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The Immirzi parameter is promoted to be a scalar field and the Hamiltonian analysis of the
corresponding dynamical system is performed in the presence of gravity. We identified some SUð2Þ
connections, generalizing Ashtekar-Barbero variables, and we rewrite the constraints in terms of them,
setting the classical formulation suitable for loop quantization. Then, we consider the reduced system
obtained when restricting to a flat isotropic cosmological model. By mimicking loop quantization via an
effective semiclassical treatment, we outline how quantum effects are able to tame the initial singularity
both in synchronous time and when the Immirzi field is taken as a relational time.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1,2] is probably the most
valuable attempt to canonically quantize the gravitational
field, essentially in view of its well-known successes: the
emergence of a discrete spectrum of areas and volumes,
starting from a continuous formulation [3] and the rigorous
definition of a kinematical Hilbert space [4], allowed by the
properties of cylindrical functionals.
Nonetheless, this proposal is affected by nontrivial

shortcomings, like the difficulties in implementing the
physical scalar constraint [5], the lack of well-defined
classical limit [6] and, overall, the ambiguity of the Immirzi
parameter choice [7].
More specifically, different values of such a free param-

eter of the theory correspond to dealing with nonequivalent
representations of the quantum picture [8], since they are
not connected by a unitary transformation [9]. Over the
years many attempts have been considered to interpret the
Immirzi parameter as a topological parameter [10] (sup-
plementing the Holst action [11] by the Nieh-Yan topo-
logical term), or to fix it [12] (mainly from black hole
entropy calculations, even though later developments ruled
out this possibility [13]).
Here, we address the point of view to treat such an

Immirzi variable as a real field. In the literature two main
classical formulations have been considered, depending on
the adopted action: the Holst case, in which one deals with
the Holst action with a spacetime dependent Immirzi
parameter [14–16], and the Nieh-Yan case, in which the
Holst action is supplemented by a term containing the

Immirzi field times the Nieh-Yan density [17–20]. Upon
solving the equations of motion coming from the variations
with respect to spin connections and substituting back in
the action the solutions, both of these approaches lead to a
theory classically equivalent to Einstein-Hilbert theory with
a minimally coupled scalar field if no other matter field is
present. However, the latter seems preferable, since in the
Holst case some unnatural couplings arise in the presence
of spinors. These terms are not present in the Nieh-Yan
case, the reason being the theory is fully equivalent to
Einstein-Cartan theory. Moreover, a topological interpre-
tation can be given to the Immirzi field as soon as the
relaxation to a constant value occurs, by analogy with the θ-
angle in QCD. This relaxation, which is also expected to
explain the absence of the Immirzi field in low-energy
phenomenology, may be induced dynamically by adding a
potential term, even though no natural way to derive a
suitable potential term is known.
In [21], a more “quantum-oriented” analysis has been

performed: starting from the Holst case supplemented by a
kinetic and a potential term for the Immirzi field, the
Hamiltonian analysis has been provided and some SUð2Þ
connections (analogous to Ashtekar-Barbero-Immirzi var-
iables [22,23]) suitable for loop quantization have been
defined. A further merit of this analysis has been the
derivation of a natural mechanism which can explain the
dynamical relaxation to a constant value starting from a
polynomial potential. The limit of this formulation is that
the kinetic and potential terms have been added “by hand,”
while in previous cases they have been inferred by
substituting into the original action the solutions of the
equations of motion obtained upon variations with respect
to spin connections.
Here, we repeat the analysis made in [21] for the Nieh-

Yan case; i.e. we define the analogues of the standard
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Ashtekar-Barbero-Immirzi variables starting from the
action given in [18], in order to check the final structure
of the constraints in Hamiltonian formulation of the theory
and to set up the necessary tools for loop quantization. It is
worth noting that our theory corresponds to dealing with
the Hilbert-Palatini action, since the Immirzi field does not
couple with the spin connection and we are not including
spinor fields here (in [18] spinor fields are present and the
resulting approach is equivalent to Einstein-Cartan theory).
In what follows, we refer to the present analysis as Einstein-
Cartan representation, having in mind that spinor fields
have to be included, dealing with matter sources.
The aim of this restatement of the LQG formulation

consists of checking if the Immirzi field can play, in such a
scheme, the role of a time variable for the gravitational field
evolution, thus also avoiding the requirement of relaxation
to a constant value.
Thus, we consider the implementation of the restricted

evolutionary theory to the quantization of the isotropic
Robertson-Walker Universe, in order to get insight into the
nature of the cosmological singularity. As a first step
toward such an aim, we mimic loop quantization by
considering a semiclassical polymer approach to the
considered model. Actually, the obtained Hamiltonian
possesses nontrivial features, making its full quantum
treatment almost puzzling. The present approach to the
isotropic Universe’s quantum dynamics is a reliable fea-
sibility test on the implementation of a quantum big-bounce
scenario in this revised quantum cosmological framework.
The test has been fully successful since we are implement-
ing a well-traced big-bounce picture, having some pecu-
liarities we will discuss in detail below, but strongly
resembling the one obtained in loop quantum cosmology
(LQC) by Ashtekar et al. [24]; see also [25,26].
The issue presented here is really encouraging toward the

search for a fully quantum implementation of the model
and the proper construction of a semiclassical limit. Finally,
we want to stress how the considered Immirzi time is
promising in view of a quantum implementation of the so-
called Belinski-Khalatnikov-Lifshitz conjecture [27,28],
sufficiently near to the singularity, when the spatial
gradients are negligible with respect to the system’s time
evolution. In such a limit, the Immirzi time should be a
viable approach and it suggests a new general perspective
for investigating the singularity removal in the quantum and
semiclassical sectors.
The paper is organized as follows. In Sec. II we perform

the Hamiltonian analysis of the formulation with Immirzi
field in the Nieh-Yan case, defining the analogues of the
Ashtekar-Barbero connections and deriving the expressions
of the constraints. In Sec. III we perform the reduction to a
flat FRW model and we discuss the classical and the
effective semiclassical dynamics, outlining the emergence
of a big-bounce scenario. In Sec. IV we comment on the
physical content of the model and, in particular, on the

interplay between the interpretation of the Immirzi field as
a relational time and as an actual physical degree of
freedom of the theory. Finally, brief conclusions follow
in Sec. V.

II. ASHTEKAR-BARBERO VARIABLES FOR THE
IMMIRZI FIELD

The action of LQG in vacuum reads [11] (in units
c ¼ 8πG ¼ 1)

SH ¼ 1

2

Z
M

d4x eeμI e
ν
J

�
RIJ

μν −
β

2
ϵIJKLRKL

μν

�
; ð1Þ

eμI being inverse tetrads of the spacetime manifold and
RIJ

μν denotes the curvature of the spin connection ωIJ
μ, i.e.

RIJ
μν ¼ ∂ ½μωIJ

ν� þ ωI
½μKω

JK
ν�; ð2Þ

β is the inverse of the Immirzi parameter and it multiplies a
term (the Holst term) which does not affect the equations of
motion. One can also start from the Einstein-Hilbert action
(which in vacuum is equivalent to Einstein-Cartan theory)
and show how the Immirzi parameter labels a canonical
transformation one can perform on the phase space coor-
dinates. Hence, classically β plays no role and one recovers
Einstein-Cartan theory. However, the Holst term (or the
corresponding canonical transformation) has a nontrivial
effect in phase space, since it allows us to adopt as variables
some SUð2Þ connections, Ashtekar-Barbero variables
[22,23], and their conjugate momenta Ea

i , whose explicit
expression reads

Ai
a ¼

1

β
Ki

a þ Γi
a Ea

i ¼ β
ffiffiffi
q

p
eai ; ð3Þ

eai being inverse triads of the spatial metric qab, while Ki
a

and Γi
a are related with the extrinsic and intrinsic curvature

of the spatial metric (time and spatial derivatives), respec-
tively. The constraints become

Gi ≡DaEa
i ¼ ∂aEa

i − ϵij
kAj

aEa
k ¼ 0 ð4Þ

Va ≡ Fi
abE

b
i ð5Þ

S¼−
1

2
ffiffiffi
q

p
β2

�
Fj

abþ
�
1þ 1

β2

�
ϵjmnKm

aKn
b

�
ϵjklEa

kEb
l;

ð6Þ
Fi
ab being the SUð2Þ field strength of Ai

a. The constraint Gi

coincides with the SUð2Þ Gauss constraint of a Yang-Mills
gauge theory, while Va and S are the vector and scalar
constraints, which equal, modulo Gi, the supermomentum
and the super-Hamiltonian of the metric formulation,
respectively.
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The SUð2Þ gauge symmetry makes available for quan-
tization some proper techniques of gauge field theories (the
use of holonomies and fluxes). Furthermore, on a quantum
level, one finds that different values of β label inequivalent
quantum sectors (for instance the spectrum of the area
operator depends on β [3]); thus the quantum theory is
sensible to the Immirzi parameter. This poses the problem
of a classically irrelevant parameter which is a quantum
ambiguity.
In order to tame this unwanted feature, some approaches

have been developed in which the Immirzi parameter is
promoted to be a dynamical scalar field [14–16,18–21].
In [18] it has been outlined how if a dynamical Immirzi

scalar field β ¼ βðxÞ is considered in a formulation in
which the Holst term is replaced by the Nieh-Yan topo-
logical invariant, the system becomes equivalent to
Einstein-Cartan theory with a minimally coupled scalar
field, i.e.

S ¼ 1

2

Z
M

d4x e eμI e
ν
JR

IJ
μν þ

3

4

Z
M

d4x e∂μβ∂μβ: ð7Þ

This is the starting point of our analysis. We want to discuss
the structure of the phase space in such a theory. Our
primary aim is to derive the same kind of SUð2Þ gauge
structure as in a Holst formulation, such that the quantiza-
tion procedure of LQG can be applied also in the presence
of the Immirzi field.
In particular, we can get an SUð2Þ Gauss constraint also

for (7), as soon as the connections and momenta are defined
as follows:

ðβÞEa
i ≡ βðxÞ ffiffiffi

q
p

eai ; ð8Þ

ðβÞAi
a ≡ Γi

a þ
1

2β
ϵijkebke

j
a∂bβ þ

1

β
Ki

a: ð9Þ

It is worth noting that fðβÞAi
a; ðβÞEa

ig still form a couple of
canonically conjugate variables, i.e.

fðβÞEa
i ðxÞ; ðβÞAj

bðyÞg ¼ δabδ
j
iδðx; yÞ; ð10Þ

and we take them as the coordinates of the gravitational
phase space. Other coordinates describe the Immirzi field
and we cannot simply take fβ; Pg, P being the same
momentum as that of an ordinary scalar field in metric
formulation, since it would have nonvanishing Poisson
brackets with ðβÞAi

a. For this reason, we defined the scalar
field momentum as follows:

ðβÞPðxÞ≡ PðxÞ þ 1

β
Ea
i K

i
a; ð11Þ

and one can explicitly check that the only nonvanishing
Poisson brackets are given by (10) and

fðβÞPðxÞ; βðyÞg ¼ δðx; yÞ: ð12Þ

Eventually the vector constraint takes the form

Va ≡ ðβÞFi
ab

ðβÞEb
i þ ðβÞP∂aβ; ð13Þ

and the scalar constraint reads as

S ≡ −
1

2β2
ffiffiffi
q

p
�

ðβÞFj
ab þ

�
1þ 1

β2

�
ϵjmnKm

aKn
b

�

× ϵjkl
ðβÞEa

k
ðβÞEb

l

þ 3

4β2
ffiffiffi
q

p
�
1þ 1

β2

�
ðβÞEa

k
ðβÞEb

kβ;aβ;b

−
1

β3
ffiffiffi
q

p ðβÞEa
j
ðβÞEb

j∇aβ;b

þ 1

3
ffiffiffi
q

p
�

ðβÞP −
Kj

a
ðβÞEa

j

β2

�2

; ð14Þ

where ðβÞFi
ab is the SUð2Þ field strength of ðβÞAi

a.
It is worth noting that the vector constraint (13) retains

the same form as in the Holst formulation in the presence of
a minimally coupled scalar field (see [29,30]). On the
contrary, the scalar constraint contains some additional
terms. While the theory is classically equivalent to gravity
with a minimally coupled scalar field, thus we can perform
a change of variables such that the scalar constraint retains
the standard form; on a quantum level the choice of
variables is crucial and we adopted those suitable for loop
quantization. Therefore, while the classical dynamics is
equivalent to that of gravity with a minimally coupled
scalar field, we expect the quantum dynamics of the
Immirzi field to differ significantly. In order to investigate
this peculiar dynamics, we consider the symmetry-reduced
case of cosmology, in which several simplifications occur.
We conclude this section by noting that no contradiction
exists between the minimally coupled nature of the original
theory and the nonminimal Hamiltonian (14). Indeed,
insofar as we remain in the classical sector, the two
formulations are equivalent and connected by a canonical
transformation. Nonetheless, the nonminimal coupling
between the SUð2Þ connections and the Immirzi field
leads, on a quantum level, to a nontrivial dynamics, reliably
connected via a nonunitary transformation to the original
formulation (6) (indeed, we recall that in LQG different
values of the Immirzi parameter, here dynamically emerg-
ing, correspond to nonunitary representations).

III. MINISUPERSPACE MODEL

Let us consider the homogeneous and isotropic flat
Universe described by the FRW line element

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð15Þ

BIG-BOUNCE COSMOLOGY IN THE PRESENCE OF … PHYSICAL REVIEW D 94, 064021 (2016)

064021-3



the scale factor aðtÞ being the only dynamical degree of
freedom. One can choose the triads eia ¼ aðtÞδia, such that
the pair of conjugate variables fðβÞE; ðβÞAg reduces to

ðβÞEa
i ¼ pδai ðβÞAj

b ¼ cδjb; ð16Þ

where fp; cg are coordinates of the reduced phase space,
whose explicit expressions read

jpj ¼ jβja2 c ¼ _a
βN

; ð17Þ

and they form a couple of canonical variables with Poisson
brackets given by

fp; cg ¼ 1

3V0

; ð18Þ

V0 being the fiducial volume of the considered spacetime
region. The scalar field phase space coordinates fβ; ðβÞPg
are restricted to depend on time only, as well.
Since all spatial gradients vanish, the vector constraint

(13) holds identically, while the scalar constraint (14)
becomes

S ¼ − 3c2

ffiffiffiffiffiffi
jpj
jβj

s
ðβ2 − 1Þ − 2

ffiffiffiffiffiffi
jβj
jpj

s
ðβÞPcþ jβj3=2

3jpj3=2
ðβÞP2:

ð19Þ

It is worth noting that the kinematical structure coincides
with that of LQC [25,26], but the scalar constraint differs
significantly. In particular, the second term in (19) is not
present in LQC formulation.
The equivalence with the classical dynamics of gravity in

the presence of a scalar field can be explicitly demonstrated
by computing, through Hamilton equations, the Friedman
equation, which can be written as

�
_a
a

�
2

¼
ðβÞP2

3p3

jβj5
ð1þ jβjÞ2 ¼

ρ

3
; ð20Þ

where ρ obeys the continuity equation _ρ ¼ −6ρ _a
a, which is

equivalent to dealing with a massless scalar field energy
density. Moreover, taking β as a clocklike field, one obtains
the following dynamics for the scale factor,

a ¼ aðβÞ ¼ a0e�
β−β0
2 ; ð21Þ

the initial condition being in a0 ¼ aðβ0Þ, with the classical
singularities in β ¼ �∞, according to the chosen branch.
We perform a first analysis on the quantum dynamics, by

mimicking the quantization procedure adopted in LQC. In
particular, we discuss the classical implications of the
replacement

c ⟶
sin μc
μ

; ð22Þ

in the scalar constraint (19), where the polymer parameter μ
is fixed according to

μ2 ¼ Δ
jpjα Δ≡ 2

ffiffiffi
3

p
πl2P; ð23Þ

Δ being the minimum area gap eigenvalue in LQG, while α
is a quantum ambiguity. In particular, in what follows we
will consider the most relevant cases in LQC, namely α ¼ 0
and α ¼ 1 corresponding to the so-called μ0 and μ̄ schemes,
respectively.
The motivation for this analysis comes from LQC, where

the replacement (22) on a classical level is able to capture
the main semiclassical nontrivial effect, i.e. the emergence
of the bounce replacing the initial singularity [31,32].
Hence, we consider the classical dynamics generated by

the modified scalar constraint

Ssc ¼ − 3
sin2μc
μ2

ffiffiffiffiffiffi
jpj
jβj

s
ðjβj2 − 1Þ − 2

sin μc
μ2

ffiffiffiffiffiffi
jβj
jpj

s
ðβÞP

þ jβj3=2
3jpj3=2

ðβÞP2; ð24Þ

from which the following Friedman equation can be
inferred,�

_a
a

�
2

¼ ρ

3

�
1þ jβj
jβj

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
ρ

ρC

r
−

jβj
1þ jβj

�
2

; ð25Þ

ρC ≡ 3jβj3
μ2jpj being the critical density at which the bounce

occurs in LQC, and the equations for _β and _ρ are given
respectively by

_β ¼ 2ðβÞP
3p3=2

jβj5=2
1þ jβj _ρ ¼ −6ρ

_a
a
: ð26Þ

It is worth noting that the bounce is predicted also from (25)
(see Fig. 1), but at a smaller energy density ðβÞρC with
respect to LQC:

ðβÞρC ¼ ρC
jβjðjβj þ 2Þ
ð1þ jβjÞ2 < ρC: ð27Þ

Furthermore the continuity equation for ρ still holds, with
the ratio _a

a now described by (25).
If we take β as a clocklike field, the scale factor behaves

as follows:

aðβÞ ¼
�

A
4ða0βÞ2þα e

−2þα
2
ðβ−β0Þ þ a2þα

0 e
2þα
2
ðβ−β0Þ

�
1=ð2þαÞ

;

ð28Þ
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(we remind that we are just considering the two cases
α ¼ 1; 0), where we fixed initial conditions aðβ0Þ ¼ a0 for
positive β0, while the constant A determines the magnitude
of the quantum corrections [see the comparison with the
þ sign classical solution in (21)] and it reads explicitly

A ¼ Δβ20
9ðβ0 þ 1Þ2

ðβÞP2ðβ0Þ: ð29Þ

aðβÞ is plotted in Fig. 2, in which also the solution for
negative β0 values is drawn, and it outlines how the solution
splits into two separate branches for positive and negative

values of β. Each branch has its own bounce and they both
diverge in β → 0.

IV. PHYSICAL OUTLOOKS ON THE MODEL

In view of comparing the present approach with the
standard LQC singularity removal [24], we observe that
both formulations rely on a scalar relational time variable:
here we describe the cosmological evolution in terms of the
Immirzi field, while LQC refers to a matter clock con-
structed by a minimally coupled scalar field. We stress how
the semiclassical predictions of these two approaches
mainly overlap in characterizing a big-bounce dynamics,
apart from slightly different values of the associated critical
energy density. However, the nonminimally coupled char-
acter of the Immirzi field, in the SUð2Þ variable represen-
tation, is reflected by a modified scalar constraint with
respect to LQC (19). The symmetry reduction associated to
the Universe’s homogeneity seems to weaken the difference
in the corresponding outputs of the minimal and non-
minimally coupled theories. But, we can infer that in a full
quantization procedure, based on SUð2Þ variables of LQG,
the present formulation leads to nontrivial implications in
the implementation of the scalar constraint (14), requiring
attention for the possible improvements or shortcomings
with respect to the standard formulation.
We also stress that, in the present cosmological frame-

work the Immirzi parameter, being a relational time, needs
no longer to be fixed to a specific value. It must be thought
of as an evolutionary degree of freedom for the restated
LQC, similarly to a matter scalar degree of freedom. Again,
such a point of view could appear too ambitious for the full
theory, retaining peculiar inhomogeneous couplings
between the Immirzi field and the SUð2Þ variables.
In a general framework, appropriate to describe local

quantum space properties, we are naturally led to suggest,
as in the Introduction, a relaxation of the Immirzi field to a
fixed value. The real mechanism able to explain such a
relaxation must probably be searched for in the coupling of
the proposed theory with matter, especially when a poten-
tial term for the scalar field can be suitably generated.
Clearly such a potential term, privileging a value of the
Immirzi field in correspondence to a “vacuum configura-
tion,” can also come from extended approaches to general
relativity, relying on extensions of the Hilbert-Palatini (and
then of the Einstein-Cartan) Lagrangian for the spacetime
geometry.
We conclude by observing that, in principle, the two

different interpretations of the Immirzi field, i.e. the
cosmological one (dealing with an evolutionary degree
of freedom) and the more general case of a local quantiza-
tion of the space geometry, do not conflict with each other.
In fact, they are associated to different physical contexts or,
to say it better, to different stages of the Universe’s
evolution. In other words, we can argue that near the big
bounce, the Immirzi field was a real dynamical degree of

FIG. 2. Physical scale factor as function of β: the solid lines are
the two classical branches, reaching the singularity (a ¼ 0) for
β ¼ �∞. The dotted and dashed lines are the solutions of the
polymer cosmological Hamiltonian for α ¼ 0, 1, respectively. In
both cases a divergence in β ¼ 0 arises, while singularity is
removed in each solution.

FIG. 1. Physical scale factor as function of t. The solid lines are
the two classical branches, reaching the singularity (a ¼ 0) for
t ¼ 0. The dotted and dashed lines are the solutions of the
polymer cosmological Hamiltonian for α ¼ 0, 1, respectively.
Positive and negative branches are plotted and the singularity is
smoothly removed, matching both solutions.
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freedom, later relaxing to a vacuum configuration, as a
result of the Universe cooling during expansion.

V. CONCLUSIONS

We performed the Hamiltonian analysis of the model
presented in [18], in which the Immirzi parameter is
promoted to be a scalar field. We outlined how it is
possible to recover some SUð2Þ connections, playing the
role of Ashtekar-Barbero variables. The corresponding
momenta describe the triads of the spatial metric times
the squared Immirzi field and emerge as basic variables in
loop quantization. Inspired by this achievement we inves-
tigate the cosmological implications of the model. We
identified the analogues of reduced phase space variables of
LQC and we mimic loop quantization by an effective
treatment, based on replacing the reduced connection
variable with its polymerlike version. We considered two
choices of the polymer parameter, corresponding to the so-
called μ0 and μ̄ schemes in LQC. The results of this analysis
show how the singularity is replaced by a bounce, occurring
at lower energy density with respect to the critical energy
density in LQC. We also investigated the possibility of
taking β as a relational time. The equation for the scale
factor as a function of β can be analytically solved and the
initial singularity is still replaced by a bounce, but a
subtlety arises. The scale factor diverges in β ¼ 0, such
that one gets two disconnected branches for positive and
negative values of the Immirzi field. Further investigations
are needed in order to test whether such a divergence is
tamed in a full quantum treatment or is a proper feature of
the model.
We conclude by coming back to a subtle question,

concerning the double interpretation of the Immirzi field,
as it emerges from the present analysis: on the cosmological
level it behaves as a relational time, while in the full LQC
framework it is a dynamical degree of freedom, to be frozen
somehow to a specific constant value. The possibility of
dealing with the Immirzi field as a relational time, for the
early Universe’s evolution, is clearly a consequence of the
simplifications associated to the symmetry restrictions of
the considered minisuperspace model: the SUð2Þ algebra of
the LQC variables reduces to aUð1Þ-like formulation of the
discrete cosmological space. In the general case, the
Immirzi field is still a dynamical degree of freedom, but
its interpretation as a physical clock can encounter some

shortcomings, for instance due to the presence of its
momentum gradients in the nonminimal Hamiltonian
(14). However, we think, as already pointed out in
Sec. II, that the two possible interpretations correspond
simply to different stages of the Universe’s dynamics.
When the Universe emerges from the big bang/bounce,

the space is globally homogeneous and the analysis of
Sec. III naturally applies: the Immirzi field is a dynamical
degree of freedom, playing the role of a relational time, up to
a classical limit is reached. After this phase, the Universe
expands and cools, so that we suggest that the Immirzi field
starts to feel the influence of a potential term (due to
additional degrees of freedom, like the one offered by
extended gravitational theories). The resulting self-interact-
ing field is frozen to a vacuum value by a phase transition of
theUniverse, due to decreasing temperature (i.e. a symmetry
breaking takes place across the Universe). Then the Immirzi
field reduces to the standard Immirzi parameter of LQC
and its value can affect the calculation concerning local
spacetime realization on the quantum level; for instance its
role in the determination of black hole entropy can be
evaluated [13,33,34]. The scenario proposed above has
supporting points, corresponding, on one hand, to the
possibility of neglecting, near enough to the singularity,
the self-interacting scalar field potential (for a study con-
cerning its derivation in fðRÞ extended gravity, see [35]),
and, on the other hand, the so-called Belinsky-Khalatnikov-
Lifshitz conjecture [28,36–38], which guesses the possibil-
ity of reducing the primordial cosmological Wheeler super-
space to the product of minisuperspaces, one in each space
point (for a quantum discussion of the implications of such a
conjecture, see [39] and [40]). In other words, the proposed
minisuperspace scenario, based on a Klein-Fock Immirzi
field, could possess a much greater degree of generality
(especially if extended to a Bianchi I cosmology).
Clearly, our conjecture requires, to be viable, the

individuation of a convincing model for the potential term
generation, also able to account for a specific value
assumed by the Immirzi field on the vacuum configuration.
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