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We show that gravitational wave radiative patterns from a point test particle falling radially into a
Schwarzschild black hole, as derived by Davis, Ruffini, Press and Price [M. Davis et al., Phys. Rev. Lett.
27, 1466 (1971).], are present in the nonlinear regime of head-on mergers of black holes. We use the Bondi-
Sachs characteristic formulation and express the gravitational wave luminosity and the net momentum flux
in terms of the news functions. We then evaluate the (−2)-spin-weighted l-multipole decomposition of
these quantities via exact expressions valid in the nonlinear regime and defined at future null infinity.
Our treatment is made in the realm of Robinson-Trautman dynamics, with characteristic initial data
corresponding to the head-on merger of two black holes. We consider mass ratios in the range
0.01 ≤ α ≤ 1. We obtain the exponential decay with l of the total energy contributed by each multipole
l, with an accurate linear correlation in the log-linear plot of the points up to α≃ 0.7. Above this mass ratio
the contribution of the odd modes to the energy decreases faster than that of the even modes, leading to the
breaking of the linear correlation; for α ¼ 1 the energy in all odd modes is zero. The dominant contribution
to the total radiated energy comes from the quadrupole mode l ¼ 2 corresponding, for instance, to about
≃84% for small mass ratios up to ≃99.8% for the limit case α ¼ 1. The total rescaled radiated energy
Etotal
W =m0α

2 decreases linearly with decreasing α, yielding for the point particle limit α → 0 the value
≃0.0484, about 5 times larger than the result of Davis et al. [1]. The mode decomposition of the net
momentum flux and of the associated gravitational wave impulses results in an adjacent-even-odd mode-
mixing pattern. We obtain that the impulses contributed by each ðl;lþ 1Þ mixed mode also accurately
satisfy the exponential decay with l, for the whole mass ratio domain considered, 0.01 ≤ α < 1. The (2, 3)
mode contributions to the total impulses are dominant. The mode-mixing effect can also be seen in the
decomposition of the net kick velocity imparted to the system by the gravitational wave emission.
The mixed mode impulses reach a maximum at α≃ 0.7; for α > 0.7 the impulses decrease and are zero in
the equal mass case, due to the decrease to zero of the odd modes of the news functions.

DOI: 10.1103/PhysRevD.94.064017

I. INTRODUCTION

The collision and merger of two black holes are among
the most promising astrophysical candidates for strong
gravitational wave sources and are therefore of crucial
interest for the present general efforts for direct observa-
tions of gravitational waves [2–5]. An accurate description
of the radiative transfer processes involved in the emission
of gravitational waves must take into account the full
nonlinearity of the Einstein field equations. In the nonlinear
regime, gravitational waves extract mass-energy, momen-
tum and angular momentum of the source, and the radiative
energy transfer involved in these processes may turn out to
be fundamental for the astrophysics of black holes, such as
the evolution and population of massive black holes in
galaxies or in the intergalactic medium [6–8].

In the realm of general relativity the production and
extraction of gravitational waves in processes involving
black holes have been investigated basically within three
complementary approaches, most of them connected to
binary black hole inspirals: post-Newtonian (PN) approx-
imations (cf. [9] and references therein), numerical rela-
tivity (NR) [10–14] and the close-limit approximation
(CLA) supplemented with PN calculations [15,16], as well
as combinations of these approaches. For the case of small
mass ratios NR evaluations bridged with perturbation
techniques were implemented in Refs. [13,17]. A particular
class of black hole binaries, which are of particular interest
for comparing and relating results from the various meth-
ods, are those with a very small mass ratio that can furnish
tests for accuracy and for eventual validation of calcula-
tions made in extreme limits of the methods, as done for
instance with the use of the effective-one-body approxi-
mation model (cf. [18–22]).
This is the case of a classical calculation in general

relativity—the gravitational radiation from a point particle
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falling radially into a Schwarzschild black hole [1]—some
features of which extend naturally to the nonlinear regime
of head-on mergers of nonspinning black holes with mass
ratios α ≥ 0.01, as examined in this paper. The head-on
case is a model problem that has the point particle case of
[1] as a limit configuration when α approaches zero. We
also examine the mode decomposition of the net momen-
tum flux and the associated impulse of the gravitational
waves emitted in the nonlinear regime for the same mass
ratio range. These calculations were first made by Moncrief
[23], considering the case of odd-parity quadrupole and
octupole perturbations in collapsing relativistic stars.
However, as in the present case of the axisymmetric
head-on merger, odd-parity perturbations vanish as noted
by Lousto and Price [24] in treating the first-order pertur-
bation of the background of a Schwarzschild black hole by
the radial infall of a particle.
Our treatment is based on the Bondi-Sachs (BS) energy-

momentum conservation laws in the characteristic formu-
lation [25–27], which regulate the gravitational wave
radiative transfer processes of the system, in the realm
of Robinson-Trautman (RT) spacetimes [28,29]. The char-
acteristic initial data constructed for the RT dynamics
already present a global apparent horizon, so the dynamics
covers the post-merger phase of the system, which repre-
sents one of the most dynamic parts of the evolution, up to
the final configuration of the remnant black hole [30].
We should mention that this formalism is distinct but

complementary to the approaches using 1þ 3 NR and PN
approximations. Here we use physical quantities (the news
functions and the BS four-momentum) defined only on
characteristic surfaces u ¼ const and evaluated at future null
infinity. Specifically, the physical importance of the BS four-
momentum comes from the fact that, when an isolated
system emits gravitational waves, its rate of change is
directly related to the outward flux of the radiated energy
andmomentumby thegravitationalwaves. In this sense, here
we have not treated a direct relation with the wave solutions
used in 1þ 3 NR and PN approaches, whose quantities are
obtained from wave signals in time t evaluated at several
spacelike spheres of extraction, and whose extension to
future null infinity must be further implemented [31].
Of course, the physical results obtained in the character-

istic formulation (using proper initial data) must give
results consistent with other formulations. For instance,
the initial data [Eq. (20)] result in an impressive agreement
with the Fitchett distribution of the kick velocities as a
function of the symmetric mass ratio [32,33], when
compared to results obtained via post-Newtonian and 3þ
1 NR techniques. Also, in [33] the initial data [Eq. (20)]
was used (in the characteristic formulation) to show that the
antikick can be understood in terms of the radiation from a
deformed black hole where the anisotropic curvature
distribution on the horizon correlates with the direction
and intensity of the recoil, reproducing the Fitchett

distribution. In [34] modifications of the initial data
[Eq. (20)] were tested and shown not to produce the
expected Fitchett distribution for kicks in the head-on
collision of black holes. The results of the present paper
also corroborate this interpretation since it reproduces the
energy distribution patterns of Davis et al. [1] for the case
of head-on black holes, consistently extending the case of a
particle falling radially into a Schwarzschild black hole.
The cornerstone of our approach is the dependence of the

Bondi-Sachs four-momentum wave flux [27] on the news
functions—which are the basic quantities characterizing
the gravitational wave degrees of freedom of the system and
are, by definition, quantities of spin weight s ¼ −2 [35,36].
This allows an invariant decomposition into (−2)-spin-
weighted modes of the luminosity and of the net momen-
tum flux. This decomposition is exact in the nonlinear
regime, leading to an accurate evaluation of the even-parity
signals and of their relative contribution to the physical
quantities involved in the radiative processes of the system.
In this setting we are able to clarify some fundamental new
features of the gravitational wave emission in the model.
We organize the paper as follows. In Sec. II, for

completeness of the paper, we review some basic character-
istics of RT spacetimes including the peeling property of
the curvature tensor, which gives an invariant characteri-
zation of the radiative nature of the spacetime. In Sec. III
we introduce the luminosity and the net momentum flux of
the gravitational waves, which are defined in terms of the
news function for the axisymmetric case via the BS four-
momentum conservation laws; the news function, identi-
fied as a quantity of spin weight s ¼ −2, is fundamental for
our treatment in Secs. Vand VI. In Sec. IV we introduce the
initial data for the characteristic formalism and discuss its
numerical evolution via the RT dynamics by using a
Galerkin method. Sections V and VI are the core of the
paper: There, we examine the invariant l-mode decom-
position of the luminosity and the net momentum flux, and
the consequent features of the mode contributions to the
total energy and the total impulse carried out of the system
by the gravitational waves emitted. Final comments and
conclusions are given in Sec. VII.
Except where explicitly stated, throughout the paper we

use geometrical units G ¼ c ¼ 1.

II. ROBINSON-TRAUTMAN SPACETIMES

RT spacetimes [28,29] are asymptotically flat solutions
of Einstein’s vacuum equations that describe the exterior
gravitational field of a bounded system radiating gravita-
tional waves. The RT metric can be expressed as

ds2 ¼ α2ðu; r; θ;ϕÞdu2 þ 2dudr −
r2

P2ðu; θ;ϕÞ dΩ
2; ð1Þ

where r is an affine parameter defined along the shear-free
null geodesics determined by the vector field ∂=∂r. Here,
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dΩ2 ¼ dθ2 þ sin2 θdϕ2. Einstein’s equations imply that, in
a suitable coordinate system,

α2ðu; r; θ;ϕÞ ¼ λðu; θ;ϕÞ − 2m0

r
− 2r

P;u

P
; ð2Þ

where λðu; θ;ϕÞ is the Gaussian curvature of the surfaces
(u ¼ const, r ¼ const) defined by

λ ¼ P2 þ P2

sin θ

�
sin θ

P;θ

P

�
;θ
þ P2

sin2θ

�
P;ϕ

P

�
;ϕ
; ð3Þ

and m0 is the only dimensional parameter of the spacetime,
which fixes the energy and length scales of the system. For
the stationary case m0 corresponds to the rest mass of the
black hole with respect to an asymptotic Lorentz frame at
future null infinity. The remaining Einstein equations yield

12m0P;u þ P3

�ðλ;θ sin θÞ;θ
sin θ

þ λ;ϕϕ
sin2θ

�
¼ 0: ð4Þ

In the above, the subscripts u, θ and ϕ preceded by a
comma denote derivatives with respect to u, θ and ϕ,
respectively. Equation (4), denoted the RT equation, gov-
erns the dynamics of the gravitational field [which is totally
contained in the metric function Pðu; θ;ϕÞ] and propagates
the initial data Pðu0; θ;ϕÞ from a given initial characteristic
surface u ¼ u0. Chrusciel and Singleton [37] established
that RT spacetimes exist globally for all positive u > u0
and converge asymptotically to the Schwarzschild metric as
u → ∞, for arbitrary smooth initial data.
The RT equation (4) admits the stationary solution

Pðθ;ϕÞ ¼ ðcosh γ þ ðn · x̂Þ sinh γÞ; ð5Þ
where γ is a constant. In the above x̂ ¼
ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the unit vector along the
arbitrary direction x and n ¼ ðn1; n2; n3Þ is a constant unit
vector (satisfying n21 þ n22 þ n23 ¼ 1). We note that (5)
yields λ ¼ 1, resulting in its stationary character. This
solution can be interpreted [25] as a boosted
Schwarzschild black hole along the axis determined by
the unit vector n with boost parameter γ, or equivalently,
with velocity parameter v ¼ tanh γ. The Bondi mass
function associated with (5) is mðθ;ϕÞ ¼ m0=P3ðθ;ϕÞ,
and the total mass-energy of this configuration is given by
the Bondi mass

MB ¼ ð1=4πÞ
Z

2π

0

dϕ
Z

π

0

mðθ;ϕÞ sin θdθ

¼ m0 cosh γ ¼ m0=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Þ: ð6Þ

The two news functions cð1Þu ðu; θ;ϕÞ and cð2Þu ðu; θ;ϕÞ of the
RT spacetimes can be expressed as [27]

cð1Þu þ icð2Þu ¼ Ls¼−2Pðu; θ;ϕÞ; ð7Þ

where

Ls¼−2 ¼
1

2

�
∂2
θθ − cot θ∂θ −

1

sin2θ
∂2
ϕϕ

�

þ i
sin θ

∂ϕð∂θ − cot θÞ ð8Þ

is the operator that transforms scalar spherical harmonics
into (s ¼ −2)-spin-weighted spherical harmonics [38]. The
news functions thus correspond to pure gravitational wave
degrees of freedom, characterizing the two polarization
modes of the waves, as shown below. We remark that, once
we have Pðu; θ;ϕÞ from the numerical integration of RT
equations, the news functions are uniquely determined for
all u.
Finally, an important feature of RT spacetimes that

establishes its radiative character arises from the expression
of its curvature tensor that, in a suitable semi-null tetrad
basis [30], assumes the form

RABCD ¼ NABCD

r
þ IIIABCD

r2
þ IIABCD

r3
; ð9Þ

where the scalar quantities NABCD, IIIABCD and IIABCD are
of the algebraic type N, III and II, respectively, in the
Petrov classification of the curvature tensor [39,40], and r
is the parameter distance along the principal null direction
∂=∂r. Equation (9) displays the peeling property [40–42] of
the curvature tensor, showing that indeed RT is the exterior
gravitational field of a bounded source emitting gravita-
tional waves. For large r we have

RABCD ∼
NABCD

r
; ð10Þ

so that at large r the gravitational field looks like a
gravitational wave with propagation vector ∂=∂r. The
nonvanishing of NABCD is an invariant criterion for the
presence of gravitational waves, and the asymptotic region
where Oð1=rÞ-terms are dominant is defined as the wave
zone. The curvature tensor components in the above
basis that contribute to NABCD are R0303 ¼ −R0202 ¼
−Dðu; θÞ=rþOð1=r2Þ and R0203 ¼ −Bðu; θ;ϕÞ=rþ
Oð1=r2Þ where

Dðu; θ;ϕÞ þ iBðu; θ;ϕÞ ¼ −P2∂u

�
cð1Þ;u þ icð2Þ;u

P

�
; ð11Þ

so Dðu; θ;ϕÞ and Bðu; θ;ϕÞ contain all the information on
the angular and time dependence of the gravitational wave
amplitudes at asymptotic future null infinity [once Pðu; θÞ
is given for all u]. The news functions will constitute one of
the fundamental objects in our analysis.
In the remainder of the paper we deal with head-on

mergers along the z axis, so we restrict ourselves to
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axisymmetric RT spacetimes having the Killing vector
∂=∂ϕ. Accordingly, the formulation will contain one news

function only, cð1Þ;u ðu; θÞ, from which we now drop the
superscript (1). The gravitational waves emitted will have
one degree of polarization only.

III. BONDI-SACHS CONSERVATION LAWS AND
GRAVITATIONAL WAVE LUMINOSITY

From the supplementary vacuum Einstein equations in
the BS integration scheme together with the outgoing
radiation condition, the BS four-momentum conservation
laws for axisymmetric RT spacetimes are given by (cf. [27]
for details)

dPμ

du
¼ −Pμ

WðuÞ; ð12Þ

where PμðuÞ is the BS four-momentum defined by

PμðuÞ ¼ 1

4π

Z
2π

0

dϕ
Z

π

0

mðu; θÞlμ sin θdθ ð13Þ

and

Pμ
WðuÞ ¼

1

4π

Z
2π

0

dϕ
Z

π

0

1

P
lμðc;uÞ2 sin θdθ ð14Þ

is the net energy-momentum flux carried out by the
gravitational waves. In the above the four-vector lμ ¼
ð1; 0; 0; cos θÞ defines the generators of the BMS trans-
lations in the temporal and Cartesian z axes of an
asymptotic Lorentz frame at future null infinity [43], and

c;uðu; θÞ ¼
1

2
ð∂2

θθ − cot θ∂θÞPðu; θÞ ð15Þ

is the news function for the axisymmetric case, cf. (7).
Equation (12) for μ ¼ 0 is the Bondi mass equation [25],

the right-hand side of which gives the luminosity of the
gravitational waves emitted,

LWðuÞ ¼
dEWðuÞ

du
¼ 1

2

Z
π

0

1

P
ðc;uÞ2 sin θdθ: ð16Þ

The corresponding energy carried out by gravitational
waves at a time u > u0 is

EWðuÞ ¼
1

2

Z
u

u0

du
Z

π

0

1

P
ðc;uÞ2 sin θdθ; ð17Þ

where u0 is the initial time. The total gravitational wave
energy is given by EWðufÞ, where uf is the final time
(actually the final time of computation) when the gravita-
tional wave emission is considered to have ceased and the

system reaches the final configuration of the remnant
boosted Schwarzschild black hole.
Equation (12) for μ ¼ z gives the linear momentum

conservation law, the right-hand side of which gives the net
momentum flux carried out by the gravitational waves
emitted,

Pz
WðuÞ ¼

1

2

Z
π

0

1

P
ðc;uÞ2 cos θ sin θdθ; ð18Þ

with the associated net gravitational wave impulse

IzWðuÞ ¼
1

2

Z
u

u0

du
Z

π

0

1

P
ðc;uÞ2 cos θ sin θdθ: ð19Þ

Due to the axisymmetry, the components Px
WðuÞ ¼ 0 ¼

Py
WðuÞ for all u. We remark that the above quantities are

evaluated in a local Lorentz frame at future null infinity of
the spacetime. The above equations constitute the basis of
our analysis in the paper.

IV. INITIAL DATA AND NUMERICAL
EVOLUTION

The initial data to be used were derived in Ref. [30] and
can be interpreted as representing two instantaneously
Schwarzschild black holes in head-on merger along the
z axis, at u ¼ u0,

Pðu0;θÞ

¼
�

α1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh γþ cosθ sinh γ

p þ α2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh γ − cosθ sinh γ

p
�

−2
:

ð20Þ

For completeness of the paper we summarize and discuss
below the basic steps of its derivation as made in [30]. In
analogy to bispherical coordinates [44] in the 3-dim
Cartesian plane Σ, let us introduce the following para-
metrization for Cartesian coordinates:

x ¼ a sin θ sinh η
cosh ηþ cos θ sinh η

cosϕ;

y ¼ a sin θ sinh η
cosh ηþ cos θ sinh η

sinϕ; ð21Þ

z ¼ � a
cosh ηþ cos θ sinh η

; ð22Þ

for z > 0 and z < 0, respectively. In the above equations
0 ≤ η ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. In this parametriza-
tion, two spheres correspond to each η ¼ η0, one at z > 0
and the other at z < 0, centered at (x ¼ 0, y ¼ 0,
z ¼ �a cosh η0), respectively. The Cartesian vector from
the origin to a point P∶ðx; y; zÞ of Σ has the length
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rðη; θÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh η − cos θ sinh η
cosh ηþ cos θ sinh η

s
: ð23Þ

The usefulness of this parametrization will become clear in
what follows. We note that the Cartesian coordinates are
continuous functions, with continuous derivatives, of
ðη; θ;ϕÞ. For future reference we introduce the functions

S�ðη; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh η� cos θ sinh η

p
: ð24Þ

The flat space line element ds2 ¼ ðdxÞ2 þ ðdyÞ2 þ ðdzÞ2 is
expressed in the above parametrization as

ds2flat ¼
a2

S4�ðη; θÞ
½dη2 þ sinh2ηðdθ2 þ sin2θdϕ2Þ�: ð25Þ

We now take Σ as a spacelike surface of initial data, with
geometry defined by the line element

ds2 ¼ a2

P2ðηþ γ0; θÞ
½dη2 þ sinh2ðηþ γ0Þ

× ðdθ2 þ sin2θdϕ2Þ�; ð26Þ
where γ0 is an arbitrary parameter. By assuming time-
symmetric data (namely, Σ, a maximal slice with extrinsic
curvature Kab ¼ 0) we obtain that the Hamiltonian con-
straints reduce to ð3ÞR ¼ 0. With the substitution Φ2 ≡ 1=P
the constraint equation reduces to the Laplace equation

1

sin θ
ðΦθ sin θÞθ þ ðΦ0sinh2ðηþ γ0ÞÞ0

þ 3

4
sinh2ðηþ γ0ÞΦ ¼ 0; ð27Þ

where a prime denotes a derivative with respect to η.
Obviously the solutions

Φ ¼ 1

S�ðηþ γ0; θÞ
ð28Þ

satisfy Eq. (27) and, with respect to the metric (26),
correspond to flat space solutions (zero curvature). It then
follows that the linear combination

Φ ¼
�

α1
S−ðηþ γ0; θÞ

�
þ
�

α2
Sþðηþ γ0; θÞ

�
ð29Þ

is a nonflat solution of (27), where α1 and α2 are arbitrary
positive constants. The nonflat 3-dim geometry defined
by (29),

ds2 ¼ a2Φ4½dη2 þ sinh2ðηþ γ0Þ × ðdθ2 þ sin2θdϕ2Þ�;
ð30Þ

is asymptotically flat with a form analogous to that of the
3-dim spatial section of the Schwarzschild geometry in
isotropic coordinates. In fact, a straightforward calculation
shows that the metric (30) can be rewritten as

ds2 ¼
�
α2 þ α1

Sþðηþ γ0; θÞ
S−ðηþ γ0; θÞ

�
4

ds2flat; ð31Þ

and for η ≫ γ0 we can express (31) as

ds2 ¼
�
α2 þ

aα1
rðη; θÞ

�
4

ds2flat: ð32Þ

To probe the asymptotic structure of (32), let us consider η
large and, for this η, points ðx; y; zÞwhose distance from the
origin is also large, namely, when (η → ∞, θ≃ 0). In this
instance, returning to Cartesian coordinates, the 3-geometry
[Eq. (32)] can be given in the approximate form

gij ≃
�
1þ 2MS

rðη; θÞ
�
δij; ð33Þ

where MS is the Schwarzschild mass, MS ¼ m0ðα1 þ α2Þ.
Here we have fixed the scale of the bispherical-type
coordinates by taking aðα1=α2Þ ¼ m0ðα1 þ α2Þ=2, where
m0 is a parameter with the dimension of length in geomet-
rical units.
From the above construction we can now extract initial

data for the RT dynamics, which has its initial value
problem on null characteristic surfaces. Based on initial
data formulation on characteristic surfaces proposed by
D’Inverno and Stachel [45,46]—in which the degrees of
freedom of the vacuum gravitational field are contained in
the conformal structure of 2-spheres embedded in a 3-
spacelike surface—we are then led to adopt the conformal
structure given by the conformal factor (29) defined on the
surface η ¼ 0,

Pðu0; θÞ ¼
�

α1
S−ðγ0; θÞ

þ α2
Sþðγ0; θÞ

�
−2
; ð34Þ

as initial data for RT dynamics. This conformal structure is
to be extended along bicharacteristics and propagated along
a timelike congruence of the spacetime via RT dynamics. In
(20) we dropped the subscript 0 in γ0. A restricted
spacetime can then be constructed locally as the product
of the 2-sphere geometry times a timelike plane ðu; rÞ,
generated by a null vector ∂=∂r and a timelike vector ∂=∂u,
with geometry dσ2 ¼ α2ðu; r; θÞdu2 þ 2dudr. The four-
geometry is then

ds2 ¼ α2ðu; r; θÞdu2 þ 2dudr −
r2

P2ðu; θÞ
× ðdθ2 þ sin2θdϕ2Þ: ð35Þ

Equation (35) is the RT metric, the dynamics of which
(ruled by Einstein’s field equations) propagates the initial
data (34) forward in time from the characteristic initial
surface u ¼ u0. We note that Einstein’s vacuum equations
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demand that the function α2ðu; r; θÞ has the form given
in (2).
The interpretation of the asymptotically flat initial data

(34), corresponding to two instantaneously interacting
Schwarzschild black holes boosted along the z axis, is
now discussed, based on perturbations of the RT metric
(35) constructed with such data. As seen in Sec. II, for
α1 ¼ 0 the data in (35) correspond to a static Schwarzschild
black hole [with the total Bondi mass m0ðα2Þ6 cosh γ0]
boosted along the negative direction of the z axis with
v ¼ tanh γ0. For α1 ≠ 0, with α1 ≪ α2, the configuration is
no longer static and therefore cannot be a black hole, but it
can still be interpreted as an initially perturbed boosted
Schwarzschild black hole. Conversely, the same consid-
erations hold for (α1 ≠ 0, α2 ¼ 0) and α1 ≠ 0 with
α2 ≪ α1, the latter case also corresponding to an initially
perturbed boosted black hole. In this sense we associate the
perturbation with a black hole of relative small mass
boosted along the opposite direction of the larger black
hole. The initial infalling velocity of the black holes is
defined as v ¼ tanh γ0.
In the derivation of (20) it turns out that α ¼ α2=α1 is the

mass ratio of the Schwarzschild masses of the initial data,
as seen by an asymptotic observer. In the remainder of the
paper we take α1 ¼ 1 and denote α2 ¼ α the mass ratio.
These data already have a single apparent horizon, so the
evolution covers the post-merger regime up to the final
configuration, when the gravitational wave emission
ceases. For α sufficiently small the data may be considered
as a perturbation of a Schwarzschild black hole in the RT
dynamics. It is also worth remarking that, in the full Bondi-
Sachs problem, further data (the news functions) are needed
to determine the evolution of the system. However, for the
RT dynamics the news functions are specified once Pðu; θÞ
is given for all u, cf. (15).
The initial data [Eq. (20)] are evolved numerically via

the RT equation (4), which is integrated using a Galerkin
method with a Legendre polynomial projection basis space
[47] adapted to the axisymmetric RT dynamics. The
implementation of the Galerkin method, as well as its
accuracy and stability for long time runs, is described in
detail in Sec. V of Ref. [48]. The autonomous dynamical
system derived via the Galerkin basis projection is inte-
grated using a fourth-order Runge-Kutta recursive method
(adapted to our constraints) together with a C++ integrator
for a truncation N ¼ 7. Exhaustive numerical experiments
show that after a sufficiently long time u ∼ uf, all the
modal coefficients of the Galerkin expansion become
constant up to 12 significant digits, corresponding to
the final time of computation uf. At uf the gravitational
wave emission is considered to effectively cease. By
numerically reconstructing Pðu; θÞ for all u > u0, we
can obtain the time behavior of important physical quan-
tities, such as the news functions, the net gravitational
wave flux and associated quantities. From the final

constant modal coefficients we obtain Pðuf; θÞ, which,
in all cases, can be approximated as

Pðuf; θÞ≃ Pfðcosh γf þ cos θ sinh γfÞ: ð36Þ

With the final parameters ðPf; γfÞ obtained from the final
modal coefficients, we have, in all cases, that the rms error
of Eq. (36) is of the order of, or smaller than, 10−12. The
final configuration then corresponds to a Schwarzschild
black hole [cf. (5) and (6)] along the z axis with a final
boost parameter γf and a final Bondi rest mass m0=P3

f. In
all cases γf < γ and Pf < 1.
Except where explicitly stated, in this paper we restrict

ourselves to a boost parameter γ ¼ 0.5 in the initial
data [Eq. (20)].

V. MODE DECOMPOSITION OF THE RADIATIVE
CONTENT OF GRAVITATIONAL WAVE

EMISSION

We are now led to examine the energy carried out of the
system by the gravitational waves emitted. As we have
seen, from the Bondi energy conservation law we can
express the gravitational wave luminosity as [cf. Eq. (16)]

LWðuÞ ¼
1

2

Z
π

0

1

P
ðc;uÞ2 sin θdθ: ð37Þ

As already discussed the news function c;uðθ; uÞ appear-
ing in the right-hand side of (16) and defined in (15) is an
object of spin-weight (−2), while the function Pðu; θÞ has
zero spin weight; thus, we can make the expansion of
ðc;uðθ; uÞ=

ffiffiffiffi
P

p Þ in the basis of (s ¼ −2)-spin-weighted
spherical harmonics, cf. (7). Due to the axisymmetry of
the problem, this expansion is restricted to them ¼ 0 basis,
namely,

�
c;uðθ; uÞffiffiffiffi

P
p

�
¼

X
l≥2

Nl0ðuÞ−2Yl0ðθÞ; ð38Þ

where we define

−2Yl0ðθÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðl−2Þ!

4πðlþ2Þ!

s
ð∂2

θθ−cotθ∂θÞPlðθÞ; ð39Þ

with l ≥ 2 and PlðθÞ the lth Legendre polynomial,
normalized as

2π

Z
π

0
−2Yl0ðθÞ−2Yj0ðθÞ sin θdθ ¼ δlj: ð40Þ

From (16) we then obtain
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LWðuÞ ¼
dEWðuÞ

du
¼ 1

4π

X
l≥2

N2
l0ðuÞ; ð41Þ

where

Nl0ðuÞ ¼ 2π

Z
π

0

�
c;uðθ; uÞffiffiffiffi

P
p

�
−2Yl0ðθÞ sin θdθ: ð42Þ

Equation (41) gives the mode decomposition of the
luminosity (see Fig. 1) and, by an integration up to a time u,
we obtain the contribution of each mode to the energy
carried out by gravitational waves up to u. The expression
(41) is the exact RT equivalent of the Moncrief-Zerilli
formula for the radiated luminosity of a particle falling

radially into a Schwarzschild black hole [49,50]. Since
from our numerical evaluations we can directly have the
exact LWðuÞ (up to the accuracy of our numerical code) and
analogously the Nl0ðuÞ [cf. Eqs. (38)–(42)], we can
therefore make a clean analysis of the weight of the
contribution of each mode to the luminosity LW and to
the energy EW, as done below. The even-parity character of
the waves in our system is connected to the axisymmetry of
the system we are examining.
In Fig. 2 (left panel) we display the luminosity LWðuÞ,

obtained numerically from the exact expression (16), on
which we superpose the partial sum

P
5
l¼2N

2
l0ðuÞ=4π,

which accurately approximates LWðuÞ, with a normalized
rms deviation between the curves ≤ 10−2%. The contribu-
tions of higher modes l ≥ 6 are negligible. Actually, the
dominant contribution to the luminosity comes from the
quadrupolar mode l ¼ 2, as can be seen in Fig. 2 (right
panel). The quadrupolar contribution increases from about
84% to 99.7% of the total radiated energy, for mass ratios
α ¼ 0.0125 and α ¼ 0.9, respectively, as discussed below.
Integrating (41) in the whole time domain [u0 ¼ 0, uf],

where uf corresponds to the black hole remnant configu-
ration, we obtain the total energy carried out by gravita-
tional waves,

Etotal
W ¼

X
l≥2

EWl; ð43Þ

where

EWl ¼ 1

4π

Z
uf

u0

N2
l0ðuÞdu ð44Þ

is the total radiated energy per mode l.

10
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0.01

u m0

N20

N30

N40

FIG. 1. Plot of the (−2)-spin-weighted modes Nl0ðuÞ, l ¼ 2, 3
and 4 corresponding to the decomposition of the total luminosity
LWðuÞ. These modes give the main contribution to the luminosity
and to the total radiated energy by gravitational waves. Graph
made for the mass ratio α ¼ 0.025.
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FIG. 2. (Left panel) Plot of the exact luminosity LWðuÞ (red continuous curve) on which we superpose the partial sum (41) with l ¼ 2,
3, 4, 5 (blue dashed curve), for the mass ratio α ¼ 0.025. The contributions of higher modes l ≥ 6 are negligible. The normalized rms
deviation between the two curves is ≤ 10−2%. (Right panel) Plot of the exact luminosity LWðuÞ (red continuous curve) and the
luminosity of the l ¼ 2mode only, namely, N2

20ðuÞ=4π (blue dashed curve), showing the dominance of the quadrupolar mode (84%) in
the extraction of energy of the system by the gravitational waves emitted.
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In Table I we give the numerical values of the total
radiated energy Etotal

W =m0 and of the radiated energy
EWl=m0 (44) per mode l ¼ 2, 3, 4, 5, 6, evaluated for
the mass ratios 0.0125 ≤ α ≤ 0.8. We can see that the
contribution to the total radiated energy Etotal

W comes mainly
from the quadrupole (l ¼ 2) and the octupole (l ¼ 3)
modes: for small mass ratios the radiated energy is about
84% in the quadrupole mode and 14% in the octupole
mode, while for large values of α, e.g., α ¼ 0.8, we have
99.5% and 0.27% in the quadrupole and octupole modes,
respectively. In Table II we display the data corresponding
to the mass ratios α ¼ 0.9 and 1.0. There we still see the
dominance of the quadrupole mode in the total emitted
energy. Now, however, the contribution of the odd modes
l ¼ 3, 5 is surpassed by the adjacent even modes
lþ 1 ¼ 4, 6, respectively (contrary to the pattern seen
in Table I). In the limit α ¼ 1 the energy in all odd modes is

zero, also resulting in a zero total net impulse as discussed
in Sec. VI.
For the mass ratios examined in our numerical simu-

lations we obtain that the radiated energy per multipole l
decays exponentially with l. This behavior is more
accurate as the mass ratio is smaller, as shown below. In
Figs. 3 and 4 we display the log-linear plot of the points
EWl=m0 versus l for l ¼ 2;…; 6 for several mass ratios
0.0125 ≤ α ≤ 0.9. The best-fit curve to these points cor-
responds to the simple exponential law

logðEWl=m0Þ ¼ −BlþA: ð45Þ

The parameters B (the linear coefficient) and A obtained
from the best fit of the points, for 0.0125 ≤ α ≤ 0.9, are
given in Table III. The normalized rms deviation between
the best-fit straight lines and the log-linear plots of the

TABLE I. The radiated energy per mode EWl and the relative contribution of each mode to the total radiated energy Etotal
W , for several

mass ratios 0.0125 ≤ α ≤ 0.8. For small mass ratios we see that about 84% is in the quadrupole (l ¼ 2) mode and 14% in the octupole
(l ¼ 3) mode. As α increases the dominance of the quadrupole mode radiation increases. For large values of α, e.g., α ¼ 0.8, we have
∼99.5% and ∼0.27% in the l ¼ 2 and l ¼ 3 modes, respectively.

α ¼ 0.0125, Etotal
W =m0 ¼ 7.877839 × 10−6 α ¼ 0.025, Etotal

W =m0 ¼ 3.257298 × 10−5 α ¼ 0.06, Etotal
W =m0 ¼ 2.050809 × 10−4

l EWl=m0 EWl=Etotal
W EWl=m0 EWl=Etotal

W EWl=m0 EWl=Etotal
W

2 6.572867 × 10−6 0.834349 2.736639 × 10−5 0.840156 1.755436 × 10−4 0.855972
3 1.102154 × 10−6 0.139905 4.420647 × 10−6 0.135715 2.545205 × 10−5 0.124107
4 1.735627 × 10−7 0.022032 6.763394 × 10−7 0.020764 3.567958 × 10−6 0.012522
5 2.546657 × 10−8 3.233 × 10−3 9.584842 × 10−8 2.943 × 10−3 4.576429 × 10−7 2.232 × 10−3

6 3.426003 × 10−9 4.349 × 10−4 1.246684 × 10−8 3.827 × 10−4 5.430287 × 10−8 2.648 × 10−4

α ¼ 0.1, Etotal
W =m0 ¼ 6.258021 × 10−4 α ¼ 0.2, Etotal

W =m0 ¼ 3.066076 × 10−3 α ¼ 0.25, Etotal
W =m0 ¼ 5.253709 × 10−3

l EWl=m0 EWl=Etotal
W EWl=m0 EWl=Etotal

W EWl=m0 EWl=Etotal
W

2 5.466025 × 10−4 0.873443 2.797298 × 10−3 0.912338 4.873149 × 10−3 0.927563
3 6.934556 × 10−5 0.110811 2.423081 × 10−4 0.079029 3.458758 × 10−4 0.065835
4 8.730322 × 10−6 0.013951 2.403290 × 10−5 7.838 × 10−3 3.178859 × 10−5 0.006051
5 1.004957 × 10−6 1.606 × 10−3 2.218168 × 10−6 7.235 × 10−4 2.656441 × 10−6 5.056 × 10−4

6 1.088764 × 10−7 1.740 × 10−4 2.023823 × 10−7 6.601 × 10−5 2.231797 × 10−7 4.248 × 10−5

α ¼ 0.3, Etotal
W =m0 ¼ 8.2807778 × 10−3 α ¼ 0.4, Etotal

W =m0 ¼ 1.794259 × 10−2 α ¼ 0.5, Etotal
W =m0 ¼ 3.261573 × 10−2

l EWl=m0 EWl=Etotal
W EWl=m0 EWl=Etotal

W EWl=m0 EWl=Etotal
W

2 7.782889 × 10−3 0.939874 1.722167 × 10−2 0.959820 3.177479 × 10−2 0.974217
3 4.544982 × 10−4 5.488593 × 10−2 6.575541 × 10−4 0.036648 7.527140 × 10−4 0.023078
4 4.008497 × 10−5 4.840726 × 10−3 5.9468287 × 10−5 3.314 × 10−3 8.419377 × 10−5 2.581 × 10−3

5 3.048896 × 10−6 3.681895 × 10−4 3.6227025 × 10−6 2.019 × 10−4 3.716736 × 10−6 1.139 × 10−4

6 2.394997 × 10−7 2.892236 × 10−5 2.659085 × 10−7 1.482 × 10−5 3.005458 × 10−7 9.215 × 10−6

α ¼ 0.6, Etotal
W =m0 ¼ 5.442588 × 10−2 α ¼ 0.7, Etotal

W =m0 ¼ 8.4394487 × 10−2 α ¼ 0.8, Etotal
W =m0 ¼ 1.239577 × 10−1

l EWl=m0 EWl=Etotal
W EWl=m0 EWl=Etotal

W EWl=m0 EWl=Etotal
W

2 5.357688 × 10−2 0.984401 8.364351 × 10−2 0.991102 1.233609 × 10−1 0.995185
3 7.219961 × 10−4 0.013265 5.669453 × 10−4 6.718 × 10−3 3.335639 × 10−4 2.690 × 10−3

4 1.231914 × 10−4 2.263 × 10−3 1.808288 × 10−4 2.143 × 10−3 2.608761 × 10−4 2.1046 × 10−3

5 3.408470 × 10−6 6.263 × 10−5 2.631222 × 10−6 3.118 × 10−5 1.543681 × 10−6 1.245 × 10−5

6 3.916353 × 10−7 7.196 × 10−6 5.580596 × 10−7 6.613 × 10−6 8.107954 × 10−7 6.541 × 10−6
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points is ≤ 0.82% for α ≤ 0.3, increasing to 7% for α ¼ 0.7
and with large deviations for higher mass ratios. The last
column of Table III contains the normalized rms deviations
for all α.
It is remarkable that the exponential pattern of the

plots—first observed in the computation by Davis et al.
[1] (cf. also [51]) of the gravitational radiation from a point
test particle falling radially into a Schwarzschild black hole
—extends accurately to the nonlinear regime of head-on

mergers for mass ratios α ≤ 0.3. In this sense, for these
mass ratios the initial data [Eq. (20)] may be considered to
actually correspond to a perturbed Schwarzschild black
hole. This exponential behavior is also verified for large
values of 0.3 < α ≤ 0.7, with normalized rms deviations
≲7%, cf. Table III. These results are illustrated in Figs. 3
and 4.
The breaking of the exponential behavior appears in the

domain of mass ratios 0.8 ≤ α ≤ 1.0 as illustrated in Fig. 4

TABLE II. The radiated energy per mode EWl and the relative contribution of each mode to the total radiated energy Etotal
W , for the mass

ratios α ¼ 0.9 and 1.0. We note that for α ¼ 0.9 the relative contribution of the odd modes (l ¼ 3, 5) is already surpassed by the
contribution of the even modes l ¼ 4, 6 respectively, and for α ¼ 1.0 all the odd mode components are zero. This leads to the breaking
of the linear correlation in the log-linear plot of the points for these higher mass ratio values.

α ¼ 0.9, Etotal
W =m0 ¼ 1.750733 × 10−1 α ¼ 1.0, Etotal

W =m0 ¼ 2.399227 × 10−1

l EWl=m0 EWl=Etotal
W EWl=m0 EWl=Etotal

W

2 1.745982 × 10−1 0.997286 2.394176 × 10−1 0.997894
3 2.735963 × 10−5 1.5627 × 10−4 0 0
4 3.675352 × 10−4 2.099 × 10−3 5.035822 × 10−4 2.0989 × 10−3

5 4.924858 × 10−7 2.8130 × 10−6 0 0
6 1.155872 × 10−6 6.6022 × 10−6 1.590953 × 10−6 6.6311 × 10−6
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FIG. 3. Log-linear plot of the points EWl=m0 (given in Table I) versus l, showing the exponential decay of EWl=m0 with l. The
parameters corresponding to the best-fit straight lines of the log-linear plots are given in Table III, for the several mass ratios α
considered. This pattern—first observed by Davis et al. [1] in the gravitational radiation of a point test particle falling radially into a
Schwarzschild black hole—is seen to be maintained in the nonlinear regime of head-on merger of two black holes. The graphs for the
several mass ratios were separated in four figures to avoid overcluttering.
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(right panel), where we can observe a large deviation in the
linear correlation of the log-linear plot of the points for
α ¼ 0.9. This results from the fact that the contribution of
the even modes (l ¼ 4, 6) to the total emitted energy
surpasses that of the odd modes (l ¼ 3, 6), respectively,
cf. Tables II and III and Fig. 5. For α ¼ 1.0 all the odd l
mode components of the energy are zero; actually, for
α ¼ 1.0 all odd NlðuÞ are zero.
Finally, the total radiated energy Etotal

W =m0, given in the
top lines of Table I for several mass ratios α, exhibits a
simple linear relation with α,

Etotal
W =m0α

2 ¼ 0.143275αþ 0.048462; ð46Þ

as shown in Fig. 6 for 0.01 ≤ α ≤ 0.3. The value for α ¼
0.01 included in the figure and not included in Table I is
Etotal
W =ðm0α

2Þ ¼ 0.0500813. The straight line is the best fit
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FIG. 4. Log-linear plot of the points EWl=m0 versus l for mass ratios α ¼ 0.7 and α ¼ 0.9. The parameters of the best-fit straight lines
of the log-linear plot are given in Table III, together with the normalized rms deviations between the points and the straight lines. We take
the case α ¼ 0.7 as the acceptable limit for a linear correlation of the points, with a normalized rms ≃7%. The breaking of the linear
correlation seen in the case α ¼ 0.9 is due to the fact that the contribution of the even modes l ¼ 4, 6 surpasses that of the odd modes
l ¼ 3, 5, respectively.

TABLE III. The coefficients A and B for the best fit of the
points to the law [Eq. (45)], shown in Figs. 3 and 4, with the
normalized rms deviations between the curves and the points.

α A B nrms deviation

0.0125 −8.0845497 1.888628 0.0080
0.0250 −6.5928280 1.921927 0.0079
0.0600 −2.0180594 2.018059 0.0129
0.1000 −3.2054306 2.127668 0.0058
0.2000 −1.1498687 2.376154 0.0027
0.2500 −0.4200762 2.485164 0.0052
0.300 0.1884550 2.578219 0.0082
0.400 1.1859355 2.735836 0.0158
0.500 1.8704772 2.844801 0.0480
0.600 2.3025239 2.900835 0.0445
0.700 2.5189604 2.920803 0.0700
0.800 2.5450789 2.924088 0.1066
0.900 1.4762816 2.786813 0.2002
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0.015

0.010

0.005

0.000
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FIG. 5. Plot of the modes Nl0ðuÞ, l ¼ 3, 4 for the mass ratio
α ¼ 0.9, illustrating the decreasing of the energy of odd modes l
relative to the respective even modes lþ 1 for mass ratios α >
0.7 (cf. Tables I and II). For the limit case α ¼ 1 all the Nl0ðuÞ for
l ¼ odd modes are zero.
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FIG. 6. Plot of the points ðEtotal
W =m0α

2Þ versus α and the best-fit
straight line given in (46). The normalized rms deviation between
the points and the curve is ≃0.35%.
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of the points with a normalized rms deviation ≃0.35%. In
the point particle limit (α → 0) we obtain Etotal

W =m0α
2 ¼

0.04846, about 5 times larger than the value ∼0.0104 of
[1,51]. We should mention that for α ≥ 0.3 the points
deviate from the straight-line behavior.

VI. NET MOMENTUM FLUX AND THE
IMPULSE OF GRAVITATIONAL WAVES:
ADJACENT-EVEN-ODD MODE MIXING

In the same vein we now examine the net momentum
flux and the associate impulse carried out by the gravita-
tional waves. We undertake an analysis of the (−2) spin-
weighted mode decomposition of these quantities in the
nonlinear regime. We start by the expression of the net
momentum flux along the z axis given by (18),

Pz
WðuÞ ¼

1

2

Z
π

0

1

P
ðc;uÞ2 cos θ sin θdθ;

and (i) taking into account that the news is an object of spin
weight s ¼ −2, and (ii) using the mode expansion (38), we
may express (18) as

Pz
WðuÞ ¼

1

2

X
l≥2

X
j≥2

Nl0ðuÞNj0ðuÞ

×
Z

1

−1
−2Yl0ðxÞ−2Yj0ðxÞxdx; ð47Þ

where x ¼ cos θ. The integral appearing in the right-hand
side of (47) results in

Z
1

−1
−2Yl0ðxÞ−2Yj0ðxÞxdx ¼ cl

2π
δl;j�1;

where the nonzero coefficients cl (for l ¼ j� 1) are
given by

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þðl − 1Þ

ð2lþ 1Þð2lþ 3Þ

s
: ð48Þ

For reference, numerical values of these coefficients are
given in Table IV with the precision of six decimals.
It therefore follows that only the coupling of adjacent-

even-odd modes contributes to the total net momentum flux
according to

TABLE IV. The mixed-mode impulses IzWðl;lþ1Þ and the relative contribution of each mode to the total impulse IzWðufÞ, for several
mass ratios in the domain 0.0125 ≤ α ≤ 0.9. The mode-mixed impulses decrease exponentially with l, as seen in Figs. 8. The data show
that about 80%–83% of the total impulse comes from the contribution of the quadrupole-octupole mixed mode (2,3), for small α’s,
increasing to ∼95% for higher α’s. The mixed-mode impulses reach a maximum at α≃ 0.7.

α ¼ 0.0125, IzWðufÞ=m0 ¼ −1.999697 × 10−6 α ¼ 0.1, IzWðufÞ=m0 ¼ −1.3695603 × 10−4

ðl;lþ 1Þ cl IzWðl;lþ1Þ=m0 IzWðl;lþ1Þ=I
z
WðufÞ IzWðl;lþ1Þ=m0 IzWðl;lþ1Þ=I

z
WðufÞ

(2,3) 0.377964 −1.596427 × 10−6 0.798334 −1.143631 × 10−4 0.835035
(3,4) 0.4364358 −3.390364 × 10−7 0.169544 −1.964248 × 10−5 0.143422
(4,5) 0.460566 −5.511852 × 10−8 0.027563 −2.607581 × 10−6 0.019039
(5,6) 0.473050 −8.062786 × 10−9 4.032 × 10−3 −3.095024 × 10−7 2.260 × 10−3

(6,7) 0.480384 −1.001698 × 10−9 5.009 × 10−4 −3.193502 × 10−8 2.332 × 10−4

α ¼ 0.3, IzWðufÞ=m0 ¼ −1.209250 × 10−3 α ¼ 0.5, IzWðufÞ=m0 ¼ −3.029662 × 10−3

ðl;lþ 1Þ cl IzWðl;lþ1Þ=m0 IzWðl;lþ1Þ=I
z
WðufÞ IzWðl;lþ1Þ=m0 IzWðl;lþ1Þ=I

z
WðufÞ

(2,3) 0.377964 −1.08852 × 10−3 0.900161 −2.833056 × 10−3 0.93511
(3,4) 0.4364358 −1.103185 × 10−4 0.091229 −1.8220256 × 10−4 0.0601396
(4,5) 0.460566 −9.573314 × 10−6 7.9167 × 10−3 −1.347608 × 10−5 0.004448
(5,6) 0.473050 −7.778460 × 10−7 6.4325 × 10−4 −8.701113 × 10−7 2.872 × 10−4

(6,7) 0.480384 −5.854250 × 10−8 4.841 × 10−5 −5.5684998 × 10−8 1.838 × 10−5

α ¼ 0.7, IzWðufÞ=m0 ¼ −4.192803 × 10−3 α ¼ 0.9, IzWðufÞ=m0 ¼ −2.614904 × 10−3

ðl;lþ 1Þ cl IzWðl;lþ1Þ=m0 IzWðl;lþ1Þ=I
z
WðufÞ IzWðl;lþ1Þ=m0 IzWðl;lþ1Þ=I

z
WðufÞ

(2,3) 0.377964 −3.993392 × 10−3 0.9524397 −2.507183 × 10−3 0.958805
(3,4) 0.4364358 −1.8426886 × 10−4 0.043949 −9.906382 × 10−5 0.037884
(4,5) 0.460566 −1.432440 × 10−5 3.4164 × 10−3 −8.234415 × 10−6 3.1490 × 10−3

(5,6) 0.473050 −7.664367 × 10−7 1.8280 × 10−4 −3.948353 × 10−7 1.5099 × 10−4

(6,7) 0.480384 −5.002935 × 10−8 1.1932 × 10−5 −2.737432 × 10−8 1.04686 × 10−5
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Pz
WðuÞ ¼

X
l≥2

Pz
Wðl;lþ1Þ ð49Þ

where

Pz
Wðl;lþ1Þ ¼

cl
2π

Nl0ðuÞNlþ1;0ðuÞ: ð50Þ

In Fig. 7 we display the net momentum flux Pz
WðuÞ and the

mode-mixed component

Pz
Wð2;3Þ ðuÞ ¼

c2
2π

N20ðuÞN30ðuÞ;

evaluated numerically for the mass ratio α ¼ 0.1. This first
component of the expansion (49), Pz

Wð2;3Þ , turns out to be the

dominant term of the expansion, corresponding to about
83% of the total gravitational wave impulse for this mass
ratio. We see that the system undergoes an initial accel-
eration along the positive z axis, due to the initial positive
phase of Pz

WðuÞ, cf. Fig. 7 (right panel), followed by a
dominant decelerated phase that lasts until the boosted
black hole remnant configuration is attained, as evaluated
in an asymptotic Lorentz frame at future null infinity.

This corresponds to a final negative net impulse imparted
to the system by the gravitational waves emitted, resulting
in a net kick velocity measured in an asymptotic zero-
initial-Bondi-momentum frame, as discussed below.
Integrating Eq. (12) in time, we obtain the momentum

conservation law of the system,

PzðuÞ − Pzðu0Þ ¼ −IzWðuÞ ð51Þ
where

IzWðuÞ ¼
Z

u

u0

Pz
WðuÞdu ð52Þ

is the impulse imparted on the system by the gravitational
waves carried out of the system up to a time u. From (49)
we then obtain

IzWðufÞ ¼
X
l≥2

IzWðl;lþ1Þ

¼
X
l≥2

cl
2π

Z
uf

u0

Nl0ðuÞNlþ1;0ðuÞdu; ð53Þ
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FIG. 7. (Left panel) Plot of the total net gravitational wave momentum flux Pz
WðuÞ (red continuous line) together with its mode-mixed

component Pz
Wð2;3Þ ðuÞ (dashed blue line), which corresponds to about 84% of the total impulse of the gravitational wave signal. (Right

panel) Superposition of Pz
WðuÞ (red continuous line) with the partial sum, right-hand side of (49) for l ¼ 2, 3, 4, illustrating a proper

convergence of the series; the normalized rms deviation of the two curves is ∼0.35%. Plots for the mass ratio α ¼ 0.1.
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FIG. 8. Log-linear plots of the mixed-mode impulses −IzWðl;lþ1Þ=m0 versus l, given in Table IV, for the mass ratios α ¼ 0.0125, 0.1,
0.7 and 0.9. The points are accurately fitted by straight lines in the whole range of α, showing the exponential decay of the impulses with
l. The maximum occurs at about α ¼ 0.7, after which the impulses decrease, as illustrated by the distribution for α ¼ 0.9. We note that
the total impulse is zero for the equal-mass case α ¼ 1.0.
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which corresponds to the mode decomposition of the total
net impulse into adjacent-even-odd mixed modes IzWðl;lþ1Þ,
which can be evaluated from the NlðuÞ obtained in the
decomposition (38) of the news function. We remark that
the left-hand side of (53) can be evaluated independently,
so we may obtain the impulse per mode IzWðl;lþ1Þ and the

accurate relative contribution of each ðl;lþ 1Þ mixed
mode to the total net impulse imparted to the system.
The mixed-mode impulses IzWðl;lþ1Þ are given in

Table IV for several mass ratios in the domain
0.0125 ≤ α ≤ 0.9, together with the relative contribution

of each ðl;lþ 1Þ mixed mode to the total impulse
imparted on the system by the gravitational waves emitted.
For the mass ratio domain 0.0125 ≤ α ≤ 1.0 examined in
our numerical simulations, we obtain that the gravitational
wave impulse per mixed mode ðl;lþ 1Þ decays exponen-
tially with l. This behavior is accurately verified for the
whole domain of mass ratios examined, even for higher
mass ratios, e.g., α ¼ 0.9, differing in this latter case of the
energy behavior. The (2,3)-mixed-mode contributions to
the total impulses are dominant, contributing with approx-
imately 83% for small mass ratios, e.g., α ¼ 0.1, and with
∼95% for higher mass ratios, e.g., α ¼ 0.9. At about α ¼
0.7 we can see that the total impulses reach a maximum.
For α > 0.7 the gravitational wave impulse mixed modes
decrease. We should note, however, that for α ¼ 1.0 the
total impulse and its mixed-mode components are zero.
This is due to the fact that all the odd modes Nl of the news
functions are zero for α ¼ 1, as expected from the sym-
metry of the system for the equal-mass case.
In Fig. 8 we display the log-linear plots of the impulses

−IzWðl;lþ1Þ=m0 versus l given in Sec. IV, corresponding to

the mass ratios α ¼ 0.0125, 0.1, 0.7 and 0.9. The best-fit
curves to the points are the straight lines,

logð−IzWðufÞ=m0Þ ¼ −PlþQ: ð54Þ

TABLE V. The coefficientsA and B for the best fit of the points
to the law [Eq. (54)], from the data of Table IV and illustrated in
Fig. 8, and the normalized rms deviations between the curves and
the points.

α Q P nrms deviation

0.0125 −9.4686510 1.848650 0.0193
0.1000 −4.7968411 2.0517345 0.0167
0.300 −1.7960712 2.461575 0.0081
0.500 −0.4624912 2.701856 0.0032
0.700 −0.0105959 2.805748 0.0087
0.900 −0.4647250 2.837518 0.0128
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FIG. 9. Plot of the luminosity (left panels) and of the energy carried out by the gravitational waves (right panels) for increasing boost
parameters γ ¼ 0.5, 0.6, 0.7, 0.9 and 1.3. We see that the head-on mergers become more energetic as γ increases, while the time duration
of the gravitational wave bursts Δu=m0 ≃ 2 remains approximately constant with increasing γ. Plots are made for the mass
ratio α ¼ 0.025.
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The values of the best-fit coefficients P and Q correspond-
ing to the numerical data of Table IV are given in Table V,
together with the normalized rms deviations of the linear
law (54). This illustrates the above-mentioned exponential
decay of the mixed-mode impulses with l for the whole
mass ratio domain.
From the total impulse IzWðufÞ we define the net kick

velocity of the system, in an asymptotic zero-initial-Bondi-
momentum frame, as

Vk ¼
−cIzWðufÞP3

f

m0

ð55Þ

where m0=P3
f is the Bondi rest mass of the remnant black

hole (cf. Sec. IV), with the velocity of light c restored. For
illustration we obtain Vk ≃ 0.56 km=s and Vk ≃
24.55 km=s for the mass ratios α ¼ 0.0125 and 0.1,
respectively. Also the mixed-mode ðl;lþ 1Þ components
of these kick velocities can be analogously calculated with
the data from Table IV, using the values Pf ≃ 0.978163819
and Pf ≃ 0.842322219 evaluated numerically for α ¼
0.0125 and 0.1, respectively.
This mode-mixing effect for the total momentum fluxes

and the associated recoil velocities was first reported by
Moncrief [23] for small odd-parity axisymmetric perturba-
tions in the Oppenheimer-Snyder collapse models, and
by Lousto and Price [24] for even-parity axisymmetric
perturbations on a Schwarzschild black hole by a particle
falling radially.
Finally, we have also checked the dependence of the

luminosity and of the energy carried out by the gravitational
waves on the boost parameter γ. The head-on merger of two
black holes becomes more energetic as γ increases, while
the time duration of the bursts of gravitational waves
Δu=m0 ≃ 2 appears not to change with the increase of
γ. These results are illustrated in Fig. 9, for γ ¼ 0.5, 0.6,
0.7, and 1.3. For reasons of accuracy we restricted the
numerical evaluations up to γ ¼ 1.3 (corresponding to
v ∼ 0.86). For larger γ’s the exact initial data [Eq. (20)]
becomes greatly deformed; therefore, for these γ’s the
expansion of the initial data in the basis of the Galerkin
projection space is not sufficiently accurate in our present
numerical code. For γ ¼ 1.3 we obtain an integrated error
between the exact data and its basis expansion ≲10−4,
while the error associated with lower γ’s is ≲10−7 [48].

VII. FINAL COMMENTS AND CONCLUSIONS

In this paper we examine gravitational wave radiative
patterns in the head-on merger of two black holes with
initial mass ratios 0.01 ≤ α ≤ 1.0, using the Bondi-Sachs
characteristic formalism in the realm of Robinson-
Trautman (RT) dynamics. From the Bondi-Sachs energy-
momentum conservation laws, we construct the luminosity
(the energy flux) LWðuÞ ¼ dEWðuÞ=du as well as the net

momentum flux Pz
WðuÞ of the gravitational waves emitted

by the system, given in terms of the news function which is
a (−2)-spin-weighted object connected to the basic degrees
of freedom of the system. The news function can be
obtained from the numerical integration of the RT equation
for all times u up to the final time of computation uf when
the gravitational wave emission ceases and the black hole
remnant configuration is attained. It is worth mentioning
that in the Bondi-Sachs formalism adopted here, all the
physical quantities involved in the radiative processes of
gravitational waves in the system are correctly evaluated at
future null infinity of the spacetime, as expected.
In the above formalism we obtain a (−2)-spin-weighted

l mode decomposition of the luminosity, which corre-
sponds to the exact RT equivalent of the Moncrief-Zerilli
formula for the radiated luminosity of even-parity linear
waves [49,50]. The dominant contribution to the total
luminosity actually comes from the l ¼ 2 quadrupolar
mode. Integrating this formula in the whole time domain
u ¼ ½0; uf�, we obtain the total radiated energy EW=m0 and
the energy radiated out per mode l for mass ratios
0.0125 ≤ α ≤ 1.0. For small mass ratios the radiated
energy is about 84% in the quadrupole mode and 14%
in the octupole mode, while for large values of α, e.g.,
α ¼ 0.8, we have 99.5% and 0.27% in the quadrupole and
octupole modes, respectively. Accordingly, the radiated
energy contributed by higher modes is smaller, decreasing
with the increase of the mass ratio. However, we should
remark that for higher mass ratios, e.g., α ¼ 0.9, the
radiated energy contributed by even modes surpasses that
of odd modes, so in the limit α ¼ 1.0 the energy radiated in
odd modes is zero. The latter property is also connected
with the fact that the total gravitational wave impulse is
zero for the equal-mass case due to the adjacent-mode-
mixing effect in the structure of the momentum modes.
For the mass ratios considered in this paper we obtain

that the radiated energy per multipole l decays exponen-
tially with l. This remarkable pattern—first observed in the
calculation of Davis et al. [1] of the gravitational radiation
from a point test particle falling radially into a
Schwarzschild black hole—extends accurately to the non-
linear regime of head-on mergers of black holes for mass
ratios up to α ¼ 0.3. In this sense the initial data [Eq. (20)]
may be considered to actually correspond to a nonlinearly
perturbed Schwarzschild black hole. This exponential
behavior was also verified for large values of
0.3 < α ≤ 0.7. The normalized rms deviations increase
but remain bounded,≲7%. The breaking of the exponential
behavior appears in the domain of mass ratios 0.8 ≤ α ≤
1.0 and results from the fact that the contributions of the
even modes to the total emitted energy surpasses that of the
odd-mode contributions. For α ¼ 1.0 all odd modes
are zero.
We have also made an analogous mode analysis for the

net momentum flux and the net impulse carried out by the
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gravitational waves. The remarkable feature of the mode
decomposition of both the net momentum flux Pz

WðuÞ and
the total net impulse IzWðufÞ is the adjacent-even-odd mode
mixing pattern in these quantities. We obtained that the
gravitational wave impulse contributed by each ðl;lþ 1Þ
mixed mode also accurately satisfies the exponential decay
with l, for the whole mass ratio domain considered,
0.0125 < α < 1. The (2,3)-mixed-mode contributions to
the total impulses are dominant, contributing with approx-
imately 83% for small mass ratios, e.g., α ¼ 0.1, and with
∼95.8% for higher mass ratios, e.g., α ¼ 0.9. At about α ¼
0.7 the total impulses reach a maximum. For α > 0.7 the
gravitational wave impulse mixed modes decrease. We
should note, however, that for α ¼ 1.0 the total impulse and
its mixed-mode components are zero. This is due to the fact
that all the odd modes Nl of the news functions are zero for
α ¼ 1, as expected from the symmetry of the system for the
equal-mass case. Of course, this mode-mixing effect is also
present in the decomposition of the net kick velocity
imparted to the system by the gravitational wave emission.
Finally, for head-on mergers of two boosted black holes

with a relatively small mass ratio, the radiative regime of
gravitational wave emission is associated with short bursts
of gravitational waves. For example, for a boost parameter
γ ¼ 0.5 and mass ratio α ¼ 0.06, the total energy is EW ∼
2.0 × 10−4m0 emitted in a period of time Δu ∼ 2.17m0. For
a black hole system with m0 ∼ 100M⨀, the process
corresponds to a total energy EW ∼ 3.6 × 1052ergs emitted
in a time interval Δu ∼ 10−3 sec, which are typical of a

gamma-ray burst. However, as α increases the period of
time during which the total energy is emitted increases. For
instance, if we compare the mode coefficientsNlðuÞ shown
in Figs. 1 and 5, for α ¼ 0.025 and α ¼ 0.9, respectively,
we have that the duration of signals differs by 2 orders of
magnitude.
We finally remark that the l dominance in the time

signals at the wave zone, m0Dðu; θÞ, is distinct from the l
dominance of the gravitational wave luminosity and of the
radiated energy shown in this paper. In fact, the total
emitted energy by gravitational waves when written in
terms of the amplitude at the wave zone,

EWðuÞ¼
1

4π

Z
u

0

du0
Z

2π

0

dϕ
Z

π

0

sinθdθ

�Z
u0 1

P2
Ddu00

�
2

;

is proportional to the flux of the time integral of the
equivalent wave-zone Poynting vector, contrary to the case
of electrodynamics [27,52].

ACKNOWLEDGMENTS

The authors acknowledge the partial financial support of
CNPq/MCTI-Brazil, through Grant No. 151396/2013-2
(R. F. A.), Research Grant No. 304064/2013-0 (I. D. S.),
as well as support from FAPES-ES-Brazil (E. V. T.). We are
grateful to the anonymous referees whose comments and
criticisms allowed us to substantially improve the paper.

[1] M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys.
Rev. Lett. 27, 1466 (1971).

[2] B. Abbott et al. (LIGO Scientific Collaboration), Rep. Prog.
Phys. 72, 076901 (2009).

[3] G. M. Harry and LIGO Scientific Collaboration, Classical
Quantum Gravity 27, 084006 (2010).

[4] T. Accadia, F. Acernese, F. Antonucci, P. Astone, G.
Ballardin et al., Classical Quantum Gravity 28, 114002
(2011).

[5] K. Somiya (KAGRA Collaboration), Classical Quantum
Gravity 29, 124007 (2012).

[6] J. G. Baker, J. Centrella, D. Choi, M. Koppitz, R. van Meter,
and M. C. Miller, Astrophys. J. 653, L93 (2006).

[7] D. Merrit, M. Milosavljević, M. Favata, S. S. Hughes, and
D. E. Holz, Astrophys. J. 607, L9 (2004).

[8] M. Favata, S. A. Hughes, and D. E. Holz, Astrophys. J. 607,
L5 (2004).

[9] L. Blanchet, Living Rev. Relativ. 9, 4 (2006).
[10] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[11] J. G. Baker, J. Centrella, D. I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. Lett. 96, 111102 (2006).

[12] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.
Zlochower, Phys. Rev. Lett. 96, 111101 (2006).

[13] J. A. González, U. Sperhake, B. Brügmann, M. Hannam,
and S. Husa, Phys. Rev. Lett. 98, 091101 (2007).

[14] J. A. González, U. Sperhake, and B. Brügmann, Phys. Rev.
D 79, 124006 (2009).

[15] C. F. Sopuerta, N. Yunes, and P. Laguna, Phys. Rev. D 74,
124010 (2006); 75, 069903(E) (2007).

[16] A. Le Tiec, L. Blanchet, and C. M. Will, Classical Quantum
Gravity 27, 012001 (2010).

[17] C. O. Lousto, H. Nakano, Y. Zlochower, andM. Campanelli,
Phys. Rev. Lett. 104, 211101 (2010); H. Nakano, Y.
Zlochower, C. O. Lousto, and M. Campanelli, Phys. Rev.
D 84, 124006 (2011); C. O. Lousto and Y. Zlochower, Phys.
Rev. Lett. 106, 041101 (2011).

[18] S. Bernuzzi and A. Nagar, Phys. Rev. D 81, 084056
(2010).

[19] A. Nagar, T. Damour, and A. Tartaglia, Classical Quantum
Gravity 24, S109 (2007).

[20] S. Bernuzzi, A. Nagar, and A. Zenginoglu, Phys. Rev. D 83,
064010 (2011).

GRAVITATIONAL WAVE LUMINOSITY AND NET … PHYSICAL REVIEW D 94, 064017 (2016)

064017-15

http://dx.doi.org/10.1103/PhysRevLett.27.1466
http://dx.doi.org/10.1103/PhysRevLett.27.1466
http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://dx.doi.org/10.1088/0264-9381/28/11/114002
http://dx.doi.org/10.1088/0264-9381/28/11/114002
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://dx.doi.org/10.1086/510448
http://dx.doi.org/10.1086/421551
http://dx.doi.org/10.1086/421552
http://dx.doi.org/10.1086/421552
http://dx.doi.org/10.12942/lrr-2006-4
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.98.091101
http://dx.doi.org/10.1103/PhysRevD.79.124006
http://dx.doi.org/10.1103/PhysRevD.79.124006
http://dx.doi.org/10.1103/PhysRevD.74.124010
http://dx.doi.org/10.1103/PhysRevD.74.124010
http://dx.doi.org/10.1103/PhysRevD.75.069903
http://dx.doi.org/10.1088/0264-9381/27/1/012001
http://dx.doi.org/10.1088/0264-9381/27/1/012001
http://dx.doi.org/10.1103/PhysRevLett.104.211101
http://dx.doi.org/10.1103/PhysRevD.84.124006
http://dx.doi.org/10.1103/PhysRevD.84.124006
http://dx.doi.org/10.1103/PhysRevLett.106.041101
http://dx.doi.org/10.1103/PhysRevLett.106.041101
http://dx.doi.org/10.1103/PhysRevD.81.084056
http://dx.doi.org/10.1103/PhysRevD.81.084056
http://dx.doi.org/10.1088/0264-9381/24/12/S08
http://dx.doi.org/10.1088/0264-9381/24/12/S08
http://dx.doi.org/10.1103/PhysRevD.83.064010
http://dx.doi.org/10.1103/PhysRevD.83.064010


[21] T. Damour and A. Nagar, Phys. Rev. D 76, 064028 (2007).
[22] S. Bernuzzi, A. Nagar, and A. Zenginoglu, Phys. Rev. D 84,

084026 (2011).
[23] V. Moncrief, Astrophys. J. 238, 333 (1980).
[24] C. O. Lousto and R. H. Price, Phys. Rev. D 69, 087503

(2004).
[25] H. Bondi, M. G. J. van der Berg, and A.W. K. Metzner,

Proc. R. Soc. A 269, 21 (1962).
[26] R. K. Sachs, Proc. R. Soc. A 270, 103 (1962).
[27] R. F. Aranha, I. Damião Soares, and E. V. Tonini, Classical

Quantum Gravity 30, 025014 (2013).
[28] I. Robinson and A. Trautman, Phys. Rev. Lett. 4, 431

(1960).
[29] I. Robinson and A. Trautman, Proc. R. Soc. A 265, 463

(1962).
[30] R. F. Aranha, I. Damião Soares, and E. V. Tonini, Phys. Rev.

D 81, 104005 (2010).
[31] S. Bernuzzi, A. Nagar, and A. Zenginoğlu, Phys. Rev. D 84,

084026 (2011).
[32] R. F. Aranha, I. Damião Soares, and E. V. Tonini, Phys. Rev.

D 82, 104033 (2010).
[33] L. Rezzolla, R. P. Macedo, and J. L. Jaramillo, Phys. Rev.

Lett. 104, 221101 (2010).
[34] J. L. Jaramillo, R. P. Macedo, P. Moesta, and L. Rezzolla,

Phys. Rev. D 85, 084030 (2012).
[35] E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 7, 863

(1966).
[36] J. N. Goldberg, A. J. MacFarlane, E. T. Newman,

F. Rohrlich, and E. C. G. Sudarshan, J. Math. Phys.
(N.Y.) 8, 2155 (1967).

[37] P. Chruściel, Commun. Math. Phys. 137, 289 (1991); P.
Chruściel and D. B. Singleton, Commun. Math. Phys. 147,
137 (1992).

[38] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einstein’s Equations in the Computer (Cambridge
University Press, Cambridge, England, 2010).

[39] A. Z. Petrov, Sci. Nat. Kazan State University 114, 55
(1954); reprinted in Gen. Relativ. Gravit. 32, 1665 (2000).

[40] F. A. E. Pirani, Introduction to Gravitational Radiation
Theory, in Lectures on General Relativity, Brandeis
Summer Institute in Theoretical Physics (Prentice-Hall,
New Jersey, 1964), Vol. 1.

[41] R. Sachs, Proc. R. Soc. Edinburgh, Sect. A 264, 309 (1961);
E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566
(1962).

[42] E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566
(1962).

[43] R. K. Sachs, Phys. Rev. 128, 2851 (1962).
[44] G. Arfken,Mathematical Methods for Physicists (Academic

Press, New York, 1968), Sec. II.14.
[45] R. A. D’Inverno and J. Stachel, J. Math. Phys. (N.Y.) 19,

2447 (1978); R. A. D’Inverno and J. Smallwood, Phys. Rev.
D 22, 1233 (1980).

[46] J. A. Vickers, in Approaches to Numerical Relativity,
edited by R. A. D’Inverno (Cambridge University Press,
Cambridge, England, 1992), p. 59.

[47] C. A. J. Fletcher, Computational Galerkin Methods
(Springer, Berlin, 1984).

[48] R. F. Aranha, I. Damião Soares, and E. V. Tonini, Phys. Rev.
D 85, 024003 (2012).

[49] V. Moncrief, Ann. Phys. (Berlin) 88, 323 (1974).
[50] C. O. Lousto and R. H. Price, Phys. Rev. D 56, 6439 (1997).
[51] E. Mitsou, Phys. Rev. D 83, 044039 (2011).
[52] L. Smarr, Sources of Gravitational Radiation, edited

by L. Smarr (Cambridge University Press, Cambridge,
England, 1978), p. 245.

ARANHA, SOARES, and TONINI PHYSICAL REVIEW D 94, 064017 (2016)

064017-16

http://dx.doi.org/10.1103/PhysRevD.76.064028
http://dx.doi.org/10.1103/PhysRevD.84.084026
http://dx.doi.org/10.1103/PhysRevD.84.084026
http://dx.doi.org/10.1086/157988
http://dx.doi.org/10.1103/PhysRevD.69.087503
http://dx.doi.org/10.1103/PhysRevD.69.087503
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1088/0264-9381/30/2/025014
http://dx.doi.org/10.1088/0264-9381/30/2/025014
http://dx.doi.org/10.1103/PhysRevLett.4.431
http://dx.doi.org/10.1103/PhysRevLett.4.431
http://dx.doi.org/10.1098/rspa.1962.0036
http://dx.doi.org/10.1098/rspa.1962.0036
http://dx.doi.org/10.1103/PhysRevD.81.104005
http://dx.doi.org/10.1103/PhysRevD.81.104005
http://dx.doi.org/10.1103/PhysRevD.84.084026
http://dx.doi.org/10.1103/PhysRevD.84.084026
http://dx.doi.org/10.1103/PhysRevD.82.104033
http://dx.doi.org/10.1103/PhysRevD.82.104033
http://dx.doi.org/10.1103/PhysRevLett.104.221101
http://dx.doi.org/10.1103/PhysRevLett.104.221101
http://dx.doi.org/10.1103/PhysRevD.85.084030
http://dx.doi.org/10.1063/1.1931221
http://dx.doi.org/10.1063/1.1931221
http://dx.doi.org/10.1063/1.1705135
http://dx.doi.org/10.1063/1.1705135
http://dx.doi.org/10.1007/BF02431882
http://dx.doi.org/10.1007/BF02099531
http://dx.doi.org/10.1007/BF02099531
http://dx.doi.org/10.1023/A:1001910908054
http://dx.doi.org/10.1098/rspa.1961.0202
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1103/PhysRev.128.2851
http://dx.doi.org/10.1063/1.523650
http://dx.doi.org/10.1063/1.523650
http://dx.doi.org/10.1103/PhysRevD.22.1233
http://dx.doi.org/10.1103/PhysRevD.22.1233
http://dx.doi.org/10.1103/PhysRevD.85.024003
http://dx.doi.org/10.1103/PhysRevD.85.024003
http://dx.doi.org/10.1016/0003-4916(74)90173-0
http://dx.doi.org/10.1103/PhysRevD.56.6439
http://dx.doi.org/10.1103/PhysRevD.83.044039

