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We investigate cosmological models in a recently proposed geometrical theory of gravity, in which the
scalar field appears as part of the spacetime geometry. We extend the previous theory to include a scalar
potential in the action. We solve the vacuum field equations for different choices of the scalar potential and
give a detailed analysis of the solutions. We show that, in some cases, a cosmological scenario is found that
seems to suggest the appearance of a geometric phase transition. We build a toy model, in which the
accelerated expansion of the early Universe is driven by pure geometry.
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I. INTRODUCTION

Scalar-tensor theories have attracted the attention of
cosmologists since a seminal work by Jordan was pub-
lished in the fifties [1]. However, the great impetus to
investigate these kinds of theories came from Brans-Dicke
theory, which is considered by many as the most popular
and simplest alternative theory of gravity [2]. In the last
three decades, interest in scalar-tensor theory has increased,
mainly motivated by modern Kaluza-Klein theory, string
theory, inflationary models, and other recent proposals. As
is well known, scalar-tensor theories in general do not
assign an intrinsic geometric character to the scalar field.
Nor does this field describe matter in the usual sense. In the
particular case of Brans-Dicke theory, its role is to account
for possible variations of Newton’s gravitational constant,
since the latter, according to Mach ideas, would depend on
the mass of the Universe [3]. However, there have been
some attempts to construct a scalar-tensor theory of
gravitation in which the scalar field is an essential part
of the spacetime geometry [4]. In all these cases, one looks
for a geometrical framework that contains a scalar field as a
way of adding a new degree of freedom to the correspond-
ing gravity theory.
In the present article, we consider a scalar-tensor theory

of gravity, in which the scalar field does play a geometric
role. The mechanism for inserting the scalar field in the
spacetime geometry is inspired by Weyl’s generalization
of Riemannian geometry, in the very special case when
the gauge field corresponds to an exact 1-form [5]. The
spacetime structure that results from this kind of geometry
is known in the literature as a Weyl integrable spacetime
(WIST) [6]. The first approach to a scalar-tensor theory set
in a WISTwas proposed by Novello et al. and consists of a
direct extension of general relativity by including in the
Einstein-Hilbert action a term corresponding to a massless
scalar field, the latter being interpreted as a geometrical

field in the sense of Weyl geometry [7]. A more recent
geometrical approach to scalar-tensor theory (GST) starts
by considering the action of Brans-Dicke theory and
introduces the spacetime geometry from first principles,
that is, by applying the Palatini formalism, which then leads
to a Weyl integrable geometry [8]. Although the original
version of GST theory does not include a scalar potential
in the action, the inclusion of such term is rather natural
and does not alter the geometrical aspects of the theory.
Thus, in this paper we consider a slightly modified version
of original proposal by adding a scalar potential. Certainly,
the main motivation for this modification lies in the fact that
in modern cosmology scalar potentials are an important
ingredient of inflationary models, quintessence, and other
theories.
This article is organized as follows. In Sec. II, we give a

brief review of the geometrical scalar-tensor theory and
consider its extension to include a scalar potential. In
Sec. III, we discuss the application of the geometric scalar-
tensor theory to some cosmological scenarios, in which
matter can be neglected as the potential energy of the scalar
field is the dominant contribution. In Sec. IV, we construct a
very simple cosmological model, a sort of “toy model,” in
which a phase of accelerated expansion of the Universe is
driven by pure geometry. We conclude in Sec. V with some
remarks.

II. THE WEYL GEOMETRICAL
SCALAR-TENSOR THEORY

TheWeyl geometrical scalar-tensor theory starts with the
action given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fe−ϕ½Rþ ωðϕÞϕ;αϕ;α� − VðϕÞg

þ Smðg;ψÞ; ð1Þ

where R ¼ gμνRμνðΓÞ, ϕ is a scalar field, ω is a function of
ϕ, VðϕÞ represents the scalar field potential, and Sm
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indicates the part of the action depending on the matter
fields, here generically denoted by ψ.1 Let us recall that ϕ is
regarded as a purely geometrical field, whose meaning
becomes clear only after a Palatini variation of the action
above is carried out. Indeed, it is known that the variation of
(1) with respect to the affine connection Γα

μν leads to [8]

∇αgμν ¼ gμνϕ;α; ð2Þ

an equation that expresses the so-called Weyl compatibility
condition between the metric and the connection (also
called Weyl nonmetricity condition).2 This is the geometric
condition that characterizes the spacetime manifold as a
Weyl integrable spacetime [6]. By performing the Palatini
variation with respect to the metric gμν and the scalar field
ϕ, we obtain the following set of field equations,

Gμν ¼ ωðϕÞ
�
ϕ;αϕ

;α

2
gμν − ϕ;μϕ;ν

�
−
1

2
eϕgμνVðϕÞ − κTμν;

ð3Þ

□ϕ ¼ −
�
1þ 1

2ω

dω
dϕ

�
ϕ;μϕ

;μ −
eϕ

ω

�
1

2

dV
dϕ

þ V

�
; ð4Þ

where the symbol □ denotes the d’Alembertian operator
calculated with respect to the Weyl connection, κ ¼ 8π

c4 , and
Tμν represents the Weyl invariant energy-momentum tensor
of the matter fields as defined in [8].

A. The field equations in the Riemann frame

As is well known, the Weyl condition (2) does not
changewhen we perform the following transformations in g
and ϕ:

ḡ ¼ efg; ð5Þ

ϕ̄ ¼ ϕþ f; ð6Þ

where f is an arbitrary scalar function defined on the
manifold spacetime M. These transformations are known,
in the literature, as Weyl transformations. The set (M, g, ϕ)
consisting of a differentiable manifold M endowed with a
metric g and a Weyl scalar field ϕ will be called a Weyl
frame. We now note that if we set f ¼ −ϕ in (6), we get
ϕ̄ ¼ 0. In this case, when the Weyl scalar field vanishes,

the set (M, γ ¼ e−ϕg, ϕ̄ ¼ 0) is referred to as the
Riemann frame.
It is sometimes convenient to recast the action (1) and

the above field equations in the Riemann frame. It is not
difficult to verify that in this frame (1) is transformed into
the action

S̄ ¼
Z

d4x
ffiffiffiffiffiffi
−γ

p ½R̄þ ωðϕÞγμνϕ;μϕ;ν − e2ϕVðϕÞ�

þ SðmÞðγ;ψÞ; ð7Þ

whereas the field equations (3) and (4) are given,
respectively, by

Ḡμν ¼ ωðϕÞ
�
ϕ;αϕ

;α

2
γμν − ϕ;μϕ;ν

�

−
e2ϕ

2
γμνVðϕÞ − κTμνðγÞ; ð8Þ

□̄ϕ ¼ −
1

2ω

dω
dϕ

ϕ;αϕ
;α −

e2ϕ

ω

�
V þ 1

2

dV
dϕ

�
; ð9Þ

where both the Einstein tensor Ḡμν and the operator □̄ are
calculated with the Levi-Civita connection given in terms
of the metric γμν.

III. APPLICATIONS TO COSMOLOGY

Typical gravitational problems, such as the field gen-
erated by a spherically symmetric matter distribution, or the
existence of naked singularities and wormholes as geo-
metric phenomena, have already been studied in the context
of Weyl geometrical scalar-tensor theory [8]. In this work,
we would like to consider some cosmological models
arising from different choices of the scalar potential. For
convenience, we shall work in the Riemann frame,
although due to frame invariance all physical results
obtained will be valid in any Weyl frame [8]. Let us point
out that the technique of frame transformations to inves-
tigate cosmological models with nonminimally coupled
scalar fields is not new, and has been used recently [9].
As we have already mentioned, scalar fields have been

extensively used in cosmology, mainly motivated by infla-
tionary models, but also as a possible way to account for
dark matter and quintessence models of dark energy
[10,11]. In inflationary cosmology, the scalar field (the
inflaton) is responsible for the negative pressure needed to
expand the Universe [12]. Nevertheless, up to now the
nature of this scalar field is not known. On the other hand,
since the appearance of inflationary cosmology in the
1980’s different models have been proposed, in which
the presence of a scalar potential VðϕÞ is considered [13].
The simplest of these requires a monomial potential.
Despite the fact that the latest observational results do
not favor a potential of the type VðϕÞ ∝ ϕ2 [14], a massive

1Note that this action is a simple extension of the action
considered in [8].

2Throughout the paper, we shall use the following convention:
Whenever the symbol g appears in the expression

ffiffiffiffiffiffi−gp
it denotes

det g. Otherwise, g denotes the metric tensor. We shall also
consider the Ricci tensor RμνðΓÞ as being given in terms of the
affine connection coefficients Γα

μν via the definition of the
curvature tensor.
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scalar field has been considered by many authors with great
interest [15]. In the following sections, we shall consider
some simple models for different types of VðϕÞ in the
context of the Weyl geometrical scalar-tensor theory. In
almost cases, we shall add the cosmological constant Λ.
Throughout our discussion, we shall always take the point
of view that the scalar field has an essentially geometric
origin. This is because it is always possible to interpret the
scalar field as a geometric field by going to the Weyl
frame [8].
Let us now start by considering a homogeneous, spatially

flat, and isotropic model, whose line element is written as

ds2 ¼ dt2 − a2ðtÞðdr2 þ r2dθ2 þ r2 sin2 θdϕ2Þ; ð10Þ

where aðtÞ denotes the scale factor. Let us also restrict
ourselves to the vacuum case and, as in Brans-Dicke theory,
let us for simplicity set ωðϕÞ ¼ ω ¼ const. Thus, the field
equations (8) reduce to

3
_a2

a2
¼ ω

2
_ϕ2 þ e2ϕ

2
VðϕÞ; ð11Þ

2
ä
a
þ _a2

a2
¼ −

ω

2
_ϕ2 þ e2ϕ

2
VðϕÞ; ð12Þ

while (9) gives

ϕ̈þ 3
_a
a
_ϕ ¼ −

e2ϕ

ω

�
VðϕÞ þ 1

2

dV
dϕ

�
: ð13Þ

Expressing the above equations in terms of the expansion

parameter _θ ¼ 3_aðtÞ
aðtÞ , and defining ψ ¼ _ϕ, it is easy to verify,

after simple calculations, that we are left with the following
equations3:

θ2

3
¼ ω

2
ψ2 þ e2ϕ

2
VðϕÞ; ð14Þ

_θ ¼ −
θ2

2
−
3ω

4
ψ2 þ 3e2ϕ

4
VðϕÞ; ð15Þ

_ψ ¼ −θψ −
e2ϕ

ω

�
VðϕÞ þ 1

2

dV
dϕ

�
ð16Þ

In the next subsections we shall consider four distinct cases,
each one corresponding to a specific choice of the scalar
potential VðϕÞ.

A. The cosmological constant

We shall start our analysis with the choice
VðϕÞ ¼ Λe−2ϕ. Clearly, this will lead us, in the Riemann
frame, to the case of a massless scalar field minimally
coupled to gravity in the presence of a cosmological
constant Λ and a free parameter ω. It is not difficult to
check that, for Λ > 0, the field equations (11), (12) and (13)
admit the following solutions:

a�ðtÞ ¼ a0 exp

�
�

ffiffiffiffi
Λ
6

r
ðt − t0Þ

�
; ϕ ¼ ϕ0 ¼ const;

ð17Þ

where a0 is a constant of integration. These are, in fact, the
simplest of all solutions of the above field equations. The
solution a�ðtÞ corresponds to the well-known de Sitter
(anti-de Sitter) Universe, a maximally symmetric vacuum
solution of Einstein’s field equations with a cosmological
constant.
For ω < 0 and Λ > 0, we have two solutions:

aðtÞ ¼ a0 cosh

� ffiffiffiffiffiffi
3Λ
2

r
ðt − t0Þ

�1=3

; ð18Þ

ϕðtÞ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffi
−

2

3ω

r
arctan

�
sinh

� ffiffiffiffiffiffi
3Λ
2

r
ðt − t0Þ

��
: ð19Þ

These represent a nonsingular bouncing Universe which
bears some similarity to recently proposed models in
scalar-tensor theories [16]. On the other hand, if ω > 0
and Λ < 0 the solutions are

aðtÞ ¼ a0

���� cos
� ffiffiffiffiffiffiffiffiffiffi

−
3Λ
2

r
ðt − t0Þ

�����1=3; ð20Þ

ϕðtÞ ¼ ϕ0 �
ffiffiffiffiffiffi
2

3ω

r
ln

���� sec
� ffiffiffiffiffiffiffiffiffiffi

−
3Λ
2

r
ðt − t0Þ

�

þ tan

� ffiffiffiffiffiffiffiffiffiffi
−
3Λ
2

r
ðt − t0Þ

�����: ð21Þ

In this case, we have a model that describes a cyclic
Universe, which undergoes an eternal series of oscillations,
each beginning with a big bang and ending with a big
crunch, and in each cycle a period of expansion is followed
by a contraction. Let us just remark here that cyclic
Universes have been favored by many recent proposals
[17]. In particular, cyclic models have also been predicted
by loop quantum cosmology through a mechanism by
which the contracting and expanding cosmological
branches are connected by a “quantum bridge” [18].
Finally, if both Λ and ω are positive, the solutions will be

given by

3Because the connection ∇ is frame-invariant, then the
expansion parameter θ is also invariant. Indeed, by definition
θ ¼ ∇μUμ, where U denotes the 4-velocity field of the funda-
mental observers. Clearly, in the Riemannian frame the metric
takes the form γ ¼ e−ϕg, which is, as we know, invariant. On the
other hand, γ is assumed to be given by (10).
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aðtÞ ¼ a0 sinh

����
ffiffiffiffiffiffi
3Λ
2

r
ðt − t0Þ

����1=3; ð22Þ

ϕðtÞ ¼ ϕ0 �
ffiffiffiffiffiffi
2

3ω

r
ln

���� tanh
�
1

2

ffiffiffiffiffiffi
3Λ
2

r
ðt − t0Þ

�����: ð23Þ

These solutions are singular at t ¼ t0 and describe an
expanding and accelerating Universe which tends to a de
Sitter Universe when t → ∞.
A nice picture of the time evolution of the above models

is given by the phase portraits of the dynamical system
corresponding to the field equations, since these portraits
may provide an insight on the dynamical behavior of the
solutions. In the next section, we shall give a qualitative
analysis of the solutions obtained.

B. Phase portrait of the solutions when VðϕÞ=Λe−2ϕ
In this case, it is easy to verify that the field

equations (11)–(12) and (13) reduce to

θ2

3
¼ ω

2
ψ2 þ Λ

2
; ð24Þ

_θ ¼ −
1

2
θ2 −

3ω

4
ψ2 þ 3Λ

4
; ð25Þ

_ψ ¼ −θψ : ð26Þ

As we can see, the above equations constitute an autono-
mous planar dynamical system, with (24) representing an
algebraic constraint in the phase space [19].
In order to draw the phase portrait, let us first determine

the critical (or equilibrium) points of the system, that is, the
points in the phase plane at which the right side of (25) and
(26) vanishes. There are four equilibrium points, but only
two of them satisfy the constraint equation (24), and these
correspond to special solutions, presenting the simplest
kind of behavior. It is not difficult to see that we have

equilibrium points only if Λ > 0.4 These are A ð0;
ffiffiffiffi
3Λ
2

q
Þ

and B ð0;−
ffiffiffiffi
3Λ
2

q
Þ, which lie on the axis ψ ¼ 0, and

correspond, respectively, to the solutions (17), i.e., the
de Sitter and anti-de Sitter solutions found in the previous
section. The solutions for ω < 0 and Λ > 0, obtained
above, lie in the ellipse (depicted in bold), which is the
only curve in the phase plane satisfying the constraint (24)
[see Fig. 1(a)]. The solutions given by the equations (18)
and (19) are represented in the diagram as the trajectories
starting at B and ending at A, in the anticlockwise ðBAþÞ
and clockwise sense ðBA−Þ, respectively. It is interesting to
note that the solution corresponding to the point A is stable

with respect to small perturbations in the phase plane, while
B has a unstable character. The existence of this kind of
stability (instability) pattern associated to the two critical
points seems to lead to an interesting behavior as far as
the spacetime geometry of these models is concerned.
Consider, for instance, the solution represented by the
equilibrium point B, which, as we know, corresponds to a
contracting de Sitter spacetime, with a constant scalar field.
From the point of view of the Weyl frame (M, g, ϕ), this
means that the spacetime geometry is Riemannian. Now, let
us look at how the spacetime geometry evolves when this
Universe is slightly perturbed. Clearly, the time evolution is
either determined by BAþ or BA−. Initially, when t → −∞,
these Universes are in an purely Riemannian regime as the
scalar field is nearly constant. This situation will change as
soon as the scalar field ceases to be a constant and gradually
starts to depend on time. Then the Universe enters a new
regime, in which spacetime is characterized by a Weyl
integrable geometry. One is tempted to say that we have
here a kind of geometrical phase transition, since we go
from a purely Riemannian geometry to a Weyl integrable
geometry. Finally, as t → ∞, since BAþ and BA− both
approach the equilibrium point A, the Universe returns to its
initial Riemannian regime, undergoing another geometrical
transition, this time from a Weyl geometry to a purely
Riemannian de Sitter spacetime, represented in the phase
portrait by the equilibrium point A.
The phase diagram corresponding to the solutions for

ω > 0 andΛ < 0, namely, (20) and (21), are depicted as bold
lines in Fig. 1(b). As the diagram clearly shows, we have two
singular Universes which start with a big bang, undergo
an era of expansion, and finally collapse to a big crunch.
Interpreting this picture in the Weyl frame, we see that
because the time derivative of the scalar field does not vanish
no geometrical phase transition takes place in this case.
Finally, when both ω and Λ are positive, the phase

portrait of the solutions is shown in Fig. 1(c). In this case, as
regards the solutions given by equations (22) and (23), the
critical point A behaves as an attractor, while B acts as a
repellor. In the first situation, we have singular expanding
Weyl spacetimes evolving towards a Riemannian–de Sitter
universe, while in the second, small perturbations cause a
Riemannian–anti–de Sitter universe start to collapsing into
a big crunch.
To conclude this section, let us, just for the sake of

completeness, examine the degenerate case when Λ ¼ 0. In
this case, the equations (11), (12) and (13) become

θ2

3
¼ ω

2
ψ2 ð27Þ

_θ ¼ −
1

2
θ2 −

3ω

4
ψ2 ð28Þ

_ψ ¼ −θψ : ð29Þ
4Clearly, the case when ω and Λ are both negative is not

allowed because of (24).

PUCHEU, ALVES JUNIOR, BARRETO, and ROMERO PHYSICAL REVIEW D 94, 064010 (2016)

064010-4



We first note that in order to obtain real solutions we
must restrict the parameter ω to be positive.5 We also
note that the conics that appeared in the former phase
diagrams, representing the constraint of the dynamical
system, now simply degenerate into the pair of straight

lines θ ¼ �
ffiffiffiffi
3ω
2

q
ψ [see Fig. 1(d)]. The equations above are

easily integrated and give the following solutions:

aðtÞ ¼ a0jt − t0j13; ð30Þ

ϕðtÞ ¼ ϕ0 �
ffiffiffiffiffiffi
2

3ω

r
ln jt − t0j: ð31Þ

We now have only one critical point, which lies at the origin
O, and this clearly corresponds to Minkowski spacetime.

For t > t0 the two solutions given by (30) and (31) start
with a big bang and approach O as t → ∞. On the other
hand, for t < t0 we have two other solutions which comes
from O when t → −∞, and then collapses to a singular
spacetime as t → t0.
Finally, it should be remarked here that when ω < 0, the

action (7) includes a phantom field. It is known that in this
case we have violation of the null energy condition [20]. (It
is important to note that the case of constant potential and
ω < 0, has been investigated in a different context (mainly
inspired by string field theories) in [21].
Let us now briefly consider other types of scalar

potentials.

C. Potential of a massive scalar field

In this section, we shall briefly consider a potential of the
type VðϕÞ ¼ e−2ϕðm2ϕ2 þ ΛÞ. In the Riemann frame, this
type of potential, which corresponds to the case of a
massive scalar field plus a cosmological constant is easily

FIG. 1. Phase portrait for cosmological constant potential.

5The case ω ¼ 0 is trivial, corresponding to Minkowski
spacetime.
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found in the literature of inflationary models, and leads to
several different cosmological regimes [22].
By applying a known simple mathematical procedure

(first-order formalism) to the field equations (11)–(13), we
obtain the following solution [23]

ϕðtÞ ¼ ϕ0 þ 3
αΛ
m2

ðt − t0Þ; ð32Þ

aðtÞ ¼ a0 exp

�
αϕ0ðt − t0Þ þ

Λ
4
ðt − t0Þ2

�
; ð33Þ

where

α2 ¼ m2

6
; Λ ¼ −

2m2

3ω
; ð34Þ

and a0, t0 and ϕ0 are constants of integration.
The field equations for this potential may be put in the

form

θ2

3
¼ ω

2
ψ2 þ 1

2
ðm2ϕ2 þ ΛÞ; ð35Þ

_θ ¼ −
θ2

2
−
3ω

4
ψ2 þ 3

4
ðm2ϕ2 þ ΛÞ; ð36Þ

_ψ ¼ −θψ −
m2

ω
ϕ: ð37Þ

In the above equations, we can use (35) to eliminate ϕ by

writing ϕ ¼ � 1
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
θ2 − ωψ2 − Λ

q
and, thus, arrive at the

following dynamical system, defined only in terms of the
variables θ and ψ :

_θ ¼ −
3

2
ωψ2; ð38Þ

_ψ ¼ −θψ ∓ m2

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m2

�
2

3
θ2 − ωψ2 − Λ

�s
: ð39Þ

Actually, we have two dynamical systems according to
whether we take þ or − in (39). The phase portrait of the
solutions is displayed below.
Let us now make some comments on the behavior of

the solutions. The critical points are given by ψ ¼ 0 and

θ ¼ �
ffiffiffiffiffiffi
3
2
Λ

q
, and, although they are solutions of the

dynamical system defined by (38) and (39), they do not
represent a solution of the complete set of field equations
for Λ ≠ 0. The physical solutions (32) and (33) correspond

to the isoclines ψ ¼ �
ffiffiffiffiffiffi
2m
3jωj

q
, and are represented by the two

bold straight lines in the diagrams (see Fig. 2, above). It is
to be noted that these solutions are continuous with respect
to the time parameter t, and that, as time goes by, they pass
from one diagram to the other diagram continuously.
Clearly, the two solutions describe nonsingular universes
that undergo a contraction era followed by a expanding
period, depending on the sign we ascribe to the constant α.
It also should be noted that, as can be seen from (39), in the
(shaded) elliptic region bounded by the curve 2

3
θ2 − ωψ2 ¼

Λ the dynamical system is not defined. Figure 2 shows the
phase portrait forω < 0 andΛ > 0, satisfying the condition
(34). Let us mention here that models with quadratic
potential, appearing in a different context, have been
previously considered in which the phase portraits corre-
sponding to the field equations are also discussed [24].

FIG. 2. Phase portraits for massive scalar field potential.
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D. Exponential scalar potential

Some well-known inflationary models assume that the
evolution of the Universe during inflation is driven by a
scalar field generated by an exponential potential of the form

VðϕÞ ¼ V0e−ðλþ2Þϕ; ð40Þ

with V0 and λðλ > 0Þ being constants [25]. It is not difficult
to verify that, in this case, the field equations (11), (12)
and (13) have the following solutions:

aðtÞ ¼ a0

 
� λ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

ωð6ω − λ2Þ

s
e−

λ
2
ϕ0ðt − t0Þ þ 1

!
2ω=λ2

;

ð41Þ

ϕðtÞ ¼ 2

λ
ln

����� λ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

ωð6ω − λ2Þ

s
ðt − t0Þ þ e

λ
2
ϕ0

����: ð42Þ

Let us remark that these solutions are in agreement with the
already known result that exponential potentials generate
power-law inflation. (Note that the possible values of the free
parameterω are restricted to the intervalsω > λ2

6
andω < 0.)

On the other hand, the expansion parameter of the model is
given by

θðtÞ ¼ θ0e−
λ
2
ϕ0

 
� λ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

ωð6ω − λ2Þ

s
e−

λ
2
ϕ0ðt − t0Þ þ 1

!−1

:

ð43Þ
To get a clearer picture of the behavior of the solutions let
us examine the dynamical system obtained from the field
equations. It is not difficult to verify that from the set of
equations (14), (15), (16) reduces to

θ2

3
¼ ω

2
ψ2 þ V0

2
e−λϕ ð44Þ

_θ ¼ θ2

2
−
3

4
ωψ2 þ 3

4
V0e−λϕ; ð45Þ

_ψ ¼ −θψ þ λ

2ω
V0e−λϕ: ð46Þ

With the help of (44), the equations (45) and (46) may be
written as

_θ ¼ −
3

2
ωψ2; ð47Þ

_ψ ¼ −θψ þ λ

3ω
θ2 −

λ

2
ψ2: ð48Þ

The phase portrait of this dynamical system is displayed in
Fig. 3, where the solutions given by (41) and (42) lie on the
straight line θ ¼ 3ω

λ ψ , passing through the originO, which is
the only equilibrium point of the system and correspond to
Minkowski spacetime. In Fig. 3(a), we have depicted the
solutions for ω > λ2

6
, which represent an expanding model

singular, approaching Minkowski spacetime as t → ∞, and
a collapsing model starting from Minkowski spacetime at
t → −∞ evolving towards a singularity.

E. Quartic potential

We next consider the quadratic potential,

VðϕÞ ¼ 2λðϕ2 − βÞ2e−2ϕ; ð49Þ

where λ and β are positive constants. This particular
kind of effective quartic potential has been considered in

FIG. 3. Phase portrait for exponential scalar potential.
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inflationary scenarios mainly inspired in the idea that it is
the Higgs boson that plays the role of the inflaton field [26].
We can easily show that the cosmological equations (11),

(12) and (13) admit the following solution:

ϕðtÞ ¼ ϕ0 exp

�
−
4A
ω

ðt − t0Þ
�
; ð50Þ

aðtÞ ¼ a0 exp

	
−
ωϕ0

2

8

�
exp

�
−
8A
ω

ðt − t0Þ
�
− 1

�

þ Bðt − t0Þ


; ð51Þ

with ϕ0, a0 being constants of integration, A2 ¼ λ
3
,

B2 ¼ β2A2, and the condition β ¼ 2
3ω must be satisfied.

The expansion factor gives

θðtÞ ¼ 3Bþ 3Aϕ0
2 exp

�
−
8A
ω

ðt − t0Þ
�
: ð52Þ

Clearly, these correspond to nonsingular universes under-
going expansion or contraction, depending on the value
assumed by the constants.
If we wish to treat the field equations for this potential as

a dynamical system, we write them in the form

θ2

3
¼ ω

2
ψ2 þ λðϕ2 − βÞ2; ð53Þ

_θ ¼ −
θ2

2
−
3ω

4
ψ2 þ 3λ

2
ðϕ2 − βÞ2; ð54Þ

_ψ ¼ −θψ −
4λ

ω
ϕðϕ2 − βÞ: ð55Þ

As in the case of the massive scalar field, the constraint
equation (53) can be used to eliminate the variable ϕ from

FIG. 4. Phase portrait for quartic potential.
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the dynamical equations. This procedure will lead us to four
distinct dynamical systems. These are given by the follow-
ing equations:

_θ ¼ −
3

2
ωψ2; ð56Þ

_ψ ¼ −θψ −

2
64� 4λ

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

λ

�
θ2

3
−
ω

2
ψ2

�s
þ β

vuut
3
75

×

"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

λ

�
θ2

3
−
ω

2
ψ2

�s #
: ð57Þ

The first pair of signs � in the right-hand side of (57)
defines two dynamical systems, corresponding to the two
possibles signs of ϕ. The other two dynamical systems arise
when the second and third pairs of plus or minus signs are
fixed simultaneously, according to whether ϕ2 − β > 0 or
ϕ2 − β < 0. The phase portraits of these four dynamical
systems (56)–(57) are depicted in Fig. 4, below.
As to the critical points, it is not difficult to verify that

the origin is an equilibrium point of the four dynamical
systems (56)–(57), which corresponds to the trivial case
of Minkowski spacetime with a constant scalar field ϕ ¼
� ffiffiffi

β
p

[see Eq. (53)]. On the other hand, the two dynamical
systems for which ϕ2 − β < 0 have two additional critical
points: ð0;�β

ffiffiffiffiffi
3λ

p Þ. These represent solutions of the field
equations, corresponding to an expanding or a contracting
de Sitter universe with a null scalar field.
A comment on the domain of the phase plane where the

dynamical systems are defined is now in order. Clearly,
the square roots in (56)–(57) restrict the possible values of
the dynamical variables. In all cases, the inequality θ2

3
≥ ωψ2

2
must be satisfied, while in two of them [Fig. 4(b) and
Fig. 4(d)], we have an additional restriction imposed

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
λ ðθ

2

3
− ω

2
ψ2Þ

q
≤ β.

It is not difficult to verify that the analytic solutions
(50)–(51) lie on the parabola θ ¼ 3Bþ 3ω2

16Aψ
2, wherewe are

considering the case in which the constants A andB have the
same sign. As an example, let us take A > 0 and ϕ0 > 0,
which in turns implies that ψ < 0. In this case, the analytic
solution will be represented by the curve (in bold) shown
in the second quadrant (θ > 0, ψ < 0) of Fig. 4(a) and
Fig. 4(b). Moreover, it is the sign of ϕ2 − β that determines
the time interval for which this curve is a solution of
the field equations. For instance, if ϕ2 − β > 0, then
t − t0 < − ω

8A ln jβ=ϕ2
0j, and, thus, the bold line in Fig. 4(a)

represents the analytic solution in that interval. For
t − t0 > − ω

8A ln jβ=ϕ2
0j, we must look at the diagram of

Fig. 4(b),whereϕ2 − β < 0.Here, the solution is represented
by the curve (in bold) approaching the critical point
ð0; β ffiffiffiffiffi

3λ
p Þ as t → ∞. Similarly, the analytic solutions

(50)–(51) for negative ϕ appear in Fig. 4(c) and Fig. 4(d),
where again the time interval of validity is determined by the
sign ofϕ2 − β. Finally, let usmention that the curves lying in
the region θ < 0 of all the diagrams correspond to the choice
A < 0 and B < 0, with a continuous dependence on time
going from one diagram to another and approaching the
critical point ð0;−β ffiffiffiffiffi

3λ
p Þ. To conclude, let us note that the

critical point ð0; β ffiffiffiffiffi
3λ

p Þ is a stable solution for this model,
whereas the critical point ð0;−β ffiffiffiffiffi

3λ
p Þ is unstable.

IV. A COSMOLOGICAL TOY MODEL WITH
NONSINGULAR BEHAVIOR AND
GEOMETRIC PHASE TRANSITION

As we have previously mentioned, in the last two or three
decades there has been a great deal of work on the
inflationary program, as well as in dark energy models,
in which the scalar field plays a vital role [27]. However,
the fact that the nature of the scalar field which is supposed
to drive the inflationary process or accelerate the Universe
is not yet known may lead us to conjecture whether one
could attribute a pure geometric character to this field. We
shall not attempt here to examine this question, which we
leave for future research. Instead, in this section, we shall
briefly sketch a very simple model, say, a “toy model,” that
seems to exhibit in a rough qualitative way some interesting
features of a pure geometric scalar-tensor model. In
particular, we have found a cosmological scenario which
might be viewed as qualitatively describing a kind of
geometric phase transition of the Universe. It is to be
noted, incidentally, that for ω < 0 we have a phantom
scalar field. Models of this kind are already known and
have been recently investigated by some authors to describe
dark energy using string motivated models [27].
We shall start with the following power-law potential:

VðϕÞ ¼ 6e−2ϕ
�
α −

ωβ

6

�
3σϕ −

ϕ3

σ

��
2

− ωσ2β2e−2ϕ
�
1 −

ϕ2

σ2

�
2

; ð58Þ

where α is a positive constant and β and σ are arbitrary
constants. The field equations (14), (15) and (16) take the
form

θ2

3
¼ ω

2
ψ2 þ 3

�
α −

ωβ

6

�
3σϕ −

ϕ3

σ

��
2

−
1

2
ωσ2β2

�
1 −

ϕ2

σ2

�
2

; ð59Þ

_θ ¼ −
θ2

2
−
3ω

4
ψ2 þ 9

2

�
α −

ωβ

6

�
3σϕ −

ϕ3

σ

��
2

−
3

4
ωσ2β2e−2ϕ

�
1 −

ϕ2

σ2

�
2

; ð60Þ
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_ψ ¼ −θψ þ 3βσ

�
1 −

ϕ2

σ2

��
α −

ωβ

6

�
3σϕ −

ϕ3

σ3

��

− 2β2ϕ

�
1 −

ϕ2

σ2

�
: ð61Þ

Now, from Eqs. (59) and (60), it follows that

θðtÞ ¼ 3αþ 3

2
σ2βω

	
1

3
tanh3½βðt − t0Þ� − tanh ½βðt − t0Þ�



;

ð62Þ

while the scalar factor and the scalar field are given by

aðtÞ ¼ a0ftanh2½βðt − t0Þ� − 1gσ2ω
6

× exp

	
βðt − t0Þ −

1

12
σ2ωtanh2½βðt − t0Þ�



; ð63Þ

ϕðtÞ ¼ σ tanh ½βðt − t0Þ�: ð64Þ

For specific choices of the values of the constants α, β and
σ, we can analyze the behavior of the potential VðϕÞ and
the expansion parameter θðtÞ. A particularly interesting
case, corresponding to the choice α ¼ − 1

3
σ2βω, with

ω < 0, is shown in Fig. 5, below. Let us briefly make
some comments on this solution. From (64), we see that
when t → �∞, ϕ tends asymptotically to �σ. If we recall
the geometrical meaning of the scalar field, we may
interpret the behavior of the (kinklike) solution ϕðtÞ as

clearly indicating the presence of two geometric phase
transitions. Indeed, as we clearly see from Fig. 5(c), the
Universe comes asymptotically from a Riemannian regime
as t → −∞, undergoes a sudden expansion, and then goes
back smoothly (when t → þ∞) to a Riemannian space-
time. Although these transitions are essentially continuous,
we see that there is brief period of time when the change in
the spacetime geometry is more drastic.6 This coincides
with the period when the expansion rate of the Universe
starts to grow in a really significant way, taking much larger
values than in the past until it approaches a stage of
exponential expansion. Clearly, the whole expansion proc-
ess is driven by the geometric scalar field ϕ. In other words,
in this picture it is the dynamics of the scalar field that
links the quasi-static regime ðθ → 0Þ to an expanding
Universe asymptotically approaching a de Sitter regime
(θ → constant). On the other hand, since in this model the
de Sitter-like expansion phase of the Universe lasts forever.
Of course, the above discussion is merely qualitative.

Our aim in this work is just to call the attention of
cosmologists to new theoretical possibilities, in which
we can view the scalar field as possessing a pure geometric
character, being, in fact, part of the fundamental spacetime
structure. Finally, according to this toy model, the Universe

FIG. 5. Scalar potential, expansion parameter, scalar field and scale factor for negative ω and α ≠ 0.

6We would like to mention that by the time we were finishing
the present article we found that what we had called “geometrical
phase transition” was, in fact, already known, although in a
slightly different context. In the literature, the same phenomenon
is referred to as a “structural phase transition of the
Universe” [28].
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is eternally existing, and thus does not require a beginning
or an ultimate end, and that means we have here a simple
example of an interesting dynamical cosmological scenario
with no singularity [29].
To conclude, it is interesting to note that if we drop the

above condition α ¼ − 1
3
σ2βω, we can, by appropriately

choosing the constants α, β and σ, obtain a class of the
so-called bounce models (see Fig. 6). As is well known, the
general idea underlying the bounce cosmology is that the hot
big bang scenario, as it is understood today, simply describes
a period of expansion of the Universe that followed a
previous contraction. In fact, a great deal of research has
recently gone into the study of these models [28,30]. We,
therefore, thought it would be interesting to briefly mention
that a bouncing universe scenario may also emerge from a
simple geometric model as the one presented in this section.
Indeed, it is not difficult to verify that for α ¼ 0 the very
same scalar potential VðϕÞ, given by (58), leading to the
equation (62) allows for a nonsingular bouncing universe
whose behavior is displayed in the figures below.

V. CONCLUDING REMARKS

The recent discovery of the Higgs particle has clearly
shown that scalar fields play a fundamental role in the
theory of subatomic physics. On the other hand, as we
have already remarked, a closer look at modern theoretical
cosmology reveals that scalar fields also have played an
increasing important role in the description of our
Universe. In particular, inflationary universes and quintes-
sence models for dark energy, respectively, resort to scalar

fields for explaining early expansion and cosmic accel-
eration. However, the nature of the scalar field is still not
known. It appears to us that a geometrical scalar-tensor
theory may provide a natural framework for investigating
some cosmological scenarios in which the scalar field is
taken into account as an essential ingredient for our
description of the Universe. With this motivation, we
have briefly examined some cosmological models gen-
erated by different choices of the scalar field potential
proposed in the literature. In addition to obtaining some
analytical solutions, we have constructed the phase
portrait of the solutions. In some cases we have found
a cosmological scenario which might be viewed as
qualitatively describing a kind of geometric phase tran-
sition of the Universe. The geometrical origin of the scalar
field, which is one of the basic tenets of the WIST’s
theoretical framework, appears as a consequence of the
application of the Palatini variational principle to the
gravitational sector of the action (1), the same powerful
principle that, when applied to the Einstein-Hilbert action,
leads directly to the Riemannian nature of the spacetime
structure [31]. The applications of the Weyl geometrical
scalar-tensor theories to cosmology naturally consider
cosmological scenarios where the presence of a scalar
field is required. In most models (inflation, dark energy,
quintessence, etc.), the real nature of the scalar field is
not known yet, and it is reasonably guessed that this kind
of phenomenological approach can be justified later.
However, in the case of the Weyl geometrical scalar-
tensor theory, the nature of the scalar field is already
known from the beginning: it is part of the geometric

FIG. 6. Expansion parameter, scale factor and scalar potential for ω ¼ −1, σ ¼ 1 and α ¼ 0.
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framework of spacetime. In our view, this emphasis on the
geometrical role of the scalar field seems to be more in
line with the program of geometrization of physics put
forward by Einstein when he conceived the general theory
of relativity.
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