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We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a
self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is
shown that in Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a
particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic
vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a
(pseudo)Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a
spatially flat Friedmann-Lemaître-Robertson-Walker expanding universe with self-similarity and obtain
solutions of open and closed strings, which have various nontrivial configurations depending on the rate of
the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time
while keeping its configuration by the balance between the effects of the cosmic expansion and string
tension. We also show the instability for linear radial perturbation of the circular solutions.
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I. INTRODUCTION

In the context of modern physics, a string has been of
strong interest for a long time. At large scales, one-
dimensional topological defects formed in the early
Universe are referred to as cosmic strings, which have
sizes as large as each cosmological horizon [1]. At small
scales, strings are thought of as elementary components in
string theories [2]. Under these circumstances, it is impor-
tant to develop our understanding of classical string
dynamics in curved spacetimes.
In Nambu-Goto string theory, string dynamics is gov-

erned by second-order nonlinear partial differential equa-
tions in two variables. Although some solutions are not
always analytically tractable, some string solutions have
been constructed with the aid of symmetry in the following
target spacetimes: Minkowski [3–8], black hole [9–13], and
cosmological spacetimes [14–18]. For example, stationar-
ity of a string is defined by a timelike Killing vector field in
a target spacetime, which is tangent to the world sheet.
Since the Killing vector field generates the time evolution
of the string, the equation of motion only determines its
configuration on a time slice. This idea was formulated as
the stationary strings [19], for which the Nambu-Goto
equation reduces to a geodesic equation, which is ordinary
differential equations in a single variable. It was general-
ized to the cohomogeneity-one strings [20], which are
defined as the world sheet to which any Killing vector field
(not necessarily stationary) is tangent. In physically

realistic systems, these are candidates for final states after
radiating gravitational waves [21].
The Killing vector field can be generalized to the

homothetic vector field, which is associated with self-
similarity of a spacetime. A spacetime that admits a
homothetic vector field is called a self-similar spacetime.
This has been widely studied [22–34] and was highlighted
as the self-similar hypothesis [35], which states that
solutions in general relativity naturally develop toward a
self-similar form asymptotically under some physical
circumstances. It, therefore, may be reasonable to consider
self-similar spacetimes to be physically realistic in cosmol-
ogy and astrophysics.
We are now in the position of having an interest in the

dynamics of a string with self-similarity on a self-similar
spacetime, that is, a self-similar string. Since this is a
generalization of a stationary string on a stationary space-
time, we can expect a self-similar string to be a candidate
for a final state in a self-similar spacetime. These solutions
will model cosmic strings in the late time of an expanding
universe. The purpose of this paper therefore is to formulate
a self-similar string and to demonstrate its qualitative
behavior.
This paper is organized as follows. In the following

section, we propose a definition of a self-similar string in
terms of self-similarity on a self-similar target spacetime.
On the basis of Nambu-Goto string theory, we obtain the
equation of motion for a self-similar string. In Sec. III, we
apply our formalism to a self-similar Nambu-Goto string in
a spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) expanding universe with self-similarity, which
includes the Minkowski spacetime as a special case.
Solving it in some integrable cases, we consider its
dynamics through analytical models. Section IV is devoted
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to a summary. Throughout this paper, we use geometrized
units, in which G ¼ 1 and c ¼ 1.

II. FORMULATION OF A SELF-SIMILAR STRING

Let ðM; gμνÞ be a D-dimensional self-similar spacetime,
i.e., a spacetime that admits a homothetic vector field ξμ,
which is defined by

£ξgμν ¼ 2Cgμν; ð1Þ

where μ and ν have the range 0; 1;…; D − 1, the left-hand
side denotes the Lie derivative of gμν with respect to ξμ, and
C is a constant. A homothetic vector field is said to be
proper ifC ≠ 0, which is unique up to a Killing vector field.
In the case where C ¼ 0, it is nothing but a Killing vector
field. Given a homothetic vector field ξμ, we are able to
introduce a local coordinate system xμ ¼ ðη; xÞ on M such
that

ξμ∂μ ¼ ∂η; ð2Þ

where η is called a homothetic coordinate and x ¼
ðx1; x2;…; xD−1Þ. In this coordinate system, if ξμ is timelike
or spacelike, gμν is generally written in the 1þ ðD − 1Þ
form

ds2 ¼ Ω2ðηÞ½fðxÞðdηþ BiðxÞdxiÞ2 þ hijðxÞdxidxj�; ð3Þ

where the Latin indices i; j;… have the range
1; 2;…; D − 1. Note that the functions f, Bi, and hij do
not depend on η, and ΩðηÞ ¼ eCη by virtue of Eq. (1). For a
null ξμ, the form (3) does not apply.1

Now let us define a self-similar string in terms of self-
similarity of ðM; gμνÞ by employing the way that was
introduced to define a cohomogeneity-one string [19,20].
Let Xμðτ; σÞ be embedding functions of a string, which
describes a two-dimensional world sheet. Then, we define a
self-similar string as a world sheet Σ to which a homothetic
vector field ξμ is tangent, that is,

ξ½μ _XνX0λ� ¼ 0; ð4Þ

where λ ¼ 0; 1;…; D − 1, the square bracket denotes
antisymmetrization, and the dot and prime are derivatives
with respect to τ and σ, respectively. Since a homothetic
vector field ξμ is tangent to Σ, the homothetic coordinate η
associated with ξμ can be introduced as a coordinate on Σ.
Therefore, we may parametrize the embedding functions in
the homothetic coordinate system ðη; xÞ as

Xμðτ; σÞ ¼ ðτ;XðσÞÞ; ð5Þ

where XðσÞ ¼ ðX1ðσÞ;…; XD−1ðσÞÞ. This expression
indeed satisfies Eq. (4). Once a theory is specified, the
equations of motion for XðσÞ reduce to ordinary differential
equations. Thus, the problem of determining the dynamics
of a self-similar string reduces to that of “a particle.”
However, it is still uncertain whether all the equations are
compatible because the equations for XðσÞ can be over-
determined. In what follows, we restrict ourselves to
consider a self-similar string in Nambu-Goto theory.
Then, we see that its equations of motion result in those
of a particle motion.

A. Nambu-Goto equation for a self-similar string

Let us assume that the dynamics of a self-similar string
on ðM; gμνÞ is governed by Nambu-Goto string theory. The
Nambu-Goto action is given by

S ¼ −μ
Z
Σ

ffiffiffiffiffiffi
−γ

p
dτdσ; ð6Þ

where μ is the string tension, and γ is defined as the
determinant of the induced metric γab ¼ gμνðXÞ∂aXμ∂bXν

on Σ, where a, b have τ, σ. When no confusion arises from
abbreviation, we omit the arguments Xμ from any function
in what follows. The variation of Eq. (6) with respect to Xμ

yields the Nambu-Goto equation

∂að ffiffiffiffiffiffi
−γ

p
γab∂bXμÞ þ ffiffiffiffiffiffi

−γ
p

γabΓμ
νλ∂aXν∂bXλ ¼ 0; ð7Þ

where γab is the inverse metric of γab, and Γμ
νλ denotes

the Christoffel symbol of gμν. Under the settings of
Eqs. (3)–(5), the induced metric has the form

γabdζadζb ¼ Ω2½fðdτ þ BdσÞ2 þ hdσ2�; ð8Þ

where ζa ¼ ðτ; σÞ and

B ¼ BiX0i; ð9Þ

h ¼ hijX0iX0j: ð10Þ

The determinant of γab is given by γ ¼ Ω4fh. Then, the
components of

ffiffiffiffiffiffi−γp
γab in terms of ζa are calculated as

ffiffiffiffiffiffi
−γ

p
γab ¼ −sgnðfÞ

ffiffiffiffiffiffiffiffiffiffiffi
−f=h

p �
B2 þ h=f −B

−B 1

�
: ð11Þ

Substituting Eq. (11) into Eq. (7) and dividing it byffiffiffiffiffiffi−γp
γσσ , we obtain Eμ ¼ 0, where

1We can construct a self-similar null string in the same way as
in Ref. [36] because a null ξμ is tangent to a null geodesic.
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Eμ ¼ X0ν∇νX0μ þ ðln
ffiffiffiffiffiffiffiffiffiffiffi
−f=h

p
Þ0X0μ

þ ðB2 þ h=fÞ _Xν∇ν
_Xμ −

ðB ffiffiffiffiffiffiffiffiffiffiffi
−f=h

p Þ0ffiffiffiffiffiffiffiffiffiffiffi
−f=h

p _Xμ

− 2BΓμ
νλ
_XνX0λ; ð12Þ

and ∇μ is the Levi-Civita covariant derivative associated
with gμν. Each component of Eμ ¼ 0 has the form

Eη ¼ −BiEi ¼ 0; ð13Þ

Ei ¼ Ei þ 2CðBihjk − δijBkÞX0jX0k ¼ 0; ð14Þ

where Bi ¼ hijBj, hij is the inverse of hij, and we have
defined Ei as

Ei ¼ X0jDjX0i −
d ln

ffiffiffiffiffiffiffiffiffi
−fh

p
dσ

X0i; ð15Þ

where Di denotes the Levi-Civita covariant derivative
associated with jfjhij. It immediately follows that a
solution of Eq. (14) always solves Eq. (13). This shows
that the assumptions for a self-similar string are compatible
with Nambu-Goto theory. Thus, we have obtained the
reduced Nambu-Goto equation (14) for a self-similar string
in a self-similar spacetime, which is identical to the
equations of motion for a particle in D − 1 dimensions,
as was expected.
In Refs. [19,20], the equations of motion for a coho-

mogeneity-one string were obtained by just taking the
variation of the reduced action. However, the present
analysis does not rely on this method. In fact, the reduced
action for a self-similar string, along with the assumptions
(2)–(5), is given by

S ¼ −μ
Z

Ω2
ffiffiffiffiffiffiffiffiffi
−fh

p
dτdσ: ð16Þ

The variation of this reduced action leads to Ei ¼ 0, which
is not equivalent to the equations of motion (14) in general.
This difference commonly happens when we consider a
reduced action, depending on how compatible the assump-
tions we consider are. Our calculation shows that if the
second term in Eq. (14) vanishes the equations obtained by
taking the variation of the reduced action (16) coincide with
the equations of motion for a self-similar string. In the next
section, we investigate in detail the conditions that the
second term in Eq. (14) vanishes.

B. Reduction to a geodesic equation

In particular situations where

CðBihjk − δijBkÞX0jX0k ¼ 0; ð17Þ

the reduced Nambu-Goto equation (14) further simplifies to
Ei ¼ 0, i.e.,

X0jDjX0i ¼ d ln
ffiffiffiffiffiffiffiffiffi
−fh

p
dσ

X0i: ð18Þ

This equation describes a geodesic flow on the orbit space
O of ξμ with the metric jfjhij. Hence, the problem of
finding a self-similar Nambu-Goto string on ðM; gμνÞ is
simplified to that of solving the geodesic equation on a
(pseudo)Riemannian space ðO; jfjhijÞ.
This situation can occur if any one of the conditions

ðiÞ C ¼ 0;

ðiiÞ Bi ¼ 0;

ðiiiÞ Bi∥X0i ð19Þ

is satisfied. Since Condition (i) corresponds to the case of a
cohomogeneity-one string, our formulation justifies the
reduced action method by use of a Killing vector field
developed in Refs. [19,20]. Condition (ii) means that the
homothetic vector field is hypersurface orthogonal and
certainly occurs as is seen in Sec. III. Condition (iii) can be
rewritten as ξi∥hijX0j.

III. SELF-SIMILAR NAMBU-GOTO STRING

A. Formulation in a self-similar expanding universe

In this section, we consider the dynamics of a self-similar
Nambu-Goto string in an expanding flat universe described
by the FLRW metric

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð20Þ

where ðt; x; y; zÞ are the comoving Cartesian coordinates,
and aðtÞ is the scale factor. For the metric to admit a proper
homothetic vector field ξμ, the scale factor is restricted to
have the form [37]

aðtÞ ¼ ðt=t0Þ1−1=C; ð21Þ

where C and t0 are nonzero constants, and then ξμ is given
by

ξμ∂μ ¼ Ct∂t þ r∂r: ð22Þ

The metric coincides with the Minkowski one when C ¼ 1.
For C ≠ 1, we take the sign of t0 to be t=t0 > 0.
Furthermore, we assume that a universe is expanding,
da=dt > 0. Thus, under the choice of ∂t to be future
directed, we take the coordinate range 0 < t < ∞ for
C > 1 or C < 0 and −∞ < t < 0 for 0 < C < 1. If we
consider that a universe is filled with a perfect fluid with the
equation of state p ¼ wρ, the parameters C and w are
related to each other as
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w ¼ 3 − C
3ðC − 1Þ ; ð23Þ

where w is a constant other than −1 and −1=3.
Moreover, we introduce a conformal time λ

defined by

λ ¼ λ0ðt=t0Þ1=C; ð24Þ

where λ0 ¼ Ct0. The metric then takes the form

ds2 ¼ ðλ=λ0Þ2ðC−1Þð−dλ2 þ dr2 þ r2dΩ2Þ; ð25Þ

where we have introduced the spherical-polar coordinates
ðr; θ;ϕÞ in the spatial part and dΩ2 ¼ dθ2 þ sin2 θdϕ2. The
homothetic vector field is given by ξμ∂μ ¼ λ∂λ þ r∂r. In
the following subsections, we introduce a local homothetic
coordinate system in Region I (r < jλj) and Region II
(jλj < r), where the homothetic vector field is timelike and
spacelike, respectively, and derive the equations of motion
for a self-similar string associated with ξμ. Hereafter, we
adopt the units in which jλ0j ¼ 1.

1. Region I (r < jλj)
Let us make the coordinate transformation in Region I

defined by

λ ¼ κeη cosh χ; ð26Þ

r ¼ eη sinh χ; ð27Þ

where κ ¼ sgnðλ0Þ, and the coordinates η and χ have the
range −∞ < η < ∞ and 0 < χ < ∞, respectively. The
metric is then transformed to

ds2 ¼ e2Cηðcosh χÞ2ðC−1Þð−dη2 þ dχ2 þ sinh2χdΩ2Þ;
ð28Þ

which in particular yields the Milne metric in C ¼ 1.
Since the form (28) fits into Eq. (3), the homothetic

vector field (22) has the same form as Eq. (2). We also
notice that the metric satisfies Condition (ii) discussed in
Sec. II B, so that the dynamics of a self-similar string is
determined by the geodesic equation (18). In the present
homothetic coordinate system ðη; χ; θ;ϕÞ, the embedding
functions are written as

Xμðτ; σÞ ¼ ðτ;XðσÞ;ΘðσÞ;ΦðσÞÞ; ð29Þ

where XiðσÞ are determined by the geodesic equation with
respect to the metric

jfjhijdxidxj ¼ ðcosh χÞ4ðC−1Þðdχ2 þ sinh2χdΩ2Þ; ð30Þ

which is conformal to the three-dimensional hyperbolic
space H3. In particular, a solution XiðσÞ for C ¼ 1 is
identified with a geodesic on H3.
Let us solve the geodesic equation by using the

Hamiltonian formalism. To rewrite this system in canonical
variables, we employ the Polyakov-type action with the
Lagrangian in the form

L ¼ 1

2N
jfjhij

dXi

dσ
dXj

dσ
þ N

2
; ð31Þ

where N is an auxiliary variable. Defining the canonical
momentum pi ¼ N−1jfjhijX0j conjugate to Xi, we obtain
the Hamiltonian

H ¼ N
2

�
p2
χ

ðcosh χÞ4ðC−1Þ þ
l2

ðcosh χÞ4ðC−1Þsinh2χ − 1

�
;

ð32Þ

where, without loss of generality, we have assumed
ΘðσÞ ¼ π=2, pθðσÞ ¼ 0, and pϕ ¼ l ≥ 0, because spheri-
cal symmetry is induced on ðO; jfjhijÞ. Since this
Hamiltonian does not depend on ϕ, the quantity l is a
constant of motion and is related to the strength of the
conserved angular momentum flux on the world sheet.
The Hamilton equation and the constraint H ¼ 0 yield

X 02 þ VðXÞ ¼ 0; ð33Þ

V ¼ l2

sinh2 χ
− ðcosh χÞ4ðC−1Þ; ð34Þ

Φ0 ¼ l
sinh2X

; ð35Þ

for which the gauge is fixed by N ¼ ðcoshXÞ4ðC−1Þ.
Equations (33) and (34) give us a one-dimensional problem
with the potential V. The first term of V is related to the
angular momentum flux and makes a potential barrier near
χ ¼ 0. The second term represents the effect of the cosmic
expansion because this includes C and turns to be flat in the
Minkowski background, C ¼ 1.
Let us classify the behavior of solutions in terms of l and

C. Since the C ¼ 1 case is analyzed in detail in Sec. III B 1,
we examine the case C ≠ 1 in what follows.
We consider qualitative properties of a solution with

l ¼ 0. Since l ¼ 0 leads to V < 0 and Φ0 ¼ 0, we obtain a
straight string on each of the constant η slices that passes
through χ ¼ 0 and asymptotically approaches χ ¼ ∞. On
the other hand, the configuration on each of the constant t
slices is a finite straight segment with the end points
moving at the speed of light. We can explicitly see the
dependence of string configuration on time slices in
Figs. 1(a)–1(c), which show these embeddings into the
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conformal diagrams of the spatially flat FLRW spacetimes.
The dark gray region denotes the world sheet, and black
dashed and red solid lines in Region I denote the constant η
and constant t slices, respectively. Note that this solution is
eventually identified with a cohomogeneity-one string that
possesses spatial homogeneity, and in addition, its analytic
continuation to Region II provides a straight line with

infinite length passing through r ¼ 0 on the constant t
slices. As shown in Ref. [14], a straight line solution is
stable in linear perturbations. To focus on a self-similar
string, we assume l > 0 in what follows.
For C > 1=2 (i.e., w < −5=3 or w > −1=3), V always

has a zero at χ ¼ χ�, where Vðχ�Þ ¼ 0 and is negative for
all χ ≥ χ�. It follows that a solution on each of the constant

FIG. 1. Embeddings of a self-similar Nambu-Goto string into the conformal diagram of the spatially flat FLRW spacetime with self-
similarity. Figures (a)–(c) are the case l ¼ 0 and l̄ ¼ 0, and Figs. (d)–(g) are the case l ≠ 0 and l̄ ≠ 0, in which l is restricted to 0 < l < lc
for C ≤ 1=2. The symbols i0, i�, andℐ� are spatial, timelike, and null infinity, respectively, þ and − of which indicate future and past,
respectively. The black thick dashed line is a singularity. The dark and light gray regions show a world sheet in Region I and in Region II,
respectively. The black thin dashed lines denote the constant η slices in Region I and the constant χ slices in Region II. The red and blue
solid lines are the constant t slices.
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η slices extends from χ ¼ χ� to χ ¼ ∞ (null infinity). In
Figs. 1(d) and 1(e), the world sheets are depicted with dark
gray in χ ≥ χ� of Region I.
For C < 1=2 (i.e., −5=3 < w < −1=3), V has at most

two zeros, χmin and χmax. The necessary and sufficient
condition for V to have zeros is

0 < l ≤ lc ¼
ð1 − 2CÞð1−2CÞ=2
½2ð1 − CÞ�1−C ; ð36Þ

where the equality l ¼ lc is achieved if χmin ¼ χmax. The
allowed range of a solution satisfying Eq. (36) is restricted
to χmin ≤ χ ≤ χmax, which implies that a closed string
configuration can be included. Figures 1(f) and 1(g) show
a string extended over a finite spatial section in Region I.
The special case χmin ¼ χmax is analyzed in detail in
Sec. III B 3.
The remaining is C ¼ 1=2 (i.e., w ¼ −5=3), of which the

FLRW universe is filled with phantom energy with special
properties (see, for example, [38]). Because V can be
negative for all χ ≥ tanh−1 l, where 0 < l < 1, a solution on
the constant η slices extends from χ ¼ tanh−1 l to χ ¼ ∞
(past null infinity), as can be seen in Fig. 1(e). We are able
to obtain an analytical solution in Sec. III B 2.
The end of this section is devoted to reconsidering the

dynamical evolution of a self-similar string in Region I in
the comoving coordinate system. If we synchronize the
string time coordinate to the comoving time t, then in
the comoving spherical-polar coordinate system a radial
solution in the proper length is written as aðtÞrðt; σÞ ¼
κt tanhXðσÞ. Hence, in the comoving Cartesian coordinate
system, we have

aðtÞXiðt; σÞ ¼ tQiðσÞ; ð37Þ

where QiðσÞ are functions of XðσÞ, ΘðσÞ, and ΦðσÞ. This
means the homothetic scaling of a self-similar string
configuration as t proceeds.

2. Region II (jλj < r)

Let us turn our attention to a self-similar Nambu-Goto
string in Region II. We define new coordinates χ̄ and η̄ as

λ ¼ κeη̄ sinh χ̄; ð38Þ

r ¼ eη̄ cosh χ̄; ð39Þ

where 0 < χ̄ < ∞ and −∞ < η̄ < ∞, so that Eq. (25) is
transformed as

ds2 ¼ e2Cη̄ðsinh χ̄Þ2ðC−1Þð−dχ̄2 þ dη̄2 þ cosh2χ̄dΩ̄2Þ:
ð40Þ

Since this form of the metric (40) fits into Eq. (3) and
also satisfies Condition (ii) in Sec. II B, the dynamics of a

self-similar string associated with the homothetic vector
field (22) is determined by the geodesic equation (18). In
this coordinate system, ðη̄; χ̄; θ̄; ϕ̄Þ, the embedding func-
tions are written as

Xμðτ; σÞ ¼ ðσ; X̄ðτÞ; Θ̄ðτÞ; Φ̄ðτÞÞ; ð41Þ

where we have interchanged τ and σ in comparison to
Eq. (5) because ξμ is spacelike in Region II. The embedding
functions X̄iðσÞ are determined by the geodesic equation
with respect to the metric

jfjhijdxidxj ¼ ðsinh χ̄Þ2ðC−1Þð−dχ̄2 þ cosh2χ̄dΩ̄2Þ: ð42Þ

In the same manner as used in Sec. III A 1, we obtain the
Hamiltonian for a geodesic in ðO; jfjhijÞ

H̄ ¼ N̄
2

�
−

p2
χ̄

ðsinh χ̄Þ4ðC−1Þ þ
l̄2

ðsinh χ̄Þ4ðC−1Þcosh2χ̄ þ 1

�
;

ð43Þ

where N̄ is a Lagrange multiplier enforcing a constraint,
and without loss of generality, we have assumed that
Θ̄ðτÞ ¼ π=2, pθ̄ðσÞ ¼ 0, and l̄ ¼ pϕ̄ ≥ 0. Then the
Hamilton equation and the constraint H̄ ¼ 0 lead to

_̄X
2 þ V̄ðXÞ ¼ 0; ð44Þ

V̄ ¼ −
l̄2

cosh2χ̄
− ðsinh χ̄Þ4ðC−1Þ; ð45Þ

_̄Φ ¼ l̄
cosh2 X̄

; ð46Þ

where we have chosen N̄ ¼ ðsinh X̄Þ4ðC−1Þ in this gauge.
Equations (44) and (45) give us a one-dimensional problem
with the potential V̄. Let us classify the behavior of the
solutions in terms of l̄ and C in what follows.
For C > 1 (i.e., w > −1=3), a self-similar string on each

of the constant χ̄ slices has an end point at η̄ ¼ 0 on the
initial singularity and asymptotically approaches η̄ ¼ ∞
(spatial infinity). In the limit χ̄ → 0, this string reaches the
initial singularity, and in the limit χ̄ → ∞, it approaches the
null hypersurface to consist of λ ¼ r and part of future null
infinity. In Figs. 1(a) and 1(d), we can see the embedding of
such solutions into the conformal diagrams of the spatially
flat FLRW spacetimes, where the light gray region denotes
the world sheet in Region II. The black thin dashed lines
denote the constant χ̄ slices, and the blue solid lines denote
the constant t slices. These figures explicitly show that a
string on the constant t slices in Region II has an end point
at r ¼ jλj, which moves at the speed of light, and a
boundary at spatial infinity.
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For 0 < C < 1 (i.e., w < −1), a self-similar string on the
constant χ̄ slices has an end point at η̄ ¼ 0 (big rip
singularity), whereas the other asymptotically approaches
η̄ ¼ ∞ (spatial infinity), as seen in Figs. 1(b), 1(e), and 1(f).
In the limit χ̄ → ∞, this string approaches the null hyper-
surface made up of λ ¼ −r and part of past null infinity and
encounters the big rip singularity at χ̄ ¼ 0.
For C < 0 (i.e., −1 < w < −1=3), a solution on the

constant χ̄ slices shows that a string extends to two
pieces of spatial infinity, as seen in Figs. 1(c)
and 1(g). In the limit χ̄ → ∞, this string reaches the
null hypersurface composed of λ ¼ −r and part of the
initial null singularity and asymptotically approaches
χ̄ ¼ 0 (future null infinity).
For l̄ ¼ 0, a self-similar string results in a cohomoge-

neity-one string of half line with the end point moving at
the speed of light. This analytical continuation to Region I
can be an infinite straight line passing through r ¼ 0. We
assume l̄ > 0 in what follows.

B. Analytical solutions

In the following sections, we investigate analytical
solutions to describe a self-similar string in an FLRW
expanding universe with self-similarity.

1. C = 1 (Minkowski spacetime)

Let us analyze a self-similar Nambu-Goto string asso-
ciated with ξμ in C ¼ 1 (i.e., Minkowski spacetime). In
Region I, we can obtain a solution from Eqs. (33)–(35) in
the form

coshX ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
cosh σ; ð47Þ

cosΦ ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ tanh2σ

p ; ð48Þ

where, without loss of generality, we have fixed each
integral constant as coshXð0Þ ¼ ð1þ l2Þ1=2 and Φð0Þ ¼ 0
and have taken a branch in Eq. (48). In the Cartesian
coordinate system, this solution is rewritten in the form
Xμðτ; σÞ ¼ ðTðτ; σÞ; Xðτ; σÞ; Yðτ; σÞ; 0Þ, where

T ¼ κeτ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
cosh σ; ð49Þ

X ¼ leτ cosh σ; ð50Þ

Y ¼ eτ sinh σ: ð51Þ

These functions indeed solve the two-dimensional wave
equation −Ẍμ þ X00μ ¼ 0, which is derived from Eq. (7)
because the gauge choice of this solution is the conformal
gauge,

ffiffiffiffiffiffi−γp
γab ¼ ηab.

As expected from the fact that Eqs. (47) and (48) are
identical to a geodesic equation in H3, the solution

describes a straight line on each of the constant t slices
such that

Xðt; yÞ ¼ κ
ltffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p ; ð52Þ

where we have introduced t and y as new string parameters
that must satisfy the inequality

���� yt
���� < 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2
p : ð53Þ

This is required from the fact that ξμ is timelike in Region I.
Since the string moves in x-direction uniformly, we can

always find the static frame of the string by applying the
Lorentz transformation. Hence, without loss of generality,
we may choose l ¼ 0. In the region r < −t, this solution
shows a physical picture as follows: At an initial time, e.g.,
t ¼ −1, the string is placed on the y axis with the proper
length 2, shrinks to the length 2jtj at time t, which means
that the end points approach each other at the speed of light,
and finally collapses to a point in the limit t → 0, whereas
in the region r < t, we obtain its time reversal picture.
Let us focus on a self-similar Nambu-Goto string in

Region II. We can solve Eqs. (44)–(46) as

sinh X̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̄2

p
sinh τ; ð54Þ

cos Φ̄ ¼ l̄ tanh τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̄2 tanh2 τ

p ; ð55Þ

where 0 < τ < ∞, without loss of generality; we have
chosen that sinh X̄ð0Þ ¼ 0 and cos Φ̄ð0Þ ¼ 0 and have
taken a branch in Eq. (55). In the Cartesian coordinates,
this solution is written as Xμðτ; σÞ ¼ ðT̄ðτ; σÞ; X̄ðτ; σÞ;
Ȳðτ; σÞ; 0Þ, where

T̄ ¼ κeσ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̄2

p
sinh τ; ð56Þ

X̄ ¼ l̄eσ sinh τ; ð57Þ

Ȳ ¼ eσ cosh τ: ð58Þ

After the reparametrization to t and y, the form of this
solution coincides with Eq. (52) under identifying l to l̄,
where these string parameters are restricted by the con-
dition that ξμ is spacelike, jy=tj > 1=ð1þ l̄2Þ1=2. Hence,
this solution describes a half line on each constant t and
moves in x-direction uniformly. The end point moves at the
speed of light.
These results explicitly show that the solution obtained

in Region I can be analytically continued to Region II
through the boundary between these regions. The
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maximally extended string shows a straight line, which is
cohomogeneity-one, with boundaries at spatial infinity.

2. C = 1=2

Let us consider a self-similar Nambu-Goto string asso-
ciated with ξμ in the expanding universe with C ¼ 1=2,
which is filled with the phantom energy of w ¼ −5=3.
Assuming 0 < l < 1, in which Eq. (33) has a real solution
as examined in Sec. III A 1, we obtain a solution in Region I

coshX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − l2Þσ2 þ 1

1 − l2

r
; ð59Þ

tanΦ ¼ −
l

1 − l2
σ−1; ð60Þ

where, without loss of generality, we have chosen
each integral constant as coshXð0Þ ¼ 1=ð1 − l2Þ1=2 and
Φð0Þ ¼ π=2. Since X → ∞ as σ → �∞, this string on the
constant η slices possesses boundaries at χ ¼ ∞ (past null
infinity) and, hence, is an open string with infinite length.
In the comoving Cartesian coordinate system, on the other
hand, the solution is of the form

Yðt; xÞ ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt=t0Þ4 − x2

q
; ð61Þ

where t0 ¼ −2 in our units, and we have introduced t and x
as new string parameters. This shows a semiellipse on
each constant t and includes end points at ðx; y; zÞ ¼
ð�ðt=t0Þ2; 0; 0Þ, where each segment moves at the speed
of light. These two points of view are illustrated in
Fig. 1(e), where the dark gray region shows the embedding
of this solution, and black dashed and red solid lines denote
the constant η and t slices, respectively.
It is noteworthy that the analytic extension of the

solution through y ¼ 0 is an ellipse with the vertices
moving at the speed of light. As discussed at the end of
Sec. III A 1, the major and minor axes in proper length are
proportional to t and are getting smaller and smaller as t
increases from −∞ to 0.
Let us turn our attention to a solution in Region II.

Integrating Eqs. (44)–(46), we obtain

sinh X̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ l̄2Þτ2 − 1

1þ l̄2

r
ð62Þ

tan Φ̄ ¼ −
l

1þ l̄2
τ−1; ð63Þ

where, without loss of generality, τ0 < τ < ∞, in which
τ0 ¼ 1=ð1þ l̄2Þ, and we have chosen sinh X̄ðτ0Þ ¼ 0,
tan Φ̄ðτ0Þ ¼ −l̄, and the branch tan−1 l̄ < Φ̄ < π, where
π=2 < tan−1 l̄ < π. Then, the solution describes an open
string on the constant η̄ slices with boundaries at spatial

infinity. This solution in the comoving Cartesian coordinate
system takes the form

X̄ðt; yÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt=t0Þ4 þ y2=l̄2

q
; ð64Þ

where t and y have been taken to new parameters. Hence,
this string on the constant t slices shows a hyperbola in the
second quadrant on z ¼ 0 and includes an end point at
ðx; y; zÞ ¼ ð−ðt=t0Þ2; 0; 0Þ moving at the speed of light. In
Fig. 1(e), the light gray region shows the world sheet of this
solution, on which black dashed and blue solid lines denote
the constant χ and t slices, respectively.
The analytic extension of the solution through y ¼ 0 is a

half of hyperbola including the vertex with null trajectory.
Note that l̄ determines the curvature of the string. For
example, the string in the limit l̄ → ∞ is a straight line, and
the one with l̄ ≪ 1 has high curvature at the vertex.

3. C < 1=2

Let us investigate the solution that has constant χ in the
expanding universe with C < 1=2 (i.e., −5=3<w<−1=3),
which is filled with dark or phantom energy. We call this
the self-similar circular string in what follows. In the case
l ¼ lc, where lc is defined in Eq. (36), this is realized with
the radius χ ¼ χc, where

χc ¼ tanh−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − CÞp : ð65Þ

Substituting χc and lc into Eq. (35), we have the solution
ΦðσÞ ¼ Φc, where

Φc ¼
lcσ

1 − 2C
; ð66Þ

where, without loss of generality, we have determined a
constant of integration as Φð0Þ ¼ 0.
The circumferential radius in proper length is

Lc ¼ −
Ctffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − CÞp ; ð67Þ

where Ct < 0. This depends linearly on t, as demonstrated
at the last of Sec. III A 1. For C < 0 (i.e., −1 < w < −1=3),
Lc increases as the time t proceeds because of radially
outward initial condition. For 0 < C < 1=2 (i.e.,
−5=3 < w < −1), Lc decreases as the time t proceeds
because of radially inward initial condition. Furthermore,
Lc satisfies the relation

LcH ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − C
2

r
; ð68Þ

where H ¼ a−1da=dt ¼ ð1 − C−1Þt−1 is the Hubble
parameter. Hence, the size of the self-similar circular string
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is at least larger than a half of the Hubble radius,
i.e., Lc > H−1=2.
Since dLc=dt is constant, we can interpret that the self-

similar circular string is realized by the balance between the
string tension and the effect of the cosmic accelerated
expansion. The string tension acts as an attractive force to
the self-similar circular string and cancels the effect of the
cosmic accelerated expansion acting as a repulsive force to
the string. We can find a circular string similar to the self-
similar circular string in the de Sitter spacetime (i.e.,
w ¼ −1), where there exists no proper homothetic vector
field. Although the circular string is not a self-similar
string, this keeps its proper circumferential radius constant
[39], which is realized by the balance between the string
tension and the effect of the de Sitter expansion.
In the limit C → 1=2, the world sheet of a self-similar

circular string approaches the null surface r ¼ −λ. We
could found a self-similar circular null string in the case
C ¼ 1=2, if we generalized our formalism to the case of a
null homothetic vector field. For C > 1=2 (i.e., w < −5=3),
there is no circular self-similar string as discussed by use of
the potential V in Sec. III A 1. Such a string would be
physically forbidden because its world sheet would become
spacelike.
To conclude whether this model is physically realistic,

we analyze stability of the self-similar circular string under
a linear perturbation. Let LðtÞ be the proper radius of the
circular string that is radially disturbed around Lc given by
Eq. (67) in the form

LðtÞ ¼ Lcð1þ δðtÞÞ; ð69Þ

where δðtÞ ≪ 1. Substitution of Eq. (69) into Eq. (7) yields
the linearized equation in δ

δ̈þ 3_δ

t
−
2ð1 − 2CÞ

C2t2
δ ¼ 0: ð70Þ

The perturbation evolves with t as

δ¼ αþðt=t0Þ−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ð1−2CÞ=C2

p
þ α−ðt=t0Þ−1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ð1−2CÞ=C2

p
;

ð71Þ

α� ¼ δ0
2
� δ0 þ β0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð1 − 2CÞ=C2

p ; ð72Þ

where δ0 ¼ δðt0Þ and β0 ¼ t0δðt0Þ. The first term is a
growing mode for C < 0 (i.e., −1 < w < 1=3), and the
second term is a growing mode for 0 < C < 1=2 (i.e.,
−5=3 < w < −1). Thus, we can conclude that a self-similar
circular string is an unstable equilibrium solution.

IV. SUMMARY

In this paper, we have proposed a self-similar string in a
self-similar spacetime. The self-similar string is defined by

the world sheet to which a homothetic vector field in a self-
similar target spacetime is tangent. We have investigated the
dynamics on the basis of Nambu-Goto string theory and
have demonstrated the equation of motion to be an ordinary
differential equation identified with the equation of motion
in particle mechanics. The equation further reduces to a
geodesic equation in the following cases: (i) The homothetic
vector field is a Killing vector field (i.e., a cohomogeneity-
one string). (ii) The homothetic vector field is hypersurface
orthogonal. (iii) It is the parallel condition [see Eq. (17) for
details]. Hence, at least in these cases, we have obtained the
formalism for a self-similar string in a similar manner as
formulated in the cohomogeneity-one string.
We have applied our formalism to a self-similar string in

the Minkowski spacetime or spatially flat FLRW expanding
spacetime with self-similarity. In the Minkowski spacetime,
a self-similar string becomes a straight segment or line,
which is eventually identified with a cohomogeneity-one
string. In the expanding spacetime, however, a self-similar
string can have nontrivial configuration, which is classified
into two types: extended to spacetime boundary and con-
fined in a finite region. The former includes a straight line
solution, which also has spatial homogeneity and is linearly
stable. The latter includes analytically tractable solutions, so
that we have obtained geometrically simple configuration
such as an ellipse and a hyperbola in the case where
C ¼ 1=2. In addition, a circular self-similar string for
C < 1=2 explicitly provides us instructive pictures. We have
found that the solution is realized by the balance between the
effect of the cosmic accelerated expansion and the string
tension. These kinds of solutions evolve linearly in the
cosmic time. Note that, however, a circular self-similar string
is an unstable equilibrium solution. The result suggests that
all self-similar string confined in a finite region are unstable
and cannot be a candidate for a final state.
We are able to investigate a self-similar string in these

expanding universes further by using a numerical integra-
tion and then obtain many nontrivial configurations. In
addition, it will provide a deeper insight to investigate the
other choices of a homothetic vector field defining a self-
similar string (e.g., with twist) or a target spacetime (e.g.,
gravitationally collapsing backgrounds). Then, we are able
to verify the validity of Condition (iii).
We can generalize this definition by means of the other

self-similarity, e.g., kinematic self-similarity. It is interest-
ing for future work to examine self-similar strings in the
other string theories or self-similar membranes (which
might be a generalization of Ref. [40]).
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