stands out since the field values are purely real
along it. However, in our approach this path is now not any
more fundamental than other paths through the complex
time plane. An example of a possible tunneling path is
drawn in Fig. 3, with the evolution of the field and action
along this path shown in Fig. 4.5 After tunneling, the
solution is given by

xðtÞ ¼ c cosh ðiπ þ ΩtÞ ¼ −c coshΩt; t ∈ C; ð15Þ

and it is classical again, as it should.
We have also plotted (the real part of) the perturbation

function, which satisfies (10) and in the present case is
given by

ψðtÞ ¼ i
Ω
sinhΩt; t ∈ C: ð16Þ

The right panel in Fig. 3 shows the zeros of the real part of
the perturbation function. As expected, these nodes are
distributed along continuous lines. Paths that join two
adjacent lines of classicality can avoid crossing any node,
and hence these paths are the relevant ones for tunneling.
By contrast, a tunneling path joining two lines of classi-
cality that are separated by additional lines of classicality in
between will contain nodes, and hence must be discarded.
This simple example thus illustrates the main concepts
advocated in the previous section.

B. Inverted Higgs potential

Next, consider a particle moving in an inverted Higgs
potential,

VðxÞ ¼ 1

2
x2 −

1

2
x4; ð17Þ

which has also been studied by Turok [17]. The potential is
shown in Fig. 5. The general solution is [17]

xðtÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þm
p 1

snðt= ffiffiffiffiffiffiffiffiffiffiffiffi
1þm

p jmÞ ; t ∈ C; ð18Þ

where sn denotes the doubly periodic Jacobi sn function,
and the orderm of the function determines the energy of the
solution, 2E ¼ m=ð1þmÞ2. A particularly simple limit is
obtained by setting the energy to zero, m ¼ 0, in which
case the solution is

FIG. 3. Relief plots of the background (left and center panels) and perturbation (right panel) solutions in the inverted harmonic
oscillator potential. The horizontal axis indicates the real time direction, while the vertical axis indicates the imaginary/Euclidean time
direction. Darker colors represents smaller (more negative) values while brighter colors represents larger (more positive) values.
Therefore in the center and right images the black lines show the regions where ImðxÞ and ReðψÞ are zero, indicating the regions of
classicality along with the Euclidean instanton solutions (center panel), and the locations of nodes (right panel) respectively. This means
for example that along a path following a black line in the center panel, the field value will be purely real. Similarly, along a path
following a black line in the right panel, the perturbation function will be purely imaginary. The usefulness of these graphs stems from
the fact that they allow one to see the behavior of not just a single solution, but of all solutions (on a particular sheet) in an extended
region of the complex time plane. The green line indicates a particular path which is further inspected in Fig. 4.

5Note that we only need to consider tunneling paths in one
direction along the Euclidean time direction, namely the direction
corresponding to the correct Wick rotation. In practice this
direction can be identified by the fact that quantum tunneling
is suppressed compared to classical evolution, i.e. that the
imaginary part of the action is positive.
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xðtÞ ¼ −
1

sin t
; t ∈ C; ð19Þ

where for this solution the particle is at negative infinity at
t ¼ 0 and reaches the turn-around/tunneling location
x ¼ −1 at t ¼ π

2
. The perturbation function, satisfying

the required boundary conditions at t ¼ π
2
, is given by

ψðtÞ ¼ i
cosðtÞ
sin2ðtÞ ; t ∈ C: ð20Þ

Plots of the background solution and the real part of the
perturbation function are shown in Fig. 6, for the case of a
small positive energy. In all plots the double periodicity is
immediately apparent. The dark spots in the left panel show
the regions where the particle rolls to large field values. The
center panel indicates the lines of classicality. Once again

we have an infinite number of such lines parallel to the real
time axis (there is also a vertical line in the middle along
which the field is real—this is the Euclidean instanton
solution). Possible tunneling paths then join two such
horizontal lines. As the right panel shows, joining two
adjacent lines will not result in having nodes in the
perturbation function, and such paths thus contribute to
tunneling. Lines of classicality that are further separated in
the Euclidean time direction are also separated by lines of
nodes, and hence the corresponding tunneling solutions
must be discarded. For illustration, an example of such an
irrelevant solution is given in Fig. 7.
For completeness we should discuss the vertical line of

nodes in the right panel of Fig. 6. This line is located at the
position in real time where the particle reaches the potential
minimum at x ¼ 0 (and it is a direct consequence of the cos
expansion of the background solution that one can perform
around that point). It thus divides the evolution into regions
left or right from the local minimum of the potential, and in
this manner divides it into regions with the possibility to
tunnel across either the left or right barrier. If we imagine
having a particle on the left of the local minimum (i.e. at
x < 0) but say we want to evaluate the transition amplitude
to emerge on the far side of the right potential barrier, then
we may follow the classical evolution from x < 0 to x > 0
first, and then tunnel across the right potential barrier. In this
sense this vertical line of nodes is avoidable and therefore
does not obstruct a contribution to the path integral.

C. Potential barrier with singularities

Our final example is also the most interesting one,
namely a potential hill of the form

FIG. 4. Field values and action for the tunneling path drawn by the green line in Fig. 3. Note that this is an actual tunneling path, with
ReðxÞ interpolating between two different sides of the potential and ImðxÞ returning to zero after tunneling. The imaginary part of the
action reaches a constant after tunneling, and this value will (to leading order) determine the probability for this tunneling event to take
place. As required, the real part of the perturbation function ψ does not present any nodes.

FIG. 5. Plot of the inverted Higgs potential VðxÞ ¼ 1
2
x2 − 1

2
x4.
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V ¼ 1

x2 þ 1
: ð21Þ

For real x values this potential is everywhere finite (see
Fig. 8), but in the complex plane there are singularities at
xðtÞ ¼ �i. In classical physics these would not play any
role, but in our treatment of quantum tunneling using
complex time paths the singularities are important. They

imply that there now exist possible tunneling paths that are
distinct in the sense that they can encircle the singularities
in various ways. It is then crucial to have a way of assessing
which such paths truly contribute to the tunneling ampli-
tude, and which do not. As in our previous discussion, we
will approach this question by looking at the solutions of
both the background and perturbation equations over
extended regions in the complex time plane. For a first
look see Fig. 9. Given that we are now in the presence of
singularities, we must be a little more precise in specifying
how we obtained these figures. In Fig. 9 we have solved the
equations of motion by taking paths that start at the original
classical solution (on the real time axis), then run up the
Euclidean time direction in between the two vertical lines
of periodically spaced singularities (which can clearly be
seen in the left panel, along with their attached outwards-
running branch cuts), and from there branch out again
parallel to the real time axis to the left and to the right. We
see that in this way we can reach other classical solutions at
periodically spaced lines of classicality parallel to the real
time axis. Also, the right panel shows that nodes reside
along the same lines. Thus we have a situation very similar
to that of the simple inverted harmonic oscillator of
Sec. III A: adjacent lines of classicality may be joined
by nodeless, and thus relevant tunneling solutions, while

FIG. 6. A figure analogous to Fig. 3, but for the inverted Higgs potential. The plots are obtained with the initial condition that the
particle is released at x ¼ 10−2 with zero velocity.

FIG. 7. An example of an irrelevant solution. The path chosen here is indicated by the green line in Fig. 6. The perturbation function
contains two nodes, indicating that there exist perturbations of this solution that increase the probability.

FIG. 8. A potential hill V ¼ 1
x2þ1

, which is entirely regular for
real field values but contains singularities in the complex plane.
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tunneling paths between further separated lines necessarily
cross at least one node and must be discarded. Thus the
relevant paths pass just beyond the closest singularity right
of the center. Two such paths (which are equivalent to each
other) are shown in Figs. 9 and 10 for illustration.
But now we have other possibilities too. In particular, we

would like to know what happens when one chooses a path
that passes by a singularity on the left. For this case, see
Figs. 11 and 12. Here we are choosing paths in the
following manner: from the classical solution on the real
time axis let the path run up on the left hand side of the
closest singularity left of the center. Having passed that
singularity, we continue parallel to the real time axis, and
then branch out from there up and down along the
Euclidean time direction. In practice this means that we
have chosen the branch cut emanating from the singularity
to run straight down perpendicular to the real time axis. We
see something interesting: to the right of the branch cut, the
solution becomes real again on the real time axis. Note that
this real solution is now not reachable via purely classical
evolution from the original classical solution on the left,
because of the branch cut residing in between. However,
the path circling around the left singularity is a possible

tunneling solution linking these two classical solutions. Is it
also a relevant one? The right panel shows that unfortu-
nately this is not the case. There is a line of nodes starting at
the singularity and running straight up—any path joining
the classical solution on the left to that on the right must
necessarily intersect this line of nodes, and thus these
solutions must all be discarded. One may wonder why
the line of nodes is vertical in the present case. This is
because the tunneling effectively occurs parallel to the real
time axis, as opposed to the more usual situation where the
tunneling is always along the Euclidean time direction. Here
this occurs because of the presence of the singularity. As a
consequence, near a node of a putative Euclidean solution
the perturbation function could now be expanded in terms of
sinðktÞ functions, so that a line of nodes then emanates in the
Euclidean time direction—this is simply the rotated version
of the argument presented around Eq. (9).
Other paths passing by singularities left of the center and

further removed from the original classical solution will
contain additional nodes, and hence all such paths are
irrelevant. For the present potential, when we circle around
the closest singularity left of the center by one additional
full circle we essentially arrive back at the starting position,

FIG. 9. A first look at the solutions to the hill potential. The plots have been obtained with the initial condition that the particle is at rest
at x ¼ −1. For a complete description, see the main text. The solid green and dashed purple lines show two equivalent tunneling paths,
which will be further explored in Fig. 10.

FIG. 10. Solutions along the solid green (solid blue curve in this plot) and dashed purple (dashed purple line here) paths in Fig. 9.
These two paths are entirely equivalent to each other, since they link the same boundary values and since the region of the complex time
plane that they enclose does not contain any singularity. The field evolutions along these paths are however different, as the graphs here
show. Note also that the dashed purple path is neither Euclidean nor Lorentzian.
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and thus no further paths need to be investigated. For other
potentials, involving higher order singularities, additional
nontrivial paths may exist, and our method will then allow
one to determine all of the solutions relevant to quantum
tunneling.

IV. DISCUSSION

Working in the semiclassical approximation, we have
shown how complex time paths can mediate quantum
tunneling between distinct classical histories. Both in order
to find the location of the possible classical solutions and to
determine the relevance of the solutions, we have shown
that it is useful to solve the background and perturbation
equations of motion over an extended region of the
complexified time plane. This in particular enables one
to find the nodes of the (real part of the) perturbation
function, which, as we have argued, determine whether or
not a given path contributes significantly to the tunneling
amplitude. Our work extends previous treatments where
single complex solutions have been considered. Moreover,
our analysis of the perturbation function and its nodes is
new. The latter analysis provides a crucial new aspect, with
the absence of nodes being the criterion selecting the
relevant paths.
It might be useful to add further comments contrasting

our work with earlier approaches. The closest related works
are those of Cherman-Ünsal [18] and Turok [17], which

both aim to develop a description of quantum tunneling in
“real” time, essentially by choosing a path in the complex
time plane that is aligned as closely as possible with the real
time axis. However, as our approach makes clear, although
the contour can be chosen to be essentially aligned with the
real time axis in some parts, the overall shift in Euclidean
time is essential to capture tunneling. A special case is
provided by the presence of singularities, in which case
there may exist paths that encircle a singularity and then
return back to the real line (though actually on a new sheet
of the solution function), as exemplified in Sec. III C—still,
at some point a departure from the real line is unavoidable
to capture quantum effects.
Bender [9,10] and Turok advocate using solutions with a

complex energy to describe tunneling. In describing an
initial wave packet, this is in fact required, as emphasized by
Turok. However, when describing a quantum transition
between histories that can to a good approximation be
described classically, there is no need to use complex energy
solutions. In all our examples, we have chosen the energy to
be real, as determined by the starting classical history. This is
in no way an obstacle to describing tunneling by complex
time paths. It is simply the initial conditions that determine
the value of the energy. Note furthermore that since energy is
conserved, a complex energy does not allow one to obtain a
purely classical history after tunneling—the best one can
achieve is approximate classicality.

FIG. 11. Investigating the left singularity—for a description of how this plot was obtained, see the main text. A new feature is the
straight line of nodes emanating from the left singularity and running vertically upwards along the Euclidean time direction.

FIG. 12. Solution along the green path in Fig. 11.

BRAMBERGER, LAVRELASHVILI, and LEHNERS PHYSICAL REVIEW D 94, 064032 (2016)

064032-10



As shown by Cherman-Ünsal and Turok, the imaginary
part of the field may reach very large values during
tunneling. Turok has even proposed that these imaginary
values may have a physical significance, and that they may
be observable via weak measurements. We are skeptical
about this claim, since the tunneling path may be deformed
at will as long as one does not cross any singularities. Such
deformations are allowed by Cauchy’s theorem and cannot
result in any change in the physics. However, since the
deformed paths reach different imaginary values of the
field, these imaginary values cannot have a physical
significance. It would however be fascinating if we were
proven wrong about this point.
The advantage of our method is that it provides a rather

general prescription for treating classical-to-quantum-to-
classical transitions. This might be of great use in more
complicated situations: we intend to extend our methods to

quantum field theory, and also to semiclassical quantum
gravity. In this case, one may generally expect singularities
to be present and classical histories to come to an end, most
notably near black hole or big bang type singularities (see
[35] for work in this direction, and [36] for upcoming
work). It is our (ambitious) hope that in such situations our
method may be of use in identifying possible quantum
transitions to other classical solutions.

ACKNOWLEDGMENTS

We are thankful to Aleksey Cherman, Gerald Dunne, and
Mithat Ünsal for useful critical comments. We express our
gratitude to the Max Planck Society for its support of the
Theoretical Cosmology group at the Albert Einstein
Institute. G. L. acknowledges support from the Shota
Rustaveli NSF Grant No. FR/143/6-350/14.

[1] R. P. Feynman, Space-time approach to nonrelativistic
quantum mechanics, Rev. Mod. Phys. 20, 367 (1948).

[2] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S.
Tyupkin, Pseudoparticle Solutions of the Yang-Mills
Equations, Phys. Lett. 59B, 85 (1975).

[3] A. M. Polyakov, Quark Confinement and Topology of
Gauge Groups, Nucl. Phys. B120, 429 (1977).

[4] S. R. Coleman, The Fate of the False Vacuum. 1. Semi-
classical Theory, Phys. Rev. D 15, 2929 (1977); 16, 1248(E)
(1977).

[5] C. G. Callan, Jr. and S. R. Coleman, The Fate of the False
Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16,
1762 (1977).

[6] S. R. Coleman and F. De Luccia, Gravitational Effects on
and of Vacuum Decay, Phys. Rev. D 21, 3305 (1980).

[7] S. R. Coleman, The Uses of Instantons, Subnuclear series
15, 805 (1979).

[8] D. Levkov and S. Sibiryakov, Pis’ma Zh. Eksp. Teor. Fiz.
81, 60 (2005) [“Real-time instantons and suppression of
collision-induced tunneling,” JETP Lett. 81, 53 (2005).

[9] C. M. Bender, D. C. Brody, and D.W. Hook, Quantum
effects in classical systems having complex energy, J. Phys.
A41, 352003 (2008).

[10] C. M. Bender, Classical Particles Having Complex Energy
Exhibit Quantum-Like Behavior, eConf C0906083 (2009)
22.

[11] C. M. Bender, D. W. Hook, P. N. Meisinger, and Q.-h.
Wang, Complex Correspondence Principle, Phys. Rev. Lett.
104, 061601 (2010).

[12] C. M. Bender and D.W. Hook, Quantum tunneling as a
classical anomaly, J. Phys. A 44, 372001 (2011).

[13] C. K. Dumlu and G. V. Dunne, Complex Worldline Instan-
tons and Quantum Interference in Vacuum Pair Production,
Phys. Rev. D 84, 125023 (2011).

[14] A. Behtash, G. V. Dunne, T. Schafer, T. Sulejmanpasic,
and M. Unsal, Complexified path integrals, exact saddles
and supersymmetry, Phys. Rev. Lett. 116, 011601
(2016).

[15] A. Behtash, G. V. Dunne, T. Schaefer, T. Sulejmanpasic, and
M. Unsal, Toward Picard-Lefschetz Theory of Path Inte-
grals, Complex Saddles and Resurgence, arXiv:
1510.03435.

[16] A. Ilderton, G. Torgrimsson, and J. Wrdh, Nonperturbative
pair production in interpolating fields, Phys. Rev. D 92,
065001 (2015).

[17] N. Turok, On Quantum Tunneling in Real Time, New J.
Phys. 16, 063006 (2014).

[18] A. Cherman and M. Unsal, Real-Time Feynman Path
Integral Realization of Instantons, arXiv:1408.0012.

[19] S. R. Coleman, Quantum Tunneling and Negative
Eigenvalues, Nucl. Phys. B298, 178 (1988).

[20] H. Amann and P. Quittner, A nodal theorem for coupled
systems of Schrödinger equations and the number of bound
states, J. Math. Phys. 36, 4553 (1995).

[21] J. C. Hackworth and E. J. Weinberg, Oscillating bounce
solutions and vacuum tunneling in de Sitter spacetime,
Phys. Rev. D 71, 044014 (2005).

[22] G. Lavrelashvili, The Number of negative modes of the
oscillating bounces, Phys. Rev. D 73, 083513 (2006).

[23] B.-H. Lee, C. H. Lee, W. Lee, and C. Oh, Oscillating
instanton solutions in curved space, Phys. Rev. D 85,
024022 (2012).

[24] L. Battarra, G. Lavrelashvili, and J.-L. Lehners, Negative
Modes of Oscillating Instantons, Phys. Rev. D 86, 124001
(2012).

[25] B.-H. Lee, W. Lee, D. Ro, and D.-h. Yeom, Oscillating
Fubini instantons in curved space, Phys. Rev. D 91, 124044
(2015).

QUANTUM TUNNELING FROM PATHS IN COMPLEX TIME PHYSICAL REVIEW D 94, 064032 (2016)

064032-11

http://dx.doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1016/0550-3213(77)90086-4
http://dx.doi.org/10.1103/PhysRevD.15.2929
http://dx.doi.org/10.1103/PhysRevD.16.1248
http://dx.doi.org/10.1103/PhysRevD.16.1248
http://dx.doi.org/10.1103/PhysRevD.16.1762
http://dx.doi.org/10.1103/PhysRevD.16.1762
http://dx.doi.org/10.1103/PhysRevD.21.3305
http://dx.doi.org/10.1134/1.1887914
http://dx.doi.org/10.1088/1751-8113/41/35/352003
http://dx.doi.org/10.1088/1751-8113/41/35/352003
http://dx.doi.org/10.1103/PhysRevLett.104.061601
http://dx.doi.org/10.1103/PhysRevLett.104.061601
http://dx.doi.org/10.1088/1751-8113/44/37/372001
http://dx.doi.org/10.1103/PhysRevD.84.125023
http://dx.doi.org/10.1103/PhysRevLett.116.011601
http://dx.doi.org/10.1103/PhysRevLett.116.011601
http://arXiv.org/abs/1510.03435
http://arXiv.org/abs/1510.03435
http://dx.doi.org/10.1103/PhysRevD.92.065001
http://dx.doi.org/10.1103/PhysRevD.92.065001
http://dx.doi.org/10.1088/1367-2630/16/6/063006
http://dx.doi.org/10.1088/1367-2630/16/6/063006
http://arXiv.org/abs/1408.0012
http://dx.doi.org/10.1016/0550-3213(88)90308-2
http://dx.doi.org/10.1063/1.530907
http://dx.doi.org/10.1103/PhysRevD.71.044014
http://dx.doi.org/10.1103/PhysRevD.73.083513
http://dx.doi.org/10.1103/PhysRevD.85.024022
http://dx.doi.org/10.1103/PhysRevD.85.024022
http://dx.doi.org/10.1103/PhysRevD.86.124001
http://dx.doi.org/10.1103/PhysRevD.86.124001
http://dx.doi.org/10.1103/PhysRevD.91.124044
http://dx.doi.org/10.1103/PhysRevD.91.124044


[26] G. V. Lavrelashvili, V. A. Rubakov, and P. G. Tinyakov,
Tunneling transitions with gravitation: breaking of the
quasiclassical approximation, Phys. Lett. 161B, 280 (1985).

[27] T. Tanaka and M. Sasaki, False vacuum decay with gravity:
Negative mode problem, Prog. Theor. Phys. 88, 503 (1992).

[28] G. V. Lavrelashvili, Negative mode problem in false vacuum
decay with gravity, Nucl. Phys. B, Proc. Suppl. 88, 75
(2000).

[29] A. Khvedelidze, G. V. Lavrelashvili, and T. Tanaka, On
cosmological perturbations in closed FRW model with
scalar field and false vacuum decay, Phys. Rev. D 62,
083501 (2000).

[30] S. Gratton and N. Turok, Homogeneous modes of cosmo-
logical instantons, Phys. Rev. D 63, 123514 (2001).

[31] G. V. Dunne and Q.-h. Wang, Fluctuations about Cosmo-
logical Instantons, Phys. Rev. D 74, 024018 (2006).

[32] L. Battarra, G. Lavrelashvili, and J.-L. Lehners, Zoology of
instanton solutions in flat potential barriers, Phys. Rev. D
88, 104012 (2013).

[33] H. Lee and E. J. Weinberg, Negative modes of Coleman-De
Luccia bounces, Phys. Rev. D 90, 124002 (2014).

[34] M. Koehn, G. Lavrelashvili, and J.-L. Lehners, Towards a
Solution of the Negative Mode Problem in Quantum
Tunnelling with Gravity, Phys. Rev. D 92, 023506 (2015).

[35] S. Gielen and N. Turok, Perfect Quantum Cosmological
Bounce, Phys. Rev. Lett. 117, 021301 (2016).

[36] S. Bramberger, T. Hertog, J.-L. Lehners, and Y. Vreys (to be
published).

BRAMBERGER, LAVRELASHVILI, and LEHNERS PHYSICAL REVIEW D 94, 064032 (2016)

064032-12

http://dx.doi.org/10.1016/0370-2693(85)90761-0
http://dx.doi.org/10.1143/ptp/88.3.503
http://dx.doi.org/10.1016/S0920-5632(00)00756-8
http://dx.doi.org/10.1016/S0920-5632(00)00756-8
http://dx.doi.org/10.1103/PhysRevD.62.083501
http://dx.doi.org/10.1103/PhysRevD.62.083501
http://dx.doi.org/10.1103/PhysRevD.63.123514
http://dx.doi.org/10.1103/PhysRevD.74.024018
http://dx.doi.org/10.1103/PhysRevD.88.104012
http://dx.doi.org/10.1103/PhysRevD.88.104012
http://dx.doi.org/10.1103/PhysRevD.90.124002
http://dx.doi.org/10.1103/PhysRevD.92.023506
http://dx.doi.org/10.1103/PhysRevLett.117.021301

