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Shape dynamics is a 3D conformally invariant theory of gravity that possesses a large set of solutions in
common with general relativity. When looked at closely, these solutions are found to behave in surprising
ways; in order to probe the fitness of shape dynamics as a viable alternative to General Relativity one must
find and understand increasingly more-complex, less-symmetrical exact solutions on which to base
perturbative studies and numerical analyses to compare them with data. Spherically symmetric exact
solutions have been studied, but only in a static vacuum setup. In this work we construct a class of
time-dependent exact solutions of Shape Dynamics from first principles, representing a central
inhomogeneity in an evolving cosmological environment. By assuming only a perfect fluid source in a
spherically symmetric geometry, we show that this fully dynamic nonvacuum solution satisfies in all
generality the Hamiltonian structure of shape dynamics. The simplest choice of solutions is shown to be a
member of the McVittie family.
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I. INTRODUCTION

Shape dynamics (SD) is a theory of gravity locally
identical to the Arnowitt-Deser-Misner (ADM) formulation
[1] of general relativity (GR) in a constant-mean-extrinsic-
curvature (CMC) foliation. In such a foliation the
physical degrees of freedom of the gravitational field are
3-dimensionally conformally invariant [2–4]. SD consists
of taking this symmetry as fundamental, and requiring that
the 3-dimensional conformal geometry of each CMC slice
be regular. This gives rise to solutions that may differ from
those of GR, in which the fundamental requirement is
that of regularity of the pseudo-Riemannian geometry of
4-dimensional spacetime.
The relational principles on which SD is based [4] only

require that its solutions be generated by a Hamiltonian that
is invariant under 3D diffeomorphisms and conformal
transformations of the spatial metric. This allows for a
large class of Hamiltonians, generating inequivalent
dynamics; among these we have to select one based on
consistency with observations [3,4]. The value of this
Hamiltonian at each point of the phase space of ADM
variables can be determined only by solving a quasilinear
elliptic differential equation, whose result depends non-
locally on the ADM variables. This equation obviously
cannot be solved exactly everywhere in phase space, and,
therefore, for practical applications, we need to compute it
as a perturbative expansion. But any perturbative approach
needs an exact solution to expand around, and for this
reason exact solutions of SD are an invaluable starting point

for any specific application of the theory. The simplest class
of solution are the homogeneous ones, which have been
studied in Refs. [4,5]. Giving up homogeneity, we can
assume spherical symmetry in order to make the
Hamiltonian calculable, but in that case we also need to
add some matter source, to have nontrivial shape degrees of
freedom (any spherically symmetric manifold is confor-
mally flat, so its shape configuration space is just a point).
The simplest thing to do is to add a pair of thin shells of dust
to a spherical universe [4,6], a procedure which leads to a
very nontrivial system. In this paper, we are interested in
coupling SD to a less singular kind of matter source: a
spherically symmetric perfect fluid. By not assuming any
details of the relation between density and pressure of this
fluid, we will be able to solve all the constraints of SD
and get a class of exact solutions, which will be a very
valuable starting point for further perturbative analyses.
Furthermore, by borrowing a familiar assumption in GR,
namely, that the Weyl part of the Hawking-Hayward
quasilocal mass takes the form that one expects in the
presence of a (cosmological) black hole, or central mass,
we are able to derive one particular exact solution which is
known in GR as the McVittie metric. Such a metric
describes a cosmological black hole in the presence of a
fluid, and it is interesting to observe that it is also a solution
of SD. We believe that the simplicity of the McVittie metric
will make it a very interesting playground for SD, in
particular for the understanding of its physical predictions
regarding black holes. The McVittie metric, in fact, is a
nonstatic cosmological solution of SD that has a central
concentration of mass which we can identify with a black
hole. The other candidate black hole solutions of SD that
have been found so far [7–9] are static, eternal, and
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asymptotically flat, which makes them significantly less
interesting from the physical point of view.
The fact that SD allows for families of exact time-

dependent solutions is of particular interest to cosmology.
The familyof solutionsderived in thisworkmaybe expressed
as a perturbed Friedman-Lemaître-Robertson-Walker
(FLRW) metric in the Newtonian gauge, a result that brings
SD into the realm of gravitational theories with potential
implications for cosmological evolution.
For practical purposes, instead of working directly with

the SD dynamical system, it is convenient to simply work
in the conformal gauge in which SD is equivalent to GR in
a CMC foliation. We will therefore be studying solutions of
Arnowitt-Deser-Misner gravity in a CMC gauge. When
such solutions exist, they are both solutions of GR and SD.
However, there are situations in which such solutions do
not correspond to a well-defined solution of Einstein’s
equations, in particular, at the big bang singularity [5].
However, by looking at the conformally invariant degrees
of freedom, one can check whether, as solutions of SD, they
still make sense and can be continued past this breakdown
point. The strategy is to work with ADM gravity in a CMC
gauge as long as possible, and then focus on the shape
degrees of freedom when the solutions evolve into some-
thing that cannot be described in GR.
In this work we derive a class of exact solutions of SD by

solving the ADM equations under the following assump-
tions: (i) spherical symmetry, (ii) comoving perfect fluid
source, (iii) asymptotically FLRW behavior, and (iv) a
singularity at the center. Conditions (i) and (ii) define the
Kustaanheimo-Qvist class of solutions, of which there are
many physically interesting subcases [10], such as Wyman
[11], FLRW, McVittie, and Schwarzschild–de Sitter [12].
Conditions (iii) and (iv) represent fixing properties of the
poles of the spherically symmetric manifold. In particular,
condition (iii) requires that the metric be regular at one of
the poles, and condition (iv) requires it to be singular at the
opposite pole.
In Sec. II we establish the constraints and equations of

motionof shape dynamics towrite the spherically symmetric
ansatz in its specific form. Using conditions (i) and (ii) we
arrive at the generic expression for the Kustaanheimo-Qvist
class of spherically symmetric geometries in Sec. III, and
then we use the 3-dimensional expression of the Hawking-
Hayward quasilocal mass to apply conditions (iii) and (iv) to
the evolution equations in Sec. IV. We find a particular
solution in Sec. V, which is shown to satisfy all the require-
ments of a solution of shape dynamics. Finally, we present
our conclusions anddiscuss further developments in Sec.VI.
Latin indices run from 1 to 3 and in our units 16πG ¼ 1.

II. STATEMENT OF THE PROBLEM

The gravita tional action of a system filled with a
continuous fluid with an arbitrary energy momentum tensor
is given by

S ¼ SEH þ SM; ð1Þ

where SEH is the Einstein-Hilbert action given by

SEH ¼
Z

dt
Z

d3x

�
πab _γab

− N

�
1ffiffiffi
γ

p
�
πabπab −

1

2
π2
�
−

ffiffiffi
γ

p
R
�
−2Na∇bπ

ab

�

¼
Z

dt
Z

d3xðπab _γab − NH − NaHaÞ; ð2Þ

where R is the 3-Ricci scalar and we have the usual
definitions for the “super-Hamiltonian” and “supermomen-
tum,” namely,

H≡ 1ffiffiffi
γ

p
�
πabπab −

1

2
π2
�
−

ffiffiffi
γ

p
R; ð3Þ

Ha ≡ 2∇bπ
ab; ð4Þ

and the matter action SM is left unspecified for now. It may
be possible to define the Hamiltonian of an arbitrary perfect
fluid by defining it as a generic k-essence action. This
procedure has been carried out for some particular cases
[13], but the general action problem will be addressed in a
future work. We assume that it depends solely on the metric
components and not on their associated momenta, so that
we may define the components of the variation of SM with
respect to the lapse, shift, and metric as

ρ≡ −
1

N
ffiffiffi
γ

p δSM
δN

; ð5Þ

ja≡ −
1

N
ffiffiffi
γ

p δSM
δNa ; ð6Þ

Sab≡ −
1

N
ffiffiffi
γ

p δSM
δγab

: ð7Þ

The Hamiltonian constraint and momentum (or diffeo-
morphism) constraint are, respectively,

H ¼ ffiffiffi
γ

p
ρ; ð8Þ

Ha ¼ ffiffiffi
γ

p
ja: ð9Þ

The CMC condition reads

γabπ
ab −

ffiffiffi
γ

p hπi ¼ 0; ð10Þ
where hπi is the mean canonical momentum across the 3-

surface, that is, hπi≡
R

d3xγabπabR
d3x

ffiffi
γ

p . The evolution equations

divide into a vacuum part, which is given by Hamilton’s
equations generated by the total Hamiltonian
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R
dt
R
d3xðNHþ NaHaÞ, and a matter contribution to _πab

given by the term (7). The equations read [1]

_γab ¼ 2
Nffiffiffi
γ

p
�
πab −

1

2
πγab

�
þ 2∇ðaNbÞ; ð11Þ

_πab ¼ −N
ffiffiffi
γ

p �
Rab −

1

2
γabR

�

þ Nffiffiffi
γ

p
�
γab

2

�
πcdπcd −

1

2
π2
�
−2

�
πacπc

b −
1

2
ππab

��

þ ffiffiffi
γ

p ð∇a∇bN − γab∇c∇cNÞ
þ∇cðπabNcÞ − 2πcða∇cNbÞ þ N

ffiffiffi
γ

p
Sab: ð12Þ

In order for a solution of SD to admit a description as a
spacetime solving Einstein’s equation (i.e. a solution of
GR), a lapse function defining a local notion of proper time
must be defined. Such a function can be determined by
using the ADM equations of motion [Eqs. (11), (12)] to
calculate the time derivative of the CMC condition (10),

_γabπ
ab þ γab _π

ab þ
ffiffiffi
γ

p
2

hπiγab _γab

−
ffiffiffi
γ

p h_γabπab þ γab _π
abi −

ffiffiffi
γ

p
2

hπihγab _γabi ¼ 0: ð13Þ

Replacing Eqs. (11) and (12) in Eq. (13) above, we get

ð8Δ − 2R − hπi2 þ SÞN

− 6γ−1
�
πab − 1

3
πγab

��
πab − 1

3
πγab

�
N ¼ h ffiffiffi

γ
p

l:h:s:i:

ð14Þ

The term on the right-hand side is a spatial constant and can
be written as an undetermined function of time ϖðtÞ ¼
h ffiffiffi

γ
p

l:h:s:i.

A. Spherical symmetry and perfect fluid conditions

We start by applying condition (i) so that our ansatz for
the solution is a spherically symmetric metric on 3-space.
Following the notation from Ref. [6] we define

ds2 ¼ γabdxadxb

¼ μ2ðr; tÞdr2 þ Y2ðr; tÞdΩ2; ð15Þ

N ¼ Nðr; tÞ; ð16Þ

Na ¼ ξðr; tÞna; ð17Þ

where na ≡ δar is a unit vector in the radial direction and
dΩ2 ≡ dr2 þ rsin2θdθ2 is the usual 2-sphere element. The
canonical momentum conjugate to the metric is defined in
spherical symmetry as [6]

πab ¼ diag

�
f
μ
sin θ;

1

2
s sin θ;

1

2

s
sin θ

�
; ð18Þ

with s ¼ sðr; tÞ and f ¼ fðt; rÞ. Spherical symmetry also
means that the source matter satisfies the properties

ρ ¼ ρðr; tÞ; ð19Þ

ja ¼ jðr; tÞna; ð20Þ

Sab ¼ pðr; tÞγab þ σðr; tÞPab; ð21Þ

where Pab ≡ γab − γc
cnanb is the traceless projector with

respect to the radial direction.
Condition (ii), that the source corresponds to a perfect

fluid, implies that there is no anisotropic stress; that is, in
the fluid’s rest frame we have

σ ¼ 0: ð22Þ

In addition, condition (ii) limits our choice of fluid, in the
sense that it constrains us to place the fluid at rest with
respect to the observer; that is,

j ¼ 0: ð23Þ

It is worth noting that, while in GR a perfect fluid can
always be made comoving with a suitable choice of 4-
dimensional coordinates, in SD we have only 3-dimen-
sional diffeomorphism covariance; therefore, requiring that
the fluid be comoving corresponds to a physical constraint
on the matter source.

III. SOLVING THE CONSTRAINTS

After applying the conditions from Sec. II A to the
constraint equations (8), (9), and (10) we find

ρ ¼ 1

μ2

�
2

Y

�
μ0

μ
Y 0 − Y 00

�
−
�
Y 0

Y

�
2
�
−

1

Y2
þ f
2Y2

�
f
Y2

−
s
μ

�
;

ð24Þ

f0

Y
μ ¼ sY 0; ð25Þ

hπi ¼ f
Y2

þ s
μ
; ð26Þ

and we can immediately solve the CMC condition (26) and
momentum constraint (25) to find

s ¼ μ

�
hπi − f

Y2

�
; ð27Þ

f ¼ hπiY2

3
þ A
Y
; ð28Þ
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where AðtÞ is a spatially homogeneous integration constant.
The homogeneity of A is a consequence of the assumption
j ¼ 0 in Eq. (23) due to the fact that j acts as a source for
the radial derivative of A. Inserting these results back into
the Hamiltonian constraint (24), we find

ρ ¼ 1

μ2

�
2

Y

�
μ0

μ
Y 0 − Y 00

�
−
�
Y 0

Y

�
2
�
−

1

Y2
−
hπi2
12

þ 3

4

A2

Y6
:

ð29Þ

A. Hawking-Hayward mass

The Hawking-Hayward quasilocal mass [14] is a
measure of the energy content inside a codimension-2
compact hypersurface in general relativity, defined as the
Hamiltonian in a 2þ 2 foliation of spacetime. It coincides
with the Misner-Sharp mass [15] in spherical symmetry and
with the Bondi and ADM masses [16,17] if the metric is
asymptotically flat. Despite the fact that in shape dynamics
there is no spacetime, it is still useful to use the Hawking-
Hayward quasilocal mass as a guide to the determination of
the energy content inside a spatial volume. In the following
section we use the ADM formalism to cast the Hawking-
Hayward mass in terms of quantities contained in the
hypersurface, which will render it a meaningful quantity
to use in shape dynamics. We also interpret the different
contributions to themass in terms of hypersurface quantities.
It has been pointed out in the literature that in general

relativity, because the Hawking-Hayward mass may ulti-
mately be written as a projection of the Riemann tensor, it
may therefore be split in two distinct contributions: one
from the Ricci tensor and one from the Weyl tensor
[17–19]. In light of the Einstein equations, these contri-
butions can then be traced as coming from the energy-
momentum tensor distributed in the medium (the Ricci
part) and from a pointlike source or otherwise compact
object (the Weyl part). In shape dynamics there is no well-
defined spacetime, but once we are in a foliation we may
use the ADM splitting to define an analogue to the
Hawking-Hayward mass using only quantities defined in
the hypersurface. After performing the splitting we may
define the Hawking-Hayward mass MHH as

MHH ¼ MR þMW; ð30Þ

where the Ricci componentMR and Weyl componentMW ,
in our spherically symmetric metric, read

MR ¼ 1

6N

�
ξf0Y −

Y3

2μ
ðsξÞ0 þ Y4

μ

�
N0

μY

�0

þ Y
μ

�
1

2
ðY2 _sþ NsfÞ − _fμþ NY

�
Y 0

μ

�0��

þ 1

3
Y

�
1 −

Y 02

μ2

�
−
1

8

f2

Y
; ð31Þ

MW ¼ −
1

6N

�
ξf0Y −

Y3

2μ
ðsξÞ0 þ Y4

μ

�
N0

μY

�0

þ Y
μ

�
1

2
ðY2 _sþ NsfÞ − _fμþ NY

�
Y 0

μ

�0��

þ 1

6
Y

�
1 −

Y 02

μ2

�
þ 1

4

f2

Y
; ð32Þ

and using Eq. (30) we find that the two parts sum
up to

MHH ¼ Y
2

�
1 −

Y 02

μ2

�
þ f2

8Y
; ð33Þ

as expected [20]. The full derivation of this result may be
found in the Appendix.

B. Solving the Hamiltonian constraint

An immediate first application of the expression of the
Hawking-Hayward mass in spherical symmetry is to
algebraically solve the Hamiltonian constraint for μ
without making use of the equations of motion. By
substituting the definition from Eq. (33) into Eq. (24),
we may cast it as

ρ ¼ f
2Y2

�
s
μ
−

f0

YY 0

�
þ 2M0

HH

Y2Y 0 : ð34Þ

Applying the momentum constraint (28) and the CMC
condition (27), we find

ρ ¼ 2M0
HH

Y2Y 0 ; ð35Þ

which allows us to write MHH in integral form in terms
of ρ as

MHH ¼ η; ð36Þ

where

η0 ¼ 1

2
ρY2Y 0: ð37Þ

Inserting this result back into the definition of the
Hawking-Hayward mass (33) and noting that it can be
solved algebraically for μ, we find

μ ¼ 6YY 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y4ðhπi þ 3A

Y3Þ2 þ 9Yð4Y − 8ηÞ
q : ð38Þ

The usefulness of this result will become clear when
solving the lapse-fixing equation in Sec. VA.
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IV. SOLVING THE EQUATIONS OF MOTION

The evolution equations for the metric (11) read

_Y ¼ −
Nf
2Y

þ Y 0ξ; ð39Þ

_μ ¼ N
2

�
μf
Y2

− s

�
þ ðξμÞ0: ð40Þ

Inserting the solutions of the constraint equations, Eqs. (27)
and (28), we then find

_Y ¼ − N

�hπi
6

Y þ 1

2

A
Y2

�
þ Y 0ξ; ð41Þ

_μ ¼ − N

�hπi
6

−
A
Y3

�
þ ðξμÞ0: ð42Þ

The presence of a nonzero A implies that there is a
singularity in the metric at areal radius Y ¼ 0, that is, at
both antipodes of the compact spacetime [6]. Although
condition (iv) implies that we have a central singularity,
condition (iii) means that far from the singularity the
spacetime is expected to satisfy, among other properties,
regularity. Therefore, because A is constant at every leaf
due to our choice of j in Eq. (23), in order to guarantee a
regular spacetime on the antipodal point we choose A ¼ 0.
With this choice, the equations of motion simplify signifi-
cantly, and we now have

_Y
Y
¼ −

hπi
6

N þ Y 0

Y
; ð43Þ

_μ ¼ −
hπi
6

Nμþ ðξμÞ0; ð44Þ

which also implies that

_Y
Y
−
_μ

μ
¼ ξ

�
Y 0

Y
−
μ0

μ

�
− ξ0: ð45Þ

If we choose a gauge in which there is no shift (by setting
ξ ¼ 0), the metric evolution Eq. (45) results in

Y ¼ μRðrÞ; ð46Þ

where RðrÞ appears as an integration constant, and is a
function of the radial coordinate only. Equation (46) splits
the areal radius Y such that the metric becomes conformally
equivalent to a static metric. The time evolution of the
metric γij (15) is now encoded in the conformal factor μ. By
setting ξ ¼ 0 in Eq. (44), we find an expression for the
lapse, namely,

N ¼ −
6

hπi
_μ

μ
: ð47Þ

We now move on to the momentum equations of motion.
The independent components of Eq. (12) are

_f ¼ N

�
1þ Y2p −

3

4

f2

Y2

�
þ ξ

�
f0 − f

μ0

μ

�

þ f

�
_μ

μ
þ sN

2μ
− ξ0

�
−
2YY 0N0 þ NY 02

μ2
ð48Þ

_s ¼ N

�
μ

�
2pþ f2

2Y4

�
−
2

Y

�
Y 0

μ

�0�
þ ðsξÞ0

þ 2N0

μ

�
μ0

μ
−
Y 0

Y

�
−
2N00

μ
: ð49Þ

Inserting the results from the constraints, Eqs. (28) and
(27), and the equations of motion of the metric, Eqs. (46)
and (47), the radial and angular components of the
momentum evolution equations read, respectively,

1

3
_hπi ¼ 6

μ3hπi
�
μ0

μ

�
2_μ0 −

μ0 _μ
μ

�
þ 2

R0

R
_μ0

þ _μ

R2
ð1 − R02Þ

�
þ _μ

μ

�
6p
hπi −

1

2
hπi

�
; ð50Þ

1

3
_hπi ¼ 6

μ3hπi
�
−
μ0

μ

�
2_μ0 −

μ0 _μ
μ

�
þ _μ00

þ 1

R
ðR0 _μ0 þ R00 _μÞ

�
þ _μ

μ

�
6p
hπi −

1

2
hπi

�
: ð51Þ

The difference between these two components, also known
as pressure isotropy condition [12], or spatial Ricci isotropy
[18], yields

6

μ3hπi
�
_μ00 þ 2

μ0

μ

�
2_μ0 −

μ0 _μ
μ

�
−
R0

R
_μ0

þ 1

R2
ðRR00 − R02 þ 1Þ

�
¼ 0; ð52Þ

so we are motivated to choose a gauge for which [21,22]

RR00 − R02 þ 1 ¼ 0 ⇒ R02 ¼ 1 − kR2 ð53Þ

so that

R ¼
8<
:

sinh r k ¼ −1;
r k ¼ 0;

sin r k ¼ 1:

ð54Þ

Our gauge choice may be further specified by choosing a
value for k, which will remain undetermined in our
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analysis. For _μ ≠ 0, Eq. (52) can then be rewritten as a total
derivative, namely,

∂t

�
μ00 − 2

μ02

μ
− μ0

R0

R

�
¼ 0; ð55Þ

which reduces to the ordinary differential equation

μ00 − 2
μ02

μ
− μ0

R0

R
¼ χðrÞ: ð56Þ

Inserting these results back into the Hamiltonian con-
straint (24), we find

ρ ¼ −
hπi2
12

þ 3

μ2

�
1 − R02

R2
−
2

μ

�
χ

3
þ μ0

�
R0

R
þ μ0

μ

���
; ð57Þ

and taking the radial derivative of Eq. (57) and using again
Eqs. (56) and (53), we find

χ0 þ 3χ
R0

R
¼ −

1

2
ρ0μ3; ð58Þ

whose solution is

χ ¼ 1

R3

�
−
1

2

Z
ρ0ðμRÞ3drþm0

�
: ð59Þ

We may use the results from this section to rewrite the
Hawking-Hayward mass in terms of the new metric
functions. After applying the results from the constraint
equations, Eqs. (27) and (28), and the equations of motion,
Eqs. (46), (47), and (56), we find that the two parts of
Eq. (30) reduce to

MR ¼ μR
2

ð1 − R02Þ − R2μ0R0 þ R3

�hπi2μ3
72

−
χ

3
−
μ02

2μ

�
;

ð60Þ

MW ¼ R3

3
χ; ð61Þ

with χ given by Eq. (56). We may interpret this result as the
fact that a nonzero χ corresponds to a contribution to the
energy of the system from a source other than the fluid,
such as a compact object or a black hole, as we will see in
the following section.
Now, inspecting Eq. (58), and using Eq. (46) we notice

that χ and η defined in Eq. (37) are related by

R3χ ¼ 6η − ρR3μ3 þ BðtÞ; ð62Þ

where BðtÞ is an integration constant. Notice that the left-
hand side is independent of time.

By inserting the results of the pressure isotropy con-
dition, Eqs. (53) and (56), into one of the momentum
equations of motion, we find

p ¼ −
1

12
hπi2 − 1

18

μ

_μ
_hπihπi þ 2

_μ0

μ2 _μ

�
R0

R
þ μ0

μ

�

−
1

μ2

�
kþ μ02

μ2

�
; ð63Þ

which may interpret as the definition of the fluid pres-
sure p.

V. FINDING A PARTICULAR SOLUTION

The Ricci part MR of the Hawking-Hayward quasilocal
mass is associated with the presence of a source field in the
equations of motion, since it vanishes in a vacuum solution.
The Weyl partMW is therefore associated with the presence
of a central compact object, as well as the presence of
spacetime singularities. In particular, we might choose a
finite interval for the radial coordinate by setting k ¼ 1 in
Eq. (54), which for particular forms of μ would be akin to
closed FLRW models. In this case, for the foliation to be
regular at the antipode r ¼ π, in addition to setting A ¼ 0 in
Sec. IV, the Weyl tensor must also be finite at the antipode.
On the other hand, at the coordinate center r ¼ 0 a
singularity is guaranteed if the Weyl tensor diverges, there-
fore satisfying condition (iv). The simplest choice of a
function χ that satisfies both requirementswhile relying only
on the already defined gauge-fixing function R is given by

χ ¼ 3m
w02

w3
; ð64Þ

where m is a constant, and

wðrÞ≡ 2R

�
r
2

�
: ð65Þ

Bymaking this choice, we have fixed the mass of the central
objectMW to be equal tom,1 and also ensured that condition
(iv) holds.
Applying Eq. (64) to Eq. (56), and noting that Eq. (53)

implies that w02 ¼ 1 − k
4
w2, we have

μ00 − 2
μ02

μ
− μ0

R0

R
¼ 3m

w02

w3
: ð66Þ

The pressure isotropy condition (66) now admits a solution
of the form

μ ¼ a

�
1þ m

2aw

�
2

; ð67Þ

1This interpretation becomes clear if one chooses a spatially
flat asymptotic spacetime by setting k ¼ 0 in Eq. (54).
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with a ¼ aðtÞ an arbitrary function of time only. Now that
we have both χ and μ, we can calculate the Hawking-
Hayward mass of this solution; we get

MHH ¼ w3

8
ð4 − kw2Þ32

�
ak
2
þH2a3

2

�
1þ m

2aw

�
6

þ m
w3

�
;

ð68Þ

and Eq. (62) results in B ¼ 0.
Equation (47) now yields

N ¼ −
6

hπi
1 − m

2aw

1þ m
2aw

_a
a
: ð69Þ

For condition (iii) to hold, the solution requires that N → 1
as r ≫ m, and because this must be satisfied for all slices
we are required to choose hπi ¼ −6 _a

a. The 4D metric
finally reads

ds2 ¼ aðtÞ2
�
1þ m

2aðtÞwðrÞ
�
4

½dr2 þ RðrÞ2dΩ2�; ð70aÞ

N ¼
1 − m

2aðtÞwðrÞ
1þ m

2aðtÞwðrÞ
; ð70bÞ

Ni ¼ 0: ð70cÞ

This is the well-known McVittie metric [23] written in a
compact foliation.

A. Lapse-fixing equation

Rewriting Eq. (14) in our spherically symmetric ansatz
and after applying the solutions of the CMC [Eq. (27)],
Hamiltonian [Eq. (24)], and momentum [Eq. (28)] con-
straints,

−
ϖ

4
¼ N

�
ρþ 3pþ hπi

6
þ 2A2

Y6

�

þ 2N0

μ2

�
μ0

μ
−
2Y 0

Y

�
−
2N00

μ2
: ð71Þ

Using Eq. (38), we may write it as

1

2Y2Y 0

�
4Y2Y 02

μ3

�
Nμ

Y 0

�0�0
− N

�
3ðρþ pÞ þ Yρ0

Y 0

�
¼ ϖ

4
:

ð72Þ

After applying the results from gauge-fixing the metric
evolution equations [Eqs. (46) and (47)] and the pressure
isotropy condition [Eqs. (54) and (56)], we find

ϖhπi
24

μ

_μ
¼ 1

R0μþ Rμ0

�
6χR0 þ 2Rχ0

μ2
þ Rρ0μ

�

þ 6

μ2

�
R0

R
μ0

μ
þ χ

μ
− kþ 2μ0 − 1

μ

�
R0

R
þ μ0

μ

��

þ 3ðρþ pÞ: ð73Þ

Inserting the solution (70) into the lapse-fixing equation,
we find that it is identically satisfied. This proves that the
McVittie lapse (69) is a solution of the lapse fixing
equation (14). Our solution is consistent and is (locally)
both a solution of shape dynamics and general relativity.

VI. CONCLUSIONS

In this work we have found a new solution of shape
dynamics by building on the fact that in spherical symmetry
a CMC foliation is equivalent to a shear-free comoving
flow; this is part of potentially an entire new class of
solutions to the theory. There are many implications of this
result, and the next step is now to fully characterize this
solution. Although we know the causal structure of
spatially flat McVittie spacetimes in general relativity
[24,25], the spatially compact counterpart, despite having
been previously studied in the context of general relativity
[26], requires a completely new interpretation in the context
of shape dynamics.
Whether one or more members of this class of solutions

in fact contain a black hole remains an open question. In
GR, the 4-dimensional compact McVittie metric does not
possess an event horizon, but it may contain apparent
horizons that are not covered by the coordinate patch used
in previous analyses [26]. As in previously studied shape
dynamics solutions, the event horizon or otherwise margin-
ally trapping surfaces may well give way to a throat into
another region of space which possesses no general-
relativistic analogue [6], which may extend the explorable
region up to a possible universal horizon or other locus
where the CMC foliation can no longer be extended [27].
This is a fundamental feature displayed by shape dynamics
solutions that is not present in their general-relativistic
counterparts. Moreover, it has been shown that McVittie
spacetimes admit spatially bound timelike and null orbits
[28], an “astrophysical” property which would be interest-
ing to study in the context of shape dynamics. Finally,
regarding singularities, the known McVittie spacetime
singularities all stem from divergences of 4-dimensional
quantities, in regions where 3-dimensional quantities often
remain well behaved. Therefore, they may very well
represent perfectly regular and traversable regions in a
shape dynamics interpretation, as it has been shown to be
the case in other solutions, such as Bianchi IX [5],
“Schwarzschild-like” [7], and “Kerr-like” [8] solutions.
Another important question that has been left open here

is the action of the matter source. It may be possible to
follow a procedure similar to previous Hamiltonian
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analyses of k-essence models [13] in order to find a generic
perfect-fluid source, so we may characterize the source
from a field theory perspective and provide an analogy with
the cuscuton source of the McVittie spacetime [29].
Finally, it must be noted that a much broader class of

solutions of Eq. (56) has been studied in Ref. [30]. Their
applicability as solutions of shape dynamics, as well as
whether they can be related to general solutions of the
lapse-fixing equation (72), will be the object of future work.
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APPENDIX: INTERPRETATION OF THE
HAWKING MASS AS A TWO-COMPONENT

QUANTITY

In this a ppendix we perform the derivation and split of
the Hawking-Hayward mass from 4-dimensional spacetime
in terms of 3-dimensional quantities defined in our space-
like foliation. To do so, we use some of the techniques
developed in Refs. [17–19]. To avoid cluttering the
notation, all quantities represent 4-dimensional objects
unless stated otherwise. Greek indices run from 0 to 3
and we use the signature ð−;þ;þ;þÞ.
We start by defining a few projectors into the hypersur-

face. The comoving flow of a 4-dimensional metric g is
defined as

uμ ≡ 1ffiffiffiffiffiffiffiffiffiffi−g00
p δμt ; ðA1Þ

and the orthogonal projection with respect to uμ gives the
spatial slices

γμν ≡ gμν þ uμuν: ðA2Þ

We may also define a unit vector nμ orthogonal to the flow.
To do so, we use the acceleration _uμ ≡ uαuμ;α to write
nμ ≡ _uμffiffiffiffiffiffiffi

_uα _uα
p , which we use to construct the induced metric

on a codimension-2 hypersurface,

hμν ≡ γμν − nμnν; ðA3Þ

an example of which in spherical symmetry is a 2-sphere of
radius r.

1. Hypersurface decomposition

The Hawking-Hayward quasilocal mass is defined in
terms of radial null geodesics on a compact spacelike 2-
surface S as the integral of the Hamiltonian two-form over
the surface S, multiplied by the length scale given by the
area of S [14],

MHH ≡ 1

ð4πÞ32

ffiffiffiffi
A

p

4

Z
S
dS

�
ð2ÞR þ θðþÞθð−Þ

−
1

2
σðþÞ
μν σμνð−Þ − 2ωμωμ

�
; ðA4Þ

where A≡ R
S dS is the area of S, θð�Þ are the expansion

scalars of the ingoing (−) and outgoing (þ) null geodesics,

σð�Þ
μν is their respective shear tensor of the geodesic

congruence, and ωμ the twist of the surface S. In spherical
symmetry ωμ vanishes, and we may use the contracted
Gauss equation to write

ð2ÞR þ θþθ− −
1

2
σðþÞ
μν σμνð−Þ ¼ hαγhβδRαβγδ; ðA5Þ

with hμν as defined in Eq. (A3). In this context, we can use
Eq. (A5) to rewrite the Hawking-Hayward mass from
Eq. (A4) as

MHH ¼ 1

ð4πÞ32

ffiffiffiffi
A

p

4

Z
S
dShachbdRabcd: ðA6Þ

Moreover, using the decomposition of the Riemann
tensor into its Ricci and Weyl parts, that is,

Rμναβ ¼ Cμναβ þ gμ½αRβ�ν − gν½αRβ�μ −
R
3
gμ½αgβ�ν; ðA7Þ

we finally recover Eq. (30) with the contributions from the
Ricci part and Weyl part defined as

MR ≡ 1

ð4πÞ32

ffiffiffiffi
A

p

4

Z
S
dShμαhνβ

�
gμ½αRβ�ν

− gν½αRβ�μ −
R
3
gμ½αgβ�ν

�
; ðA8Þ

MW ≡ 1

ð4πÞ32

ffiffiffiffi
A

p

4

Z
S
dShμαhνβCμναβ: ðA9Þ

In fact, the integrand in Eq. (A9) is the electric part of the
Weyl tensor, which prompts the interpretation of a
“Newtonian” character of the Hawking-Haywardmass [19].
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2. Back to the hypersurface

Using the contracted Gauss equation, the Hawking-
Hayward quasilocal mass can be cast entirely in terms
of quantities within a 3-dimensional surface [19]. Since the
mass depends on the projection of the Riemann tensor on
the 2-surface, it is useful to compute the projection of
Eq. (A7) on the 2-surface, that is,

habhcdRabcd ¼ habhcdCabcd −
R
3
habhcdga½cgd�b

þ habhcdðga½cRd�b − gb½cRd�aÞ: ðA10Þ

We start by noticing the following identity:

habhcdga½cgd�b ¼ 1: ðA11Þ

Additionally, for any symmetric rank-2 tensor T, we have

habhcdðga½cTd�b − gb½cTd�aÞ ¼ habTab: ðA12Þ

Making use of these results, the 2-surface projected
Riemann tensor reads

habhcdRabcd ¼ habhcdCabcd þ habRab −
R
3
: ðA13Þ

Thus, we may cast the individual contributions from the
first part of the Appendix by writing the contributions from
Eqs. (A8) and (A9) as

MR ¼ 1

ð4πÞ32

ffiffiffiffi
A

p

4

Z
S
dS

�
habRab −

R
3

�
; ðA14Þ

MW ¼ 1

ð4πÞ32

ffiffiffiffi
A

p

4

Z
S
dS

�
habhcdRabcd − habRab þ

R
3

�
:

ðA15Þ

Using the contracted Gauss-Codazzi equations, we write
the Ricci scalar and projected Ricci tensor in ADM form as

habRab ¼ hab
�
ð3ÞRab þ KKab − 2Kc

bKca

−
1

N
ð∂tKab − LξKab þ∇a∇bNÞ

�
; ðA16Þ

R ¼ ð3ÞR þ K2 − 3KabKab

−
2

N
γabð∂tKab − LξKab þ∇a∇bNÞ; ðA17Þ

and we use Eqs. (A16) and (A17) to cast the Ricci andWeyl
contributions from Eqs. (A14) and (A15) as

MR ¼ 1

ð4πÞ32

ffiffiffiffi
A

p

4

Z
S
dS

�
hab

�
ð3ÞRab þ KKab − 2Kc

bKca −
1

N
ð _Kab − LξKab þ∇a∇bNÞ

�

−
1

3

�
ð3ÞR þ K2 − 3KabKab −

2

N
γabð _Kab − LξKab þ∇a∇bNÞ

��
; ðA18Þ

MW ¼ 1

ð4πÞ32

ffiffiffiffi
A

p

4

Z
S
dS

�
hachbdðð3ÞRabcd þ KacKbd − KadKbcÞ

− hab
�
ð3ÞRab þ KKab − 2Kc

bKca −
1

N
ð _Kab − LξKab þ∇a∇bNÞ

�

þ 1

3

�
ð3ÞR þ K2 − 3KabKab −

2

N
γabð _Kab − LξKab þ∇a∇bNÞ

��
; ðA19Þ

which depend solely on quantities defined in the hypersurface. By applying this result to our spherically symmetric ansatz
we arrive at the expressions from Eqs. (31) and (32).
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