
Parallel adaptive event horizon finder for numerical relativity

Andy Bohn,* Lawrence E. Kidder, and Saul A. Teukolsky
Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853, USA

(Received 7 June 2016; published 2 September 2016)

With Advanced LIGO detecting the gravitational waves emitted from a pair of merging black holes in
late 2015, we have a new perspective into the strong field regime of binary black hole systems. Event
horizons are the defining features of such black hole spacetimes. We introduce a new code for locating
event horizons in numerical simulations based on a Delaunay triangulation on a topological sphere. The
code can automatically refine arbitrary regions of the event horizon surface to find and explore features
such as the hole in a toroidal event horizon, as discussed in our companion paper. We also investigate
various ways of integrating the geodesic equation and find evolution equations that can be integrated
efficiently with high accuracy.

DOI: 10.1103/PhysRevD.94.064008

I. INTRODUCTION

In late 2015, the Advanced LIGO interferometers
detected the gravitational radiation from a pair of merging
black holes [1]. This observation gives a unique view into
the highly nonlinear regime of compact-object binary
mergers, and the observed gravitational waveform is
entirely consistent with general relativity [2–5]. While
numerical relativity simulations help with detecting and
analyzing signals that Advanced LIGO receives, they also
provide a laboratory for exploring the entire compact
object coalescence parameter space, including the seven-
dimensional space of binary black hole (BBH) mergers.
Algorithmic improvements in addition to increasing
computational power over time have led to a large surge
in the number of BBH simulations available to the
community [6–11].
Among the properties of the spacetime that can be

studied using numerical simulations, perhaps the most
interesting are those of black hole event horizons (EH),
the boundaries of the causal past of future null infinity. The
EH surface is therefore dependent on the entire future of the
spacetime, making it impossible to locate during BBH
simulations that progress forwards in time. A similar
surface, called the apparent horizon (AH), is the boundary
between outward directed light rays moving away from or
toward the center of the black hole. In particular, the EH
always contains the AH if it exists, and the surfaces are
equal if the black hole has settled down to equilibrium.
Locating an AH at a certain time requires only information
at that time, so AHs are commonly located during BBH
simulations as an EH substitute. Even though EHs are more
difficult to locate, we are interested in how to find them
because they define the surface of black holes, and physical
properties such as the mass and angular momentum of

black holes are determined by integrations over the event
horizon surface [12].
We locate event horizons in BBH mergers by utilizing a

theorem that the event horizon is generated by null geo-
desics having no future end point [13–15]. Long after the
black holes have merged, the spacetime settles down to
Kerr, where the EH is identical to the AH. So we can select
a set of outgoing null geodesics that lie on the apparent
horizon of the remnant black hole near the end of the BBH
simulation [16] and integrate the geodesics backwards
through time [16–22]. The convention that we will follow
in this paper is to call these geodesics event horizon
generators, though they are only very good approximations
to the true generators [22]. Although generators of the
horizon have no future end point, while tracing the
generators backwards in time, some may “leave” the event
horizon surface where they meet other generators of the
horizon. These points are called “caustics” when infini-
tesimally neighboring generators join together, and
“crossover points” when non-neighboring generators cross
paths [19,22–25]. After they leave the event horizon surface
backwards in time, generators are known as “future
generators” of the horizon. When viewing the event horizon
forwards in time, future generators become generators of
the event horizon after they join through either caustics or
crossover points.
The previous generation of event horizon finding code in

the Spectral Einstein Code (SPEC) [21,22] was sufficient to
locate event horizons reasonably accurately, but lacked the
ability to adaptively refine itself to study small-scale
features of the EH surface. An example of a small-scale
feature we are interested in exploring is a topological hole
through the event horizon surface, causing the EH topology
to be toroidal. The companion to this paper [26] focuses on
locating such short-lived toroidal event horizons. This
paper outlines the details behind our new event horizon
finder, and the adaptive refinement tools that are essential to
resolve a toroidal event horizon.*adb228@cornell.edu

PHYSICAL REVIEW D 94, 064008 (2016)

2470-0010=2016=94(6)=064008(16) 064008-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.064008
http://dx.doi.org/10.1103/PhysRevD.94.064008
http://dx.doi.org/10.1103/PhysRevD.94.064008
http://dx.doi.org/10.1103/PhysRevD.94.064008

The organization of this paper is as follows. In Sec. II we
give an overview of the backwards geodesic method for
locating event horizons. In Sec. III we present the Delaunay
triangulation [27,28] on a spherical topology that we use to
represent the event horizon surface, allowing for adaptive
refinement. In Secs. IV and V, we show efficient null
geodesic evolution equations and outline how we handle
metric data during generator evolution. In Sec. VI, we
describe the initial data calculation for event horizon
generators, and in Sec. VII we describe how we identify
future generators during the backwards-in-time evolution.

II. BACKWARDS GEODESIC
METHOD OVERVIEW

Cohen et al. [21] compared three methods for locating
event horizons and found the most robust method to be the
backwards geodesic method. We follow this approach,
where we evolve a set of event horizon generators back-
wards in time to trace out the EH surface. The generators
are outward null geodesics that exponentially converge to
the true EH surface when traced backwards through time.
In agreement with Cohen et al. [21], we do not find any
observable tangential drifting [29] of the generators in our
method. As we will discuss in Sec. III, we connect the
generators together to form a polygon approximating a
smooth surface with the topology of a sphere that may be
self-intersecting. This surface does not approximate the
event horizon only, but represents the union of the true
event horizon and the locus of future generators [30].
To make the discussion concrete, consider a head-on

equal mass binary black hole merger, shown in Fig. 1. We
see spatial cross sections of apparent horizon surfaces
shown blue or green, event horizon surfaces shown in
orange, and the future generator surface shown in trans-
lucent purple. In panel (a), sufficiently long before the
merger, the event horizon surfaces are almost identical to
the blue apparent horizon surfaces, which are hardly visible
at this time. The future generator surface consists of future
generators that will join onto the event horizon surface in
the future. When rotating this panel about the rotational
axis of symmetry, the union of the event horizon surfaces
and future generator surface forms a smooth topological
sphere. We note that the spherical topology is preserved
even when the union is self-intersecting. In panel (b),
shortly before the merger, the future generator surface is
smaller because some of the future generators joined the
event horizon between this panel and the previous panel.
We can see that the difference between the AH and EH
surfaces increases as we get closer to the merger. There are
no more future generators in panel (c) since they have all
joined the event horizon surface.
In panel (d), a common apparent horizon shown in

green has formed around the two interior apparent hori-
zons, and all three apparent horizons lie entirely on or
within the event horizon, as they should. As time

progresses to panels (e) and (f), we stop tracking the blue
inner apparent horizons, the EH settles to a stationary state,
and the common AH approaches the event horizon until the
two surfaces eventually coincide. With this picture in mind,
the method used to locate the EH is to evolve generators
backwards in time from panel (f) toward panel (a),
which traces out the union of the event horizon surface
with the future generator surface. Backwards in time, some
generators “leave” the event horizon surface as seen in
panels (b) and (a), so we must be able to identify which
generators leave the surface and when they leave.

III. EVENT HORIZON REPRESENTATION

One of the shortcomings of our previous event horizon
finder was the lack of flexibility in refining the distribution
of event horizon generators in certain regions of interest.
The method of distributing event horizon generators in
Cohen et al. [21] used collocation points in a spherical
harmonic (Ylmðu; vÞ) expansion, with u values chosen so
that cos u were the roots of the Legendre polynomial of
order Lþ 1, and v values uniformly distributed in ½0; 2πÞ,
yielding 2ðLþ 1Þ2 generators. This results in the gener-
ators not being distributed evenly over the event horizon
surface, and does not allow one to increase the resolution of
a small patch of the surface.
We want to be able to evenly distribute event horizon

generators over the event horizon as well as to be able to
adaptively refine regions of the surface to sufficiently
resolve the small-scale features of the merger. Compared
to other methods of locating event horizons [21], the
backwards geodesic method allows simple adaptive
refinement, in that we only need to add more generators
wherever we want to refine. In addition to being able to
place generators where desired, we require of our EH

FIG. 1. Cross sections through apparent horizons and the locus
of event horizon generators for a head-on BBH merger, similar to
Fig. 1 of [21]. Shown in translucent purple are future generators
of the horizon that continuously merge onto the event horizon,
shown in orange, until the merger in panel (c). Shown as blue
curves in panels (a)–(d) are apparent horizons associated with
the two individual black holes, and shown as a green curve in
panels (d)–(f) is a common apparent horizon.

BOHN, KIDDER, and TEUKOLSKY PHYSICAL REVIEW D 94, 064008 (2016)

064008-2

representation the ability to connect the generators to
approximate a smooth surface.
To establish an initially evenly distributed set of gener-

ators, we begin with a regular icosahedron inscribing a unit
sphere as seen in the first panel of Fig. 2. This corresponds to
our base resolution with 12 vertices and 20 triangles. The
triangular faces of the icosahedron form a triangulation over
the sphere, where each vertex corresponds to one generator
of the event horizon.Wewill see later in Sec. VI exactly how
wemap from this sphere to event horizon generators, but for
now consider this to closely represent the distribution of
generators over an event horizon.
We can reach arbitrarily high resolutions by applying the

following triangle refinement procedure to each of the 20
triangles on the surface:
(1) Choose a point at the median of the vertices of the

triangle to be refined.
(2) Move the point radially outward to the surface of the

unit sphere.
(3) Convert the original triangle to three smaller trian-

gles by connecting the new point with the vertices of
the original triangle.

(4) Check the Delaunay condition, described below,
along all exterior edges of the new triangles and
perform an edge flip if necessary.

When we apply this procedure to all the triangles, we call it
uniform refinement.
To understand the Delaunay condition and edge flips,

consider four points connected to form the quadrilateral
□ABCD. There are two ways to form a set of two triangles
from this quadrilateral, either by connecting AC to form
△ABC and △ACD, or connecting BD to form △ABD and
△BCD. The pair of triangles with the largest minimum
angle among the six interior angles satisfies the Delaunay
condition. An edge flip is the name for the process of
converting a pair of triangles with a shared edge that fails

the Delaunay condition into one that satisfies the condition.
For example, we could “flip the edge” AC by removing AC
and replacing it with BD.
There are two choices for how to calculate the interior

angles of these triangles, since the triangle vertices live on a
sphere. The code can handle treating the triangles as either
flat or curved along the surface of the sphere. We default to
treating the triangles as curved when calculating angles, but
this difference becomes less important as the triangles get
sufficiently small.
One round of uniform refinement adds a vertex to each

triangle, going from an icosahedron with 12 vertices to a
Pentakis dodecahedron with 32 vertices shown in panel (b)
of Fig. 2. This procedure can be repeated indefinitely, but
we typically uniformly refine the full triangulation six
times, resulting in 7,292 vertices evenly distributed over the
surface as shown in panel (c) of Fig. 2. In general, the nth
iteration of uniform refinement has 20 × 3n triangles and
2þ 10 × 3n vertices.1

While there are faster ways to generate uniform distri-
butions of vertices over the sphere, the refinement method
we use is general and can be used to adaptively refine
arbitrary regions of the sphere by only refining a subset of
the triangles, a procedure we call “selective refinement.” In
practice, we typically do a pilot event horizon run using a
uniform distribution of 7,292 generators to determine the
set of triangles we are interested in refining. Then we add
generators to only those triangles in the region of interest
and perform a second event horizon run. Selective refine-
ment is crucial for studying small-scale features of the event
horizon, such as the short-lived hole in a toroidal EH
surface as discussed in the companion paper [26].

FIG. 2. Varying resolutions of a triangulation over the unit sphere used during initial data generation. The lowest resolution, shown in
panel (a), has 12 vertices and 20 triangles evenly distributed over the sphere. One iteration of uniform refinement leads to a triangulation
with 32 vertices and 60 triangles as shown in panel (b). Six iterations result in 7,292 vertices as shown in panel (c).

1Every iteration of uniform refinement adds one vertex per
triangle in the triangulation, so we have 12þ 20

P
n
i¼1 3

i−1

vertices at the nth level of refinement.

PARALLEL ADAPTIVE EVENT HORIZON FINDER FOR … PHYSICAL REVIEW D 94, 064008 (2016)

064008-3

We have control over multiple parameters to tune the
selective refinement:

(i) The “refinement depth” parameter roughly controls
how many points are added to the selected triangles.

(ii) The “refinement width” parameter controls how
wide a region we are refining.

(iii) We can control how many event horizon iterations
we perform.

The refinement depth and width provide complete control
over the refinement for the problems we are interested in, so
we usually set the number of EH runs to two, correspond-
ing to one round of refinement.
Before seeing examples of localized refinement, we must

introduce the concept of a triangle “descendant.” When
refining one triangle, we add a vertex and convert the
triangle to three new triangles that are all labeled descend-
ants of the original triangle. In addition, if we have to
perform any edge flips, we convert two triangles into two
new triangles that are both labeled descendants of the two
previous triangles. We maintain a full treelike structure of
triangles that is useful for quickly locating triangles given a
location on the sphere, but more importantly the tree is
useful when adding more than one point to a triangle.
Specifically, we keep a list of all triangles that were created
even though some of the triangles have been replaced by
new triangles in the triangulation. Each triangle stores its
parent and maintains a list of its immediate descendants. To
identify which triangle contains some location on the
sphere, we first identify the top level triangle holding
the point (by searching the original 12 triangles), and then
check only that triangle’s descendants until we find a
triangle with no descendants that holds the location.

An example of selective refinement is shown in Fig. 3,
where we explore aggressive refinement of one triangle.
Panel (a) shows one refinement iteration applied to one
triangle, where a point is added and connected to the
vertices of the triangle. The Delaunay condition is checked
on all three edges opposite the new vertex, but in this
instance, no edges needed to be flipped. In panel (b), to
reach a second refinement iteration we add a point to each
of the three previously created triangles, resulting in a total
of four new points. In other words, we add a vertex to each
descendant of the original triangle. Again the Delaunay
condition is checked on the edges opposing any of the new
vertices, which is six edges in this case. We can see that all
six edges are flipped here, giving an improved set of
triangles. To perform a third refinement iteration, we must
again add one vertex to each of the 12 descendant triangles
of the original triangle and check for edge flips. The
refinement depth is closely related to the number of
refinement iterations. Our highest resolution event horizon
run to date was refined from 7,292 to 246,687 generators
with this procedure, and the algorithm handles this with no
problems.
Performing edge flips continually as we refine is

important because we add points to the median of each
triangle. If we want an even distribution of vertices, then we
want each triangle to be as close to equilateral as possible,
which amounts to maintaining a Delaunay condition on the
sphere. These edge flips allow the density of vertices to
change smoothly even though there is a large range of
vertex densities over the sphere, as seen by comparing the
density of vertices in panel (d) of Fig. 3 to the original
vertices in Fig. 2. In practice, the refinement does not stray
far beyond the region where we are interested in refining.
Figure 4 shows an example of selective refinement of an

event horizon surface for a binary. The surface is the initial

FIG. 3. Selective refinement of one triangle in the original 12
vertex triangulation shown in Fig. 2. Panels (a)–(d) show one to
four iterations of our refinement procedure applied to one triangle.

FIG. 4. Selective refinement of event horizon generators for a
BBH with mass ratio 6, refining from 7 292 generators to 49 350
generators. The right section of the figure shows a zoomed-in
region of the left section, highlighting the smooth transition of
generator density over the initial data surface. The regions where
refinement occurs are chosen to be around the generators
associated with the neck of the event horizon during the BBH
merger, as seen in Fig. 5.

BOHN, KIDDER, and TEUKOLSKY PHYSICAL REVIEW D 94, 064008 (2016)

064008-4

data surface for an event horizon simulation of a 6 to 1 mass
ratio binary, with dimensionless spin χ ≈ 0.9 on the large
BH and χ ≈ 0.3 on the small BH in arbitrary directions ([7]
ID SXS:BBH:0165). To study the small-scale features that
arise where the event horizons first touch, we need to add
generators to that portion of the surface. The right side of
this figure shows a zoomed-in region of the event
horizon surface to illustrate the transition between the
low resolution and high resolution regions. Figure 5 shows
the same simulation during the merger, where we can see
the high density of event horizon generators located in the
neck of the event horizon where the black holes met slightly
earlier.
The density of generators is smooth and continuous

between the low density and high density regions of
generators. This good behavior arises partially from con-
tinually checking the Delaunay condition, as seen in Fig. 3.
In addition, the code sets the number of refinement
iterations to smoothly transition between the low and high
density regions automatically. While our selective refine-
ment algorithm refines triangles, we determine which
triangles to refine based on whether the generators at the
vertices of the triangle were future generators in the past. If
only one vertex of a triangle satisfies this property, then we
set the number of refinement iterations to the specified
refinement depth. For each additional vertex of that triangle
associated with the neck region, we increment the number
of refinement iterations by one. For example, if the
refinement depth parameter is set to three, as in Figs. 4
and 5, then we refine triangles along the border of the
refinement region three or four iterations, and triangles in
the interior five iterations.
The other tunable parameter is the refinement width,

which controls how wide our refinement region is. Using
Fig. 1 as a reference, if we refined triangles associated with
the future generators in panel (b) we would obtain a fairly
thin refinement region, but if we refine based on the future
generators in panel (a) we would widen the refinement
region. Therefore we control the refinement width by

choosing how long before the merger we identify triangles
associated with future generators.
The parameters discussed so far refine the neck of the

event horizon satisfactorily, but refine nowhere else. For
high mass ratio binaries, such as the one shown in
Fig. 5, it may be worthwhile to consider refining the
surface based on the curvature as well. In this case, the
smaller black hole would have a large curvature compared
to the number of generators in the region, and thus would
have more generators added to that region. One way to
accomplish this refinement is to look at the angle
between the normal of a triangle and the normal of all
its neighboring triangles, and add generators if the angle is
too large. This type of refinement is not currently imple-
mented since we are only interested in the neck region for
this paper.
After assembling a useful distribution of generators on

the EH, how do we calculate quantities over the surface?
Derivatives of scalars are calculated using first-order finite
differencing, following [31] adapted to a curved surface.
For some scalar f defined at the vertices of the triangu-
lation, we can approximate the derivatives of the scalar
inside the triangle using the function values at the vertices

∂θf≈ ½ðϕ2−ϕ3Þf1þðϕ3−ϕ1Þf2þðϕ1−ϕ2Þf3�=Δ ð1aÞ

∂ϕf≈−½ðθ2−θ3Þf1þðθ3−θ1Þf2þðθ1−θ2Þf3�=Δ ð1bÞ

Δ ¼ ðϕ2 − ϕ3Þθ1 þ ðϕ3 − ϕ1Þθ2 þ ðϕ1 − ϕ2Þθ3; ð1cÞ

as in Eq. (1) of [31], where fi is the scalar value at the
vertex with coordinates ðθi;ϕiÞ; ∂uf is the partial derivative
of f with respect to u; and Δ is twice the coordinate area of
the triangle. To evaluate the derivative at a vertex, we
perform a weighted average of Eq. (1a) over each triangle
the vertex belongs to. The derivative of the scalar at a vertex
can thus be approximated as

∂θf ≈
XN
i¼1

ðϕiþ1 − ϕi−1Þfi=Δ ð2aÞ

∂ϕf ≈
1

sin θ

XN
i¼1

ðθiþ1 − θi−1Þfi=Δ ð2bÞ

Δ ¼
XN
i¼1

ðϕiþ1 − ϕi−1Þθi: ð2cÞ

The derivatives in Eq. (2a) are well behaved far from the
poles of the ðθ;ϕÞ coordinate system, but would require
care when crossing the poles. Since our choice of vertices is
evenly spread over the sphere, the vertices do not avoid the
coordinate singularity at these poles. To obtain well-
behaved derivatives everywhere, we set up three ðθ;ϕÞ

FIG. 5. Generator locations during the merger of a 6 to 1 mass
ratio binary, for which initial data are shown in Fig. 4. Refinement
occurs in the neck of the event horizon, where future generators
joined the event horizon surface earlier in the merger.

PARALLEL ADAPTIVE EVENT HORIZON FINDER FOR … PHYSICAL REVIEW D 94, 064008 (2016)

064008-5

coordinate systems on the sphere with the poles on the x, y,
or z axis, using a cyclic permutation of the usual Cartesian
to spherical coordinate transformation. The derivative at
some vertex uses all neighboring vertices, so the lowest
resolution triangulation our code supports must be oriented
such that each vertex and its neighbors live entirely in one
of the three coordinate systems without crossing the poles.
This corresponds to vertices at all cyclic permutations of
ð�ϕ;�1; 0Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ2

p
Þ, where ϕ is the golden ratio, and

we have normalized to 1. When computing quantities that
do not depend explicitly on the choice of coordinate system
on the sphere, we simply choose the coordinate system
farthest from the poles, i.e. θ closest to π=2.

IV. GENERATOR EVOLUTION

Our code can trace event horizon generators independ-
ently through either numerical or analytic metric data,
which is useful for performing code tests. It is common for
numerical simulations to use the 3þ 1 decomposition [32],
so we express the metric in the form

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð3Þ

where α is the lapse function, βi is the shift vector, and γij is
the spatial metric.2 We obtain numerical data from simu-
lations performed using SPEC [7,33–35]. The generators are
traced by evolving a solution to the geodesic equation

d2xτ

dλ2
þ Γτ

μν
dxμ

dλ
dxν

dλ
¼ 0; ð4Þ

where xτ is the four-position of the geodesic, λ is an affine
parameter, and Γτ

μν are the Christoffel symbols describing
the effective force caused by spacetime curvature.
To facilitate the numerical geodesic evolution, we split

this second-order differential equation into two first-order
equations using an intermediate momentumlike variable
such as pτ ¼ dxτ=dλ. As we have some freedom in the
definition of this momentum variable, we look for one that
helps to minimize computational time and numerical errors
when evolving through spacetimes with black holes.
We initially explored using the variable pτ ¼ dxτ=dλ

from Hughes et al. [18], along with converting the
evolution equations from affine parameter λ to the coor-
dinate time t of SPEC evolutions through the use of
p0 ¼ dt=dλ. Although the resulting evolution equations
are concise and have no time derivatives of metric varia-
bles, the quantities p0 and pi grow exponentially near black
hole horizons in typical coordinate systems used by SPEC

simulations. This forces our time stepper to take prohibi-
tively small steps in order to achieve the desired accuracy.
We therefore choose a momentum variable slightly

different than pτ to mitigate this time-stepping problem.
Null geodesics satisfy ~p · ~p ¼ 0, which can be rewritten as
p0 ¼ α−1ðγijpipjÞ1=2 using the metric in Eq. (3). This
expression shows that p0 and pi scale similarly, so we can
eliminate the exponential behavior of these variables by
evolving the ratio. Our intermediate variable thus becomes

Πi ≡ pi

αp0
¼ piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γjkpjpk

q ; ð5Þ

where we also divide by α to reduce the number of terms in
the resulting evolution equations. This choice of inter-
mediate variable is the same one that appears in [36]. Using
Πi and the 3þ 1 decomposition of Eq. (3), we can express
the geodesic equation in Eq. (4) in the form

dΠi

dt
¼ −α;i þ ðα;jΠj − αKjkΠjΠkÞΠi þ βk;iΠk

−
1

2
αγjk;iΠjΠk ð6aÞ

dxi

dt
¼ αΠi − βi; ð6bÞ

where Kjk is the extrinsic curvature (see, e.g., [32]) and Πi

is defined via the inverse spatial metric as Πi ≡ γijΠj. Note
that the geodesic equation consists of four second-order
equations, yet we only have three pairs of coupled first-
order equations in Eq. (6). Because we are evolving a
normalized momentum, Eq. (5), we have lost information
about p0 during evolution. Compared to the evolution
equations in Hughes et al. [18], we have introduced a time
derivative of the three-metric inside Kjk, but we have
significantly sped up the evolution near black holes by
removing the exponential growth of p0 and pi.
The equations in Eq. (6) are similar to those in (28) of

Vincent et al. [37]. In fact our intermediate evolution
variable Πi is related to their variable Vi by the three-
metric, such that Πi ¼ Vi. But our Eq. (6) has a reduced
number of both temporal and spatial derivatives of metric
quantities compared to Vincent’s (28). More detailed
information about splittings of the geodesic evolution
equation can be found in Appendix A.

V. HANDLING METRIC DATA

Because we perform the generator evolution through the
SPEC metric data backwards in time, we must complete the
binary black hole simulation beforehand while saving
sufficient metric data to disk. We need all the metric
components specified in Eq. (6) at any given time and
location in the evolution domain, or we need to be able to

2Our convention is that greek indices, as in xτ, denote temporal
or spatial components, while latin indices, as in xi, denote only
spatial components.

BOHN, KIDDER, and TEUKOLSKY PHYSICAL REVIEW D 94, 064008 (2016)

064008-6

compute them. While we do not need all of the metric and
its derivatives in our evolution equations, it is simpler to
save gμν and all of the derivatives used during the SPEC

BBH simulation and deal with slightly more disk space
usage.
The metric and derivatives are stored on the BBH

evolution grid points at a deterministic set of times such
that we can interpolate the metric quantities to any
spacetime point in the simulation domain. The metric
gμν has 10 unique components when accounting for
symmetry, and the derivatives ∂δgμν have 40 components
leading to a total of 50NptsNt numbers, where Npts is the
average number of grid points and Nt is the number of time
slices stored. In addition, some extra information about
where the points are located and how they are distributed
must also be stored.
For one fully generic BBH evolution of unequal mass

black holes with arbitrary spin directions and magnitudes,
the metric data can take many terabytes of disk usage. Since
typical clusters have one or two gigabytes of memory per
core, we do not have nearly enough memory to read all the
metric data at once. To handle this situation, we utilize a
shared memory paradigm by using OpenMP. During
generator evolution, we read sections of the metric data
into memory only as needed and at most once, storing it in a
shared thread-safe cache. Other generators then simply
access the cache to get the metric data instead of reading it
from the disk for themselves.
We maintain a priority queue of generators ordered by

their current evolution time, such that generators that are
farthest behind are given highest priority. After a pool of
OpenMP threads is spawned, each thread will grab the next
highest priority generator in the queue, evolve for one time
step, and then insert the generator back into the priority
queue. A potential concern that the CPU cache was not
being utilized by taking only one time step at a time turned
out not to be valid. With the priority queue, generators are
kept as close in time as possible, so that metric data in the
cache is kept for as little time as needed. Since the domain
structure in SPEC consists of many subdomains, only the
required subdomains are read into memory. Periodically,
we use the evolution time of the farthest-behind generator
to determine which metric data stored in the cache are safe
to be deleted.3

When a generator requests metric data at a particular
location and time, we must perform both a spatial and a
temporal interpolation in general. Spatial interpolations are
performed spectrally, taking advantage of the pseudospec-
tral grid used during SPEC simulations. We are left with the

innocent looking tasks of temporal interpolation and how to
properly combine temporal and spatial interpolations.
These tasks turn out to be quite complicated and are
described in Appendix B.

VI. INITIAL DATA

We evolve a set of event horizon generators backwards in
time to trace the event horizon surface, so we need to set an
initial time, location, and direction for each generator. As
hinted at by Fig. 1, the apparent horizon and event horizon
surfaces asymptotically approach each other after the
merger. If we set the initial time of the backwards evolution
to be late enough, the black hole will have settled to a
nearly stationary solution and the apparent horizon surface
could be used as initial data for the locations of the event
horizon generators [16]. In SPEC, the apparent horizon is
represented with a spherical harmonic decomposition, so
we simply look for a time where the spherical harmonic
coefficients are sufficiently stationary to choose an ini-
tial time.
Next we need to determine the positions of the gen-

erators using the triangulation over the unit sphere
described in Sec. III. We first note that each vertex of
the unit sphere triangulation defines a (θ, ϕ) direction. The
position of the generator associated with that vertex is then
set to the intersection of the AH surface and the ray starting
at the center of the AH pointing in the direction defined by
the vertex. We use spectral interpolation on the spherical
harmonic basis used to represent the AH to find the
intersection. Since stationary black hole AHs have a nearly
spherical shape when represented in typical coordinate
systems used by SPEC, mapping between the reference
sphere and the AH surface roughly maintains the carefully
constructed distribution of vertices from Sec. III.
Finally, we need to find the initial direction of each

generator, used to calculate our intermediate evolution
variable pi=ðαp0Þ from Eq. (6). Following [21], the
initial direction of a generator should be normal to the
surface at the location of the generator, where normal is
calculated spectrally on the AH following Baumgarte et al.
[38]. The normal direction is set to pi, which is transformed
into pi=ðαp0Þ using the lapse and p0 as calculated in
Sec. IV.
It is important to note that refinement of the unit sphere

in Sec. III never destroys vertices, but only destroys (and
then creates) triangles. Once we trace an EH generator
trajectory, we can store and reuse the trajectory after
refinement without retracing the generator. Therefore we
only calculate initial data for newly created vertices in the
triangulation for which we need to find the trajectory.
Unfortunately, while the generator trajectories from the
pilot run do not need to be recalculated, determining when
generators join the horizon must be recalculated completely
since the triangles have changed.

3Given that the farthest-behind generator is at time t, deter-
mining which metric data times are safe to delete is more
complicated than just comparing the stored times against t. This
is because we need to perform time interpolation, so the
interpolation stencil width is also a factor.

PARALLEL ADAPTIVE EVENT HORIZON FINDER FOR … PHYSICAL REVIEW D 94, 064008 (2016)

064008-7

VII. IDENTIFYING FUTURE GENERATORS

Although the event horizon surface is generated by null
geodesics that never leave the horizon, event horizon
generators readily join onto the horizon during the merger,
as can be seen in Fig. 1. In the backwards-in-time language,
generators can leave the horizon where they meet other
generators through one of two types of points: caustics,
where neighboring generators converge to a point, or
crossover points, where non-neighboring generators on
the horizon meet. We must therefore identify and distin-
guish these caustics and crossover points.
When we trace event horizon generators, we record their

locations at a predetermined set of times. In order to

properly resolve the short-duration features appearing
during the merger of the black holes, we need fine time
resolution during the merger. However, the process of
looking for caustics or crossover points scales linearly
with the number of times where we record generator
locations. We do not require such fine time resolution after
merger where the event horizon is slowly varying and no
more generators are joining, so we smoothly transition
the separation between recording times from the fine
resolution merger to the coarse resolution ringdown. We
use a piecewise function with a hyperbolic tangent tran-
sition function to specify the spacing between recording
times Δt,

ΔtðtÞ ¼

8>>><
>>>:

Δtcoarse tcoarse ≤ t

Δtcoarse þ ðΔtfine − ΔtcoarseÞ ×
�
0.5

�
1þ tanh

n
tan

�
π
�
1.5 − t−tbegin

tfine−tcoarse

��o�i
tfine ≤ t < tcoarse

Δtfine t < tfine

; ð7Þ

where Δtfine and Δtcoarse specify the fine and coarse
spacings, tfine and tcoarse specify the boundaries for the
fine and coarse spacing regions, and the transition function
in square brackets varies between 0 and 1. The time range
between tfine and tcoarse is used to smoothly transition
between the different spacings, and any smooth monotonic
transition function would be sufficient.
After performing the tracing, we must determine if and

when generators leave the horizon backwards in time using
the recorded generator locations. We search for caustics,
where neighboring generators meet, by looking for gen-
erators with negative expansion parameter, similar to
Cohen et al. [21]. The expansion of a generator is propor-
tional to the fractional change of the area element around
the generator,

θ ∝
1ffiffiffi
h

p ∂ ffiffiffi
h

p

∂t ; ð8Þ

where h is the determinant of the induced metric on the
horizon at the location of the generator. Unlike Cohen et al.
[21], where the induced metric is found using second-order
finite difference stencils, it is not trivial to go beyond first-
order finite differencing using our irregularly structured
grid. Nevertheless, we see no evidence that the first-order
derivatives are not accurate enough, since the adaptive
refinement scheme discussed in Sec. III drastically
decreases the distance between generators.
The induced metric on the event horizon is given by

hab ¼ γij
∂qi
∂ya

∂qj
∂yb ; ð9Þ

where γij is the spatial metric, qi are the coordinates on the
three-dimensional spacetime slice, and ya are the ðθ;ϕÞ
coordinates on the horizon surface. The derivatives are
calculated using Eq. (2a). Since we are only interested in
the fractional change in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det hab

p
in Eq. (8), we are free to

perform a useful rescaling of the induced metric such that

~h ¼ det ~hab ¼
1

sin2θ
det hab: ð10Þ

For a spherically symmetric space, ~h is a constant over the
sphere, which provides a useful correctness check and
removes the coordinate dependence on θ.
When computing derivatives on the event horizon sur-

face, to avoid coordinate issues around the poles of the
coordinate system, we can align the poles with the x, y, or z
axes by choosing the corresponding coordinate system
defined in Sec. III. We are free to change coordinate
systems when calculating the expansion for different
generators since we are not comparing neighboring gen-
erators, but only checking the sign of the expansion
parameter.
To find the specific time tjoin that a generator joins on the

horizon, we first compute
ffiffiffi
~h

p
for each generator at each

stored time. Then we take the partial derivative with respect
to time along each generator with a third-order Lagrange
interpolating polynomial and calculate the fractional

change of
ffiffiffi
~h

p
with respect to time, which is proportional

to the expansion parameter. If this fractional change with
respect to time changes sign between two recording times,
we know the join time is between these times. We identify
tjoin by simply linearly interpolating the fractional change

BOHN, KIDDER, and TEUKOLSKY PHYSICAL REVIEW D 94, 064008 (2016)

064008-8

between the recording times where it changes sign to find
when the expansion parameter passes through zero.
This algorithm to compute the expansion is parallelized

using a set of message passing interface (MPI) processes
and a pool of OpenMP threads on each process. The set of
generators on the event horizon surface is distributed
evenly across the OpenMP threads and MPI processes to

calculate the quantity
ffiffiffi
~h

p
. The next step is to take the time

derivative, which is a relatively inexpensive operation, so it
is currently only parallelized over the MPI processes and
not over OpenMP threads.
The other way generators can join the surface is through

crossover points, where non-neighboring generators meet.
Since we are evolving a finite number of generators to
approximate the surface, in general the generators we
evolve will not cross each other. We therefore look for
crossover points by checking for surface self-intersections
by using a collision detection algorithm as described in
[22], where every vertex is compared against every triangle
to see if the generator at that vertex passed through the
triangle between neighboring recording times. Our situa-
tion is simplified compared to Cohen et al. [22], however,
because we explicitly start with an unchanging set of
triangles as opposed to needing to define and construct a
set of triangles from a ðθ;ϕÞ grid. Because the event
horizon surface is approximated by connecting generators
to form triangles, the collision of a triangle and any other
generator between times t0 and t1 indicates that the
generator joined the event horizon through a crossover at
a time tjoin satisfying t0 ≤ tjoin < t1.
The collision detection algorithm assumes each gener-

ator moves linearly through time between two neighboring
times, as shown in Fig. 6. The location of a generator ~qðtÞ is
therefore a linear function between t0 and t1,

∀ t∈ ½t0; t1Þ; ~qðtÞ¼ ~qðt0Þþ
t− t0
t1− t0

ð~qðt1Þ− ~qðt0ÞÞ; ð11Þ

and similarly for the vertices of some triangle, ~aðtÞ, ~bðtÞ,
and ~cðtÞ. These generators and their trajectories are shown
in Fig. 6. The normal vector to the triangle △abc is then a
quadratic function in time:

~nðtÞ ¼ ð~bðtÞ − ~aðtÞÞ × ð~cðtÞ − ~aðtÞÞ: ð12Þ

We first solve for all times when the generator ~qðtÞ and the
triangle are coplanar by finding the roots of

~nðtÞ · ð~qðtÞ − ~aðtÞÞ ¼ 0; ð13Þ

which is a cubic polynomial. An example of a coplanar
time is shown in Fig. 6 as the dotted horizontal line. We
immediately disregard any roots of the cubic that lie outside
the range t0 ≤ tcoplanar < t1, and disregard complex roots.
For every root tcoplanar remaining, we check whether

~qðtcoplanarÞ lies inside triangle △abc. If so, we mark the
time at which the generator joins the horizon as this time,
tjoin ¼ tcoplanar. It is possible that multiple roots of the cubic
lie both in the desired time range and inside the triangle, but
generators physically cannot cross after they join the
horizon [39], so we choose the latest of the tcoplanar roots
to be the join time.
We apply the collision detection algorithm for every pair

of neighboring times where we have recorded generator
location data, comparing each triangle to every other
vertex. Since all generators of the event horizon are on
the event horizon surface at late times, we start with the
latest pair of neighboring times and work backwards. Since
we are only interested in self-intersections of the actual
event horizon surface, we must remove vertices and
triangles from the algorithm after they leave the EH
backwards in time. Once we find a join time tjoin for a
generator, either corresponding to joining as a caustic or a
crossover, we do not need to check for collisions with that
generator and other triangles as we move to earlier pairs of
times where t0 < t1 < tjoin. Choosing when to remove a
triangle from the algorithm is more subtle, since triangles
are formed from three EH generators. We only remove a
triangle from the algorithm once all three generators
forming the triangle have left the EH surface, a choice
that is described in Appendix C.
This includes both when the generator would be used to

form a triangle as well as when the generator would be the
single vertex. If both the caustic and crossover point
algorithms determine that ta ≤ tjoin ≤ tb for some pair of
neighboring times ta and tb, then the later time must be the
true join time, to satisfy the property that generators do not
meet after they join the event horizon.
The search for crossovers is the most costly part of the

event horizon simulation, since it is the only part of the

FIG. 6. Checking for the collision of a moving triangle △abc
and some other generator ~qðtÞ between times t0 and t1. The
triangle is constructed by connecting three neighboring vertices

~aðtÞ, ~bðtÞ, and ~cðtÞ. At some time, the four generators may
become coplanar, as illustrated in the figure.

PARALLEL ADAPTIVE EVENT HORIZON FINDER FOR … PHYSICAL REVIEW D 94, 064008 (2016)

064008-9

simulation that scales quadratically with the number of
generators. We have optimized the cost of each individual
check for a collision between a vertex and a triangle to
Oð2 μsÞ. In addition, for each pair of neighboring times, we
use an OpenMP thread pool to parallelize over the triangles,
and we parallelize all the remaining vertices over the MPI
processes.

VIII. CONCLUSIONS

In this paper, we have presented a new event horizon
finding code, with adaptive localized refinement, based on
a Delaunay triangulation on a surface with the topology of a
sphere. We now have the ability to refine arbitrary portions
of the event horizon surface to discover and study small-
scale features such as the hole in a toroidal event horizon, as
discussed in our companion paper [26]. The triangulation is
covered by three overlapping coordinate systems to avoid
issues with coordinate singularities at the poles of the
standard polar coordinate system. Using the backwards
geodesic event horizon finding algorithm, we specify how
to calculate initial data for event horizon generators and
how to use the triangulation when searching for future
generators of the event horizon.
There are several ways this event horizon finding code

can be further improved. The refinement algorithm cur-
rently creates an even distribution of event horizon gen-
erators at late times in the BBH simulation, where the
horizon looks like Kerr. Unfortunately, when traced back-
wards in time, the event horizon surface becomes signifi-
cantly stretched and distorted, leading the triangles and the
distribution of generators to be similarly stretched. Since
we are interested in studying the event horizon at the time
of merger, we would like the generators to be evenly spaced
at the time of merger. An improvement to the refinement
algorithm would be to first perform an event horizon run
using an even distribution of generators to determine how
the triangles are stretched near merger, and then use the
stretch information to add new generators to the initial data
surface so that the triangles are initially stretched in the
orthogonal direction, but become unstretched near the
merger into almost equilateral triangles. It is not obvious
to us how to generate such a distribution. We note that it is
difficult to retriangulate the event horizon surface at
every time step, because the retriangulation procedure
would need to understand that the surface is stretched,
or else it would “cut corners” off the strongly distorted
EH shape.
Furthermore, the collision detection algorithm, the slow-

est step in the EH locating process, is naively OðN2Þ in the
number of EH generators. One could improve the coef-
ficient of this algorithm by dividing the space into spatial
bins, with a quadtree for example, and ignoring collisions
of a triangle and generator in entirely distinct spatial bins.
This was not implemented because of the complexity of

determining a good splitting of the surface and the problem
of handling triangles or vertices that move between differ-
ent regions.

ACKNOWLEDGMENTS

We thank David Nichols for useful conversations about
affine parametrizations of event horizon generators. We are
grateful to François Hébert andWilliam Throwe for various
helpful conversations including numerous triangle drawing
whiteboard sessions. We thank Daniel A. Hemberger for
helping us understand the intricacies of the adaptive mesh
refinement in SPEC. For helping smooth the visualization of
event horizon surfaces, we thank Curran D. Muhlberger.
We also thank Harald Pfeiffer for providing the BBH
simulation with parameters similar to the system detected
by Advanced LIGO, shown in Fig. 11. For providing useful
suggestions during the writing phase, we thank Nils Deppe.
We gratefully acknowledge support for this research at
Cornell from the Sherman Fairchild Foundation and NSF
Grants No. PHY-1306125 and No. AST-1333129.
Calculations were performed on the Zwicky cluster at
Caltech, which is supported by the Sherman Fairchild
Foundation and by NSF Grant No. PHY-0960291; on the
NFS XSEDE network under Grant No. TG-PHY990007N;
at the GPC supercomputer at the SciNet HPC Consortium
[40] [SciNet is funded by the Canada Foundation for
Innovation (CFI) under the auspices of Compute
Canada]; the Government of Ontario; Ontario Research
Fund (ORF)—Research Excellence; and the University of
Toronto. All the surface visualizations were done using
Paraview [41].

APPENDIX A: NULL GEODESIC
EVOLUTION EQUATIONS IN THE

3þ 1 DECOMPOSITION

It is common for numerical simulations to use the 3þ 1
decomposition [32], so we express the metric Eq. (3) in the
form

gμν ¼
�−α2 þ βiβi γijβ

i

γijβ
j γij

�
: ðA1Þ

The inverse metric is

gμν ¼
"
− 1

α2
βj

α2

βi

α2
γij − βiβj

α2

#
: ðA2Þ

The associated connection coefficients for this repre-
sentation of the metric are

BOHN, KIDDER, and TEUKOLSKY PHYSICAL REVIEW D 94, 064008 (2016)

064008-10

Γ0
00 ¼

1

α
ðα;t þ βkα;k − Kijβ

iβjÞ

Γk
00 ¼ γkj

�
βj;t þ αα;j −

1

2
ðγmnβ

mβnÞ;j
�
− βkΓ0

00

Γ0
i0 ¼

1

α
ðα;i − Kijβ

jÞ
Γk

i0 ¼ −αKi
k þ ð3Þ∇iβ

k − Γ0
i0β

k

Γ0
ij ¼ −

1

α
Kij

Γk
ij ¼ ð3ÞΓk

ij þ
Kij

α
βk ¼ ð3ÞΓk

ij − Γ0
ijβ

k; ðA3Þ

where ð3Þ∇i and ð3ÞΓk
ij are the covariant derivative and

connection coefficients associated with the spatial metric
γij, and we have used the extrinsic curvature

Kij ¼
1

2α
ð−γij;t þ 2γikβ

k
;j þ γij;mβ

mÞ: ðA4Þ

To numerically integrate the geodesic equation

d2xτ

dλ2
þ Γτ

μν
dxμ

dλ
dxν

dλ
¼ 0; ðA5Þ

we seek an efficient splitting into two first-order differential
equations. A natural splitting arises through the use of the
photon momentum

pμ ¼ dxμ

dλ
: ðA6Þ

With this momentum variable, we have the evolution
equations

dpτ

dλ
¼ −Γτ

μνpμpν ðA7aÞ

dxτ

dλ
¼ pτ: ðA7bÞ

These can be converted to equations with respect to a
coordinate time t by diving through by p0 ¼ dt=dλ.
Cohen et al. [21] used a similar form by evolving the

quantity pi=p0 as an intermediate variable, although they
define the variable pi to be what is called pi=p0 here. This
intermediate variable gives the evolution equations

d
dt

�
pi

p0

�
¼

�
Γ0

μν
pi

p0
− Γi

μν

�
pμ

p0

pν

p0
ðA8aÞ

dxi

dt
¼ pi

p0
; ðA8bÞ

which is a convenient intermediate variable choice as we
will see shortly, but is problematic because it involves all of

the connection coefficients during evolution. Additionally,
the use of Γμ

00 involves time derivatives of the lapse and
shift [Eq. (A3)].
Performing the sum over all the connection coefficients

is inefficient because of the number of terms being summed
as well as inaccurate if the metric terms come from a
numerical source versus an analytic source. There are many
cancellations in the geodesic equation that can be taken
advantage of with the appropriate choice of intermediate
variable. Hughes et al. [18] explored using

pμ ¼ gμνpν; ðA9Þ

obtaining the evolution equations

dpi

dλ
¼ −αα;iðp0Þ2 þ βk;ipkp0 −

1

2
γjk;ipjpk ðA10aÞ

dxi

dλ
¼ γijpj − βip0: ðA10bÞ

Converting to an evolution with respect to coordinate time t
gives

dpi

dt
¼ −αα;ip0 þ βk;ipk −

1

2
γjk;i

pjpk

p0
ðA11aÞ

dxi

dt
¼ γij

pj

p0
− βi: ðA11bÞ

These equations have considerably fewer terms than
those in Eq. (A8) and also no time derivatives of metric
functions. We note that although the variable p0 is not
evolved, it can be calculated by enforcing ~p · ~p ¼ 0,

giving p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijpipj

q
=α.

Unfortunately, these equations are poorly suited for
evolving outgoing null geodesics near black hole horizons
in the coordinate systems we are interested in, as p0 ∼ et for
an event horizon generator of a Schwarzschild spacetime
expressed in Kerr-Schild coordinates for example. Other
components of the 4-momentum have similar exponential
dependence, leading to increasingly small time steps. The
evolution equations in Eq. (A8) conveniently cancel the
exponential behavior by evolving the ratio pi=p0. Can we
get the best of both worlds, avoiding the exponential
behavior of Eq. (A11) and avoiding the large number of
terms in Eq. (A8)?
One attempt is to evolve the lower momentum normal-

ized by p0 as in

Pi ≡ pi

p0
: ðA12Þ

With the definition Pi ¼ γijPj, this yields the evolution
equations

PARALLEL ADAPTIVE EVENT HORIZON FINDER FOR … PHYSICAL REVIEW D 94, 064008 (2016)

064008-11

dPi

dt
¼ −αα;i þ βk;iPk −

1

2
γjk;iPjPk

þ Pi

α
ð−α;jβj þ 2α;jPj þ _α − KjkPjPkÞ ðA13aÞ

dxi

dt
¼ Pi − βi: ðA13bÞ

These equations certainly have more terms than Eq. (A11),
but do not suffer from the issue of small time steps.
We can reduce the number of terms involved in the

equations further by including an extra factor of the lapse,
such that

Πi ≡ pi

αp0
¼ Pi

α
¼ piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γjkpjpk

q : ðA14Þ

Similarly, we define Πi ¼ γijΠj. The resulting evolution
equations are those mentioned in the main text, which we
repeat here for completeness:

dΠi

dt
¼ −α;i þ ðα;jΠj − αKjkΠjΠkÞΠi

þ βk;iΠk −
1

2
αγjk;iΠjΠk ðA15aÞ

dxi

dt
¼ αΠi − βi: ðA15bÞ

By using the variable Πi, we have reduced further the
number of terms involved, eliminated time derivatives of
the metric, as well as removed the small-time-step behavior.
Since we are evolving a normalized momentum, we have
lost the ability to calculate p0. If p0 is necessary it can be
evolved separately, but for outgoing geodesics near black
hole horizons p0 ∼ et. For such geodesics, we recommend
evolving the quantity ln ðαp0Þ, giving

d lnðαp0Þ
dt

¼ −α;iΠi þ αKijΠiΠj: ðA16Þ

An alternative is to simply evolve lnðp0Þ, which has
more terms. For geodesics evolved far from black hole
horizons, p0 can be evolved directly by noting
d lnðp0Þ=dt ¼ ð1=p0Þðdp0=dtÞ.
The evolution equations using Πi are similar to those in

Eq. (28) of Vincent et al. [37]. In fact, the intermediate
evolution variable Πi is related to their variable Vi by the
three-metric, such that Πi ¼ Vi. But our Eq. (6) has a
reduced number of both temporal and spatial derivatives of
metric quantities compared to Vincent’s Eq. (28).

APPENDIX B: SPACETIME INTERPOLATIONS

Each component of the metric is handled independently,
so it is sufficient to consider the interpolation of a scalar A
defined on a set of points split into separate subdomains
and on a set of time slices. This is complicated by the fact
that SPEC utilizes a dual-frame system [35,42], where
computations are performed in a reference frame called
the grid frame. In the grid frame, the black holes are
stationary with respect to the collocation points of the
evolution, and a time-dependent mapping is maintained
between this frame and the asymptotically inertial frame,
which we call the inertial frame.
In the inertial frame, the grid points on which the scalar A

is defined are moving with respect to time, as seen in Fig. 7.
As a consequence, the domain boundary that is stationary
in the grid frame is also moving with time. Suppose we are
interested in the value of A at the ×, located at (xiI; t) where
xiI is the spatial location in the inertial frame, and wewant to
use six time slices to perform a fifth-order time interpo-
lation. If we choose to perform a spatial interpolation on
each of the six time slices first, and then perform a temporal
interpolation to the time t, then we have two choices for
how to spatially interpolate.
The first choice, shown with pluses and a line in purple,

is to spatially interpolate to xiI on each time slice, and then
interpolate in time. This method has two major drawbacks.
The scalar A is, by construction, usually varying slower in
time when viewed at a constant grid point xiG compared to a
constant inertial point xiI. The result is less accurate
temporal interpolations along xiI which leads to decreased
time-step sizes. In addition, spatially interpolating to a
constant point in the inertial frame could lead to attempting

FIG. 7. Spacetime interpolation to the black cross, as viewed in
the inertial frame of SPEC. The green circles represent the grid
points of the BBH simulation at the times where metric data were
stored to disk. The dotted line corresponds to the domain
boundary of the simulation. If we first perform a set of spatial
interpolations, and then interpolate the results in time, we have
two choices for how to handle these interpolations. One choice is
to interpolate to a constant location in the grid frame shown in
orange, or a constant location in the inertial frame shown in
purple. The grid frame interpolation is advantageous for multiple
reasons.

BOHN, KIDDER, and TEUKOLSKY PHYSICAL REVIEW D 94, 064008 (2016)

064008-12

to spatially interpolate outside of the domain, as seen on the
last time slice on the right side of the figure. Therefore, the
preferred option is to interpolate to a constant grid frame
point on each time slice, and then interpolate in time, as
shown with filled dots and a line in orange.
It is instructive to view this interpolation in the grid

frame, as seen in Fig. 8. In this frame, the locations of the
domain boundary and the grid points are stationary in time.
On each time slice, we perform a spatial interpolation to the
orange points at xiG ¼ MðxiI; tÞ, where t is the time to which
we are interpolating and M is the time-dependent mapping
from the inertial frame to the grid frame. In this figure, we
show another possibility where we first interpolate in time
along each grid point in the subdomain to the pink pluses,
and then perform a spatial interpolation. If we count the
number of operations required for either method, we find
that interpolating in time and then space takes OðNsN2

t þ
N2

sÞ operations, where Ns is the number of spatial points in
the subdomain and Nt is the number of time slices used in
the interpolation. Interpolating in space and then time takes
OðNtN2

s þ N2
t Þ operations, which is typically larger than

the number of operations when interpolating in time first,
since Ns > Nt for our case.
Unfortunately, while interpolating in time before space

requires fewer operations, in practice the error in the
interpolated tensors is larger, resulting in the generator
time stepper taking smaller steps. We therefore default to
always performing a spectral spatial interpolation on each
time slice to the grid point xiG, and then interpolating in time
with Lagrange polynomial interpolation.
The situation becomes more complicated when adaptive

mesh refinement (AMR) during the original BBH evolution
alters the grid frame. In general, the evolution grid has a
different number of points after an AMR regrid, and the
coordinates in the grid frame are not continuous across the
regrid. In Fig. 9, we see two AMR regrids denoted by
vertical dashed lines at times t1.5 and t2.5. We start in the
grid frame labeled G2, where the desired interpolation
location ðxiI; tÞ lives, following the same procedure of
mapping to the grid frame location xiG2 ¼ M2ðxiI; tÞ, where

M2 is the mapping from the inertial frame to the grid frame
G2. We spatially interpolate to the grid point xiG2 at all the
times within the time interpolation stencil and in the frame
G2. When a regrid occurs, we must determine how the two
neighboring grid frames are related so we know to what
grid location to interpolate. Specifically, we need to know
what the corresponding grid frame locations in G1 and G3
are, that is, xiG1 and xiG3 respectively.
We make use of the inertial frame whose coordinates are

continuous across the regrid to find the relationship
between the grid frames. Consider the regrid at t1.5. We
map from the G2 grid frame location to the inertial frame
via the G2 mapping M−1

2 ðxiG2; t1.5Þ, and then map from the
inertial frame to the G1 grid to find the corresponding grid
location xiG1. Therefore, the relationship between the grid
locations is

xiG1 ¼ M1ðM−1
2 ðxiG2; t1.5Þ; t1.5Þ: ðB1Þ

This procedure is applied at every regrid in the range of
times where temporal interpolation occurs. The result is a
set of straight lines in the grid frame shown in Fig. 9 along
which we interpolate in time.
The corresponding inertial frame viewpoint is shown in

Fig. 10. Again we see that the domain boundary and grid
points are in general at different locations in the inertial
frame, but the line along which we are interpolating is
continuous across the regrids unlike in the grid frame. The
black dot at each regrid time is used as the anchor point to
map between the neighboring grid frames in Eq. (B1).
Specifically, the black dot along the first regrid satisfies

M−1
1 ðxiG1; t1.5Þ ¼ M−1

2 ðxiG2; t1.5Þ: ðB2Þ

There is an additional complication to this procedure,
albeit rare, that can occur when determining the

FIG. 8. Spacetime interpolation to the black cross, as viewed in
the grid frame of SPEC. The setup is similar to Fig. 7, but we are
observing in the grid frame. We demonstrate the additional choice
between performing the spatial interpolations before or after
temporal interpolations. Spatial before temporal is shown in
orange, and temporal before spatial is shown in pink.

FIG. 9. Spacetime interpolation to the black cross, as viewed in
the grid frame of SPEC, showing spatial before temporal inter-
polation and constant grid location interpolation. The setup is
similar to Fig. 8, but we now have AMR. The vertical dashed
purple lines correspond to AMR regrids, where the grid in general
is quite different before and after the regrid. When we encounter a
regrid, we must find the relationship between the regrids at the
black dot locations by using the inertial frame which is continu-
ous across regrids, as seen in Fig. 10.

PARALLEL ADAPTIVE EVENT HORIZON FINDER FOR … PHYSICAL REVIEW D 94, 064008 (2016)

064008-13

relationship between neighboring grid frames in Eq. (B1).
In Fig. 11, we see part of the domain structure for a BBH
simulation with parameters consistent with the Advanced
LIGO event [1], specifically m1=m2 ¼ 1.25 with dimen-
sionless spin magnitudes χ1 ¼ 0.45, χ2 ¼ 0.54 in arbitrary
directions. In red, we see a cutaway of the inspiral domain
structure just before the domain topology changes for the
ringdown, where there are two excision regions associated
with individual apparent horizons of the black holes. At this
time, SPEC finds a common apparent horizon encapsulating
both of the inner apparent horizons, which triggers the
evolution domain to change topology to have just one
excision region. The new domain structure after the
regrid is shown in blue, so all the structure near the inner
apparent horizons shown in red has been excised from the
domain. Finally, in orange, we show a portion of the event
horizon surface. Since the apparent horizon is never
outside the event horizon, and the excision region by
construction is always inside the apparent horizon, the

event horizon surface always encapsulates the excision
region completely.
Consider the transition between G2 to G3 in Fig. 10, and

assume that this transition is associated with the domain
change from the red inspiral grid to the blue ringdown grid.
If the point to which we want to interpolate resides in the
red region after the regrid, then the point will be off the
domain, causing the interpolation to fail. In SPEC, regrids
can only cause grid locations to be removed from the
evolution grid, not to enter the evolution grid. Therefore,
we use a lopsided time interpolation stencil favoring earlier
time slices to solve this issue. We first try a balanced stencil
with n=2 times on either side of the desired interpolation
point, and retry with n=2þ 1 times before the point and
n=2 − 1 after if it fails, and so forth.
While we have the ability to perform spacetime inter-

polations in multiple ways, the default is to interpolate first
in space to a constant point in the grid frame on each time
slice required for the time interpolation, and then perform
the time interpolation. The primary advantages to these
choices are that the code handles interpolation requests
accurately and without failure near domain boundaries and
AMR regrids.

APPENDIX C: REMOVING TRIANGLES FROM
THE COLLISION DETECTION ALGORITHM

When tracing event horizon generators backwards
through time, generators leave the EH surface when they
meet other generators. These meeting points are classified
as either caustics where neighboring generators meet or
crossover points where non-neighboring generators meet.
We detect crossover points by searching for EH surface
self-intersections where in theory two generators cross, but
in practice we only identify that a generator q intersected a
triangle △abc between neighboring times t0 and t1 as
described in Sec. VII. This collision implies there is some
EH generator u (that we have not evolved) inside△abc that
met with q between t0 and t1, so we flag q as leaving the
horizon backwards through time.
Consider the setup in Fig. 12 where we follow part of a

null plane wave satisfying t ¼ z approximated by a set of
generators in orange dots connected to form a set of
triangles. Another null plane wave, not shown, satisfies
t ¼ ðx − y − zÞ= ffiffiffi

3
p

and is similarly approximated by a set
of generators. On small scales, these two intersecting plane
waves roughly approximate two intersecting portions of the
EH surface. We want to search for intersections of these
plane waves using only the generators of the plane
waves we are evolving. We know analytically that the
intersection of these waves in the plane of Fig. 12 satisfies
t ¼ ðx − yÞ=ð1þ ffiffiffi

3
p Þ and so travels in the ðþx;−yÞ

direction forwards in time (and travels faster than the
speed of light). After the two waves intersect, the future
generators shaded with blue-green will join the event

FIG. 11. Portion of the event horizon surface, shown in orange,
on top of the SPEC domain structure just before and after the grid
change for the ringdown. In red, we see the evolution grid just
before the ringdown grid change including the excision regions
associated with the two inner apparent horizons. In blue, we see
the evolution grid just after the ringdown grid change, with only
one excision region associated with the common apparent
horizon. Both the inner and common apparent horizons can be
seen in panel (d) of Fig. 1.

FIG. 10. Spacetime interpolation to the black cross as in Fig. 9,
but viewed in the inertial frame of SPEC. The line along which we
are interpolating is continuous in the inertial frame, and the black
dots on the boundary between regrids are used to find how the
neighboring grid frames are related.

BOHN, KIDDER, and TEUKOLSKY PHYSICAL REVIEW D 94, 064008 (2016)

064008-14

horizon. At this particular time, a generator of the plane
wave not shown in this figure, q, intersects △abc at the
location u, so a generator at u would join the horizon at this
instant along with q.
As was done in Sec. VII, the algorithm is to follow both

plane waves backwards through time to search for inter-
sections where generators leave the surface. We need to
identify for each generator we keep track of, shown as an
orange dot, when the generator leaves the horizon. One way
to handle the fact that the generator q intersected a
hypothetical generator at u is to actually create a new
generator at u and keep track of it. As shown in Fig. 12, we
would then classify △acu and △ucb as being filled with
future generators, and △aub would still be part of the EH
surface. We should therefore remove△acu and△ucb from
the collision detection algorithm, and leave △aub in the
algorithm, because we only want to detect collisions
between generators that are both on the EH.
This method would give a correct algorithm, but intro-

duces some additional complications, so we seek a simpler

algorithm. Without adding a generator, is it better to
continue to include △abc in the algorithm or remove it
from the algorithm? Both choices have some potential
failure modes we need to consider. If we continue to
include the triangle in the collision detection, then the
potential failure mode occurs when some generator w
intersects either △acu or △ucb, and we proceed to
incorrectly flag w as having left the EH backwards in
time. The generator w should still be considered part of the
EH surface because we only care about surface self-
intersections between two generators that are both on the
EH. However, in this setup of two colliding plane waves,
there will never be such a generator w that is falsely
flagged, because the plane wave to which w belongs has
already passed by the triangles△acu and△ucb. Therefore,
including the full triangle △abc in the collision detection
algorithm introduces no failure modes that are possible if
the EH is sufficiently covered with generators.
The other option is to remove△abc from the algorithm.

The potential failure mode here occurs when a generator w
should have intersected some generator in△aub causing it
to leave the horizon, but we incorrectly label w as still being
a part of the EH surface. This failure mode can and does
occur in both this toy model example and in realistic BBH
event horizon simulations. Therefore, removing the triangle
from the collision detection yields incorrect results, where
some generators are falsely flagged as being on the EH.
To summarize, the method we use is to keep△abc in the

collision detection algorithm until the entire triangle is
filled with future generators, or equivalently when all three
generators a, b, and c are all flagged as future generators of
the EH. If all three generators that form the triangle are
future generators, the triangle must be removed from the
algorithm. This is because the approximation of two
intersecting plane waves breaks down on large or long
time scales, so it is possible for the triangle of future
generators to wrap back toward the EH as we trace it
backwards through time. If the triangle is never removed
from the algorithm, then we see some future generator
triangles intersecting with generators on the EH surface,
resulting in unphysical holes in the event horizon.

[1] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett.
116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific Collaboration,
Virgo Collaboration), Phys. Rev. Lett. 116, 221101
(2016).

[3] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[4] M. Campanelli, C. Lousto, P. Marronetti, and Y. Zlochower,

Phys. Rev. Lett. 96, 111101 (2006).

[5] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J.
van Meter, Phys. Rev. Lett. 96, 111102 (2006).

[6] L. Pekowsky, R. O’Shaughnessy, J. Healy, and D.
Shoemaker, Phys. Rev. D 88, 024040 (2013).

[7] http://www.black‑holes.org/waveforms.
[8] P. Ajith, M. Boyle, D. A. Brown, B. Brugmann, L. T.

Buchman et al., Classical Quantum Gravity 29, 124001
(2012).

FIG. 12. A portion of a null plane wave, with normal out of the
page, approximated by a set of null generators shown as orange
dots. This null planewave and another null planewave, not shown,
connect to form a toy event horizon used to study the collision
detection algorithm. The shaded blue-green triangles are filled
with future generators of this toy event horizon, where a hypo-
thetical generator of the EH shown as a purple dot, u, has just
converted from a future generator to a true generator at this time.

PARALLEL ADAPTIVE EVENT HORIZON FINDER FOR … PHYSICAL REVIEW D 94, 064008 (2016)

064008-15

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.221101
http://dx.doi.org/10.1103/PhysRevLett.116.221101
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1103/PhysRevD.88.024040
http://dx.doi.org/http://www.black-holes.org/waveforms
http://dx.doi.org/http://www.black-holes.org/waveforms
http://dx.doi.org/http://www.black-holes.org/waveforms
http://dx.doi.org/10.1088/0264-9381/29/12/124001
http://dx.doi.org/10.1088/0264-9381/29/12/124001

[9] Y. Zlochower and C. O. Lousto, Phys. Rev. D 92, 024022
(2015).

[10] B. Brügmann, J. A. González, M. Hannam, S. Husa, U.
Sperhake, and W. Tichy, Phys. Rev. D 77, 024027 (2008).

[11] K. Jani, J. Healy, J. A. Clark, L. London, P. Laguna, and D.
Shoemaker, arXiv:1605.03204.

[12] E. Poisson, A Relativist’s Toolkit: The Mathematics of
Black-Hole Mechanics (Cambridge University Press,
Cambridge, England, 2004).

[13] R. Penrose, Battelle Rencontres, edited by C. M. DeWitt
(W. A. Benjamin, Inc., New York, 1968), pp. 121–235.

[14] S.W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time (Cambridge University Press, Cambridge,
England, 1973).

[15] R. M. Wald, General Relativity (University of Chicago
Press, Chicago, IL, 1984).

[16] P. Anninos, D. Bernstein, S. Brandt, J. Libson, J. Massó, E.
Seidel, L. Smarr, W.-M. Suen, and P. Walker, Phys. Rev.
Lett. 74, 630 (1995).

[17] S. L. Shapiro and S. A. Teukolsky, Astrophys. J. 235, 199
(1980).

[18] S. A. Hughes, C. R. Keeton, P. Walker, K. T. Walsh,
S. L. Shapiro, and S. A. Teukolsky, Phys. Rev. D 49,
4004 (1994).

[19] S. L. Shapiro, S. A. Teukolsky, and J. Winicour, Phys. Rev.
D 52, 6982 (1995).

[20] J. Libson, J. Massó, E. Seidel, W.-M. Suen, and P. Walker,
Phys. Rev. D 53, 4335 (1996).

[21] M. Cohen, H. P. Pfeiffer, and M. A. Scheel, Classical
Quantum Gravity 26, 035005 (2009).

[22] M. I. Cohen, J. D. Kaplan, and M. A. Scheel, Phys. Rev. D
85, 024031 (2012).

[23] M. Siino, Phys. Rev. D 58, 104016 (1998).
[24] S. Husa and J. Winicour, Phys. Rev. D 60, 084019 (1999).
[25] L. Lehner, N. Bishop, R. Gomez, B. Szilágyi, and J.

Winicour, Phys. Rev. D 60, 044005 (1999).
[26] A. Bohn, L. E. Kidder, and S. A. Teukolsky,

arXiv:1606.00436.

[27] B. Delaunay, Bulletin de l’Académie des Sciences de
l’URSS, Classe des sciences mathématiques et na 793
(1934).

[28] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Comput-
ing, 3rd ed. (Cambridge University Press, New York, 2007).

[29] P. Diener, Classical Quantum Gravity 20, 4901 (2003).
[30] K. Thorne, Suggestion to the authors of [16,20] that the

locus of all event horizon generators forms at all times a
smooth and sometimes self-intersecting surface.

[31] W. C. Thacker, J. Phys. Oceanogr. 7, 284 (1977).
[32] R. Arnowitt, S. Deser, and C.W. Misner, in Gravitation: An

Introduction to Current Research, edited by L. Witten
(Wiley, New York, 1962), pp. 227–265.

[33] http://www.black‑holes.org/SpEC.html.
[34] B. Szilágyi, L. Lindblom, and M. A. Scheel, Phys. Rev. D

80, 124010 (2009).
[35] D. A. Hemberger, M. A. Scheel, L. E. Kidder, B. Szilágyi,

G. Lovelace, N. W. Taylor, and S. A. Teukolsky, Classical
Quantum Gravity 30, 115001 (2013).

[36] A. Bohn, W. Throwe, F. Hébert, K. Henriksson,
D. Bunandar, M. A. Scheel, and N.W. Taylor, Classical
Quantum Gravity 32, 065002 (2015).

[37] F. Vincent, E. Gourgoulhon, and J. Novak, Classical
Quantum Gravity 29, 245005 (2012).

[38] T. W. Baumgarte, G. B. Cook, M. A. Scheel, S. L. Shapiro,
and S. A. Teukolsky, Phys. Rev. D 54, 4849 (1996).

[39] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, New York, 1973).

[40] C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M.
Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J.
Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. V.
Zon, J. Phys. Conf. Ser. 256, 012026 (2010).

[41] ParaView—open source scientific visualization, http://www
.paraview.org/.

[42] M. A. Scheel, H. P. Pfeiffer, L. Lindblom, L. E. Kidder, O.
Rinne, and S. A. Teukolsky, Phys. Rev. D 74, 104006
(2006).

BOHN, KIDDER, and TEUKOLSKY PHYSICAL REVIEW D 94, 064008 (2016)

064008-16

http://dx.doi.org/10.1103/PhysRevD.92.024022
http://dx.doi.org/10.1103/PhysRevD.92.024022
http://dx.doi.org/10.1103/PhysRevD.77.024027
http://arXiv.org/abs/1605.03204
http://dx.doi.org/10.1103/PhysRevLett.74.630
http://dx.doi.org/10.1103/PhysRevLett.74.630
http://dx.doi.org/10.1086/157625
http://dx.doi.org/10.1086/157625
http://dx.doi.org/10.1103/PhysRevD.49.4004
http://dx.doi.org/10.1103/PhysRevD.49.4004
http://dx.doi.org/10.1103/PhysRevD.52.6982
http://dx.doi.org/10.1103/PhysRevD.52.6982
http://dx.doi.org/10.1103/PhysRevD.53.4335
http://dx.doi.org/10.1088/0264-9381/26/3/035005
http://dx.doi.org/10.1088/0264-9381/26/3/035005
http://dx.doi.org/10.1103/PhysRevD.85.024031
http://dx.doi.org/10.1103/PhysRevD.85.024031
http://dx.doi.org/10.1103/PhysRevD.58.104016
http://dx.doi.org/10.1103/PhysRevD.60.084019
http://dx.doi.org/10.1103/PhysRevD.60.044005
http://arXiv.org/abs/1606.00436
http://dx.doi.org/10.1088/0264-9381/20/22/014
http://dx.doi.org/10.1175/1520-0485(1977)007%3C0284:IGFDTS%3E2.0.CO;2
http://dx.doi.org/http://www.black-holes.org/SpEC.html
http://dx.doi.org/http://www.black-holes.org/SpEC.html
http://dx.doi.org/http://www.black-holes.org/SpEC.html
http://dx.doi.org/http://www.black-holes.org/SpEC.html
http://dx.doi.org/10.1103/PhysRevD.80.124010
http://dx.doi.org/10.1103/PhysRevD.80.124010
http://dx.doi.org/10.1088/0264-9381/30/11/115001
http://dx.doi.org/10.1088/0264-9381/30/11/115001
http://dx.doi.org/10.1088/0264-9381/32/6/065002
http://dx.doi.org/10.1088/0264-9381/32/6/065002
http://dx.doi.org/10.1088/0264-9381/29/24/245005
http://dx.doi.org/10.1088/0264-9381/29/24/245005
http://dx.doi.org/10.1103/PhysRevD.54.4849
http://dx.doi.org/10.1088/1742-6596/256/1/012026
http://dx.doi.org/http://www.paraview.org/
http://dx.doi.org/http://www.paraview.org/
http://dx.doi.org/http://www.paraview.org/
http://dx.doi.org/10.1103/PhysRevD.74.104006
http://dx.doi.org/10.1103/PhysRevD.74.104006

