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In this paper, we study a physical system that is composed of a massive charged scalar field linearly
coupled to a charged rotating Kerr-Newman black hole. Given the parameters of the black hole and a
specific set of "quantum" numbers, the parameter space of the scalar field, which is a plane spanned by its
mass and charge, is divided into five partitions by three simple constraint lines and the existence line of
scalar clouds. The physical properties of the system in these partitions are presented. It is found that
superradiant instability may be possibly caused only in two of the partitions. In particular, it is shown that
both the mass and charge of the scalar clouds are bounded in a limited region. Our results may be used to
rapidly judge the possible occurrence of superradiant instability and the existence of scalar clouds around a
given black hole.
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I. INTRODUCTION

It is known that, contrary to static Schwarzschild black
holes, rotating Kerr black holes can support linearized
stationary scalar configurations in their exterior regions.
The existence of these stationary configurations is inti-
mately related to superradiance and quasibound states of
the scalar field [1–3].
Generally speaking, the interaction between the central

black hole and the massive scalar field will prevent low-
frequency modes with

0 < ω < μ ð1Þ

from escaping to spatial infinity, where ω and μ are,
respectively, the frequency and mass of the scalar field.
For the modes that are trapped by the central black hole, if
they further satisfy the superradiant condition, that is,

0 < ω < ωc; ð2Þ

where ωc is the critical frequency for superradiant scatter-
ing, they are growing in time and can extract energy and
angular momentum from the black hole and, thus, trigger
the superradiant instability of the black hole. However, for
those modes with ω > ωc, they are decaying in time.
Precisely at the threshold ω ¼ ωc, the imaginary part of the
frequency vanishes, and these trapped modes are in
equilibrium with the black hole. These scalar modes that
do not grow or decay in time are dubbed scalar clouds [1,2].
The study of scalar clouds not only is of interest from the
viewpoint of the black-hole theory, but can be also
considered as a step to investigate hairy black holes [3].

In a series of interesting work by Hod [4–6], they find that
there is an upper bound for the scalar mass to form a
potential well outside a Kerr black hole, and thus the mass
of stationary scalar clouds in a Kerr space-time is bounded
in a limited regime.
Recently, it has been shown that massive charged scalar

clouds can also exist in the exterior space-time region of a
Kerr-Newman black hole [7,8]. Hod has derived an
analytical formula which determines the discrete spectrum
of scalar field masses, corresponding to the clouds of the
massive charged scalar fields in the background of a near-
extremal Kerr-Newman black hole [8]. Benone et al. make
numerically a scan in the parameter space of Kerr-Newman
black holes to find the location of the existence lines of
clouds with different quantum numbers [7].
In this paper, we study the superradiant instability and

the existence of scalar clouds in Kerr-Newman space-time
from a different perspective. For a given black hole and a
specific set of integer "quantum" numbers, the clouds are
possible only along a one-dimensional subset of the two-
dimensional parameter space of a massive charged scalar
field, called an existence line. We will keep a firm grasp on
the existence line and analyze the parameter space of the
scalar field.
The paper is organized as follows. In Sec. II, the

separation of variables procedure for solving the scalar
wave equation in the Kerr-Newman background and the
boundary conditions to be imposed in order to obtain bound
state solutions are reviewed. In Sec. III, using three simple
constraint lines and the existence line of scalar clouds
which is obtained by numerical integration, we divide the
parameter space of the scalar field, a plane spanned by its
mass and charge, into five partitions and present the
physical properties of the scalar-field–black-hole system
in these regimes. Finally, we summary the important results
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and make some remarks in the conclusion section.
Throughout the paper, we use natural units in which
G ¼ c ¼ ℏ ¼ 1.

II. KERR-NEWMAN BLACK HOLES AND A
CHARGED MASSIVE SCALAR FIELD

We shall consider a physical system that consists of a
massive, charged test scalar field minimally coupled to a
rotating charged black hole. The background space-time is
described by the Kerr-Newman line element, which, in
standard Boyer-Lindquist coordinates, is given by

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

½ðr2 þ a2Þdϕ − adt�2; ð3Þ

where

ρ2 ≡ r2 þ a2cos2θ; Δ≡ r2 − 2Mrþ a2 þQ2: ð4Þ

Here, M, Q, and a are the mass, charge, and angular
momentum per unit mass of the Kerr-Newman black hole,
respectively. Without loss of generality, we consider only
the cases in which Q and a are positive numbers. The
background electromagnetic potential reads

Aμ ¼
�
−
Qr
ρ2

; 0; 0;
aQr sin2 θ

ρ2

�
: ð5Þ

There are two horizons of the black hole, which are located
at the zeros of Δ:

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
: ð6Þ

The dynamics of a charged massive scalar field Ψ in the
Kerr-Newman space-time is described by the Klein-Gordon
wave equation

ð∇α − iqAαÞð∇α − iqAαÞΨ ¼ μ2Ψ; ð7Þ

where ∇α denotes the covariant derivative in the Kerr-
Newman geometry and μ and q are the mass and charge of
the scalar field, respectively. The above equation can be
separated, if we decompose the scalar field as

Ψðt; r; θ;ϕÞ ¼
X
l;m

RlmðrÞSlmðθÞeimϕe−iωt; ð8Þ

where ω is the conserved frequency of the wave field and l
and m are the spheroidal harmonic index and the azimuthal
harmonic index of the mode, respectively. The angular
function SlmðθÞ are the standard spheroidal harmonics
which are ruled by

1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�

þ
�
Klm þ ðμ2 − ω2Þa2sin2θ − m2

sin2θ

�
Slm ¼ 0; ð9Þ

where Klm are separation constants which can be expressed
as

Klm ¼
X∞
k¼0

ck½a2ðμ2 − ω2Þ�k; ð10Þ

where c0 ¼ lðlþ 1Þ and other coefficients ck may be found
in Refs. [9,10]. The radial function Rlm obey the radial
equation

Δ
d
dr

�
Δ
dRlm

dr

�
þURlm ¼ 0; ð11Þ

where

U ¼ ½ωða2 þ r2Þ − am − qQr�2
þ Δ½2amω − Klm − μ2ðr2 þ a2Þ�: ð12Þ

What we are interested is the bound state solutions, so
an exponentially decaying behavior towards spatial infin-
ity is required. In addition, any state in a black-hole
background should have a purely ingoing boundary
condition at the horizon (in a frame corotating with
the horizon). Hence, the physically accepted boundary
conditions read

RlmðrÞ ∼
(
e−iðω−ωcÞr� for r → rþ;

e−
ffiffiffiffiffiffiffiffi
μ2−ω2

p
r

r for r → ∞:
ð13Þ

Here, the tortoise coordinate r� and the critical frequency
ωc are, respectively, defined by

dr�
dr

¼ r2 þ a2

Δ
ð14Þ

and

ωc ¼ mΩH þ qΦH; ð15Þ

where ΩH ¼ a
r2þþa2 is the horizon angular velocity and

ΦH ¼ Qrþ
r2þþa2 is the horizon electric potential.

Obviously, for a given scalar field’s mass μ and charge
parameter q, the boundary conditions (13) single out a
discrete set of resonance frequencies indexed by node
numbers n ¼ 0; 1; 2;….
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III. PARTITIONING THE PARAMETER SPACE
OF THE SCALAR FIELD

A. Three constraint lines in the parameter space

We define a new radial function [6] by

ψ lm ≡ Δ1=2Rlm: ð16Þ

Then, Eq. (11) can be rewritten in the form of a
Schrödinger-like wave equation

d2ψ lm

dr2
þ ðω2 − VÞψ lm ¼ 0; ð17Þ

where

ω2 − V ¼ U þM2 − a2 −Q2

Δ2
: ð18Þ

The asymptotic behavior of the effective potential is given
by

VðrÞ ¼ μ2 −
2ð2Mω2 − qQω −Mμ2Þ

r
þO

�
1

r2

�
: ð19Þ

As discussed above, the instability of the Kerr-Newman
space-time to massive scalar perturbations is a consequence
of massive modes which are trapped inside the effective
potential well outside the black hole. For the effective
potential to have a trapping well, its asymptotic derivative
must be positive, i.e., dV

dr → 0þ as r → ∞ [6]. Thus, from
Eq. (19), it is needed that

ω2 −
qQ
2M

ω −
μ2

2
> 0: ð20Þ

Then, the solutions of the above inequality read

ω > fðμ; qÞ≡ qQ
4M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

2
þ q2Q2

16M2

s
ð21Þ

or

ω <
qQ
4M

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

2
þ q2Q2

16M2

s
: ð22Þ

Obviously, solution (22) should be omitted, due to the fact
that the right-hand side of it is always negative.
Inspired from the inequations (1), (2), and (21), for a

given black hole and a specific set of quantum numbers (n,
l, m), it would be useful to consider the following three
constraint lines in the parameter space of the scalar field
[(μ, q) plane].
(a) fðμ; qÞ ¼ ωc.—This line is actually a branch of

hyperbolic curve in the (μ, q) plane

qQ ¼ ABþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 8ðB2 − 1ÞM2μ2

p
B2 − 1

; ð23Þ

where two dimensionless quantities A and B are, respec-
tively, defined by

A ¼ 4mMΩH; B ¼ 1 −
4Mrþ
r2þ þ a2

: ð24Þ

(b) fðμ; qÞ ¼ μ.—The line is a simple straight line

qQ ¼ Mμ: ð25Þ

Note that this line has nothing to do with the angular
momentum of the black hole and the quantum numbers
(n, l, m). Interestingly, the line is just the bound of the
necessary condition obtained in Ref. [11] in the regime of
qQ ≪ 1 and Mμ ≪ 1, for confining the wave in the
potential well. Obviously, this line should not be discussed
only in the limit of qQ ≪ 1 and Mμ ≪ 1.
(c) μ ¼ ωc.—It is easy to find that this line is also a

straight line:

qQ ¼ r2þ þ a2

rþ
μ −m

a
rþ

: ð26Þ

It is worth noting that the above three lines intersect at
one point

P1∶ðμ; qÞ ¼ ðμ1; q1Þ ¼
�

ma
Mrþ −Q2

;
mMa

QðMrþ −Q2Þ
�
:

ð27Þ
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FIG. 1. The parameter space [half of the (μ, q) plane] of the
scalar field in the background of Kerr-Newman space-time,
which is partitioned by three constraint lines a, b, and c and
the existence line for scalar clouds ω ¼ ωc. Here, the other
parameters are fixed as n ¼ 0, l ¼ m ¼ 5, Q ¼ 0.25M, and
a ¼ 0.968235M.
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Besides, curve a and line c also intersect at another
point:

P2∶ðμ; qÞ ¼ ðμ2; q2Þ ¼
�
0;−

ma
Qrþ

�
: ð28Þ

B. Existence line of scalar clouds

In Fig. 1, the above three lines are plotted in half of the
(μ, q) plane (μ ≥ 0), given a set of parameters (a, Q, l, m).
In addition, another curve

ω ¼ ωc; ð29Þ

which corresponds to the existence line for scalar clouds, is
also plotted. Different from the three constraint lines, the
existence line for scalar clouds can be obtained only by
solving the radial equation (11) with boundary condition
(13) as a deformed eigenvalue problem. To this end, we use

a numerical method similar to the one used in Refs. [7,11]
but with a modified strategy, which can be summarized as
(i) first substituting Eq. (29) into the radial equation (11)
and inputting the value of black-hole parameters and
quantum numbers [to be specific, fixing the value of
(a, Q, l, m) and taking the black hole’s mass M as a
normalization scale]; (ii) for a given value of μ, integrating
the radial equation and obtaining a value of q by a one-
parameter shooting procedure; and (iii) then changing the
value of μ and repeating step (ii). After such a process, q as
a function of μ should be obtained in the end:

q ¼ qða;Q; n; l; m; μÞ: ð30Þ

Note that we are mainly interested in solutions of the radial
function with n ¼ 0 in this work. In other words, we
perform a nodeless shooting in the practical computation.
To gain a solution with nodes, the procedure is similar.
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FIG. 2. Left panel: Existence lines (the dot-dashed lines) for nodeless (n ¼ 0) scalar clouds with various quantum numbers in the
(μ, q)-parameter space of the scalar field. The dashed line denotes straight line (25), and the solid lines denote hyperbolic curves (23).
Right panel: The corresponding ratio between critical frequency ωc and mass μ of the scalar cloud as a function of μ. Here, the chargeQ
and angular momentum a of the black hole are fixed to be 0.25M and 0.968235M, respectively.
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FIG. 3. Existence lines (the dot-dashed lines) for scalar clouds with given quantum numbers (n ¼ 0, l ¼ m ¼ 1) in the (μ, q)-
parameter space of the scalar field for different black-hole parameters. The dashed lines and the solid lines denote straight line (25) and
hyperbolic curves (23), respectively. (Left panel: Q ¼ 0.25M; right panel: Q ¼ 0.8M.)
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Our numerical results are presented in Figs. 2 and 3. In
the two figures, the dot-dashed lines are the existence lines
for scalar clouds. It is found that scalar clouds exist only
within a limited region. In particular, for different sets of
parameters, the existence lines always join the two intersect
points P1 and P2 [see Eqs. (27) and (28)]. Actually, in the
process of computation, we find that the existence lines
cannot arrive at the two points but can only approach
infinitely to them. This is reasonable, because, at the points
P1 and P2, μ equals ωc (especially, μ ¼ ωc ¼ 0 at P2); then
from boundary condition (13), if there exist scalar clouds
with ω ¼ ωc, the clouds would stretch to spatial infinity.
From the right panel in Fig. 2, we can see that, as μ moves
closer to its maximum value, the ratio ωc=μ approaches to
one from below as expected.
Another interesting observation from Figs. 2 and 3 is

that, for fixed black-hole parameters, the cloud’s charge q
grows monotonically as μ increases, and when μ is
relatively small, q would take a negative value.
Physically, there would be a simple explanation for this:
When μ increases, it needs more Coulomb repulsion (a
larger positive q) to maintain the equilibrium with the
gravitational attraction; however, when μ is relatively small,
the gravitational attraction is not enough to maintain
stationary scalar configurations outside the Kerr-Newman
black hole, and a negative value of q is thus needed.

C. Five partitions in the ðμ;qÞ plane
Given three constraint lines and the existence line of

scalar clouds discussed above, the (μ, q) plane can be
divided into five partitions as illustrated in Fig. 1. Note that
here we are interested only in the region spanned from P2 to
P1 in the (μ, q) plane. The physical properties of the system
within various partitions are summarized in Table I. It
should be pointed out that only when the three conditions

[i.e., superradiance (2), potential well (21), and exponential
decaying (1)] are met is it possible to cause superradiant
instability. Therefore, superradiant instability can occur
only within partitions II and III.

IV. CONCLUSION

In this work, we have investigated a massive charged
scalar field linearly coupled to a charged rotating Kerr-
Newman black hole. For a given black hole and a specific set
of quantum numbers, we have managed to divide the
parameter space of the scalar field, a plane spanned by its
mass and charge, into five partitions endowed with different
physical properties by three simple constraint lines and the
existence line of scalar clouds. The physical properties of the
system in these partitions are presented. It is found that
superradiant instability may be possibly caused only in two
of thepartitions. Inparticular,we showthatboth themass and
charge of the scalar clouds are bounded in a limited region.
Our results can be used to rapidly judge the possible

occurrence of superradiant instability and the existence of
scalar clouds around a given black hole without solving a
boundary value problem of differential equation. For
instance, in the static limit ða → 0Þ, points P1 and P2

move closer together, and the space between tapers. If
a ¼ 0, P1 ¼ P2 ¼ ð0; 0Þ, which means the existence line
will be degenerated and partitions II, III, and IV will all
have disappeared. Thus, there is no superradiant instability
in Reissner-Nordström space-time [12–14], and no scalar
clouds can be stably distributed around it.
Finally, our research presented here is limited to the

scalar field minimally coupled to the gravitational and
electromagnetic field of a black hole. It would be of interest
to generalize our study to the field with self-interaction or
nonminimal couplings. Work in this direction will be
reported in the future.

TABLE I. A summary on some physical properties of the scalar-field–black-hole system in various partitions.

Partition Case Superradiance Potential well Exponential decaying Superradiant instability

I ω < μ < f < ωc Y N Y N
μ < ω < f < ωc Y N N N
μ < f < ω < ωc Y Y N N
μ < f < ωc < ω N Y N N

II ω < f < μ < ωc Y N Y N
f < ω < μ < ωc Y Y Y Y
f < μ < ω < ωc Y Y N N
f < μ < ωc < ω N Y N N

III f < ω < ωc < μ Y Y Y Y
ω < f < ωc < μ Y N Y N

IV f < ωc < ω < μ N Y Y N
f < ωc < μ < ω N Y N N

V ω < ωc < f < μ Y N Y N
ωc < ω < f < μ N N Y N
ωc < f < ω < μ N Y Y N
ωc < f < μ < ω N Y N N
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