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We extend the loop quantum cosmology matter bounce scenario in order to include a dark energy era,
which ends abruptly at a rip singularity where the scale factor and the Hubble rate diverge. In the “deformed
matter bounce scenario,” the Universe is contracting from an initial noncausal matter dominated era until it
reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in
an accelerating way, and thus the model is described by a dark energy era that follows the matter dominated
era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential as
what follows the matter domination era, and eventually it crosses the phantom divide line and becomes
phantom. At the end of the dark energy era, a rip singularity exists, where the scale factor and Hubble rate
diverge; however, the physical system cannot reach the singularity, since the effective energy density and
pressure become complex. This indicates two things, first that the ordinary loop quantum cosmology matter
bounce evolution stops, thus ending the infinite repetition of the ordinary matter bounce scenario. Second,
the fact that both the pressure and the density become complex probably indicates that the description of the
cosmic evolution within the theoretical context of loop quantum cosmology ceases to describe the physics
of the system and possibly a more fundamental theory of quantum gravity is needed near the would be rip
singularity. We describe the qualitative features of the model, and we also investigate how this cosmology
could be realized by a viscous fluid in the context of loop quantum cosmology. In addition to this, we show
how this deformed model can be realized by a canonical scalar field filled Universe, in the context of loop
quantum cosmology. Finally, we demonstrate how the model can be generated by a vacuum FðRÞ gravity.
DOI: 10.1103/PhysRevD.94.064022

I. INTRODUCTION

The inflationary paradigm for early-time cosmology is a
consistent framework, in which many theoretical incon-
sistencies of the big bang cosmology were appropriately
addressed [1–5]. However, inflation theories suffer from the
initial singularity problem [6] at the origin t ¼ 0, and this
initial singularity is a crushing type timelike singularity [7],
which means that the spacetime is geodesically incomplete
at that time instance. An appealing alternative scenario to
the standard inflationary cosmology is the big bounce
scenario, in the context of which the singularity is replaced
by a bounce [8–32]. Particularly, in most bouncing cos-
mologies, the Universe initially is large and cold and starts
its evolution contracting until it reaches a minimal radius, at
which point it bounces off and starts to expand again.
Among the most interesting bouncing scenarios is the
matter bounce cosmological scenario [26–32], in the
context of which the Universe starts contracting and is
described by a matter dominated initial cosmological era
and the spectrum is scale invariant [8]. Initially, the Hubble

horizon is large, and thus the perturbations are at sub-
Hubble scales, and as the Universe contracts, these modes
exit the horizon and thus will become relevant for present
day observations after these reenter the horizon during the
expanding phase, after the bouncing point at t ¼ 0. The
contraction phase is very important for the phenomeno-
logical properties of the Universe, since during this phase,
the various parts of the Universe come to a causal contact.
However, the matter bounce cosmologies, like most
bouncing cosmologies, have certain pathologies which
should be appropriately addressed in a consistent theoreti-
cal way in order that the theory becomes complete.
Examples of these pathologies are the fact that the spectrum
is exactly scale invariant, there are primordial non-
Gaussianities, the suppression of the primordial gravita-
tional waves is quantified in terms of the scalar-to-tensor
ratio, and it is the late-time acceleration era; see [8] for a
detailed presentation on these issues.
The purpose of this paper is to address the late-time

acceleration issue of the matter bounce scenario in the
context of loop quantum cosmology (LQC) [33–45] and
also in modified gravity. Particularly, we shall deform the
matter bounce scenario in a way so that the late-time
acceleration occurs in the model, and we shall refer to this
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model as the deformed matter bounce scenario. According
to the deformed matter bounce scenario, the Universe starts
the contracting phase at t → −∞ while being described by
the matter bounce scenario, since the deformation effects
are negligible at the beginning of the contraction, and then
it bounces off at t ¼ 0 and starts to expand again.
Gradually, as the Universe expands, it is described by a
matter dominated epoch, and the deformation of the matter
bounce scenario affects the cosmological evolution only at
late times, where a dark energy era occurs. The dark energy
era is quintessential, and the Universe crosses the phantom
divide at late times, so eventually the dark energy era is
phantom. We need to note that the latest observations
coming from Planck data [46], and also earlier data coming
from WMAP [47], indicate that the total equation of the
state parameter for dark energy is weff ¼ −1.54þ0.62

−0.50 , which
is almost 2σ in the phantom domain [46].
At the end of the phantom dark energy era, at a finite

time ts, the scale factor and the Hubble rate of the model
strongly diverge, and this indicates that a big rip or some
sort of rip singularity [48–55] is reached. However, a few
seconds before this rip singularity, the effective energy
density and the effective pressure of the model become
complex, and thus this singularity is unphysical. We
conclude that the rip singularity is not accessible for the
physical system, and therefore this behavior of the very
late-time era clearly indicates that even in the LQC context
this era is effectively described by a more fundamental
theory of quantum gravity. This behavior is reminiscent of
results studied in related works [56–60], which state that
the rip singularity is avoided in LQC. In our case the rip is
not avoided directly, but the physical system cannot reach
this singularity, since some observables become complex
and thus unphysical. At a later point we shall discuss this
issue in detail since it requires a careful interpretation.
The motivation for studying singular deformations of the

matter bounce scenario comes mainly from the fact that
recent constraints hint that the total equation of state
parameter is around weff ≃ −1 (slightly larger or smaller
than weff ¼ −1) and also from the fact that our Universe
undergoes a late-time acceleration era. The standard matter
bounce scenario does not have these features, so with this
paper we aim to demonstrate that this can happen by
deforming the standard matter bounce scenario. As we
show in the next sections, the deformed matter bounce
scenario and the standard matter bounce scenario differ
only at late times.
This paper is organized as follows: In Sec. II, we present

in some detail all the qualitative new features of the
deformed matter bounce cosmology, and we discuss the
behavior of the Equation of State (EoS) as well as describe
the late-time acceleration era. We also investigate the phase
space of our model, and also we examine which is the final
attractor of our model. The quantitative analysis is sup-
ported by numerical results too, in order to further

understand the resulting qualitative features of the model.
In Sec. III, we investigate which LQC viscous imperfect
fluid can realize the deformed matter bounce cosmology,
and we do the same in the case of a canonical scalar field in
the context of LQC. In Sec. IV, using known reconstruction
techniques, we shall investigate how it is possible to realize
the deformed matter bounce cosmology in the context of
vacuum FðRÞ gravity, emphasizing the description of the
late-time era, since the early-time description already exists
in the literature.
Before getting started, let us briefly present here the

geometric conventions we shall assume for the background
spacetime. We will use a flat Friedmann-Robertson-Walker
background, with line element,

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2; ð1Þ

where as usual, aðtÞ denotes the scale factor. In addition,
we shall consider that the connection is a symmetric,
torsionless, and metric compatible affine connection, the
Levi-Cività connection. For the metric (1), the Ricci scalar
reads

R ¼ 6ð2H2 þ _HÞ; ð2Þ

withH being the Hubble rateH ¼ _a=a. Also we use a units
system such that ℏ ¼ c ¼ 8πG ¼ κ2 ¼ 1.

II. THE QUALITATIVE FEATURES OF THE
DEFORMED MATTER BOUNCE

SCENARIO

The LQC framework [33–45] offers a theoretical descrip-
tion of cosmological evolution inwhich the initial singularity
is avoided. In the context of LQC, the effective Hamiltonian
that describes the quantum Universe is [33–45]

HLQC ¼ −3V
sin2ðλβÞ
γ2λ2

þ Vρ; ð3Þ

with γ being the Barbero-Immirzi parameter, λ a parameter
related to γ, with dimensions of length, V the volume
V ¼ aðtÞ3, aðtÞ the scale factor, and ρ the energy density
of the matter which fills the Universe. By using the
Hamiltonian constraint HLQC ¼ 0, that is,

sin2ðλβÞ
γ2λ2

¼ ρ

3
; ð4Þ

and also using the following anticommutation identity:

_V ¼ fV;HLQCg ¼ −
γ

2

∂HLQC

∂β ; ð5Þ
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we obtain the holonomy quantum corrected Friedmann
equation [33–45]

H2 ¼ ρ

3

�
1 −

ρ

ρc

�
; ð6Þ

where the energy density ρ is assumed to satisfy the
continuity equation

_ρðtÞ ¼ −3HðρðtÞ þ PðtÞÞ; ð7Þ

and with PðtÞ being the effective pressure of the perfect
matter fluid. By using the continuity equation and the
holonomy corrected Friedman equation, we obtain the
following differential equation too:

_H ¼ −
1

2
ðρþ PÞ

�
1 − 2

ρ

ρc

�
: ð8Þ

Notice that both Eqs. (6) and (8), in the limit ρc → ∞, lead to
the ordinary Friedmann equations of Einstein-Hilbert grav-
ity, so the finiteness of the parameter ρc captures the quantum
nature of spacetime. The appealing scenario that we are
interested in is the matter bounce scenario [26–32]; see also
[61,62] for a presentation of the alternative radiation bounce
scenario in LQC. In the case of the matter bounce scenario,
the pressure is zero, so the effective energy density ρmbðtÞ
satisfies

_ρmbðtÞ ¼ −3HρmbðtÞ: ð9Þ

The differential equation (9) has the well known solution
ρmb ¼ ρca−3, which describes a matter dominated Universe.
By plugging the expression ρmb ¼ ρca−3 in the LQC-
corrected Friedmann equation, the scale factor and the
corresponding Hubble rate can easily be found, and these
read

ambðtÞ ¼
�
3

4
ρct2 þ 1

�
1=3

; HmbðtÞ ¼
1
2
ρct

3
4
ρct2 þ 1

: ð10Þ

By using the resulting form of the scale factor from Eq. (10)
and plugging it in the expression ρmb ¼ ρca−3, the matter
energy density as a function of the cosmic time becomes

ρmbðtÞ ¼
ρc

3
4
ρct2 þ 1

: ð11Þ

In this work we propose a deformed version of the matter
bounce scenario, in which case the deformed matter bounce
scale factoraðtÞ and, in effect, the correspondingHubble rate
HðtÞ have the following form:

aðtÞ ¼
�
3

4
ρct2 þ 1

�
1=3

× e
f0
1−αðt−tsÞ1−α ;

HðtÞ ¼
1
2
ρct

3
4
ρct2 þ 1

þ f0ðt − tsÞ−α; ð12Þ

where ts is a time instance, the value of which we now
discuss, since this will play some important role in the
analysis. From the form of the deformed Hubble rate and
scale factor in Eq. (12), it can be seen that the values of the
parameter α crucially determine the finite time singularity
structure of the theory. Particularly, according to the values of
α, if α > 1, we now demonstrate that a Type I [55], or so-
called big rip, singularity can occur at ts, since both the
Hubble rate and the scale factor diverge at t ¼ ts. Note,
however, that for the big rip singularity to occur, it is required
that both the energy density and the pressure also diverge at
that time instance. As we shall see, the physical picture in the
context of LQC is complicated as the time instance ts is
approached, so we need to carefully present the resulting
picture. As we show, the singularity is a rip for sure, but what
sort of rip cannot easily be determined.
Before we proceed with the singularity type, we need to

discuss the important issue of choosing the values of α
correctly. We are interested in the case of a big rip
singularity at t ¼ ts; therefore α > 1 and also it is consid-
ered to have the form α ¼ 2n=ð2mþ 1Þ, where m, n are
positive integers, in order to avoid complex values in the
Hubble rate. Also we assume that the time instance ts
corresponds to a late-time era and, particularly, that the big
rip singularity occurs at the very late times, for t → ts,
which could be some time instance far beyond the present
time era (13.6 billion years), for example, ts ≃ 1018 s,
which corresponds to a big rip time instance that occurs
when the Universe is approximately 32.5 billion years old.
This point requires a clarification in order to avoid
unnecessary complications, with regards to the behavior
of the scale factor and also with regards to the values of α.
When α is chosen to be α ¼ 2n=ð2mþ 1Þ, then the
exponential in the scale factor becomes of the form

e
f0
1−αðt−tsÞ

2ðm−nÞþ1
2nþ1 . So since t < ts, this means that the expo-

nential behaves as e−
f0
1−αðts−tÞ

2ðm−nÞþ1
2nþ1 , since the number

2ðm−nÞþ1

2nþ1
consists of odd numbers.1 Therefore, complex

values of the scale factor are avoided with this choice of α.
Having specified the allowed values for the parameter α,

we now demonstrate that the singularity at t ¼ ts is indeed a
big rip, or at least it is similar to a big rip, where the scale
factor and Hubble rate diverge. Indeed, by using the LQC
first Friedmann equation, namely Eq. (6), since the Hubble
rate in Eq. (12) strongly diverges at t ¼ ts for α > 1, this

1Recall that ðt − tsÞ
2ðm−nÞþ1

2nþ1 is not complex, since, for example,
ð−1Þ5=3 has two complex conjugate roots and one real but
negative. This explains the negative sign of the exponential.
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means that the total energy density ρ also diverges. In
addition, from the second Friedmann equation, namely
Eq. (8), the total pressure density is equal to

P ¼ −ρ −
2 _H

1 − 2ρ
ρc

; ð13Þ

and since _H and also ρ diverge at t ¼ ts for the Hubble rate
being (12), this means that also the pressure diverges at
t ¼ ts. So at t ¼ ts, the scale factor, the total energy density,
and the total pressure diverge, and according to the
classification made in Ref. [55], this finite time singularity
corresponds to a big rip, or Type I singularity. Actually, in
the list below, we quote the singularity structure of the
cosmological evolution (12) in the context of LQC theory
governed by the Friedman equations (6) and (8).

(i) For α < −1, a Type IV singularity occurs at ts.
(ii) For −1 < α < 0, a Type II singularity occurs at ts.
(iii) For 0 < α < 1, a Type III singularity occurs at ts.
(iv) For α > 1, a Type I, or so-called big rip singularity

occurs at ts.
However, at the actual time instance t ¼ ts, both the energy
density and pressure do not only diverge but also acquire
complex values. This indicates that the actual singularity
cannot be reached from our physical system, since there is
possibly another theory, more fundamental than the LQC,
that governs this era. As we will demonstrate, the era for
which the complex behavior of the energy and pressure
occurs starts one second before the actual singularity is
reached, hence limiting the applicability of the LQC
theoretical description after that time instance. Note, how-
ever, that even in classical descriptions [63], the Universe
experiences the catastrophic effects of a big rip or similar
rip singularity, long before the singularity is reached; for
example, a million years before the rip, the clusters are
stripped, and therefore nearly a second before the rip, the
Universe is in a plasma state. Possibly a more fundamental
quantum gravity description is needed for the description of
the physical picture.
In our case, the fact that the energy and density become

complex very close to the rip singularity clearly indicates
that, first, the rip is not reached. Second, the physical
description of the model is governed by another more
fundamental theory than LQC, which should govern the
physics approximately one second before the rip, as
numerical analysis of our model shows. The important
feature of the deformed matter bounce model we propose is
that the dark energy era is consistently described and
follows the matter dominated era. Also of equal importance
is that the matter bounce scenario is interrupted one second
before the rip, so the infinite repetition of a matter bounce
Universe is avoided. Also the viewpoint that the rip is not
reached by the physical system agrees with other LQC
theoretical descriptions that state exactly this, that the rip
singularity does not occur. In our case, the difference is that

the LQC description ceases to be valid very close to the rip,
so as a side effect, the rip singularity is avoided, at least in
the context of the LQC description.
Before proceeding, it is worth discussing another inter-

esting possibility for the cosmological evolution (12),
namely the possibility of a big crush or little rip or even
a pseudorip [64–66]. It seems that the singularity is a big
rip, but this is a delicate issue as we discuss shortly. The
inertial force Fin between a comoving observer and a mass,
which is at a distance L from the observer is equal to

Fin ¼ mL
ä
a
¼ mLð _H þH2Þ; ð14Þ

and if eitherH or _H diverge, a rip always occurs. In the case
that bothH and _H diverge, with _H > 0, this corresponds to
the big rip case, which seems to be our case. In the case that
H is not singular at finite time, but _H is singular, with
_H > 0, then this corresponds to a sudden future singularity
or Type II [67]. For the cosmology (12), the analytic form
of _H at late times before t ¼ ts is approximately equal to

_H ≃ −
2

3t2
− f0ðt − tsÞ−1−αα; ð15Þ

and since α ¼ 2n=ð2mþ 1Þ, the sign of _H is approximately
equal to

_H ≃ −
2

3t2
þ f0ðts − tÞ−2ðmþnÞþ1

2mþ1 α; ð16Þ

and since the dominant contribution comes from the second

term, then _H ≃ f0ðts − tÞ−2ðmþnÞþ1

2mþ1 α, which is clearly positive
for t < ts. Therefore, the inertial force diverges at finite
time with _H > 0, which corresponds to a big rip behavior,
as we anticipated. In addition, there is no room for crushing
type phenomena for our cosmological scenario, since
_H > 0 before the big rip singularity, since in the case of
crushing phenomena we would have _H < 0. Note also that
in the case of little rip, Fin → ∞, which also occurs in the
case of a big rip, with the difference that in the little rip, the
infinite inertial force is obtained in the limit t → ∞,
whereas in the big rip case, the inertial force tends to
infinity at a finite time, which is the case at hand. This is
also a strong indication that a big rip behavior occurs in the
future of our model; however, the physical system cannot
experience it at the time it occurs. Nevertheless, everything
is pointing out to a late-time big rip.
An important comment is in order. Formally we have

asymptotically de Sitter limit where the Universe enters this
era being always in a phantom state. This is well known as
the little rip case. However, this limit is just mathematical,
and it is impossible to reach the de Sitter point in reality,
due to the following. In physical theories with pseudorip,
big rip, or little rip late-time behavior, the dissolution of
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bound objects always occurs well before the singularity
occurs. For our case then, regardless whether the singu-
larity is a big rip or other, before the singularity is
approached, the repulsive nature of the dark energy will
destroy every bound object well before the singularity.
We now proceed to the analysis of the deformed matter

bounce model, and for convenience and notational sim-
plicity, we write the deformed scale factor and Hubble rate
in the following form:

aðtÞ ¼ ambðtÞ × asðtÞ; HðtÞ ¼ HmbðtÞ þHsðtÞ; ð17Þ

where ambðtÞ and HmbðtÞ are defined in Eq. (10), and asðtÞ
and HsðtÞ are equal to

asðtÞ ¼ e
f0
1−αðt−tsÞ1−α ; HsðtÞ ¼ f0ðt − tsÞ−α; ð18Þ

and these characterize the singular deformed parts of the
Hubble rate and scale factor. For the values we constrain α
to take, the cosmology of Eq. (12) clearly describes a
bounce, since the function HsðtÞ does not affect the
behavior of the Hubble rate until late times, and the same
applies for the scale factor. This can also be seen in Fig. 1,
where we plotted the Hubble rate HðtÞ and the scale factor
aðtÞ as functions of time, for α ¼ 4=3, and f0 and ρc are
chosen in such a way that ρc=f0 ≃ 10−4. From the two
plots it can be seen that the bouncing behavior is not altered
and persists, without being affected from the singular
deformation part, at least until late times at t≃ 1018 s,
where the cosmological evolution is abruptly interrupted.
Instead of the plots appearing in Fig. 1 it would be more
useful to plot directly the Hubble rate as a function of the
scale factor. However, in order to find the explicit func-
tional dependence of the Hubble rate as a function of the
scale factor we need to find the function t ¼ tðaÞ by
inverting the scale factor in Eq. (12) and then substitute the
cosmic time in the expression for the Hubble rate appearing
in Eq. (12). This task is, however, formidable since it is not
easy to invert the function aðtÞ, for a general α (it can be

done for α ¼ 1, which is not an interesting case since we
need a big rip singularity). Therefore in order to have a
clear picture of the HðaÞ behavior we perform the para-
metric plot aðtÞ −HðtÞ, which can be found in the left plot
of Fig. 2. The blue curve corresponds to the ordinary matter
bounce scenario while the red dashed curve corresponds to
the deformed matter bounce. We have used values α ¼ 4=3,
ts ¼ 1018 s and ρc=f0 ≃ 10−4, and the parametric plot
corresponds to the time interval 0 < t < 10 s, but the
qualitative behavior remains the same up to approximately
t ¼ 1017 s.
As can be seen in the left and right plots of Fig. 2, the

parametric plot of aðtÞ −HðtÞ for the deformed bounce and
the matter bounce remains the same until the late times,
where the deformed matter bounce drastically changes the
resulting picture. The left plot corresponds to the time
interval −10 < t < 10 s, while the right to the interval
0 < t < 1017 s. Notice that the left plot has the negative
Hubble rate branch which corresponds to the contracting
phase of the bounce. The right plot contains only the
expanding phase, so the behavior of both the matter bounce
and the deformed matter bounce model remains the same
up to t ¼ 1017 s. After that time instance, the deformed
matter bounce starts to deviate from the ordinary matter
bounce scenario, and this can be seen in the bottom
plot of Fig. 2, which corresponds to the time interval
1017 < t < 9.8 × 1017 s. As it can be seen in the bottom
plot of Fig. 2, the red curve starts to deviate from the blue
curve (ordinary matter bounce), and this happens approx-
imately at t ¼ 9.5 × 1017 s. We need to note that the
Hubble rate in the deformed matter bounce scenario
increases after some point, since a big rip singularity is
approached, so the Hubble rate will blow up at the
singularity. As the singularity is approached, the Hubble
rate increases, as the scale factor also increases. We shall
come back to this issue in a later section, where we shall
study the behavior of the expression RH ¼ 1=ðaðtÞHðtÞÞ as
a function of the cosmic time.

5 1017 0 5 1017
0

2 1013

4 1013

6 1013

t sec

a
t

1 1018 5 1017 0 5 1017 1 1018

5. 10 18

0

5. 10 18

t sec

H
t

FIG. 1. The Hubble rate HðtÞ (left) and the scale factor aðtÞ (right) versus time, for α ¼ 4=3, ts ¼ 1018 s and ρc=f0 ≃ 10−4.
Notice that at the rip singularity the cosmological evolutions are abruptly interrupted.
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With the assumption that a rip singularity occurs at the
very late times, when t → ts, the following relations holds
true, as it can easily be seen from Eq. (12),

lim
t→−∞

HsðtÞ≃ 0; lim
t→−∞

asðtÞ≃ 1;

lim
t→−∞

HðtÞ≃HmbðtÞ; lim
t→ts

aðtÞ≃ asðtÞ;

lim
t→ts

HðtÞ≃HsðtÞ; ð19Þ

and the Hubble rate and scale factor blow up as t → ts.
Effectively, the singular deformation part of the scale factor
and of the Hubble rate in Eq. (12) affect the cosmological
evolution only at very late times, and at earlier times the
matter bounce scenario occurs, without being seriously
affected by the singular deformation part. Notice that the
assumption ts ≫ 1 is crucial for obtaining the limits of
Eq. (19), since the exponential term in the scale factor is of
the order et

α
s ≃Oð1Þ, and this holds true until late times,

where t≃ ts. The next step is to find which matter-energy
density can produce the cosmological evolution (12), in
the context of LQC. We denote the deformed energy
density as ρðtÞ, and we assume that it has the form
ρðtÞ ¼ ρmbðtÞ þ ρsðtÞ, where ρmb is defined in Eq. (11)
and it satisfies the continuity equation (9). The effective
pressure of the deformed matter fluid is denoted by P so it
satisfies the continuity equation

_ρ ¼ −3Hðρþ PÞ; ð20Þ

and also it satisfies the holonomy corrected Friedmann
equation (6). Therefore, by combining Eqs. (6), (9),
and (20), we can easily read off the energy density and
the effective pressure of the deformed matter fluid,

ρsðtÞ ¼ −ρmbðtÞ þ
ρc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2c − 12ρcHðtÞ2

p
2

;

PðtÞ ¼ −
_ρsðtÞ þ 3HsðtÞρmbðtÞ þ 3HðtÞρsðtÞ

3H
: ð21Þ

The singular deformed energy density and the correspond-
ing effective pressure, at t → −∞, tend to describe the
matter bounce perfect fluid, as can be seen by using the
limits of Eq. (19). Hence, with the effective fluid (21) we
achieve two important things: first, we have a cosmological
evolution which is described by the matter bounce scenario
for all eras, except for the late-time era, and second, we
include a rip singularity occurring at late times, in the
context of a nonsingular bouncing cosmology at the origin
t ¼ 0. With our description, therefore, we have all the good
features of the matter bounce scenario, that is, a scale
invariant spectrum at early times, the avoidance of the
initial singularity at t ¼ 0, and the new feature, the end of
the infinite bouncing cycle at the late-time rip singularity.
With regards to the power spectrum during the contracting
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a t
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a t

H
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H
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FIG. 2. Comparison of the parametric plots (left upper plot) of the scale factor aðtÞ versus the Hubble rate HðtÞ, for the deformed
matter bounce (red, dashed curve) and the ordinary matter bounce scenario (blue curve). We have used the values α ¼ 4=3, ts ¼ 1018 s,
and ρc=f0 ≃ 10−4, and the parametric plot corresponds to the time interval 0 < t < 10 s. In the upper right and left plots appears the
parametric plot for the deformed matter bounce scenario. In the bottom plot appears the ordinary matter bounce case (blue curve) and the
deformed matter bounce (red curve) where the time interval this time is 1017 < t < 9.8 × 1017 s.
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phase and the proof that it is scale invariant, we refer the
reader to the recent review [8] for a detailed analysis of this
issue. Note, however, that the energy density (21) becomes
complex at the vicinity of the rip singularity, and therefore
the theory fails to describe the vicinity of the rip. This is
why we claimed that the matter bounce scenario description
stops, since another more fundamental theory is needed to
describe the physics at the vicinity of the rip singularity. In
any case, the infinite repetition of the matter bounce
scenario is avoided.
The deformed matter bounce model (12) has one more

appealing feature, and particularly it can realize a late-time
acceleration era, as we now demonstrate. Particularly, if the
parameters ρc and f0 are chosen to satisfy ρc=f0 ∼ 10−4

and also if ts ≃ 1018 s, then a numerical computation can
show that the deceleration to acceleration transition occurs
near t≃ 1017 s (4–5 billion years earlier from the present
time), and also after this transition, the Hubble rate is
described by HsðtÞ solely, since it dominates over the
matter bounce one HmbðtÞ. In order to be more quantitative
at this point, in Table I, we present some characteristic
values of the Hubble rates HmbðtÞ and HsðtÞ, at late times,
for α ¼ 4=3, ts ¼ 1018 s, and ρc=f0 ≃ 10−4. As can be
seen, clearly the Hubble rate HsðtÞ dominates over HmbðtÞ
for the values of the parameters being as specified. In order
to reveal the accelerating expansion at late times, let us
compute the EoS weff ¼ P=ρ,

weff ¼ −1 −
_H

3H2
−

ρc _H

3H2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcðρc − 12H2Þ

p ; ð22Þ

for the deformed Hubble rate of Eq. (12). The behavior of
the EoS depends on the choice of the parameters for our
model, but as we now show, the qualitative behavior is the
same. Particularly, the EoS deforms from the matter
domination value weff ¼ 0, to a quintessential value
−1 < weff < 0, which describes the dark energy era pre-
ceding the matter domination era. Eventually, the Universe
crosses the phantom divide line and is described by a
phantom dark energy era, and this behavior persists until an
era near the rip. The crossing of the phantom divide line
strongly depends on the choice of the parameters of our
model, and in order to see this, in Fig. 3, we plotted the
behavior of the EoS weff as a function of the cosmic time in
billion years. Note that the present era corresponds to
approximately 13.5 billion years, the time instance ts is
assumed to occur at 35 billion years (∼1018 s), and also the
parameters are appropriately adjusted. In the left plot of
Fig. 3, the fraction rl ¼ ρc=f0 is chosen to satisfy
rl ¼ 0.3rR, where rR ¼ ρc=f0 is the corresponding fraction
for the values of the parameters corresponding to the right
plot. As can be seen, a slight change in the parameters
changes the time instance that the crossing of the phantom
divide line occurs. The qualitative picture is the same, and
only the time scales that the various events occur change.
Particularly, in the left plot of Fig. 3, the EoS crosses the
phantom divide line approximately 3 billion years before
the present time era; hence at present time the Universe is
described by a phantom dark energy era. In the right plot,
the crossing occurs at 14.5 billion years, so the present time
era is described by a quintessential dark energy era, which
becomes phantom eventually after the present time era.
In both cases, the very late time era is described by a

phantom dark energy era. This can also be seen from the
expression (22), owing to the fact that a big rip requires
_H > 0, and we discussed this issue previously, below
Eq. (14). But we can explicitly show that indeed a phantom
dark energy era occurs at very late times, since a direct

TABLE I. The values of the fraction HsðtÞ=HmbðtÞ, for various
values of the cosmic time.

Hubble rates t ¼ 1017 s t ¼ 5 × 1017 s t ¼ 9 × 1017 s

HsðtÞ
HmbðtÞ

1726.24 18 898.8 290 849
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FIG. 3. The effective equation of state as a function of time (Gy). In the left plot, the parallel and the vertical lines indicate the phantom
divide line and the time instance that the crossing occurs. In the right plot the parallel and the vertical lines indicate the phantom divide
line and the present time 13.5 billion years.
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calculation yields that, as t → ts, and during the dark
energy era, the EoS becomes approximately equal to

weff ≃ −1þ ðt − tsÞ−1þαα

3f0

þ ðt − tsÞ−1þααρc

3f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcðρc − 12ðf0ðt − tsÞ−α þ 2tρc

4þ3t2ρc
Þ2Þ

q ; ð23Þ

where we have substituted the Hubble rate of Eq. (12) in the
expression for the EoS given in Eq. (22), and we have kept
the dominant terms in the limit t → ts. Since α > 1 and also
α ¼ 2n=ð2mþ 1Þ, the EoS is equal to

weff ≃ −1 −
ðts − tÞ−1þαα

3f0

−
ðts − tÞ−1þααρc

3f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcðρc − 12ðf0ðt − tsÞ−α þ 2tρc

4þ3t2ρc
Þ2Þ

q ; ð24Þ

so the cosmological evolution is described by a phantom
evolution before the rip. During the expansion phase of the
matter bounce era, before the late-time singular deformed
part of the Hubble rate controls the evolution, the EoS is
approximately equal to weff ≃ 0, so the matter domination
era precedes the late-time acceleration era. More impor-
tantly, before the rip, and since α ¼ 2n=ð2mþ 1Þ, the EoS
(23) describes a phantom acceleration era. This shows that
in the present model, the matter dominated evolution
precedes a quintessential dark energy era, which turns into
a phantom dark energy evolution ending abruptly in a rip
singularity. This behavior agrees with the classical view-
point, since it is known [67] that usually a rip singularity is
realized only from a phantom dark energy era, and this
behavior occurs in the LQC context too. Note, however,
that the EoS also becomes complex near the rip. A
numerical computation for the values of the parameters
we used earlier shows that nearly a second before the rip,
the energy density, the pressure, and in effect the EoS
become complex. Thus, the rip cannot be reached by the
present theoretical model.
Hencewith the singular deformedmatter bounce scenario,

we have the following features which are listed below:
(i) At early times, at the beginning of the contracting

phase, a scale invariant power spectrum is generated.
(ii) The initial singularity is avoided.
(iii) The infinite bouncing cycle stops when the rip

singularity at late times is reached—actually it is
never reached and the physical description ceases to
consistently describe the era near the rip.

(iv) The late-time acceleration era occurs, which is
described by a quintessential dark energy era which
turns into phantom, ending at a rip singularity.

Before proceeding, let us recapitulate here the qualitative
features of the deformed matter bounce model. At the

beginning of the cosmological evolution, early in the
contractingphase, theUniversewas approximately described
by the matter bounce scale factor ambðtÞ ∼ t2=3, since the
contribution from the deformation part was negligible. The
Universe started contracting and bounced off at t ¼ 0, still
being described by the matter bounce scenario. Then it
continued its evolution, beingdescribed by thematter bounce
scenario, and at late times, but well before the rip singularity,
the Universe evolved with scale factor ambðtÞ ∼ t2=3. Finally,
the deformation part starts to control the evolution, and the
Universe starts to expand in an accelerating way. It can be
shown that, if the parameters are appropriately chosen, the
evolution can have quite appealing properties, since the
deceleration-acceleration transition can occur at the phe-
nomenologically acceptable time instance. Finally, at very
late times, theUniverse abruptly ends its evolution, since a rip
singularity occurs, and the infinite bouncingcircle is avoided.
With regards to the primordial perturbations issue, their
behavior is approximately identical to the standard matter
bounce scenario perturbations, so a scale invariant spectrum
is obtained, corresponding to the early-time era, well inside
the contracting phase. Also we need to stress again that the
LQC description of our model ceases to be valid at the
vicinity of the rip singularity, so this shows that possibly a
more fundamental theory may control the final stage of this
phantom and catastrophic evolution.

A. The late-time attractor

As we already discussed, the deformed matter bounce
scenario has a late-time attractor which is a dark energy era.
Moreover, the model we presented becomes unphysical at
finite time in the future, at which time instance, the scale
factor and the Hubble rate diverge, but the energy density
and effective pressure of the LQC model become complex.
Therefore we claimed that this finite time in the far future
cannot be reached, at least in a physical way, since the
complex values indicate that this lies beyond the approx-
imations that hold true for the model.
However, we need to address this issue in a more

quantitative way, since this qualitative picture has to be
further supported for clarity. The purpose of this section is
twofold: First, we will confirm that the late-time attractor of
the LQC deformed matter bounce model is a dark energy
era. Second, we need to support our claim that actually the
physical system, quantified in terms of a dynamical system,
cannot reach the rip singularity which occurs in the far
future. For our dynamical system analysis, we shall
partially use the notation of Ref. [56], and we introduce
the following variables (note that we use a physical
dimensions system for which κ ¼ 1):

x ¼ ρ

3H2
; y ¼ ρ

ρc
: ð25Þ

Owing to Eq. (6), the variables x and y satisfy the
relation
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y ¼ 1 −
1

x
; ð26Þ

and from (6), we can easily read off the constraints for x and
y, which are

x > 1; 0 < y < 1: ð27Þ

At this point it is easy to see why it is not possible for the
physical system at hand to reach a rip singularity, since the
variable y would become complex at the time instance
where the singularity occurs, t ¼ ts, and also at the vicinity
of the singularity, y would take values y > 1, before even it
becomes singular. Hence, the path from the late-time
attractor, which in our case as we demonstrate is a dark
energy era, is blocked. Having made that clear, now we
demonstrate that the late-time attractor is indeed a dark
energy era. The variable x satisfies the following dynamical
equation:

dx
dN

¼ −3½1þ weffðyðxÞÞ�x2
�
1 −

1

x

�
; ð28Þ

where we have made use of the e-foldings number
N ¼ ln a, and also the function weffðyðxÞÞ ¼ P=ρ is the
EoS, which is an explicit function of y and an implicit
function of x, via Eq. (26). Also the variable y satisfies the
following differential equation:

dy
dt

¼ −3½1þ weffðyÞH�y; ð29Þ

and also,

H2 ¼ yð1 − yÞ; ð30Þ

with H ¼ H
Hc
, t ¼ Hct, and Hc ¼ ffiffiffiffiffi

ρc
p

3. What will actually
reveal the dynamical behavior of the model is the EoS
function weffðρÞ, but unfortunately we cannot obtain this
function, due to the lack of analyticity. What we have at
hand are equations that yield the EoS as a function of the
cosmic time, given in Eqs. (22) and (24), and also the
energy density and the effective pressure as functions of
the cosmic time. The only way to find an approximation of
the function weffðρÞ is to proceed numerically and find a
convenient fit of the weffðρÞ curve, by using the functions
weffðtÞ and ρðtÞ and by finding their parametric plot. Then a
convenient fitting will yield the approximate form of the
EoS weff . It is therefore vital to find the approximate
behavior of the EoS as a function of the energy density (and
implicitly in terms of the variable y). We shall focus on the
case that the present era corresponds to the left plot of
Fig. 3, so the dark energy era is a phantom one, but the
same applies if we choose the quintessential dark energy
era. By making the parametric plot of the EoS weffðtÞ and of
the energy density ρ, we obtain the curve appearing in

Fig. 4, where for convenience we introduced the variable
ρ ¼ ρ × 1011, since the values of the energy density near
the present time epoch are particularly small. We can
optimally fit the curve of Fig. 4 by using the data of the
values of weff and the corresponding values of ρ, and it is
found that the EoS as a function of ρ behaves as follows:

weffðρÞ ¼ −1 − cρβ; ð31Þ

with c ¼ 0.0754968 and β ¼ 0.548649. Note that β < 1,
so this will play some role in the following analysis. Having
the function weffðρÞ at hand, we can easily find that the
function weffðxÞ is

weffðxÞ ¼ −1 −Aρβc

�
1 −

1

x

�
β

; ð32Þ

where A ¼ c × 1011β. Since the variables x and y are
interrelated via Eq. (26), investigating one of the two
differential equations (28) and (29) suffices to determine
the behavior of the dynamical system (28), (29), and (30),
so from now on we focus on the study of Eq. (28). Finding
the asymptotic behavior of x will effectively determine the
asymptotic attractor ðx; y;HÞ. By using Eq. (32), the
differential equation (28) becomes

dx
dN

¼ 3Aρβcx2
�
1 −

1

x

�
βþ1

: ð33Þ

This equation, in conjunction with Eqs. (26) and (30),
constitute the dynamical system which determines the
dynamical evolution of the model we discuss. We can
solve analytically the differential equation (33), the solution
of which is

�
1 −

1

x

�
−β

¼ −3βAρβcN þ βN1; ð34Þ
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FIG. 4. The parametric plot of the effective equation of state
weff and of the rescaled energy density ρ̄.
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where N1 is an integration constant and recall that we
previously found that β < 1.
Here we shall demonstrate that the late-time attractor is

indeed a dark energy era. An important remark is in order:
The study we shall perform shortly does not require one to
fix the Hubble rate to be equal to the Hubble rate of the
deformed matter bounce model of Eq. (12). This Hubble
rate was used only in order to obtain the function weffðxÞ,
namely Eq. (32), and nothing else. From now on we shall
assume that the variable H is a free variable of the system,
and we shall demonstrate that the EoS of Eq. (32) leads to a
phantom dark energy late-time attractor, the characteristic
values of which we shall confirm numerically, for the
Hubble rate (12).
Having made that clear, we now proceed to find the fixed

points of the dynamical system, and a fixed point of the
differential equation (33) is x ¼ 0, which, however, is not a
physical solution, since y < 0 and it is singular in this case;
also, this would mean thatH also blows up since it depends
on positive powers of y. Recall that this exactly describes
the rip case, which is an unphysical solution, so in some
sense, the deformed matter bounce model, which corre-
sponds to the EoS (32), has a very late-time attractor, the rip
singularity, which, however, cannot be reached by any
physical way. This unphysical behavior can be confirmed
also by using the solution (34), which in the limit x → 0
yields the unphysical result that N becomes complex.

Hence we do not further discuss this unphysical fixed
point.
A physical fixed point of the dynamical system, how-

ever, is x ¼ 1, so by also taking into account Eqs. (26) and
(30), one fixed point of the dynamical system is
ðx; y; HÞ ¼ ð1; 0; 0Þ, and we now discuss the implications
of such a fixed point. From the solution (34), as x → 1, this
corresponds to large values of N, which can be achieved at
very large values of the scale factor, so effectively this is the
final attractor of the dynamical system.
Therefore the result of our analysis is that the late-time

attractor of the dynamical system is the fixed point
ðx; y; HÞ ¼ ð1; 0; 0Þ, and by late time, we mean cosmic
times which do not render the physical system unphysical,
with the latter case corresponding to the rip time. Effectively,
late times forwhich the behavior ðx; y; HÞ ¼ ð1; 0; 0Þqualify
to be considered as late times, so now we shall numerically
investigate whether the deformed matter bounce model (12)
at times near the present time era (13.5 billion years)
generates such a behavior. In Fig. 5, we have plotted the
parameter x (left plot), y (right plot), andH (bottom plot), as
functions of the cosmic time, for the deformedmatter bounce
model (12). As can be seen fromFig. 5, the late-time attractor
ðx; y; HÞ ¼ ð1; 0; 0Þ is reached near t ∼ 13.5 billion years, so
it actually occurs near the present time. Also, as we proved
earlier and as can also be seen in Fig. 3, the EoS near the
present time corresponds to that of a phantom accelerating
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FIG. 5. The parameter x (left plot), y (right plot), and H̄ (bottom plot), as functions of the cosmic time, for the deformed matter bounce
model (12). It can be seen that the late-time attractor ðx; y; H̄Þ ¼ ð1; 0; 0Þ occurs near the present time t≃ 13.5 billion years.
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epoch; therefore, the attractor ðx; y; HÞ ¼ ð1; 0; 0Þ actually
describes a phantom dark energy attractor. However, as we
already mentioned, by appropriately choosing the parame-
ters, the late-time attractor can be a quintessential dark energy
era; but we deal with the first case here, since the qualitative
picture is the same.
Before closing a final remark is in order. The solution

(34) of the differential equation (33) in the limit x → ∞
yields that y → 1 andH → 0, and this is achieved at a finite
N. Actually, the point ðx; y;HÞ ¼ ð∞; 1; 0Þ is the bouncing
point, at which H → 0 and y tends to a finite value, so the
effective energy density is actually finite at this point.

B. The question of viability and the cosmological
evolution in the deformed matter bounce model

An interesting question which we need to address before
we close this section is whether this model is viable or not.
This is a deep question, and the quick answer is that the
deformed matter bounce model is as viable as the ordinary
matter bounce model is, with the difference between these
two models being that the deformed matter bounce model
generates a late-time acceleration era. In this section we
shall address in detail this issue, but before getting started,
let us point out that the matter bounce model is not an
inflationary model, so it has no period of inflation. This is a
very important observation, and this will affect the inter-
pretation of the Universe evolution. So the question
whether the model is viable has a simple answer: it is as
viable as the matter bounce model, and therefore the power
spectrum of primordial curvature perturbations is scale
invariant; also the early Universe, which corresponds to the
contraction epoch, is in a noncausal state. This is the
drawback of the matter bounce model, and the deformed
model also shares this rather not so appealing feature.
The dynamics of the deformed model can be represented

perfectly by plotting the ρ − a graph; however, in order to
find the function ρðaÞ, we need to invert the function aðtÞ,
which for the scale factor (12) is not possible to do
analytically. However, we can make the parametric plot
for the functions ρðtÞ − aðtÞ that appears in Fig. 6, which
corresponds to the whole time interval 1017 < t < 1018 s,
and for the values of the parameters chosen as α ¼ 4=3,
ts ¼ 1018 s, and ρc=f0 ≃ 10−4. As can be seen in Fig. 6, the
two models differ clearly in these plots, after approximately
t≃ 1017 s, where the deformed matter bounce deviates
from the behavior ρ ∼ a−3.
However, in the absence of an analytic expression for the

function ρðaÞ, we shall provide another viewpoint of the
comparison of the two models. Particularly we shall
compare the Hubble radii RHðtÞ ¼ 1=ðaðtÞHðtÞÞ of the
two models as functions of the cosmic time. But why
choose the Hubble radius as a measure of comparison? The
answer is that the Hubble radius can be used in order to
determine the physical viability and appeal of a

cosmological model. The Hubble radius in an inflationary
cosmology behaves in a different way in comparison to a
bounce model. This is because in the bounce cosmology
case, a contracting phase occurs too. In the case of the
matter bounce, the Hubble horizon during the contraction
era shrinks, and eventually the subhorizon primordial
modes exit the Hubble radius. These modes are actually
the ones responsible for the generation of the scale invariant
power spectrum [8]. Eventually, after the bounce, the
Hubble horizon expands, and this actually corresponds
to the matter dominated epoch. Hence the primordial model
reenters the horizon at some time instance during the
expansion of the Hubble radius. In the standard matter
bounce scenario, the expansion of the Hubble horizon
never stops, so the horizon increases its size. Hence the
late-time acceleration era cannot be described, since during
the late-time acceleration era, the Hubble radius would
shrink again. One appealing feature of the deformed matter
bounce model is that after the end of the matter domination
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FIG. 6. Comparison of the parametric plots (left upper plot) of
the function ρðtÞ versus the function aðtÞ, for the deformed matter
bounce (red, dashed curve) and the ordinary matter bounce
scenario (blue curve). We have used the values α ¼ 4=3,
ts ¼ 1018 s, and ρc=f0 ≃ 10−4, and the parametric plot corre-
sponds to the time interval 1017 < t < 1018 s.
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FIG. 7. Comparison of the Hubble radius RHðtÞ ¼
1=ðaðtÞHðtÞÞ as function of the cosmic time t, for the deformed
matter bounce (red, dashed curve) and for the ordinary matter
bounce scenario (blue curve). We have used the values α ¼ 4=3,
ts ¼ 1018 s, and ρc=f0 ≃ 10−4.
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era, the Hubble radius shrinks again, and thus the late time
occurs. In Fig. 7 we compared the behavior of the Hubble
radius RHðtÞ as a function of the cosmic time t, for both the
deformed and the ordinary matter bounce models. The red
dashed curve corresponds to the deformed matter bounce
model and the blue curve to the ordinary. As can be seen, in
the deformed model, the Hubble radius shrinks around
t ∼ ×1017 s, and therefore the late-time era can be con-
sistently described. Thus the deformed model has all the
features of the matter bounce model (regardless if these are
appealing or not), for all the eras except at late times, where
it differs significantly.

III. THE VISCOUS MATTER FLUID AND
CANONICAL SCALAR FIELD
DESCRIPTION VIEWPOINT

In the previous section we demonstrated that we can
have a nearly matter bounce scenario with a late-time dark
energy era and a rip singularity at the end of time, and in
order to achieve this, we needed to deform the matter
bounce scenario, so that the deformation part actually alters
the late-time behavior, and therefore affects only the early-
time behavior. As we showed, this behavior can occur if the
total matter energy density consists of two parts and is of
the form ρ ¼ ρmb þ ρs, with ρmb describing a pressureless
matter fluid and ρs describing a matter fluid with pressure
Ps. In this section we shall try to formalize this assumption
for the effective energy density further, and we shall use
two different theoretical frameworks which can support
such a matter energy density behavior, namely, the effective
viscous fluid description [68–73] and also the canonical
scalar field description [74].

A. Viscous matter fluid approach

With regards to the imperfect fluid approach, it is quite
usual in the context of modified gravity to use viscous fluids
in order to realize various cosmological scenarios; see, for
example, [68–73] for some interesting cosmological real-
izations. In the present paper we shall be interested in
describing the deformed matter bounce scenario, in terms
of a viscous fluid with bulk viscosity BðaðtÞ; H; _H;…Þ. As
can be seen, in general, the bulk viscosity function can be a
function of the scale factor, the Hubble rate, and the higher
derivatives of the latter.We investigatewhat is the EoS of the
viscous fluid that describes the deformed matter bounce
scenario. We shall make use of the Friedmann-Robertson-
Walker (FRW)equationsofmotion forLQC,namelyEqs. (6)
and (8), which are satisfied by the total energy density ρ and
by the pressure P. Recall that the pressure is due to the extra
deformation part ρs in the energy density. By solving Eq. (8)
with respect to P, we get

P ¼ −ρ −
2 _H

1 − 2ρ
ρc

; ð35Þ

and owing to Eq. (6), the effective pressure of the viscous
fluid becomes

P ¼ −ρ −
2 _H

1 − ρc−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−12H2ρcþρ2c

p
ρc

: ð36Þ

Equation (36) is actually the EoS of the viscous fluid that can
realize the deformed matter bounce cosmology of (12), and
in view of Eq. (19), it describes for almost all the cosmic eras
a matter dominated Universe, which reveals its singularly
deformed character only at late times. From the EoS (36), the
bulk viscosity functionBðH; _HÞ can easily be read off, and it
is equal to

BðH; _HÞ ¼ 2ρc _Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−12H2ρc þ ρ2c

p : ð37Þ

Notice that for the cosmological evolution (12), the bulk
viscosity (37) is positive (recall that _H > 0 from the previous
section), and therefore it satisfies the important requirement
that constrains the entropy change to have a positive sign
during irreversible processes [70–73]. Finally, in view of the
imperfect fluid EoS, the energy momentum tensor of the
viscous fluid is

Tμν ¼ ρuμuν þ ðρþ BðH; _HÞÞ½gμν þ uμuν�; ð38Þ

where BðH; _HÞ is the bulk viscosity and uμ is the comoving
four velocity, which for the FRW background metric (1)
reads uμ ¼ ð1; 0; 0; 0Þ.

B. Canonical scalar field description

From another viewpoint, we can use a canonical scalar
field as being the source of the energy density ρ, so now we
investigate the LQC description of a canonical scalar field
ϕ, the pressure (P), and the energy density (ρ) of which are

ρ ¼
_ϕ2

2
þ VðϕÞ; P ¼

_ϕ2

2
− VðϕÞ; ð39Þ

with VðϕÞ being the scalar potential of the canonical scalar
field. In Refs. [31,74], a similar presentation was given for
the specific equation of state P ¼ wρ obeyed by the
pressure and the energy density of the scalar field, but
here we shall work with the equation of state given in
Eq. (36). By using Eq. (39), the potential and the scalar
fields as functions of time are equal to

VðϕðtÞÞ ¼ ρðtÞ − PðtÞ ¼ 2ρðtÞ þ 2 _H

1 − 2ρðtÞ
ρc

; ð40Þ

ϕðtÞ ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
2 _H

1 − 2ρðtÞ
ρc

vuut dt; ð41Þ
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and hence, given the Hubble rate, by solving (41) with respect to the cosmic time t and substituting in Eq. (40), the potential
VðϕÞ easily follows. For the Hubble rate of Eq. (12), the potential reads

VðϕðtÞÞ ¼ ρc þ
2ðt − tsÞ−1−αρcð2ðt − tsÞ1þαρcð−4þ 3t2ρcÞ þ f0αð4þ 3t2ρcÞ2Þ

ð4þ 3t2ρcÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcðρc − 12ðf0ðt − tsÞ−α þ 2tρc

4þ3t2ρc
Þ2Þ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc

�
ρc − 12ðf0

�
t − tsÞ−α þ

2tρc
4þ 3t2ρc

�
2
�s
; ð42Þ

however, it is not easy to perform the integration of Eq. (41)
in an analytic way, so we examine the problem in the two
limiting cases, that is, for times that the matter bounce
scenario dominates in the Hubble rate (12) and for late
times. Also in the next section we address this issue by
using numerical analysis. We start off with the first
scenario, which corresponds to times t ≪ ts, so the energy
density is equal to

ρðtÞ≃ ρc
3
4
t2 þ 1

; ð43Þ

and therefore the pressure P appearing in Eq. (36) is equal
to zero, as was expected, since in this limit the physical
system is described by the matter bounce. Accordingly, the
potential VðtÞ is equal to

VðtÞ≃ 4ρc
4þ 3t2ρc

; ð44Þ

while the function ϕðtÞ reads

ϕðtÞ≃
2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρc

4þ3t2ρc

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3t2ρc

p
arcsinh½1

2

ffiffiffi
3

p
t

ffiffiffiffiffi
ρc

p �ffiffiffi
3

p ffiffiffiffiffi
ρc

p ; ð45Þ

where we have set the integration constant equal to zero,
and by solving (45) with respect to t, and substituting in
Eq. (44), the resulting form of the potential is

VðϕÞ≃ ρcsech2
� ffiffiffi

3
p

ϕ

2

�
; ð46Þ

which is identical to the potential found in Ref. [74] (see
also [31]) where the case with general equation of state
parameter w is studied.2 At late times the effective energy
density can be approximated by

ρðtÞ≃ 1

2
ðρc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcð−12f20ðt − tsÞ−2α þ ρcÞ

q
Þ; ð47Þ

since the deformation part in the scale factor dominates.
Therefore the corresponding pressure reads

PðtÞ≃ 1

2

�
−ρc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcð−12f20ðt − tsÞ−2α þ ρcÞ

q

×

�
−1 −

4f0ðt − tsÞ−1þαα

−12f20 þ ðt − tsÞ2αρc

��
; ð48Þ

and the corresponding potential VðtÞ reads

VðtÞ ¼ ρc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcð−12f20ðt − tsÞ−2α þ ρcÞ

q
×

�
1þ 2f0ðt − tsÞ−1þαα

−12f20 þ ðt − tsÞ2αρc

�
: ð49Þ

The integral of Eq. (41) cannot be done analytically;
however, by approximating the integrant appropriately,
we get

t − ts ≃Aϕ− 2
−1þα; 5 A ¼ 2

3
−1þα

�ðα − 1Þffiffiffiffiffiffiffiffi
f0α

p
�

− 2
−1þα

: ð50Þ

Finally, by substituting in Eq. (44), the potential reads

VðϕÞ≃ ρc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcð−12f20A−2αϕ− 4α

−1þα þ ρcÞ
q

×
�
1þ 2f0A−1þααϕ−2ðα−1Þ

−1þα

−12f20 þA−2αρcϕ
4α

−1þα

�
; ð51Þ

which can be further approximated as follows:

VðϕÞ≃ 2ρc −
ρcα

6f0
ϕ−2ðα−1Þ

−1þα ; ð52Þ

hence at late times it is described by a nearly power law
behavior in terms of the canonical scalar field ϕ.

1. Numerical analysis for the scalar field

As we discussed in the previous section, the LQC scalar
potential of Eq. (42), which corresponds to the deformed
matter bounce scenario (12), cannot be expressed in terms
of the canonical scalar field ϕ, at least analytically. Hence,

2By making the comparison, we need to note that κ2 ¼ 8πG in
Ref. [74] and, of course, that w ¼ 0.
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it is not possible to find the EoS as a function of ϕ, at least
analytically. Therefore in this section we shall perform a
numerical analysis in order to find an optimal approxima-
tion of the potential VðϕÞ. Also we shall perform a phase
space analysis of the scalar field ϕðtÞ, and we shall
investigate its behavior as a function of the cosmic time.
This study will reveal how the canonical scalar theory
evolves in time. We start off with the phase space analysis,
and we solve numerically the differential equation (41) by
using various initial conditions. In Fig. 8, we plotted the
evolution of the functions ϕðtÞ (left) and _ϕðtÞ (right) as a
functions of the cosmic time, and also we included the
phase space parametric plot _ϕ − ϕ (bottom). As can be
seen, the scalar field during the present time era, that is
13.5 billion years, varies very slowly in time. Note that the
qualitative picture does not change if we alter the initial
conditions, as can be seen in Fig. 9. Having a numerical
solution for ϕðtÞ and also knowing the time dependence of
the scalar potential VðtÞ enables us to find the parametric
plot of the functions VðϕðtÞÞ − ϕðtÞ, which appears in
Fig. 10. By optimally fitting the resulting curve, by using
the data of the functions VðϕðtÞÞ and ϕðtÞ, we find that the
curve of Fig. 10 can be approximated by the following
function VðϕÞ:

VðϕÞ ¼ c1 þ c2ϕþ c3ϕ2; ð53Þ

with c1 ≃ 705, c2 ≃ 106, c3 ≃ 3.8, and note that we
focused for cosmic times in the interval (13,15) billion
years. Note that for Figs. 10 and 9 we have used the values
α → 4=3, ρc=f0 ∼ 109, and ts ¼ 35 billion years. The
values for the parameters ci, i ¼ 1, 2, 3 come from the
fitting of the curve appearing in Fig. 10.
Having an approximation for the potential VðϕÞ, and

also the function ϕðtÞ, we can evaluate the EoS for the
scalar field wϕ

eff , which is defined to be

wϕ
eff ¼

_ϕðtÞ2
2

− VðϕðtÞÞ
_ϕðtÞ2
2

þ VðϕðtÞÞ
; ð54Þ

and we can directly compare to the values of the EoS
corresponding to the functional form of the EoS given in
Eq. (23), which is the EoS (22) evaluated for the deformed
matter bounce scenario. In Table II, we have gathered the
values for the EoS weff and the scalar field EoS wϕ

eff , for
various cosmic times, and as can be seen, the differences
occur at the second decimal point of the EoS, which is a
rather good estimation. Also notice that for the time interval
(13,13.5), the values of the EoS describe a phantom
evolution, which agrees with the qualitative picture
described in Sec. II. In conclusion, the canonical scalar
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FIG. 8. The time dependence of the functions ϕðtÞ (left), _ϕðtÞ (right) and also the phase space diagram _ϕ − ϕ (bottom) for the initial
condition ϕð0Þ ¼ 0.01.
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dition ϕð0Þ ¼ 0.01 (dashed curve) and for ϕð0Þ ¼ 10.
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FIG. 10. The potential VðϕÞ as a function of ϕ.
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field description of the deformed matter bounce model (12)
results in a phantom late-time attractor, with an EoS which
is very close to the de Sitter value −1. Note, however, that,
as in the description of the previous section, if the
parameters are appropriately chosen, the EoS of the present
time could be of quintessential type, which could turn to
phantom after the present time era.

IV. FðRÞ GRAVITY DESCRIPTION OF THE
SINGULAR MATTER BOUNCE SCENARIO

In this section we shall investigate which FðRÞ gravity
[75–79] can describe the cosmological evolution (12).
Obviously finding a complete analytic solution is a formi-
dable task, since the scale factor and the corresponding
Hubble rate are complicated, but we can obtain analytic
results in various limits of the cosmic time. Actually, in a
previous work [28] we found the vacuum FðRÞ gravity
which can realize the matter bounce scenario, for cosmic
times near and away from the bounce, with the latter case
corresponding to a scale factor analogous to t2=3. As we
demonstrated [28], the vacuum FðRÞ gravity that realizes
the scale factor aðtÞ ∼ t2=3 is FðRÞ ∼ c1Rρ1 þ c2Rρ2 , where
ci, i ¼ 1, 2 are constants and ρ1;2 are equal to ρ1 ¼ 27=2
and ρ2 ¼ −1=2. Also near the bouncing point the FðRÞ
gravity is approximately equal to FðRÞ ∼ Rα, with

α ¼ −51−
ffiffiffiffiffiffiffi
2433

p
2

. Since the deformed matter bounce model
of Eq. (12) is identical to the matter bounce for almost all
eras, except near the rip singularity, the FðRÞ gravity in the
corresponding limits behaves in the same way. What
remains is to find the behavior of the FðRÞ gravity for
cosmic times near the rip singularity. As we will demon-
strate, for α ¼ 4=3, the solution has a particularly interest-
ing and well known functional form, which is that of an
Rþ ξR2 gravity, with ξ having a large value, in contrast to
the standard R2 inflation model [80], but we need to stress
that this is just the leading order result and not the full FðRÞ
gravity description. As it is known, many cosmologies
compatible with the ΛCDM model and with local astro-
physical data may be approximated in this way at leading
order, as, for example, the Hu-Sawicki model [81].
In the context of FðRÞ gravity it is possible to realize

various cosmologies which were impossible to realize in
Einstein-Hilbert gravity, unless certain assumptions were
made. For instance, bouncing cosmologies can occur in
Einstein-Hilbert gravity only if the energy conditions are

modified [8], but in the case of modified gravity the energy
conditions are not affected. Here we will be interested in a
vacuum theory, and by using well-known reconstruction
schemes [82], we will investigate which FðRÞ gravity can
approximately realize the late-time evolution of the cos-
mological model (12), with emphasis given for times near
the late-time rip singularity. The vacuum four-dimensional
FðRÞ gravity action is

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
FðRÞ: ð55Þ

We adopt the metric formalism, in the context of which we
vary the Jordan frame action of Eq. (55), with respect to the
metric gμν, and in effect the Friedmann equations read

− 18ð4HðtÞ2 _HðtÞ þHðtÞḦðtÞÞF00ðRÞ þ 3½H2ðtÞ

þ _HðtÞ�F0ðRÞ − FðRÞ
2

¼ 0: ð56Þ

We can rewrite the action of Eq. (55), in terms of an
auxiliary nondynamical scalar field ϕ as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½PðϕÞRþQðϕÞ�: ð57Þ

A crucial point in our analysis is to find the functions
PðϕðRÞÞ and QðϕðRÞÞ, so we vary the action (57) with
respect to ϕ, and we acquire

P0ðϕÞRþQ0ðϕÞ ¼ 0; ð58Þ
where the prime indicates differentiation with respect to the
auxiliary scalar ϕ. As was shown in [82], the scalar field ϕ
and the cosmic time can be identified, so from now on we
shall assume t ¼ ϕ. Solving the algebraic equation (58), we
obtain the function tðRÞ, so by substituting the result into
Eq. (57), we obtain the final form of the FðRÞ gravity,
which is

FðϕðRÞÞ ¼ PðϕðRÞÞRþQðϕðRÞÞ: ð59Þ

Hence, finding the functions PðϕÞ and QðϕÞ is a vital
feature of the reconstruction method, and we can find the
differential equations that these obey by simply writing the
equations of motion (56) in terms of these; we obtain

− 6H2PðϕðtÞÞ −QðϕðtÞÞ − 6H
dPðϕðtÞÞ

dt
¼ 0;

ð4 _H þ 6H2ÞPðϕðtÞÞ þQðϕðtÞÞ

þ 2
d2PðϕðtÞÞ

dt2
þ dPðϕðtÞÞ

dt
¼ 0; ð60Þ

2
d2PðϕðtÞÞ

dt2
− 2HðtÞ dPðϕðtÞÞ

dt
þ 4 _HPðϕðtÞÞ ¼ 0: ð61Þ

TABLE II. The values of the equation of state functions wϕ
eff

and weff for various cosmic times.

Cosmic time
(billion years) 13 Gy 13.1 Gy 13.2 Gy 13.5 Gy

wϕ
eff

−1.02998 −1.01998 −1.01721 −1.01065
weff −1.0861 −1.08802 −1.0899 −1.09538

DEFORMED MATTER BOUNCE WITH DARK ENERGY EPOCH PHYSICAL REVIEW D 94, 064022 (2016)

064022-15



Having in mind the differential equation (61), given the
Hubble rate, we can find in a straightforward way which
FðRÞ gravity actually realizes the given Hubble rate. Let us
employ the method in the case that the Hubble rate is
approximately equal to

HðtÞ≃ f0ðt − tsÞα; ð62Þ

so the differential equation of Eq. (61) becomes in this
case

2x1þα d
2PðxÞ
dx2

− 2f0x
dPðtÞ
dt

− 4f0αPðtÞ ¼ 0; ð63Þ

where we introduced the parameter x ¼ t − ts, and it is
conceivable that as the rip singularity is approached, this
parameter tends to zero. The case of a general α is quite
difficult to treat analytically, so we need to specify the
parameter α in order to proceed. We shall present two
illustrative examples, which we need to note will yield the
FðRÞ gravity at leading order, so the result is an approxi-
mation and not the full solution. As we show, these forms
of leading order of FðRÞ gravities may originate from
functions that are compatible with local astrophysical
constraints.
We start off with the case α ¼ 4=3, in which case the

analytic solution of the differential equation (63) is the
following:

PðxÞ ¼
�
1þ 6f0

�
1

x

�
1=3

þ 63

5
f20

�
1

x

�
2=3

þ 27

4
f40

�
1

x

�
4=3

þ 81

40
f50

�
1

x

�
5=3

þ 81f70ð1xÞ7=3
2800

þ 243f80ð1xÞ8=3
246400

þ 27f60
80x2

þ 63f30
5x

�
C1 þ C2G22ðzj9;−30Þ; ð64Þ

where C1, C2 are arbitrary integration constants and the
function Gpqðzja; bcÞ is the Meijer function. In order to
obtain an analytic solution, we can approximate PðxÞ for
x → 0,

PðxÞ≃ 243C1f80
246400x8=3

þ C1; ð65Þ

and accordingly the function QðxÞ reads

QðxÞ ¼ −
729C1f100

123200x16=3
: ð66Þ

By substituting Eqs. (65) and (66) in Eq. (58), we
obtain

t − ts ≃ 23=433=8f3=40

R3=8 : ð67Þ

Then by using Eqs. (66), (67), and (59), we easily obtain
the resulting FðRÞ gravity, which has a particularly
interesting form,

FðRÞ≃ C1Rþ 81C1f60
1971200

R2; ð68Þ

which is an R2 gravity, with the difference that in the case at
hand, the coefficient of the R2 term is very large, in
comparison to the R2 inflation model. By using other
values of the parameter α, the resulting FðRÞ gravity is
different from the one of Eq. (68), for example, for
a ¼ 8=3, and then by repeating the procedure, we obtain
the result

FðRÞ≃
�

β1

2ðβ
3=16
3

β3=16
1

Þ16=3
−

β3

4ðβ
3=16
3

β3=16
1

Þ32=3
�
R2

þ β27=161 β2

2211=16β27=163

R27=16; ð69Þ

with βi constant parameters, which again provides a leading
order behavior of the FðRÞ gravity. We need to stress that
both the FðRÞ gravity functions of Eqs. (68) and (69) are
actually leading order results and not the exact forms of the
FðRÞ gravities that generate the late-time behavior of the
cosmology (12). Therefore, these may originate from FðRÞ
gravity models which pass all the large scale phenomeno-
logical tests and also satisfy the local astrophysical con-
straints, as, for example, the Hu-Sawicki model [81], which
is described by the FðRÞ gravity,

FðRÞ ¼ R −
c2Rn

c1Rn þ 1
; ð70Þ

with n > 0. For example, in the case n ¼ 1, the Hu-Sawicki
model as R → 0 at leading order behaves as follows:

FðRÞ≃ ð1 − c2ÞRþ c1c2R2; ð71Þ
so if we choose the parameters c1 and c2 as follows:

C1 ¼ 1 − c2; c1c2 ¼
81C1f60
1971200

; ð72Þ

the results of Eqs. (69) and (71) are identical at leading
order. In principle, the same study could be performed for
other types of finite time singularities, as, for example, the
Type II case, in which case by choosing α ¼ 2=3, the
leading order behavior of the FðRÞ gravity reads

FðRÞ≃ 12c2Rþ 54302=3f20c2R
2=3 −

2421=335=6f0c2
51=6

R5=6:

ð73Þ
Finally, before closing, let us calculate the EoS for the

FðRÞ gravity, which is now defined to be
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weff ¼ −1 −
2 _H
3H2

; ð74Þ

and note the difference between the LQC EoS of Eq. (22);
however, the two definitions coincide when ρc → ∞. In the
case at hand, since HðtÞ≃ f0ðt − tsÞα near the rip times,
the resulting EoS is approximately equal to

weff ≃ −1 −
2ðts − tÞ−1þαα

3f0
; ð75Þ

and since α > 1, the EoS is weff < −1, which describes a
phantom acceleration era before the rip is reached. Hence
even in the FðRÞ gravity case, the Universe is accelerating
during the last stages of its evolution, before the rip, with a
phantom behavior.

V. CONCLUSIONS

In this paper we demonstrated that in the context of LQC,
it is possible to realize a deformed matter bounce scenario,
in which the deformation practically alters the late-time
behavior of the model. Specifically, the deformed matter
bounce scenario describes a dark energy era, which ends
abruptly in a rip singularity. To be specific, the rip
singularity cannot be reached by the physical system, since
the energy density and pressure become complex, nearly a
second before the singularity itself is reached. This indi-
cates that this scenario ends before the singularity, and the
physical theory must be enriched with some fundamental
quantum gravity theory, yet to be found.
We described in detail the qualitative features of the

model, and we showed that during almost all eras, the
model is practically indistinguishable from the standard
matter bounce scenario, so all the appealing features of the
matter bounce scenario, such as the production of a scale
invariant spectrum, are also present in the deformed matter
bounce scenario, and, of course, all the drawbacks, such as
an initial noncausal state of the Universe, are also present in
the deformed model. Particularly, the deformed matter
bounce model has the following features: At early times
and during the matter domination era, the Universe is
noncausal with a scale invariant power spectrum. It con-
tracts until a minimal radius is reached, at which point it
bounces off, and hence the initial singularity of the standard
inflationary paradigm is avoided. After the bounce, the
Universe expands in a decelerating way, until late times
where the Universe starts to expand in an accelerating way
and continues to expand in this way until a rip singularity is

reached; however, before the singularity is reached, the
expansion stops. Therefore, a new feature of the deformed
matter bounce scenario is that the infinite repetition of the
bouncing process ends before the rip singularity. However,
we need to stress the fact that prior to the rip, bound objects,
like galaxies or clusters, will be ripped apart at a time that
depends on the model under study. For example in
Ref. [63], by using general relativity arguments the authors
have shown that in the case of a phantom dark energy era,
our galaxy would be stripped roughly 60 million years
before the rip, and clusters would be stripped a billion years
before the rip; see [63]. This could be the case for our
deformed model, but we did not address this issue in this
paper, since we focused more on the fact that the deformed
matter bounce model is a “one way model” in the sense that
the repetition of the bouncing process stops before the rip,
regardless what happens before the rip. This is clearly
different from the standard LQC matter bounce scenario, in
which the Universe infinitely oscillates in a matter domi-
nated way.
After giving a detailed qualitative description of the

model, we investigated how the deformed matter bounce
cosmology can be described by a viscous imperfect fluid, in
the context of LQC, and as we demonstrated, in the LQC
case, the resulting EoS is of the form P ¼ −ρ − BðH; _HÞ.
In addition to this study, we examined how the deformed
matter bounce scenario can be realized in the case that the
matter fluid corresponds to a canonical scalar field, always
in the context of LQC. The resulting picture is quite
interesting, since during the matter domination era, which
occurs during the contraction and the expansion era, the
potential is identical to the one found in the literature, while
at late times, the potential is of power law form.
We need to note that in the present work we generalized

the matter bounce cosmological scenario, but it is possible
to use more general scenarios, as, for example, the radiation
bounce [61,62], in which case the EoS is p ¼ 1

3
ρ, or, for

example, bouncing models with EoS p ¼ wρ, but we did
not go into details because the procedure is the same.
Finally, by repeating the line of research we adopted in this
paper, we can achieve the transition from the bounce to the
dark energy epoch ending in some soft singularity of Types
II, III, and IV [55].
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