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We study the propagation of low-frequency shallow water waves on a one-dimensional flow of varying
depth. When taking into account dispersive effects, the linear propagation of long-wavelength modes on
uneven bottoms excites new solutions of the dispersion relation which possess a much shorter wavelength.
The peculiarity is that one of these new solutions has a negative energy. When the flow becomes
supercritical, this mode has been shown to be responsible for the (classical) analog of the Hawking effect.
For subcritical flows, the production of this mode has been observed numerically and experimentally, but
the precise physics governing the scattering remained unclear. In this work, we provide an analytic
treatment of this effect in subcritical flows. We analyze the scattering of low-frequency waves using a new
perturbative series, derived from a generalization of the Bremmer series. We show that the production of
short-wavelength modes is governed by a complex value of the position: a complex turning point. Using
this method, we investigate various flow profiles and derive the main characteristics of the induced
spectrum.
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I. INTRODUCTION

The idea to use fluid flows to mimic the Hawking effect
of black holes [1], which allows them to spontaneously
emit a thermal radiation, has been intensively studied at the
theoretical level [2–5]. More recently, several experimental
studies have been set up, in various media as diverse as
Bose-Einstein condensates [6,7], optical fibers [8,9] or
surface waves, either in water [10–13], or in superfluids
(therein called “ripplons” [14]). To obtain such a setup, one
needs a fluid flow whose velocity crosses the speed of
waves. Moreover, because the Hawking effect necessarily
involves short-wavelength modes, it also necessary to take
into account dispersive effects that arise at short distances.
One promising possibility is to use surface waves on
flowing water [15,16], since their propagation speed is
much lower than that of sound waves. When neglecting
capillarity and dissipation, surface waves propagate on a
one-dimensional homogeneous flow with a frequency ω
and a wave number k that obey the dispersion relation
[17,18]

Ω2 ¼ gk tanhðhBkÞ; ð1Þ

where Ω ¼ ω − vk is the comoving frequency. In this
equation, g is the local gravitational field, v the flow
velocity, and hB the depth of water. To characterize the
flow, it is convenient to introduce the Froude number,
defined as F ¼ v=c, where c ¼ ffiffiffiffiffiffiffiffi

ghB
p

is the propagation
speed of long-wavelength waves. If F > 1 (respectively,

F < 1), the flow is called “supercritical” (respectively,
“subcritical”). The transition from subcritical to supercriti-
cal, a “transcritical flow,” is the analog of a black hole if the
flow accelerates, and a white hole if the flow decelerates.
Unfortunately, it is experimentally delicate to obtain
controllable transcritical flows to study the analog
Hawking radiation. One difficulty is caused by the appear-
ance of an undular pattern, or “undulation” that deforms the
free surface and whose amplitude raises with the Froude
number [17,19,20]. Instead, experimental studies have so
far focused on flows of high Froude numbers but that stay
subcritical [10–13]. In these cases, due to dispersive effects
one still observes the production of the negative normmode
responsible for the Hawking effect in transcritical flows.
However, theoretical treatments on the analog Hawking
effect have mostly focused on transcritical flows, and it is
therefore presently unclear what governs the spectrum of
this negative norm mode production for subcritical flows.
Recent numerical works [21–23] have indicated that the
spectrum is in general quite different when the flow is
subcritical with respect to the transcritical case.
In this work, we provide an analytical characterization of

the low-frequency scattering when the flow is inhomo-
geneous, i.e. when c, v, and hB depend on the position x.
For this, we developed a new mathematical approach,
based on a generalization of the Bremmer series
[24–26]. This allows us to obtain a perturbative expansion
of the various scattering coefficients in gradients of the
background. More precisely, the “small parameter" of the
expansion will be played by the variation of the height of
the flow, i.e. jh0Bj. The first-order treatment shows that the
values of the scattering coefficients are mainly governed by
complex turning points. At very low frequencies, all the
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turning points reduce to a single complex horizon, which is
the locus where the Froude number FðxÞ reaches 1 if it is
analytically continued to complex positions x. Although we
focus in this work on water waves, we believe that our
conclusions are still valid for subcritical flows (or what
replaces it) in other analog gravity systems where
dispersion decreases the velocity at short wavelengths,
e.g., optical fibers [8,9], or sound in a duct [27]. The paper
is divided as follows. In the first section, we present the
setup and the wave equation. In the second one, we derive
the perturbative series and show that the first order is given
in terms of contour integrals involving the complex turning
points. In the last section, we apply this general framework
to specific flow examples, discuss the various regimes and
the relevant physics for present experiments. In the
Appendixes, we provide very general proofs, preparing
our results for further extensions.

II. THE SETTINGS

A. Surface wave equation

We shall consider the propagation of water waves in the
so-called “weak dispersive regime.” In this regime, the
dispersion relation (1) is approximated by the first two
terms of the low-k expansion, i.e. k tanhðhBkÞ ∼ hBk2 −
h3Bk

4=3. As mentioned in the Introduction, it is necessary to
take into account dispersive effects since the scattering
processes we are interested in involve short-wavelength
modes. When the maximum value of the Froude number
Fmax is close to 1, a case referred to as “near critical flows.”
the weak dispersive regime provides a good approximation
of the scattering coefficient. However, we believe that even
for flows that are not near critical, the qualitative features
we describe will be very similar. In the weak dispersive
regime, gravity waves are described by the action [20]1

S ¼ 1

2

Z �
ð∂tϕþ vðxÞ∂xϕÞ2 − c2ðxÞð∂xϕÞ2

þ gh3BðxÞ
3

ð∂2
xϕÞ2

�
dtdx: ð2Þ

In the following, v is assumed to be positive, so that water
flows from left to right. The field ϕ encodes the fluctuations
of the velocity potential of the flow at the surface. It is
directly related to the change of height of the free surface.
In the presence of a (linear) wave, the water depth becomes
hBðxÞ þ δhðt; xÞ. The surface elevation δh is then given by

δhðt; xÞ ¼ −
1

g
ð∂t þ v∂xÞϕ; ð3Þ

where this follows from Bernouilli’s equation [16,20].
Minimizing the action (2) gives us the equation of motion
for the field

ð∂t þ ∂xvÞð∂t þ v∂xÞϕ − ∂xc2∂xϕ −
g
3
∂2
xh3B∂2

xϕ ¼ 0: ð4Þ

We assume that the background flow is stationary, and
therefore, we look for solutions of Eq. (4) at fixed
frequency, i.e. of the form ϕ ¼ ReðϕωðxÞe−iωtÞ, where
ϕωðxÞ is a complex stationary mode. Since time-dependent
solutions are obtained by taking the real part, it is enough to
work with ω > 0. The modes ϕωðxÞ satisfy the equation

ðωþ i∂xvÞðωþ iv∂xÞϕω ¼ −∂xc2∂xϕω −
g
3
∂2
xh3B∂2

xϕω:

ð5Þ

Before trying to solve this equation, it is useful to analyze
its main properties. As it is derived from an action, it
possesses a canonically conserved norm, given by

ðϕjϕÞ ¼
Z

ρ½ϕ�dx ¼ −
Z

Imðϕ�ð∂t þ v∂xÞϕÞdx: ð6Þ

This norm plays a crucial role in the characterization of the
scattering. For positive frequency modes, the sign of the
norm coincides with that of the energy. As we shall see, due
to dispersion, the system possesses negative energy modes,
or equivalently, modes with a negative norm (6). This is
characteristic of unstable flows [28]. The generation of a
negative norm mode by sending a positive norm one is
referred to as “anomalous scattering.” For transcritical
flows, this scattering (in the smooth limit) is the classical
analog of the Hawking effect.2 For subcritical flows, it is
still present, but it was so far unclear what governs the
spectrum, i.e., the values of the scattering coefficients for
various frequencies. As we shall deal exclusively with
stationary modes, it is more convenient to work with the
conserved current rather than the norm (6). Because of the
dispersive term, this current is not the standard Klein-
Gordon current, but has a more complicated form [30].
Starting from the action (2), it reads1Notice that there is a small difference with [20]. There is a

change of ordering between ∂x and hBðxÞ in the last term. The
action of [20] is more accurate, but our choice makes a couple of
equations simpler. Moreover, the difference will only show up at
third order in the small parameter jh0Bj, and therefore is irrelevant
for our present purpose.

2We refer the reader to the literature on the Hawking effect in
water waves [15,16,29] and, in particular [20], to where the role
of the scalar product and the energy is discussed with care; see
Appendix B.
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J½ϕω�¼ Im

�
iωvϕ�

ωϕωþðc2−v2Þϕ�
ω∂xϕωþ

g
3
ϕ�
ω∂xh3B∂2

xϕω

−
gh3B
3

∂xϕ
�
ω∂2

xϕω

�
: ð7Þ

For any mode solution of (5), the current is (exactly)
conserved, i.e. ∂xJ ¼ 0. This current represents the amount
of norm that is transported by a mode. Its conservation is of
course equivalent to that of the norm (6). This can be
directly seen from the identity ∂tρþ ∂xJ ¼ 0, which
follows from the application of the Noether theorem to
Eq. (2). Notice also that for ω > 0, ωJ½ϕω� is the energy
current [20].
When the background flow is homogeneous, i.e. c, v,

and hB are constant, the solutions are superpositions of
plane waves eikωx. Here, kω is the wave number, or
momentum, and satisfies the dispersion relation

ðω − vkωÞ2 ¼ c2k2ω −
gh3Bk

4
ω

3
: ð8Þ

Below a certain threshold frequency ωcrit, this equation
possesses four distinct roots (see Fig. 1). Two of them have
long wavelengths, while the two others have short wave-
lengths. The first two are the usual left-mover (noted ku, as
it moves against the flow, i.e. “upstream”) and right-mover
(noted kd, for “downstream”). The two other roots, which
are absent when the flow velocity vanishes, are due to both
the nonzero flow and dispersion. One of them, k−, has a
positive value but a negative norm. The other have a
negative value and a positive norm, and is denoted kþ. (The
index refers to the sign of the norm.) The negative norm
mode described by k− will play a crucial role in the
following.

The aim of this work is to study, when the flow becomes
inhomogeneous, how these four modes mix. In particular,
we shall see how the propagation of a long-wavelength left-
mover ku generates the short-wavelength modes, as was
experimentally observed in [10,13]. For flows that become
critical, this generation is the classical analog of the
Hawking effect. For subcritical flows, such a mode con-
version still exist, but the law governing the scattering
coefficients was so far not known analytically. This is what
we aim to characterize.

B. Characterization of the background flow

We assume that the fluid flows over a smooth obstacle.
The height of fluid hBðxÞ varies monotonically from an
asymptotic value on the left side, to a minimum value hmin
and increases again to a constant value on the right side.
When the obstacle is smooth enough, the (unperturbed) free
surface stays approximately flat, and in this case, the other
background quantities are directly deduced from the height
by the relations

cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghBðxÞ

p
; ð9aÞ

vðxÞ ¼ q
hBðxÞ

; ð9bÞ

where g is the local gravitational acceleration, and q the
(conserved) flow rate (water flux per unit width, expressed
in m2 · s−1). As we shall see, the most relevant quantity to
describe the flow is the local value of the Froude number,

FðxÞ≡ vðxÞ
cðxÞ ¼

q

g1=2hBðxÞ3=2
; ð10Þ

where the second equality is satisfied when (9) is. In
realistic flows, curvature effects (but also dissipation) will
deform the free surface, and the relation between these
quantities becomes more intricate.3 Unless otherwise
specified, we will treat the three functions v, c, and hB
as independent, thereby leaving the possibility to include
corrections to Eq. (9). However, to keep control on the
various approximations, we assume that the gradients, in
units of the dispersive scale, are essentially of the same
order, i.e., that jhBv0=vj and jhBc0=cj are of the same order
as jh0Bj, and we refer to the “smooth limit” as jh0Bj ≪ 1. This
is automatically the case if the three functions are related by
Eq. (9). Far from the obstacle, we assume that the back-
ground quantities v, c, and hB are constant. Over this

FIG. 1. Graphical resolution of the dispersion relation (8). The
continuous line is the counter-propagating branch (upstream),
while the dashed line is the co-propagating branch (downstream).
The bold lines indicates ΩðkÞ < 0, where Ω is defined after
Eq. (1).

3In [16], a different wave equation was proposed, which takes
into account effects from the curvature of the free surface. Later,
the link between this equation and the more familiar (4) was
established in [20]. In particular, it was shown that the corrections
due to curvature can be implemented by using the same
equation (4), but where c, v, and hB are related by a more
intricate relation than (9); see Eq. (3) therein.
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obstacle, the flow velocity v increases to a maximum vmax
while the wave speed decreases to a minimum cmin. At the
top of the obstacle, the Froude number reaches its maxi-
mum Fmax (see Fig. 2). The assumptions we make are in
practice nontrivial. First it assumes that no turbulence is
formed by the flow close to the free surface. While this is
reasonable for subcritical flows, we also assumed that no
undulation appears at the free surface. When increasing the
Froude number, even below 1, such an undulation is more
likely to form, as observed in [10,13]. We believe that the
presence of such an undulation could be treated by our
framework (see the remark of footnote 4), but the compu-
tations will be more involved. We feel that such an analysis
goes beyond the scope of the present paper.

C. The WKB approximation

When vðxÞ, cðxÞ, and hBðxÞ vary, plane waves are no
longer solutions of Eq. (5). In the limit of a very smooth
background jh0Bj → 0, solutions of Eq. (5) are given by
WKB modes, i.e., locally plane waves characterized by a
local momentum kωðxÞ. This local momentum is a solution
of the Hamilton-Jacobi equation, which is nothing other
than the dispersion relation (8) in an inhomogeneous
background:

ðω − vðxÞkωÞ2 ¼ cðxÞ2k2ω −
g
3
h3BðxÞk4ω: ð11Þ

Each solution of kj of this equation depends on both ω and
x. To lighten the notations, we shall drop this dependence
when unnecessary. Throughout this paper, we also
assume that the four roots are real and distinct for all x.
Since the flow stays subcritical all along, i.e. Fmax < 1, this
is realized below a threshold frequency ωmin ¼
minxðωcritðxÞÞ. For near critical flows, the value of this
frequency reads

ωmin ∼
cmin

3hmin
ð1 − F2

maxÞ3=2: ð12Þ

For ω < ωmin, a WKB mode is then given by

φjðxÞ ¼ Aje
i
R

kjðx0Þdx0 ; ð13Þ

where the subscript j indicates the corresponding
Hamilton-Jacobi root, i.e. j ∈ fu;þ;−; dg. A careful
analysis (see e.g. Appendix A of [31] or Appendix A of
this work) shows that in the limit of smooth backgrounds,
the amplitude simply reads

Aj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΩðkjÞvgðkjÞj

p ; ð14Þ

where vg is the group velocity of the corresponding mode,
and Ω its comoving frequency, defined after Eq. (1).
Moreover, at the level of the WKB approximation, the
current J is easy to compute and one sees that

J½φj� ¼ �1 ¼ signðΩðkjÞvgðkjÞÞ: ð15Þ

Hence, the WKB amplitude (14) normalizes the current of a
WKB mode to �1 [30]. This property of WKB modes
comes from the fact that the current J is an adiabatic
invariant of the problem [32]. Unfortunately, the WKB
approximation precisely consists in neglecting the mode
mixing, which is what we are after. To overcome this
problem, we first notice that for ω < ωmin, no crossing
occurs, i.e. the four roots of (11) are distinct for all x.
Therefore, the four WKB modes in (13) are perfectly well-
defined functions of x. Instead of using them as approxi-
mate solutions of the wave equation, we shall use them as a
new basis to represent exact solutions of the wave equa-
tion (5). This allows us to recast the wave equation in an
equivalent form, adapted to a perturbative expansion of the
scattering coefficients in the background gradients.

III. BEYOND WKB: THE LOCAL
SCATTERING COEFFICIENTS

A. The Bremmer representation

The idea to use the WKB modes as a basis has been
widely studied and used for second-order differential
equations, where it is called the Bremmer series. It has a
wide range of applications, from scattering theory of the
Schrödinger equation [26], or wave propagation in inho-
mogeneous media [33], to particle production in early
cosmology [34,35]. Here however, we must use an
extended version of this method, as the problem is intrinsi-
cally higher order. As explained in the previous section, the
S matrix is 4 × 4. In Appendix A, we present detailed
proofs of how to extend the Bremmer series for higher-
order equations. In this section, we present the method
without technical calculation, in order to focus on the
physics and the significance of this new representation. The
key idea is to write general, exact solutions of Eq. (5) as
superpositions of WKB waves, where the various ampli-
tudes are x dependent, i.e.

FIG. 2. Shape of the Froude number as a function of x. The bold
arrow indicates the direction of the flow.
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ϕðxÞ ¼ AuðxÞei
R

kuðx0Þdx0 þ AþðxÞei
R

kþðx0Þdx0

þ A−ðxÞei
R

k−ðx0Þdx0 þ AdðxÞei
R

kdðx0Þdx0 : ð16Þ

At this level, the function AjðxÞ are unspecified functions,
and are not given by (14). Since this introduces four

unknown functions, instead of one, we impose three
extra conditions. The idea is to decompose also the first,
second and third derivatives of ϕðxÞ on the WKB basis,
and the forth derivative will then be given by the
equation of motion (5). Explicitly, we assume, in addition
to (16),

−i∂xϕ ¼ kuAue
i
R

kuðx0Þdx0 þ kþAþe
i
R

kþðx0Þdx0 þ k−A−ei
R

k−ðx0Þdx0 þ kdAde
i
R

kdðx0Þdx0 ; ð17aÞ

−∂2
xϕ ¼ k2uAue

i
R

kuðx0Þdx0 þ k2þAþe
i
R

kþðx0Þdx0 þ k2−A−ei
R

k−ðx0Þdx0 þ k2dAde
i
R

kdðx0Þdx0 ; ð17bÞ

i∂3
xϕ ¼ k3uAue

i
R

kuðx0Þdx0 þ k3þAþe
i
R

kþðx0Þdx0 þ k3−A−ei
R

k−ðx0Þdx0 þ k3dAde
i
R

kdðx0Þdx0 : ð17cÞ

Using these three conditions and the main ansatz (16),
we show that the knowledge of ϕðxÞ is equivalent to the
knowledge of AuðxÞ, AþðxÞ, A−ðxÞ and AdðxÞ. The four
equations combine to give the single matrix equation

0
BBB@

ϕðxÞ
−i∂xϕðxÞ
−∂2

xϕðxÞ
i∂3

xϕ

1
CCCA ¼ V ·

0
BBBBB@

AuðxÞei
R

kuðx0Þdx0

AþðxÞei
R

kþðx0Þdx0

A−ðxÞei
R

k−ðx0Þdx0

AdðxÞei
R

kdðx0Þdx0

1
CCCCCA; ð18Þ

where V is the Vandermonde matrix of the four roots ku,
kþ, k−, and kd, i.e.

V ¼

0
BBB@

1 1 1 1

ku kþ k− kd
k2u k2þ k2− k2d
k3u k3þ k3− k3d

1
CCCA: ð19Þ

Because the three roots are distinct, detðVÞ ≠ 0, and, hence,
the relation between ϕ and its derivatives and
ðAu; Aþ; A−; AdÞ is one to one. Therefore, the wave
equation (5) can now be entirely recast in an equivalent
equation for the local amplitudes AjðxÞ. To obtain the
equation satisfied by the local amplitudes AjðxÞ, we plug
the ansatz (18) in the wave equation (5). Since the first three
derivatives of ϕ are given by (18), we are left with a first-
order equation on the four amplitudes ðAu; Aþ; A−; AdÞ (see
Appendix A 1). This equation has the form

∂xAj ¼ ~MjjðxÞAjþ
X
l≠j

~MjlðxÞei
R
ðklðx0Þ−kjðx0ÞÞdx0Al: ð20Þ

The off-diagonal elements of ~M are easy to interpret: they
give the coupling between the different WKB branches, due
to the varying background. Those are responsible for the

nontrivial scattering. On the other hand, the diagonal terms
of Eq. (20) represent the adiabatic evolution of the
amplitudes AjðxÞ. To further simplify the equation, we
can integrate these diagonal terms by working with
normalized amplitudes. For this, we define

AjðxÞ ¼ ajðxÞN jðxÞ; ð21Þ

whereN j is chosen so that the first term of (20) disappears.
This gives a first-order equation on N j, which directly

integrate as N j ¼ exp ðR x ~Mjjðx0Þdx0Þ. As we show in
Appendix A 2 and B, this leads to

N j ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΩðkjÞvgðkjÞj

p : ð22Þ

We recognize here nothing else than the WKB amplitude
given in Eq. (14). This is not a surprise, as N j gives the
adiabatic evolution of the amplitudes. We shall refer to
these new coefficients ajðxÞ as the local scattering coef-
ficients. At the level of the WKB approximation, they are
constant. When the background varies, these coefficients
become nonconstant, meaning that the propagation of one
mode excites the other ones, leading to nontrivial asymp-
totic scattering coefficients. These coefficients are gov-
erned by a first-order equation, directly obtained from (20),
which reads

∂xaj ¼
X
l≠j

MjlðxÞei
R
ðklðx0Þ−kjðx0ÞÞdx0al: ð23Þ

This equation possesses several key features that we now
wish to underline. First, this equation is strictly equivalent
to the original equation (5). No approximation have been
used so far, but this rewriting is very adapted to a
perturbative resolution. Second, the coupling coefficients
Mjl are proportional to derivatives of the background. In
the limit jh0Bj ≪ 1, they are small and have a slowly varying

THE IMPRINT OF THE ANALOGUE HAWKING EFFECT IN … PHYSICAL REVIEW D 94, 064026 (2016)

064026-5



phase (see Appendix A 2 for their exact expressions).
Because of this, the coefficients aj mainly couple through

the change of their WKB phases ei
R
ðklðx0Þ−kjðx0ÞÞdx0 . This

structure implies that the scattering will become significant
when this phase difference satisfies a resonance condition
(see next section). The last key property of Eq. (23) is
obtained when computing the conserved current (7) in
terms of the local scattering coefficients. Since J involves
only the first three derivatives of ϕ, the ansatz (18)
guarantees that the computation of J is identical as in
the case of plane waves. After some effort (shown in
Appendix B 3), we show that

J ¼ −jauðxÞj2 þ jaþðxÞj2 − ja−ðxÞj2 þ jadðxÞj2 ¼ const:

ð24Þ

Once again, this equation is exact. It guarantees that the
scattering governed by Eq. (23) conserves the norm of
Eq. (6). Also, from Eq. (23), the conservation of the current
implies that the matrix M has some symmetric/antisym-
metric properties, something that is not transparent from
their explicit expressions (given in Appendix A 2).

B. The complex turning points

We now turn to the evaluation of the scattering coef-
ficients in the limit of smooth backgrounds jh0Bj ≪ 1. Since
four modes exist on both sides, there are four incoming legs
and four outgoing ones, and the complete Smatrix is 4 × 4.
In a quantum mechanical language, the scattering coef-
ficients can be seen as transition amplitudes for a mode
transition kl → kj. These transitions can then be estimated
in perturbation theory of Eq. (23), i.e. in an expansion in the
matrix elements Mlj, which are small in smooth back-
grounds jh0Bj ≪ 1. For the present purpose, we shall
consider only one specific scattering mode, but our results
easily extends to the others. We consider a long-wavelength

mode coming in from the right, which means that
auðþ∞Þ ¼ 1, and aþð−∞Þ ¼ a−ð−∞Þ ¼ adð−∞Þ ¼ 0
(see Fig. 3). This fixes half of the asymptotic values of
the local scattering coefficients. The other half gives the
scattering coefficients (see Fig. 3). T and R are the
transmission and reflection coefficients between the two
long-wavelength modes, while α and β describe the
generation of the short-wavelength modes. Using (24),
the conservation of the current imposes the following
relation between the scattering coefficients

jTj2 þ jRj2 þ jαj2 − jβj2 ¼ 1: ð25Þ

We see that the coefficient β contributes with the
unusual sign.
At zeroth order in M, auðxÞ ∼ 1, while the other ajðxÞ

vanish. When inserting this on the right-hand side of (23),
and integrating from −∞ to þ∞, we obtain the first-order
expression in M of the scattering coefficients. At this
order, T is 1, while the other three are given by an integral
expression. To start, we focus on the computation of α. By
solving Eq. (23) at leading order, only the coefficientMþu
contributes, and we have

α ∼
Z þ∞

−∞
MþuðxÞei

R
ðkuðx0Þ−kþðx0ÞÞdx0dx: ð26Þ

This gives the first-order expression for the coefficient α. It
is possible, starting from Eq. (23) to derive an expression
for α at any order inM. It has been shown in various cases
that the obtained series is generally convergent [36,37], and
that the convergence is usually quite fast [26,38]. In Fig. 4,
we give a diagrammatic representation of the perturbative
series. In a regime where the various scattering coefficients
are small, jαj ≪ 1, jβj ≪ 1, and jRj ≪ 1, it is legitimate to
truncate this series at first order, since higher orders will be
essentially given by higher products in these quantities.
This is true in the smooth limit jh0Bj ≪ 1, but we also need

FIG. 3. Spacetime picture of the scattering. Far from the obstacle, the background flow becomes constant and the solution reduces
to a superposition of plane waves. The asymptotic values of the local scattering coefficients give the (global) scattering coefficients,
i.e. auð−∞Þ ¼ T, aþðþ∞Þ ¼ α, a−ðþ∞Þ ¼ β, and adðþ∞Þ ¼ R.
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ω to be sufficiently far from ωmin, otherwise we would have
jαj ¼ Oð1Þ [although ωmin − ω might in practice be quite
small and jαj ≪ 1 still valid, see e.g. Fig. 5(a)]. We now
assume that this is the case, and study the consequence of
the first-order result (26).
The main contribution of the integral governing Eq. (26)

comes from the saddle point of the exponential. This saddle
point satisfies the equation

kuðx�Þ − kþðx�Þ ¼ 0: ð27Þ

By assumption, this equation is not verified by any real x.
However, when the background functions are analytic,
there exist complex solutions x� ∈ C. If x� were real, it
would correspond to a turning point, and, hence, in our case
we call x� a complex turning point. Decomposing it in real
and imaginary parts,

x� ¼ xαR þ iΔα: ð28Þ
It follows from (26) that the α coefficient is given by the
contribution of the saddle point as

α ∼ C exp

�
i
Z

xαRþiΔα

x0

ðkuðx0Þ − kþðx0ÞÞdx0
�
; ð29Þ

where C is a constant prefactor (discussed below). In
Eq. (29), x0 is a real reference point, which can be chosen
anywhere. If several turning points are present, α is given
by a sum of the contribution (29) for each of them. Usually,
the ones that are the closest to the real axis give the
dominant contributions, while the others produce only
exponentially small corrections.4 As we shall see in
Sec. IV B 2, very symmetric flows typically have two main

interfering contributions to the scattering coefficients.
Taking the modulus of (29), we have

jαj2 ∼ jCj2 exp
�
−2Im

�Z
xαRþiΔα

x0

ðkuðx0Þ − kþðx0ÞÞdx0
��

:

ð30Þ
As explained in Appendix A 3, the complex turning point
must be chosen such that the contour integral in (30) has a
positive imaginary part. It follows that α is generally
exponentially small, which is a common feature of low
gradients or adiabatic limits [26,39]. The prefactor C in
(30) is rather delicate to obtain. In the smooth limit
jh0Bj→0, we show that it tends to 1 (see Appendix A 3).
However, this limit fails at reproducing the ultra-low-
frequency behavior of the coefficients. The reason is that
the limits jh0Bj → 0 and ω → 0 do not commute. Indeed,
when the gradients are nonzero but small, in the limit
ω → 0, the prefactor vanishes as

jCj2 ∼ ω

ωs
; ð31Þ

as we show in Appendix B 2. The characteristic frequency
ωs is estimated in Eq. (B14). The key point is that ωs is
proportional to jh0Bj and, hence, becomes very small in the
smooth limit, and in particular, ωs ≪ ωmin [ωmin defined in
Eq. (12)]. To summarize, the prefactorC is characterized by
two regimes. When ωs ≪ ω≲ ωmin it is 1, but for ω ≪ ωs
it is given by Eq. (31). A similar computation for β leads to
a similar expression,

jβj2 ∼ jCj2 exp
�
−2Im

�Z
xβRþiΔβ

x0

ðkuðx0Þ − k−ðx0ÞÞdx0
��

:

ð32Þ

The complex turning point for β is a priori different from
that of α, since it obeys a different resonance condition
kuðxβ�Þ − k−ðxβ�Þ ¼ 0. In Appendix B 2 we show that when

FIG. 4. Diagrammatic representation of the perturbative resolution of Eq. (23) for the transition ku → kþ, i.e., the coefficient α. The
dashed lines symbolize the fact that the various modes interact through the background, i.e. through v0, c0, and h0B. The expressions we
provide in Sec. III B are at first order OðMÞ.

4In the presence of an undulation in the background, we
believe that a series of turning points, corresponding to the bumps
of the undulation, will contribute to the scattering coefficients.
Hence, these should be radically reduced or increased depending
on whether the transition “resonates” with the undulation. We
believe that this point deserves further study.
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ωs ≪ ωmin, the prefactor is essentially the same as for α. As
we see from (30) and (32), in the smooth limit, the
scattering coefficients are exponentially small.
The last coefficient R, giving the mode mixing between

the two long-wavelength modes (see Fig. 3), can also be
evaluated perturbatively and possesses a contour integral
expression as (30) and (32) involving a different complex
turning point xR� . The first-order expression of R is,
however, more delicate. Indeed, for very low frequencies,
this first-order expression becomes of order 1, meaning that
the perturbative treatment breaks down. On the contrary,
the expressions for α and β stay small in the limit ω → 0.
The reason for this discrepancy can be seen in the
expressions of the matrix elements of M. While Mdu is
proportional to the background gradients jh0Bj, Mþu and
M−u are further suppressed by a factor Oðω1=2Þ.
Heuristically, we explain this by the fact that R governs
a transition involving only long-wavelength modes, while α
and β involve a short-wavelength one, which improves the
accuracy of the perturbative treatment even at low frequen-
cies ω ≪ ωmin. Fortunately, it has been numerically
obtained in various works [22,23,40] that the reflection
coefficient R stays small for all frequencies. Since we are
mainly interested in the production of short-wavelength
modes by ku, we shall ignore the mode kd in the sequel.
Note that to obtain second-order estimates of α and β, kd
can no longer be ignored since it will appear as an
intermediate state in the transitions ku → kþ or ku → k−
(see Fig. 4).

IV. APPLICATION TO NEAR CRITICAL FLOWS

A. The simplest example: Case of a “short obstacle”

We shall start by analyzing a simple example. This will
allow us to present the techniques to explicitly evaluate
Eq. (30), in a case where the computations stay relatively
simple. For this we assume that the mode mixing essen-
tially takes place in a close vicinity of the top of the
obstacle, i.e., where Fmax is reached. In Sec. IV B 2 we will
give a more precise meaning to this “short obstacle limit.”
Under this assumption, the evolution of the Froude number
is well approximated by a second-order Taylor expansion
near its maximum:

1 − FðxÞ≃ 1 − Fmax þ
1

2
ðx=dÞ2: ð33Þ

The parameter d characterizes the length of variation of the
Froude number near its maximum value. As we shall see,
this quantity directly affects the scattering coefficient. In
addition, to simplify the discussion, we present the results
in two steps depending on the ratio ω=ωmin (but without
assuming anything concerning the ratio ω=ωs). We first
study the limit ω=ωmin ≪ 1, and in a second part, study the
corrections in ω=ωmin.

1. Low-frequency limit

In the limitω ≪ ωmin, the resonance conditions for α and
β become the same and reduce to

1 − Fðx�Þ ¼ 0: ð34Þ

Since this condition gives the location of the horizon when
the flow is transcritical, for low frequencies, the complex
turning point can be interpreted as a complex horizon.
Using the profile of Eq. (33), it is given by

x� ¼ �id
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − FmaxÞ

p
¼ �iΔ0: ð35Þ

To obtain the correct sign of the integral in Eq. (30), we
must choose Imðx�Þ > 0. Moreover, when ω → 0, the roots
of the Hamilton-Jacobi equation (11) become simpler, and
we find

kuðxÞ − kþðxÞ ¼
1

hBðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − F2ðxÞÞ

q
: ð36Þ

We notice here that the root difference (36) scales like
ð1 − FÞ1=2. Therefore, in the limit 1 − Fmax ≪ 1, it is only
necessary to consider the variations of the function
1 − FðxÞ. The other background quantities can be approxi-
mated by their value near Fmax, since taking into account
extra terms will produce subleading corrections in
1 − Fmax. In this limit, the profile of Eq. (33) gives

kuðxÞ − kþðxÞ ¼
1

dhmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΔ2

0 þ x2Þ
q

: ð37Þ

We now use this expression to compute the complex
integral governing the scattering coefficient α through
Eq. (30). For convenience, we chose the reference point
x0 ¼ 0, thenZ

iΔ0

0

ðkuðx0Þ − kþðx0ÞÞdx0 ¼
1

dhmin

Z
iΔ0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΔ2

0 þ x02Þ
q

dx0;

ð38aÞ

¼ i

ffiffiffi
3

p
Δ2

0

dhmin

Z
1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
dt; ð38bÞ

¼ i

ffiffiffi
3

p
πΔ2

0

4dhmin
: ð38cÞ

We deduce the amplitude of the α coefficient,

jα0j2 ¼ jCωj2 exp
�
−

ffiffiffi
3

p
πd

hmin
ð1 − FmaxÞ

�
; ð39Þ

where α0 is short for αω≪ωmin
. We see that in the regime

ω ≪ ωmin, all the frequency dependence is in the prefactor
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Cω (we added the index ω with respect to Eq. (30) to
emphasize this point). Since we assume nothing concerning
the ratio ω=ωs, Cω varies from 1 to ω=ωs when ω
decreases. By a similar computation, we show that β0
has the same amplitude for very low frequencies, i.e.
jβω→0j2 ∼ jαω→0j2. This can be seen by direct computation,
but comes in fact from a more general property of the mode
equation. Indeed, the change ϕω → ðϕ−ωÞ� leaves the mode
equation (5) invariant, and as can be seen by looking at the
roots of (11), exchanges the role of α and β. This leads to
the relation

βω ¼ α�−ω: ð40Þ

The property above has been widely used in Hawking
radiation studies [3,31,41]. Here also, it significantly
simplifies the computations of the scattering coefficients.

2. Frequency dependence

The corrections to Eq. (39) in ω=ωmin are more delicate
to obtain. These corrections have two origins. The first is
the shift of the value of the complex turning point, and the
second is the exact expression of the roots ku, kþ, and k−.
For the latter, one needs to solve the Hamilton-Jacobi
equation (11). Unfortunately, one cannot simply compute
the corrections to Eq. (36) for ω ≪ ωmin because such
corrections will not be accurate close to the turning point.
We can still simplify Eq. (11) by discarding the last root kd,
which plays essentially no role at first order in perturbation
theory. The Hamilton-Jacobi equation (11) is then reduced
to a third-order equation in k. To obtain it, we carefully take
the square root of (11) so as to select the relevant branch
(see Fig. 1), and expand the result up to Oðk3Þ. This gives

ω ¼ −cð1 − FÞkþ ch2B
6

k3: ð41Þ

A direct comparison of this equation with Eq. (11) shows
that the three roots ku, kþ, and k− are approximated by
the roots of (41) up to small corrections in 1 − F ≪ 1.5

We now obtain the roots by solving this equation using
the Cardan-Tartaglia method. To start, the associated
discriminant gives the equation for all the complex
turning points; i.e., it gives the condition for two roots
to merge:

ð1 − Fðx�ÞÞ3 ¼
9ω2h2Bðx�Þ
8c2ðx�Þ

: ð42Þ

Similarly to Eq. (36), at leading order in 1 − Fmax, it is only
necessary to consider the variations of 1 − FðxÞ, while hB
and c are well approximated by cmin and hmin. Doing so, the
complex turning point for α is given by

xα� ¼ iΔ0

�
1 −

�
ω

ωmin

�
2=3

�
1=2

: ð43Þ

The other complex turning point xβ� is another solution of
Eq. (42). For ω ≠ 0, both emerge from the complex horizon
x0�, the difference scaling like Oððω=ωminÞ2=3Þ. To simply
express the roots, we introduce the auxiliary functions

U�
ωðxÞ ¼

0
@ 1

h3B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1 − FÞ3 − 9ω2h2B

c2

s
� i

3ω

ch2B

1
A1=3

: ð44Þ

The Cardan-Tartaglia method then gives the three roots as
combinations of Uþ

ω and U−
ω. In particular,

kuðxÞ − kþðxÞ ¼
ffiffiffi
3

p
ei

π
3Uþ

ωðxÞ þ
ffiffiffi
3

p
e−i

π
3U−

ωðxÞ: ð45Þ

We now evaluate this near the top of the obstacle, that is,
using Eq. (33). At leading order in 1 − Fmax, we have

U�
ωðxÞ ¼

Δ0

dhmin

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ x2

Δ2
0

�
3

−
�

ω

ωmin

�
2

s
� i

ω

ωmin

3
75
1=3

:

ð46Þ

We are now ready to compute the complex integral
governing the coefficient α in Eq. (30). We start by writingZ

xα�

0

U�
ωðx0Þdx0 ¼ −i

Δ2
0

dhmin
I�

�
ω

ωmin

�
; ð47Þ

where we defined the functions I� by

I�ðϵÞ ¼
Z ffiffiffiffiffiffiffiffiffiffi

1−ϵ2=3
p

0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þ3 − ϵ2

q
� iϵÞ1=3dt: ð48Þ

Combining the preceding results, and applying Eq. (29), we
finally obtain

αω ¼ Cω exp

�
−
2

ffiffiffi
3

p
dð1 − FmaxÞ
hmin

�
ei

π
3Iþ

�
ω

ωmin

�

þ e−i
π
3I−

�
ω

ωmin

���
: ð49Þ

This gives the expression of αω in the flow profile of
Eq. (33). Equation (49) should be valid up to ω≲ ωmin, as

5To see this, we first notice that since we performed an
expansion in k, the highest error made is on the value of
k−ðω ¼ 0Þ, which has the highest value (see Fig. 1). From
Eq. (11), it is given by h−1B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − F2Þ

p
, while Eq. (41) gives

h−1B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − FÞp

, which agree whenever 1 − F ≪ 1. It is also
noticeable that Eq. (41) corresponds to the dispersion relation of
the linearized Korteweg–de Vries equation [17].
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long as jαωj ≪ 1. By using the same method, Eq. (32) leads
to a similar expression for the coefficient βω. To obtain it,
one can either redo the calculation of the complex integral,
or more quickly, carefully apply Eq. (40). The results are
presented on Fig. 5(a). Since the full expression of the I�
functions is rather complicated, it is instructive to look at
the limit ω → 0, and see how αω (respectively, βω) deviates
from Eq. (39). Interestingly, the functions I� are not
differentiable for ϵ → 0 and therefore, small frequency
corrections display nonanalytic terms. Indeed, after some
efforts, one can show that

IþðϵÞ ¼
π

4
−
ϵ

3
−
iϵ
9
ln

�
iϵ
24

�
þ oðϵÞ: ð50Þ

This gives approximate expressions for the scattering
coefficients

lnðjαωj2Þ ∼ lnðjCωj2Þ −
ffiffiffi
3

p
πdð1 − FmaxÞ

hmin

×
�
1 −

12 − 2π − 4
ffiffiffi
3

p
lnðω=24ωminÞ

9π

ω

ωmin

�
;

ð51aÞ

lnðjβωj2Þ ∼ lnðjCωj2Þ −
ffiffiffi
3

p
πdð1 − FmaxÞ

hmin

×

�
1þ 12þ 2π − 4

ffiffiffi
3

p
lnðω=24ωminÞ

9π

ω

ωmin

�
:

ð51bÞ

As we observe on Fig. 5(a), the low-frequency expressions
Eq. (51) are quite accurate up to ω≲ ωmin (where the
perturbative expression (30) can no longer be trusted). At
this level we would like to emphasize several qualitative
features displayed by Eq. (51) that are maintained for more
general profiles. First, when ω → 0, jαωj2 ∼ jβωj2 and both
vanish as OðωÞ due to the prefactor [see Eq. (31)]. Second,
when ω=ωmin increases, jαωj2 becomes larger than jβωj2.
Third, the corrections in ω=ωmin display nonanalytic terms,
in Oðω lnðωÞÞ.
It is also quite instructive to analyse the behavior of the

ratio rω ¼ jβω=αωj2. Indeed, the linearity of the logarithm
of this ratio in ω has been used in the literature as a sign for
the thermality of the emitted spectrum. Moreover, this ratio
is also independent of the prefactor Cω. For low frequen-
cies, Eq. (51) gives

lnðrωÞ ∼ −
ffiffiffi
3

p
dð1 − FmaxÞ
hmin

×

�
24 − 8

ffiffiffi
3

p
lnðω=24ωminÞ
9

ðω=ωminÞ
�
: ð52Þ

On Fig. 5(b), we plotted the evolution of rω, using both
Eq. (49) and the low-frequency expression (52). As we see,
despite the presence of nonanalytic corrections, rω looks
fairly linear in ω. However, this ratio alone misses several
features of the scattering that differs from the Hawking
regime, and in particular the low-frequency ω ≪ ωmin
behavior of α and β.

(a) (b)

FIG. 5. Left panel (a): coefficients αω (black) and βω (grey) as a function of ω, as given by Eq. (49). The prefactor Cω is given
by Eq. (B16). We clearly observe three distinct regimes: for ω ≪ ωs, jαωj2 ∼ jβωj2 ∝ ω, for ωs ≪ ω ≪ ωmin, jαωj2 ∼ jβωj2 almost
constant in ω, and for ωs ≪ ω≲ ωmin, jαωj2 increases, while jβωj2 decreases. Right panel (b): Ratio rω as a function of ω. In both
plots, we have chosen the flow parameters such that dð1 − FmaxÞ=hmin ¼ 1, and lnðωs=ωminÞ≃ −4.4. The solid lines are obtained
using the full functions I�, while the dashed ones are the approximations (51), and (52). Note that the present treatment cannot be
trusted too close to lnðω=ωminÞ ≈ 0.
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B. A general class of flow profiles

1. Monotonic profiles

We shall start by analyzing the case of a profile whose
Froude number, increase monotonically from a minimum
to a maximum value. This case is very useful to better
understand the more general profiles of Sec. IV B 2, but it
also has its interests in its own right. To model such a
profile, we assume that the Froude number is given by

FðxÞ ¼ F0 þD tanh
�
γx
D

�
: ð53Þ

The flow starts from a low Froude number Fmin ¼ F0 −D
on the left side, and smoothly rises to reach
Fmax ¼ F0 þD. The parameter γ gives the slope of the
profile. As in the preceding section, it is simpler to first look
at the low-frequency limit ω ≪ ωmin and in a second time
discuss the corrections in ω=ωmin. At low frequencies, the
physics is dictated by the complex horizon, i.e. the location
satisfying Eq. (34), which governs the common value of α0
and β0. From Eq. (53), we find the complex horizon6 to be

x0� ¼
D
2γ

ln

�
1 − Fmin

1 − Fmax

�
þ i

πD
2γ

: ð54Þ

We then compute the low-frequency value of α and β (see
Appendix B 4), and we find

jα0j2 ∼ jβ0j2 ∼ jCωj2 exp
�
−

ffiffiffi
6

p
πD

γhmin
ð1 − FmaxÞ1=2

�
: ð55Þ

We see that the value of the coefficient depends not only on
the slope γ, but also on the height of the step, i.e. the
parameter D. Moreover, we notice that it depends on
1 − Fmax with a different power law than in the short
obstacle case [compare (55) to (39)]. The reason for this is
that unlike in the short obstacle case, the imaginary part of
the complex horizon of (54) is independent of 1 − Fmax;
hence, α0 depends on it only through the roots ku − kþ. To
obtain the corrections for ω ≠ 0, we follow the same
procedure as in Sec. IVA 2, and compute only the lead-
ing-order correction. A rather tedious computation shows
that for small ω=ωmin, and 1 − Fmax ≪ 1,

lnðjαωj2Þ ¼ lnðjCωj2Þ −
ffiffiffi
6

p
πDð1 − FmaxÞ1=2

γhmin

�
1 −

ffiffiffi
3

p
ω

3ωmin

�
;

ð56aÞ

lnðjβωj2Þ ¼ lnðjCωj2Þ−
ffiffiffi
6

p
πDð1−FmaxÞ1=2

γhmin

�
1þ

ffiffiffi
3

p
ω

3ωmin

�
:

ð56bÞ
We notice that unlike in (51), the above equation shows no
nonanalytic terms. This turns out to be an accident of the
profile of Eq. (53), where the leading-order nonanalytic
terms (in Oðω lnðωÞÞ) contributes only to the phase of αω.
This is no longer true for the next-to-leading corrections in
ω=ωmin or if the profile slightly differs from (53).

2. Nonmonotonic profiles

We are now ready to analyze a more general class of flow
profile, which have a similar shape than the ones studied
numerically and experimentally [10,13,22,23] (undulation
excluded). For this we assume that the Froude number is
given by

FðxÞ ¼ F0 −D tanh

�
γlðxþ L=2Þ

D

�
tanh

�
γrðx − L=2Þ

D

�
:

ð57Þ
The maximum value of the Froude number Fmax is by
assumption smaller than 1. The flow starts from a low
Froude number Fmin ¼ F0 −D on the left side, rises to
reach Fmax and then decreases again to Fmin. On the left
side (resp. right side), the slope is controlled by the
parameter γl (resp. γr). Again, we first consider the low-
frequency limit ω ≪ ωmin and then discuss the corrections
in ω=ωmin ≠ 0. Depending on the parameters of the profile,
we distinguish three different regimes:

(i) long obstacles γl;rL ≫ 1, asymmetric γl ≠ γr,
(ii) long obstacles γl;rL ≫ 1, symmetric γl ¼ γr,
(iii) short obstacles γl;rL ≪ 1.

-10 -5 0 5 10
2

4

6

8

10
L

5
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FIG. 6. Evolution of the two complex horizons solutions of (34)
for the profile (57) as L varies. The profile is slightly asymmetric:
γl ¼ 0.3D and γr ¼ 0.25D; hence, in the long-obstacle limit, i.e.
large L, one of them lies closer to the real axis. The other
parameters of the flow (57) are F0 ¼ 0.71 and D ¼ 0.17.

6There is, in fact, a discrete periodic set, with imaginary parts
that are odd multiples of the one of (54). We keep here only the
one closest to the real axis, which gives the dominant contribu-
tion. There are also poles located at ið2nþ 1ÞπD=2γ, but a direct
(similar to Appendix B 4) calculation of the corresponding
contributions shows that they are subdominant with respect to
the complex horizon (54).
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When the obstacle is long (L is large), there exist two
complex horizons, located around the top of each slopes. In
the limit γl;rL ≫ 1, they are given by the monotonic profile
expression (54) centered at �L=2, i.e.

xl� ¼ −
L
2
þ D
2γl

ln

�
1 − Fmin

1 − Fmax

�
þ i

πD
2γl

; ð58aÞ

xr� ¼
L
2
−

D
2γr

ln

�
1 − Fmin

1 − Fmax

�
þ i

πD
2γr

: ð58bÞ

The scattering coefficients are then given by a sum of two
interfering contributions,

jαωj2 ∼ jαlj2 þ jαrj2 þ 2jαljjαrj

× cos

�
Re

Z
xr�

xl�
ðkuðx0Þ − kþðx0ÞÞdx0

�
; ð59Þ

where αl;r are given by the single turning point expression
(55) with γ ¼ γl;r. This equation allows us to draw several
conclusions concerning the behavior of the scattering
coefficient. If the profile is asymmetric, γl ≠ γr, the one
with the biggest slope dominates in the expression for jαωj2.
Indeed, the imaginary part of the corresponding turning
point lies closer to the real axis, as it is inversely propor-
tional to γl;r. On the contrary, if the flow is symmetric,
γl ¼ γr, the two contributions have the same weight and
interfere through the phase of Eq. (59). This phase shift is
accumulated not only along the real line, between xlR and
xrR, but also in the complex plane, from xl;rR to xl;r� . For a
long obstacle (γl;rL ≫ 1) and ω ≪ ωmin, the phase shift of
(59) is given by

Re
Z

xr�

xl�
ðkuðx0Þ − kþðx0ÞÞdx0

¼ ζl − ζr þ
Z

xrR

xlR

1

hB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − Fðx0ÞÞ

p
dx0; ð60Þ

where ζl;r are defined after Eq. (B35). When decreasing L,
the two complex horizons keep the same imaginary part,
but their real part get closer. At a certain critical value
L ¼ Lc, they merge into a single solution.7 For lower
values L < Lc, one of the solutions migrates closer to the
real axis, while the other moves afar. If the profile is not
perfectly symmetric, one observes something similar, but
instead of merging together, the roots first get closer, and
around the critical value of L, repel each other so that the
one with the smallest imaginary part approaches the real
axis, while the other moves afar (see Fig. 6). This
mechanism is very similar to the “avoided crossing,”
well-known in quantum mechanics [42]. When L < Lc,
we enter in the regime of a “short obstacle.” In this case,
one of the complex horizons dominates in the expression
(59) for α. This solution has a real part close (equal if
γl ¼ γr) to zero, i.e., it lies close to the top of the obstacle.
This case becomes very similar to the one studied in
Sec. IVA. At L ¼ 0, the complex horizon closest to the real
axis is found to be

x� ¼
iD
γ
arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fmax

1 − Fmin

s �
: ð61Þ

(a) (b)

FIG. 7. Coefficients αω (solid) and βω (dot-dashed) as a function of ω for a long obstacle γl;rL ≫ 1. As in Eqs. (51) and (56), we have
taken into account the leading corrections in ω=ωmin. We work in units where g ¼ q ¼ 1 and assume that Eq. (9) holds for simplicity.
The parameters of the flow (57) are F0 ¼ 0.7, D ¼ 0.17 and L ¼ 25. With these parameters, lnðωs=ωminÞ≃ −1.8. The prefactor Cω is
given by Eq. (B16). Left panel (a): symmetric profile, γl ¼ γr ¼ 0.2D. Right panel (b): asymmetric profile, γl ¼ 0.2D and γr ¼ 0.17D.
As we see, a small asymmetry quickly reduces the interference effects.

7Using Eq. (57), the critical value for γl ¼ γr can be shown to
be Lc ¼ 2Dγ−1artanhð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=ð1 − F0Þ
p Þ.
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If we additionally have 1 − Fmax ≪ 1 − Fmin, (61) exactly
reduces to the “short obstacle” case of Sec. IVA, meaning
that Eq. (33) becomes a good approximation to describe the
scattering.
When relaxing the assumption ω ≪ ωmin, αω and βω

differ but are still given by an interfering sum as in Eq. (59).
As ω increases, the two turning points xα� and xβ� emerge
from x0� and migrate in different directions in the complex

plane. The effect of this migration is twofold. First, for long
obstacles, the relative location of the left and right turning
point changes, and therefore, the phase (60) between the
two interfering contributions in Eq. (59) varies. For some
values of the frequency, this phase will be a multiple of 2π,
and the coefficients show a dip, as the first-order estimate in
Eq. (59) vanishes. Such dips have been numerically
observed in [22]. Second, the amplitudes of the single
turning point contributions, i.e. jαlj and jαrj (respectively,
jβlj and jβrj for βω) are altered as in Eq. IV B 1. On Fig. 7,
we represented the evaluation of αω and βω for a symmetric
and an asymmetric profile. On Fig. 8, we show how the
coefficients oscillate in ω due to interferences between
the two turning points as in Eq. (59), and how this affects
the ratio rω.

V. CONCLUSION

In this paper, we studied the scattering of low-frequency
waves on a subcritical fluid flow, that is, whose Froude
number stays below 1. We developed a new method, based
on a generalization of the Bremmer series, where exact
solutions of the wave equation are written as a local
superposition of WKB modes [see Eq. (16)]. The coef-
ficients of this superposition, which we called local
scattering coefficients, are position dependent and possess
several useful properties. First, they are by construction
slowly varying. At some locations along the flow, they can
transit from one constant value to another. This can be
interpreted as the creation of a new mode. Second, their
asymptotic values directly give the scattering coefficients.
Third, the local scattering coefficients are governed by a
first-order differential equation, Eq. (23), which is equiv-
alent to the original wave equation and is adapted to a
perturbative treatment at low gradients, i.e. jh0Bj ≪ 1.
In Sec. III B, we expose the first-order perturbative

results of this series. We show that the coefficients are
mainly governed by complex turning points, corresponding
to the locations where two roots of the dispersion relation
(11) merge when these are analytically continued in the
complex plane. In general, there exist many turning points
in the complex plane. Importantly, the ones closest to the
real axis dominate while the others contribute as exponen-
tially small corrections. Hence, the scattering coefficients
are governed by a few dominating contributions, taking the
form of complex exponentials of contour integrals from the
real line to the complex turning points, see Eqs. (30),
and (32).
We then applied these results to a large class of flow

profiles, so as to extract the generic features of the
scattering coefficients α and β. By studying the behavior
of the scattering coefficients as a function of the frequency
ω, we distinguish three main regimes. For ultralow
frequencies, ω ≪ ωs, jαj2 and jβj2 both vanish linearly
in ω, see Eq. (31). For intermediate frequencies
ωs ≪ ω ≪ ωmin, jαj2 and jβj2 share a constant value as
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(b)

FIG. 8. Left panel (a): coefficient αω (solid) as a function of ω
for a long obstacle. We represented the extreme values
ðjαlj þ jαrjÞ2, and ðjαlj − jαrjÞ2 (dashed) to emphasize the effect
of interferences. Right panel (b): plot of the ratio rω ¼ jβω=αωj2
as a function of ω, for three long obstacles less and less
symmetric: γr=γl ¼ 1 (solid), γr=γl ¼ 1.2 (dot-dashed), γr=γl ¼
1.5 (dotted), all with γl ¼ 0.3D. We see that when the obstacle
becomes asymmetric, the ratio becomes fairly linear, as in the
case exposed in Fig. 5(b). The other parameters of the flow (57)
are F0 ¼ 0.71, D ¼ 0.17 and L ¼ 25.
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in Eq. (39), and when ω=ωmin becomes significant, they
start drifting apart as shown by Eq. (51). When they do, jβj2
is generically smaller than jαj2. Moreover, we show in
Sec. IV B 2 that long obstacles generally produce two
dominating complex turning points. If the obstacle is
symmetric enough, these two contributions give rise to
oscillations in jαj2 and jβj2 due to interferences, as
illustrated in Figs. 7, and 8. All these features are in
perfect agreement with what have been previously
observed numerically in [21–23] and are complemented
by analytic predictions for the parameters governing the
various regimes.
In all, this analysis describes in detail what is the

“imprint” of Hawking radiation when the flow accelerates
but stays subcritical. The physics of the Hawking effect is
dictated by horizons, and we have shown here that its
imprint in subcritical flows is governed by complex turning
points. In this regime, the spectrum becomes more com-
plicated, as it is governed by nonlocal quantities. The study
of complex turning points allowed us to provide a simple
characterization of this spectrum. When increasing the
Froude number, these turning points get closer to the real
axis, until they reach it. Before they do, the present
treatment breaks down, but it is expected that for increasing
F the spectrum will smoothly change from the subcritical
one to the Hawking onewhen F is sufficiently larger than 1.
In the Hawking regime, the characteristic length of non-
locality becomes smaller than the characteristic length of
the gradients [5], and as a result, the spectrum becomes
entirely governed by the surface gravity, i.e. the gradient of
the Froude number at the horizon. The analytical study of
this transition will be the aim of future investigations.
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APPENDIX A: GENERALIZED
BREMMER SERIES

1. Bremmer series for equations of order N

In this appendix, we derive the equation satisfied by the
local scattering coefficients defined in Sec. III A. The
method we present is a generalization of the Bremmer
series [24,25,35]. Whereas the Bremmer series deals with
second-order differential equations, such as the

Schrödinger equation, we consider higher-order differential
equations [36,37,43]. This is essential to describe disper-
sive effects of wave propagation, as in our case.8 Higher-
order differential operators are also useful to study
Schrödinger types of equation in momentum representa-
tion, see e.g. [44–46]. Our method also bears many
similarities with the adiabatic series used in a wide variety
of contexts, such as electronic transitions in molecular
collisions [39] or particle creation in cosmology [34].
However, here the corresponding operator is not self-
adjoint. Under certain conditions, there exists a quadratic
conserved quantity, but it has no reason to be positive
definite. This is the case for the wave equation of surface
waves, see Eq. (24).
To understand the general structure behind this method,

we first present it for a general differential equation of
degree N, and then apply it to the surface wave equation (5)
(Appendix B). We consider the differential equation

ð−i∂xÞNϕðxÞ −
XN−1

n¼0

fnðxÞð−i∂xÞnϕðxÞ

− i
XN−1

n¼0

gnðxÞð−i∂xÞnϕðxÞ ¼ 0: ðA1Þ

Here, the functions fnðxÞ are assumed to be real while the
gnðxÞ can be complex. To this equation, we associate the
corresponding Hamilton-Jacobi equation

PHJðkÞ ¼ kN −
XN−1

n¼0

fnðxÞkn ¼ 0; ðA2Þ

where we introduced the Hamilton-Jacobi polynomial PHJ.
We see that the gn’s do not appear in the Hamilton-Jacobi
equation. The reason is that while the fn’s represent the
background as perceived by the field ϕðxÞ, the gn’s
represent the features of the wave equation that are absent
of the Hamilton-Jacobi equation. In other words, they
encode the possible orderings one can choose when
promoting k in (A2) as the operator −i∂x to obtain
(A1). Hence, in the method we shall present, we treat
the gn’s as small quantities, as the same order as the
gradients of the background, i.e. the f0n’s. Going back to
(A2), since PHJ is a polynomial of degree N, it has N
different roots. The key assumption of the following
derivation, is that for all x, the N roots are real and distinct.
In particular, no crossing, where one would have kjðxÞ ¼
kl≠jðxÞ for some x, occurs. A common procedure with
higher- order ODEs is to trade the scalar equation of degree

8Since we adopt here the point of view of dispersive wave
equations, our approach has several technical differences with
respect to other generalizations of Bremmer series [36,37,43],
such as the distinction between the fn and gn, or the adiabatic
invariant of λ-canonical systems (see below).
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N (A1) for a vectorial equation of degree 1. For this, we
gather ϕ and its derivatives in a column vector,

Φ ¼

0
BBBBB@

ϕðxÞ
−i∂xϕðxÞ

..

.

ð−i∂xÞN−1ϕðxÞ

1
CCCCCA; ðA3Þ

where the −i’s are here for future convenience.
Equation (A1) then takes the simple matricial form

−i∂xΦ ¼ CðxÞ · ΦðxÞ þ iDðxÞ · ΦðxÞ; ðA4Þ

where

CðxÞ ¼

0
BBBBB@

0 1 ð0Þ
..
. . .

. . .
.

0 … 0 1

f0 f1 … fN−1

1
CCCCCA and DðxÞ ¼

0
BBBBB@

0 0 … 0

..

. ..
. ..

.

0 0 … 0

g0 g1 … gN−1

1
CCCCCA: ðA5Þ

CðxÞ is the N × N companion matrix associated with the
polynomial PHJ. The key idea of the Bremmer approach is
to “locally diagonalize CðxÞ,” i.e. at fixed x, and then use
the eigenbasis to rewrite the original equation (A1). The
characteristic polynomial of C is simply PHJ, and therefore
the roots of the Hamilton-Jacobi equation are the eigen-
values of C. Hence, we write our field solution of (A1) as

ϕðxÞ ¼
XN
j¼1

AjðxÞeiSjðxÞ; ðA6Þ

where the phases are the primitive integral of the Hamilton-
Jacobi roots, i.e.

SjðxÞ ¼
Z

kjðx0Þdx0: ðA7Þ

Since this introduces N new unknown functions ðAjÞj¼1.:N

instead of one, we further impose a similar relation between
all derivatives of ϕ in Φ and the local scattering coefficients
Aj. We define the Aj such that

ΦðxÞ ¼ V · ðAjðxÞeiSjðxÞ Þj¼1…N; ðA8Þ

where V is the Vandermonde matrix of the N roots kj, i.e.

V ¼

0
BBBBB@

1 … 1

k1 … kN

..

. ..
.

kN−1
1 … kN−1

N

1
CCCCCA: ðA9Þ

Since all the roots are distinct, detðVÞ¼Q
j<iðki−kjÞ≠0,

and the correspondance (A8) between Φ and the Aj’s is
one-to-one. Physically, Eq. (A8) means that the N − 1 first
derivatives of ϕ act as if the AjðxÞwere constant. We cannot
impose this to the N-th derivative, since the field must be a
solution of the wave equation (A1). This last condition will
instead give us a differential equation satisfied by the AjðxÞ.
To obtain it, we first notice that the Vandermonde matrix V
is the diagonalizing matrix of the companion matrix C.
Indeed, it is rather easy to check that

C · V ¼ V · diagðk1;…; kNÞ: ðA10Þ

We now have enough material to rewrite the mode
equation (A1) in a simple manner. For this, we start by
deriving the definition of the local scattering coefficients
(A8)

−i∂xΦ ¼ −i∂xV · ðAjeiSj Þ þ V · diagðk1;…; kNÞ · ðAjeiSj Þ − iV · ð ∂xAjeiSj Þ;
ðCþ iDÞ · Φ ¼ −i∂xV · ðAjeiSj Þ þ C · V · ðAjeiSj Þ − iV · ð ∂xAjeiSj Þ;

iD · Φ ¼ −i∂xV · ðAjeiSj Þ − iV · ð ∂xAjeiSj Þ;
ð ∂xAjeiSj Þ ¼ −½V−1∂xV þ V−1DV� · ðAjeiSj Þ: ðA11Þ
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This form is still not well suited for a perturbative
resolution. What we want is to partially integrate this
equation by normalizing the local scattering coefficients.
We define the normalized coefficients Aj ¼ N jaj. The
prefactors N j are chosen in order to get rid of the diagonal
elements in the matrix of Eq. (A11). This will recast the
equation governing the local scattering coefficients into

ð∂xajeiSjÞ ¼ M · ðajeiSjÞ; ðA12Þ

where the diagonal elements of M are 0. This guarantees
that, at 0th order, one recovers the WKB approximation;
i.e., the local scattering coefficients are constant. Inserting
Aj ¼ N jaj in Eq. (A11), we get the condition for the
prefactors

∂xN j

N j
¼ −½V−1∂xV þ V−1DV�jj: ðA13Þ

The matrix element ½V−1∂xV þ V−1DV�jj is real and
nonsingular, which guarantees that N j stays real and
positive. After integrating this equation, we finally deduce
the equation governing the local scattering coefficients

∂xal ¼
X
j≠l

MljeiðSj−SlÞaj: ðA14Þ

with

½M�lj ¼ −½V−1∂xV þ V−1DV�lj
N j

N l
: ðA15Þ

2. Computation of the M-matrix
elements and prefactors N j

To analyze the various coefficients of the M-matrix, we
will first explicitly integrate the equation for the prefactors
N k in (A13). For this we first need to compute the matrix
V−1. To do so, we introduce N reduced polynomials Pj

such that PHJðkÞ ¼ ðk − kjÞPjðkÞ, i.e.

PjðkÞ ¼
Y
l≠j

ðk − klÞ ¼
XN
l¼1

αjlk
l−1: ðA16Þ

Using them, the coefficients of V−1 are easily expressed as

½V−1�lj ¼
αlj

PlðklÞ
: ðA17Þ

The coefficients αjl are symmetric polynomials of theN − 1

roots kl≠j. Their exact expression is rather involved,
however, for our present purpose, it is not necessary to
write them explicitly. Indeed, using (A17), a direct com-
putation gives

½V−1∂xV�lj ¼
P0
lðkjÞ∂xkj
PlðklÞ

; ðA18Þ

where the 0 denotes derivative with respect to k. Moreover,
since PHJðkÞ ¼ ðk − kjÞPjðkÞ, the derivatives of Pj can be
expressed as derivatives of PHJ. In particular, the diagonal
term of V−1∂xV reads

½V−1∂xV�jj ¼
P00
HJðkjÞ∂xkj
2P0

HJðkjÞ
: ðA19Þ

At this level, it is tempting to identify the right-hand side of
this equation as the logarithmic derivative of P0

HJðkjÞ.
However, one should not forget that the expression
P0
HJðkjÞ depends on x through both the root kj and the

coefficients of P0
HJðkÞ, i.e. the fnðxÞ of Eq. (A2). To go

further, we must take into account the contribution of the
D-matrix of Eq. (A5). To easily express the coefficients of
V−1DV, we introduce the new polynomial

QðkÞ ¼
XN−1

j¼0

gjðxÞkj: ðA20Þ

Using it, the combination of (A17) and (A5) shows that

½V−1DV�lj ¼
QðkjÞ
P0
HJðklÞ

: ðA21Þ

Therefore, the prefactor equation (A13) rewrites

∂xN j

N j
¼ −

P00
HJðkjÞ∂xkj þ 2QðkjÞ

2P0
HJðkjÞ

: ðA22Þ

If the polynomial Q has the good form, this equation
directly integrates. Moreover, we recall that unlike PHJ, Q
might be complex. While its real part contributes to the
amplitude of the prefactor, its imaginary part generates a
phase. We call the equation (A1) λ-canonical,” if there
exists a function λðxÞ > 0 such that

2Re½QðkÞ� ¼ ∂xP0
HJðkÞ þ

λ0ðxÞ
λðxÞ P

0
HJðkÞ: ðA23Þ

Under this assumption, the prefactor equation (A13)
directly integrates, and one finds

N j ¼ jλðxÞP0
HJðkjÞj−1=2e−i

R
Im½QðkjÞ�=P0

HJðkjÞdx: ðA24Þ

By construction, this generalizes the adiabatic invariant of
Sec. II C. The phase shift that appears in (A24) might
directly affect the scattering coefficients, e.g., by altering
the resonance condition (27). However, in our case this
term stays negligible. We now turn to the computation of
the matrix elements MljðxÞ. For this, we first express
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Eq. (A18) in terms of the Hamilton-Jacobi polynomial, and
obtain

½V−1∂xV�l≠j ¼ −
P0
HJðkjÞ∂xkj

ðkj − klÞP0
HJðklÞ

: ðA25Þ

Combining this with the D-matrix, the prefactor N , i.e.
Eqs. (A21) and (A24), the expression (A15) becomes

MljðxÞ ¼
ϵlP0

HJðkjÞ∂xkj − ϵlðkj − klÞQðkjÞ
ðkj − klÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijP0
HJðklÞP0

HJðkjÞj
p ; ðA26Þ

where ϵl ¼ signðP0
HJðklÞÞ. We have also dropped the phase

proportional to ImðQÞ in (A24) for more clarity, but it is
straightforward to add it up.

3. Scattering coefficients in the smooth limit

At this level, we point out that the equation governing
the local scattering coefficients, i.e. (A14), is fully equiv-
alent to the initial wave equation (A1). No approximation
has been made so far. However, (A14) gives a simple
perturbative method to compute the scattering coefficients
in the limit of slowly varying backgrounds. At first
order, (A14) shows that the scattering coefficient
describing the transition from the mode j to l is given
by

αj→l ¼
Z þ∞

−∞
MljðxÞei

R
ðkj−klÞdx0dx: ðA27Þ

Interestingly, in the smooth limit, that is when f0n → 0
and gn → 0, αj→l has a universal behavior. To compute the
integral (A27), we make a change of variable S ¼R ðkj − klÞdx0. Since no crossing occurs on the real line
(by assumption), ∂xS ¼ kjðxÞ − klðxÞ ≠ 0, and our change
of variable is licit. Eq. (A27) becomes

αj→l ¼
Z þ∞

−∞

Mlj

kj − kl
½S�eiSdS: ðA28Þ

This integral can now be evaluated by a residue theorem.
All we need to do is to pick up the contribution of all the
singularities of the integrand such that ImðSÞ > 0. αj→l is
then given by

αj→l ¼ 2iπ
X

S�∈poles
Res

�
Mlj

kj − kl
½S�;S�

�
eiS� : ðA29Þ

The main type of singularity would be a zero of kj − kl,
which is exactly a saddle point S� ¼ Sðx�Þ. Another type of
singularity could arise if one of the background functions
fnðxÞ has a pole in the complex plane. This second type of
singularity usually gives subdominant contribution, as is
the case in all the profiles considered in this paper. We shall
thus consider the contributions of saddle points only. For
this, one should obtain the corresponding residue. Close to
the saddle point x ∼ x�, we have kl ∼ k� − δkðxÞ, and
kj ∼ k� þ δkðxÞ and, hence,

Mlj ∼
∂xδk
2δk

: ðA30Þ

FIG. 9. We conjecture that the first-order expression of the scattering coefficients (A32) can be improved by the replacement π=3 → 1.
The conjecture is that this replacement consists in resumming the leading contribution in the smooth limit of the diagrams that involve
only the roots kl and kj. Once this is done, the higher-order perturbative expressions are obtained by summing only over diagrams that
involve at least an intermediate state that differs from the initial and final ones.
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To obtain this equation, we have neglected the contribution
of the Q-term in Eq. (A26), but a (rather nontrivial)
computation shows that it produces subdominant correc-
tions in Oðjh0BjÞ. Then, using the fact that δk ∝ ðx − x�Þ1=2
near the saddle point x�, a little algebra shows that

Mlj

kj − kl
½S� ∼ 1

6ðS − S�Þ
: ðA31Þ

Using this, the residue theorem gives us the integral of
Eq. (A27),

αj→l ¼
X

S�∈poles

iπ
3
eiS� : ðA32Þ

As discussed in the text, in this sum, only the terms with the
smallest ImðS�Þ contribute significantly, while the other
gives exponentially small corrections. Hence, the scattering
coefficients are usually given by a few contributions,
coming from the complex turning points the closest to
the real line. We point out here the close similarity between
our derivation and the first-order result of the Bremmer
series [26,38] [in particular, Eq. (A30)]. In the latter case,
π=3 is only the first term of a series, and in the adiabatic
limit, it is possible to show that the entire sum is 1.
Therefore, the adiabatic limit leads to αj→l ∼ eiS� rather
than Eq. (A32). This is also what happens in the adiabatic
limit of a time-dependent two-level system [39]. For this
reason, it is reasonable to conjecture that this will also be
the case here. If this conjecture holds, the replacement
π=3 → 1 amounts to a partial resummation of some
diagrams of the perturbative resolution of Eq. (A14), as
shown in Fig. 9.

APPENDIX B: APPLICATION TO THE SURFACE
WAVE EQUATION (N = 4)

1. The Bremmer series for surface waves

To apply the preceding results to the problem at hand, we
must recast Eq. (5) under the form of Eq. (A1):

0¼ω2ϕþ2ωvi∂xϕ−ðv2−c2Þ∂2
xϕþ

gh3B
3

∂4
xϕ

þ iωv0ϕþ2iðvv0−cc0Þi∂xϕþ
g
3
ð3h2Bh00Bþ6hBh0B

2Þ∂2
xϕ

þ2gh2Bh
0
B∂3

xϕ: ðB1Þ

From this, we directly extract the functions fnðxÞ and
gnðxÞ:

f0ðxÞ ¼ − 3ω2

gh3B
;

f1ðxÞ ¼ 6ωv
gh3B

;

f2ðxÞ ¼ 3ðc2−v2Þ
gh3B

;

f3ðxÞ ¼ 0;

and

g0ðxÞ ¼ − 3ωv0
gh3B

;

g1ðxÞ ¼ 6ðvv0−cc0Þ
gh3B

;

g2ðxÞ ¼ −i ðh
3
BÞ00
h3B

;

g3ðxÞ ¼ 6h0B
hB

:

ðB2Þ

Using Eq. (A23), we verify that our equation is λ-canonical
with the function

λðxÞ ¼ gh3B
6

: ðB3Þ

Moreover, the quantity P0
HJðkjÞ is directly related to the

group velocity vjg ¼ ð∂ωkjÞ−1. Indeed, deriving the equa-
tion PHJðkjÞ ¼ 0 with respect to ω gives us

P0
HJðkjÞ∂ωkj þ ∂ωPHJ ¼ 0: ðB4Þ

We also check that the phase shift due to ImðQÞ ≠ 0 is
negligible in the regime of interest, i.e. when jh0Bj ≪ 1 is
valid. Hence, gathering the results of (B3) and (B4), we
finally obtain

N j ¼ jΩðkjÞvgðkjÞj−1=2; ðB5Þ

where Ω is defined after Eq. (1). The expression for the M
matrix is

MljðxÞ ¼
ϵlΩðkjÞvgðkjÞ∂xkj − ϵlgh3Bðkj − klÞQðkjÞ=6

ðkj − klÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΩðkjÞvgðkjÞΩðklÞvgðklÞj

p ;

ðB6Þ

with ϵl ¼ signðΩðklÞvgðklÞÞ. From Eq. (B2), we also
obtain the expression for Q defined in (A20), which reads

gh3B
6

QðkÞ ¼ −
ωv0

2
þ ðvv0 − cc0Þkþ gh2Bh

0
Bk

3 − i
g
6
ðh3BÞ00k2:

ðB7Þ

To have an estimation of the magnitude of these matrix
elements, we compute them in the limit ω ≪ ωmin.
The matrix elements governing the transition ku → kþ or
ku → k− are given by

Mþu ∼ −M−u ∼
h1=2B ω1=2½ðc2 − v2Þ0 þ ðc − vÞv0�

2ð24Þ1=4c1=4v1=2ðc − vÞ7=4 : ðB8Þ

On the other hand, the matrix element driving the transition
ku → kd reads

Mdu ∼ −
c0

c
: ðB9Þ
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As we see, both are proportional to derivatives of the
background and are small in the smooth limit. But the
matrix elements that govern α and β are further suppressed
by a factor Oðω1=2Þ at low frequencies, as we mentioned at
the end of Sec. III B.

2. Scattering coefficients at ultralow frequencies

To obtain the ultra-low-frequency behavior of the scat-
tering coefficients, we take the limit ω → 0 before the
smooth limit jh0Bj → 0. Indeed, as mentioned in Sec. III B,
these two limits do not commute, and the computation of
Appendix A 3 is valid for jh0Bj → 0 at fixed ω. To correctly
obtain the ω → 0 limit, we directly use the low-frequency
expressions of the matrix elements (B8) in the integral
representation for α of Eq. (26) (the computation for β gives
the same answer in that limit). The coefficient α is then
given by

αω∼
Z

h1=2B ω1=2½ðc2−v2Þ0þðc−vÞv0�
2ð24Þ1=4c1=4v1=2ðc−vÞ7=4 ei

R
xðkuðx0Þ−kþðx0ÞÞdx0dx:

ðB10Þ

As argued in Sec. IVA 1, in near critical flows
1 − Fmax ≪ 1, the variations of 1 − FðxÞ dominate with
respect to the other background quantities. Therefore, at
leading order in 1 − Fmax, we have

αω ∼
�

hminω

2
ffiffiffi
6

p
cmin

�
1=2

Z ð1 − FÞ0
ð1 − FÞ7=4 e

i
R

xðkuðx0Þ−kþðx0ÞÞdx0dx:

ðB11Þ

Since we look at the zero-frequency limit, in particular, we
have ω ≪ ωmin, and, hence, the phase of the integrant is
evaluated using the zero-frequency expressions of the roots,
i.e. Eq. (36). Hence, the saddle point of Eq. (B11) is the
complex horizon defined by Eq. (34). However, one
cannot use a residue theorem to compute the integral as
was done in Sec. A 3. The reason is that if we make the
same change of variable, the point S� ¼

R
x� ðkuðx0Þ −

kþðx0ÞÞdx0 is a branch point and not a pole. Instead, we
compute (B11) using a saddle point theorem [47]. This
gives

αω ∼ ei
3π
4
2

3

�
4πω

3cminð−F0�Þ
�

1=2
eiS� : ðB12Þ

From this, we deduce

jαωj2 ∼
32

ffiffiffi
2

p
πð1 − FmaxÞ3=2
27hminjF0�j

ω

ωmin
e−2ImðS�Þ: ðB13Þ

We see that in the ultra-low-frequency limit, α is still
governed by the same exponential involving the complex

turning point (complex horizon in this regime) as in
Eq. (A32), but the prefactor is not 1. Instead, the prefactor
vanishes as jCj2 ∼ ω=ωs. The characteristic frequency ωs is
defined from Eq. (B13) and reads

ωs ¼
27hminjF0�j

32
ffiffiffi
2

p
πð1 − FmaxÞ3=2

ωmin: ðB14Þ

We see that ωs=ωmin is proportional to a derivative of
the background and, therefore, is small in the smooth limit.
Note that this expression is valid in the smooth limit,
but the low-frequency behavior of αω and βω is exactly
given by the integral expression (B10), since for ω → 0,
OðMÞ ¼ Oðω1=2Þ. To obtain the simple expression (B14),
we applied a saddle point approximation, which is valid
if [47]

���� h4=3minðF00�Þ2
ð−F0�Þ8=3

���� ≪ 1: ðB15Þ

The above calculations and that of Appendix A 3 show
that the prefactor is mainly characterized by two
behaviors. When ω ≪ ωs, it vanishes as ω=ωs, but for
ωs ≪ ω≲ ωmin, it approaches 1. To reproduce this behav-
ior, we conjectured an explicit form of the prefactor as a
function of ω and used it for the numerical plots of
Figs. 5(a), 5(b), and 7. This form is

jCj2 ∼ ð1 − e−jωj=ωsÞ: ðB16Þ

The absolute value on ω is here to remind us that the
prefactor is the same for αω and βω and does not vary when
one applies the relation (40). To conclude this subsection,
we wish to underline the fact that this prefactor is an
effective way of describing the ultra-low-frequency behav-
ior of the scattering coefficients. Indeed, were we able to
sum over all the singularities of Eq. (A29), we would
presumably obtain an expression valid for all values of
ω≲ ωmin, including the limit ω ≪ ωs. It is when we restrict
the sum to its dominant contribution that we lose the
possibility of taking the limit ω → 0. The “effective”
prefactor described in Eqs. (B13) and (B16) allows us to
recover the correct ultra-low-frequency behavior.

3. The conserved current

In this subsection, we briefly sketch how the conserved
current J of Eq. (7) is obtained and how it applies to a
superposition of plane waves. This conserved current can
be directly obtained by applying the Noether theorem to the
action (2) with the symmetry ϕ → eiλϕ. A slightly quicker
way is to start from the conserved norm of Eq. (6). Indeed,
the Noether theorem says that the norm density ρ ¼
−Imðϕ�ð∂t þ v∂xÞϕÞ and the current J are related by the
conservation law
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∂tρþ ∂xJ ¼ 0: ðB17Þ

By computing ∂tρ and using the wave equation (4), we deduce the current. The calculation is as follows:

∂tρ ¼ −Imðϕ�∂2
tϕþ v∂tϕ

�∂xϕþ vϕ�∂t∂xϕÞ; ðB18aÞ

¼ −Im
�
v∂tϕ

�∂xϕ − ϕ�∂t∂xϕ − ϕ�∂xðv2 − c2Þ∂xϕþ g
3
ϕ�∂2

xh3B∂2
xϕ

�
; ðB18bÞ

¼ −Im
�
−v∂tϕ∂xϕ

� − ϕ�∂t∂xϕ − ϕ�∂xðv2 − c2Þ∂xϕþ g
3
ϕ�∂2

xh3B∂2
xϕ

�
; ðB18cÞ

¼ −Im
�
∂x½−vϕ�∂tϕ − ðv2 − c2Þϕ�∂xϕ� þ ∂xϕ

�ðv2 − c2Þ∂xϕ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∈R

þ g
3
ϕ�∂2

xh3B∂2
xϕ

�
; ðB18dÞ

¼ −Im
�
∂x

�
−vϕ�∂tϕ − ðv2 − c2Þϕ�∂xϕþ g

3
ϕ�∂xh3B∂2

xϕ

�
−
gh3B
3

∂xϕ
�∂3

xϕ

�
; ðB18eÞ

¼ −Im
�
∂x

�
−vϕ�∂tϕ − ðv2 − c2Þϕ�∂xϕþ g

3
ϕ�∂xh3B∂2

xϕ −
gh3B
3

∂xϕ
�∂2

xϕ

�
ðB18fÞ

þ gh3B
3

∂2
xϕ

�∂2
xϕ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

∈R

�
; ðB18gÞ

¼ −∂xIm

�
−vϕ�∂tϕþ ðc2 − v2Þϕ�∂xϕþ g

3
ϕ�∂xh3B∂2

xϕ −
gh3B
3

∂xϕ
�∂2

xϕ

�
; ðB18hÞ

¼ −∂xJ: ðB18iÞ

When we apply ∂tρþ ∂xJ ¼ 0 to stationary solutions
ϕðt; xÞ ¼ ReðϕωðxÞe−iωtÞ, we see that the current (7) is
x independent. We now want to apply this current to a local
superposition of WKB waves as in Eq. (16) so as to obtain
Eq. (24). Because J involves only derivatives of ϕ up to
third order, the ansatz of Eqs. (16), (17a), (17b), and (17c)
shows that the computation for a local WKB superposition
is the same as for exact plane waves, i.e. when v, c, and hB
are constant. Moreover, since J is a quadratic quantity in
the field, it is enough to show this for a superposition of two
plane waves

ϕ ¼ A1eik1x þ A2eik2x; ðB19Þ

where k1 and k2 are solutions of the dispersion relation (8).
Injecting the above form in (7), we see that

J½ϕ� ¼Ωðk1Þvgðk1ÞjA1j2þΩðk2Þvgðk2ÞjA2j2þJ×; ðB20Þ

where

J× ¼
�
2ωvþ ðc2 − v2Þðk1 þ k2Þ −

gh3B
3

ðk31 þ k32 þ k2k21

þ k1k22Þ
�
ReðA�

1A2e−iðk1−k2ÞxÞ: ðB21Þ

The factor ΩðkÞvgðkÞ in the diagonal terms directly follows
from Eq. (B4). However, it is much more delicate to show
that the cross term J× is exactly 0. Since J is by
construction independent of x, it has to vanish. One could
presumably stop here, invoking the latter argument, but it
would be instructive to understand why the first factor of
Eq. (B21) is always 0. It follows from the fact that k1 and k2
are distinct solutions of the dispersion relation (8). We have
proven this identity, but its derivation is rather involved and
it is unclear what its physical interpretation is, or how one
could generalize it. We present it in the form of the
following lemma:
Lemma: Let P be the polynomial

PðkÞ ¼ k4 þ ak2 þ bkþ c: ðB22Þ

If k1 and k2 are two distinct roots of P, we have the identity
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bþ aðk1 þ k2Þ þ k31 þ k32 þ k1k22 þ k2k21 ¼ 0: ðB23Þ

Proof.—Let k3 and k4 be the two other roots of P. We
call S the left-hand side of the above equation. We notice
that

1

2
ðP0ðk1Þ þ P0ðk2ÞÞ ¼

1

2
ðk1 − k2Þððk1 − k3Þðk1 − k4Þ

− ðk2 − k3Þðk2 − k4ÞÞ; ðB24aÞ

¼ 2ðk31 þ k32Þ þ aðk1 þ k2Þ þ b: ðB24bÞ

Hence,

S ¼ 1

2
ðP0ðk1Þ þ P0ðk2ÞÞ − k31 − k32 þ k1k22 þ k2k21: ðB25Þ

Moreover,

−k31 − k32 þ k1k22 þ k2k21 ¼ ðk1 − k2Þðk22 − k21Þ: ðB26Þ

Therefore,

S ¼ 1

2
ðk1 − k2Þððk1 − k3Þðk1 − k4Þ − ðk2 − k3Þðk2 − k4Þ

þ 2k22 − 2k21Þ: ðB27Þ

Since k1 ≠ k2, it is enough to show that ~S ¼ 2S=
ðk1 − k2Þ ¼ 0. Expanding ~S, it follows that

~S ¼ k21 − k1k3 − k1k4 − k22 þ k2k3 þ k2k4 þ 2k22 − 2k21;

ðB28aÞ

¼ k22 − k21 − k1k3 − k1k4 þ k2k3 þ k2k4; ðB28bÞ

¼ −ðk1 − k2Þðk1 þ k2Þ − k3ðk1 − k2Þ − k4ðk1 − k2Þ;
ðB28cÞ

¼ −ðk1 − k2Þðk1 þ k2 þ k3 þ k4Þ; ðB28dÞ

¼ 0: ðB28eÞ

At the last line, we used the fact that k1 þ k2 þ k3þ
k4 ¼ 0, which comes from the fact that the k3 coefficient
of P is zero.

4. Contour integral for a monotonic profile

In this section, we present the computation of the contour
integral necessary to obtain the value αω→0 in the profile
(53), that is, Eq. (55). Interestingly, this computation is very
similar to what happens for the Schrödinger equation in a
tanh potential [26]. The integral leading to Eq. (55) is
defined as

S� ¼
Z

x�

x0

ðkuðx0Þ − kþðx0ÞÞdx0; ðB29aÞ

¼
ffiffiffi
6

p

hmin

Z
x�

xR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − Fðx0ÞÞ

p
dx0; ðB29bÞ

where we used 1 − Fmax ≪ 1, and we have chosen x0 ¼ xR
for convenience. Before computing the above integral, we
rewrite the single step profile of Eq. (53) as

FðxÞ ¼ Fmax −
2De−2γx=D

1þ e−2γx=D
: ðB30Þ

We compute the contour integral above with the para-
metrization x0ðtÞ ¼ xR þ itΔ0, with xR and Δ0 given by
Eq. (54). Using the identity

FIG. 10. Contour of the integral (B33). The bold dots indicate poles of the integrant. The half circle is deformed into the segment
� −1 − iϵ; 1 − iϵ½ (dashed line).
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e−2γx
0ðtÞ=D ¼ 1 − Fmin

1 − Fmax
e−iπt; ðB31Þ

we get

S� ¼ i
πD

ffiffiffi
6

p

2γhmin

Z
1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Fmaxþ

2Dð1−FmaxÞe−iπt
ð1−FmaxÞe−iπtþ1−Fmin

s
dt:

ðB32Þ

We now interpret this integral as another contour integral,
clockwise along the lower half unit circle (see Fig. 10).
For this, we define z ¼ e−iπt, which implies dz=z ¼ −iπdt
and rewrite (B32) as

S� ¼−
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1−FmaxÞ

p
2γhmin

Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Dz

ð1−FmaxÞzþ1−Fmin

s
dz
z
:

ðB33Þ

We deform this contour into the segment � −1; 1½, right
below the pole at z ¼ 0, which gives

S�¼
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1−FmaxÞ

p
2γhmin

Z
1

−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Dz

ð1−FmaxÞzþ1−Fmin

s
dz

z−iϵ
:

ðB34Þ

Finally, using the identity ðz − iϵÞ−1 ¼ Pz−1 þ iπδðzÞ, we
get

S� ¼ i

ffiffiffi
6

p
πDð1 − FmaxÞ1=2

2γhmin
þ

ffiffiffi
6

p
Dð1 − FmaxÞ1=2

2γhmin

× P
Z

1

−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2D

1 − Fmax þ ð1 − FminÞz

s
dz
z
: ðB35Þ

The second term of this equation being real, we have

ImðS�Þ ¼
ffiffiffi
6

p
πDð1 − FmaxÞ1=2

2γhmin
; ðB36Þ

and hence Eq. (55). We also define ζ ¼ ReðS�Þ, which
contributes to the phase shift in Eq. (60). Using the Cardan-
Tartaglia method, and following the steps of Sec. IVA 2, a
computation similar to the above one gives us the correc-
tions in Oðω=ωminÞ of Eq. IV B 1.
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