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We analyze from a classical and quantum point of view the behavior of the Universe close to a little rip,
which can be interpreted as a big rip sent towards the infinite future. Like a big rip singularity, a little rip
implies the destruction of all bounded structures in the Universe and is thus an event where quantum effects
could be important. We present here a new phantom scalar field model for the little rip. The quantum
analysis is performed in quantum geometrodynamics, with the Wheeler-DeWitt equation as its central
equation. We find that the little rip can be avoided in the sense of the DeWitt criterion, that is, by having a
vanishing wave function at the place of the little rip. Therefore our analysis completes the answer to the
question: can quantum cosmology smoothen or avoid the divergent behavior genuinely caused by phantom
matter? We show that this can indeed happen for the little rip, similar to the avoidance of a big rip and a little
sibling of the big rip.
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I. INTRODUCTION

One of the most challenging problems in theoretical
physics is the formulation of a consistent quantum theory of
gravity [1,2]. Such a theory is needed not only for
conceptual reasons, but also for understanding the origin
of the Universe and the structure of black holes. In our
paper, we shall deal with quantum cosmology, that is, the
application of quantum theory to the Universe as a whole.
For this purpose, we shall use the conservative framework
called quantum geometrodynamics, with the Wheeler-
DeWitt equation as its central equation. This framework
is straightforwardly obtained by constructing quantum
wave equations from which the Einstein equations can
be recovered in the semiclassical (WKB) limit [3].
Besides these fundamental issues, we also encounter the

problem of explaining the observed acceleration of the
Universe. Phenomenologically, this is done by adding an
ingredient called dark energy (DE) [4]. Some of the models
describing DE predict the occurrence of singularities
beyond big bang (or big crunch) occurring for example
in the finite future. Aside from DE singularities, there are
also DE abrupt events like the little rip [5–12]. We name
them abrupt events rather than singularities because they

occur at an infinite future cosmic time. Some of these
models are in accordance with current data [13]. Since the
presence of singularities and abrupt events in a theoretical
framework is an indication of its breakdown, we expect
quantum effects to be important there, too. A central
question is then whether those future singularities and
abrupt events can be avoided in quantum cosmology or not
[14]. This question will also be addressed (and answered)
for the models discussed in our paper. Naively, we would
expect that at cosmological scales quantum effects are
important only in the early Universe, that is, on time scales
of the order of the Planck time, tP, and for distances related
to the Planck length lP. This naive belief is based on the fact
that quantum theory is usually important for small systems
such as atoms or molecules. Assuming the universality of
the superposition principle, quantum effects can occur at
any scale, whenever decoherence is negligible. This can
happen even for the Universe as a whole, for example, in
the case of a classically recollapsing Universe [15], or in
cases where singularities or abrupt events are present in the
classical theory, as is the case here.
Before proceeding further, we should clarify that among

all DE singularities and abrupt events, only three of them
are intrinsic to phantom DE, that is, within a relativistic
model they happen if and only if suitable phantom matter is
present. These are the big rip, the little rip, and the little
sibling of the big rip. Consequently, if we want to address
the question: can quantum cosmology smoothen or avoid
divergent behaviors caused by phantom matter, we need to
quantize models that induce in the classical picture a big
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rip, a little rip, or a little sibling of the big rip. These
questions have been partially addressed in the quantum
theory of cosmological models with a big rip [16,17] or a
little sibling of the big rip [18]. In this paper, we will
complete the answer to these questions by quantizing a
classical model for the little rip. In addition and for
completeness, we now recall the definition of the big
rip, the little rip, and the little sibling of the big rip.

(i) Big rip singularity: It takes place at a finite cosmic
time with an infinite scale factor where the Hubble
parameter and its cosmic time derivative diverge
[19–26].

(ii) Little rip: This case corresponds to an abrupt event
rather than a future space-time singularity. The
radius of the Universe, the Hubble parameter, and
its cosmic time derivative all diverge at an infinite
cosmic time [5–12]. In addition, all the structures in
the Universe would be ripped apart in a finite cosmic
time [10]. This kind of behavior was first found in
[5] within the context of a four-dimensional modi-
fied gravity model and later on in [9] in an induced
gravity brane-world model. In [5,9] the little rip was
induced by pure geometrical effects. The name little
rip was coined in [10], where the abrupt event was
induced by matter with the equation of state (2.1).
This equation of state was analyzed previously, as
far as we know, in [8] (see also [6,7]).

(iii) Little sibling of the big rip: This case again corre-
sponds to an abrupt event rather than a future space-
time singularity. At this event, the Hubble rate and
the scale factor blow up but the cosmic derivative of
the Hubble rate does not [27]. Therefore, this abrupt
event takes place at an infinite cosmic timewhere the
scalar curvature diverges. In addition, even though
the event seems to be harmless as it takes place in the
infinite future, the bound structures in the Universe
would be unavoidably destroyed in a finite cosmic
time from now. This was first analyzed in [27] within
a classical setup.

Our paper is organized as follows. In Sec. II, we review
and summarize some of the known results about the little
rip abrupt event from a classical point of view and as
induced by a specific equation of state [cf. Eq. (2.1)]. In
Sec. III and for later convenience, we introduce as well a
scalar field suitable to describe the nowadays late-time
acceleration of the Universe and are simultaneously able to
induce a little rip asymptotically in the presence and
absence of dark matter (DM). In Sec. IV, we present and
solve the Wheeler-DeWitt equation for the models given in
Secs. II and III. We show in both cases the existence of
solutions to the Wheeler-DeWitt equation that avoid the
little rip. Finally, in Sec. V we present our conclusions. In
addition, we include Appendixes A and B, in which we
prove the validity of the approximations used in Sec. IV,
and Appendix C, where the Symanzik scaling behavior is

presented as an alternative method to analyze the scalar
field eigenstates.

II. A BRIEF REVIEW OF THE LITTLE RIP EVENT

In our paper, we shall employ a Friedmann-Lemaître-
Robertson-Walker (FLRW) model with flat spatial sections
(that is, choosing k ¼ 0). The little rip is obtained in this
framework by introducing a perfect fluid with equation of
state [8,10]1

pd ¼ −ρd − A
ffiffiffiffiffi
ρd

p
; ð2:1Þ

where A is a positive constant, and ρd and pd are the energy
density and the pressure of this fluid, respectively. The
subscript d stands for DE, since the observed acceleration
of the Universe could be described by (2.1) [10]. The
constant A has the physical dimension of a square root of
density and can thus be written as

A ≕
ffiffiffiffiffi
ρ�

p
; ð2:2Þ

with a characteristic density ρ�.
Since we are interested in the description of the little rip,

and since this event occurs in the infinite future, we are
mainly interested in the asymptotic behavior of this model.
This can be addressed using standard cosmological equa-
tions. We first employ the Friedmann-Lemaître equation

H2 ¼ 8πG
3

ρ; ð2:3Þ

where H ≡ _a=a. Here and in the following, we use units
with c ¼ 1. The energy density can be described as the sum
of the contribution of the different matter components in the
Universe:

ρ ¼ 3H2
0

8πG

X
j

ΩjðaÞ≡ ρc
X
j

ΩjðaÞ;

Ωj0 ¼
8πG
3H2

0

ρj0 ≡ ρj0
ρc

; ð2:4Þ

where Ωj denotes the energy density fraction of each
component of the Universe and ρc is the critical density; the
index 0 means that the corresponding quantity is evaluated
at present time. At very late times, we can disregard the
contribution of DM to the total energy density; however, it
corresponds to a significant part of the present content.
Fixing accurate values for the model parameters A and Ωd0
requires the imposition of observational constraints. We
will assume simply that 0 < Ωd0 < 1, for the precise value
has no effects on our analysis. Within this approximation,

1For previous work on this kind of abrupt event, see [5–12].
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(2.3) contains just a single term corresponding to the energy
density of DE.
The second equation that we use is the energy con-

servation equation, from which one gets [10]

ρd ¼ ρd0

�
3A

2
ffiffiffiffiffiffiffi
ρd0

p ln

�
a
a0

�
þ 1

�
2

; ð2:5Þ

where a0 is an integration constant that we set equal to the
current size of the Universe. Therefore, after integrating
(2.3), the asymptotic behavior of the scale factor with
respect to cosmic time reads [10]

a
a0

∼ exp ½βðeαt − 1Þ�; where α≡ ffiffiffiffiffiffiffiffiffi
6πG

p
A;

β≡
ffiffiffiffiffiffiffiffiffi
Ωd0

6πG

r
H0

A
: ð2:6Þ

The little rip event happens for large values of a, where ρ
and p blow up, and therefore also H and _H. Notice that,
unlike the big rip, the little rip event is reached in infinite
cosmic time.

III. THE LITTLE RIP AS INDUCED BY
A SCALAR FIELD

For later convenience, we map the perfect fluid with
equation of state (2.1) to a scalar field, ϕ. As the constant A
must be positive for (2.1) to induce a little rip, the mapping
to a scalar field entails a phantom character for the field.
Consequently, we can write the kinetic energy and potential
of the scalar field as

_ϕ2 ¼ −ðρþ pÞ; ð3:1Þ

V ¼ 1

2
ðρ − pÞ: ð3:2Þ

Inserting (2.5) and (2.1) in (3.1), we get

_ϕ2 ¼ Aρ
1
2

d ¼
���� 3A2

2
ln

�
a
a0

�
þ A

ffiffiffiffiffiffiffi
ρd0

p ����: ð3:3Þ

Introducing the new variable

x≡ ln

�
a
a0

�
; ð3:4Þ

we can express _ϕ as

_ϕ ¼ dϕ
dx

H: ð3:5Þ

We now treat in separate subsections the cases without and
with DM.

A. Disregarding dark matter

Using (3.3) and (2.3), we can write

dϕ ¼
_ϕ

H
dx ¼ �

ffiffiffi
3

p

κ

�
Ω�
Ωd0

�1
4 dx��� 32 ffiffiffiffiffiffi

Ω�
Ωd0

q
xþ 1

���12; ð3:6Þ

where κ2 ≡ 8πG and Ω� ≡ ðAκ= ffiffiffi
3

p
H0Þ2 ≡ ρ�=ρc.

2 The
latter denotes a critical energy density fraction which is
related with the model parameter A and quantifies the
deviation of a DE model based on (2.1) from the standard
ΛCDMmodel, that is, the smallerΩ� is, the closer we are to
the ΛCDM model. Notice that the expression (3.6) is only
valid asymptotically, for we have disregarded the contri-
bution of DM which will redshift quickly in the future and
thus become negligible compared to DE. Finally, from
integrating (3.6) we find (for Ω� ≠ 0),

ϕðxÞ ¼ � 4ffiffiffi
3

p
κ

�
Ωd0

Ω�

�1
4

����� 32
ffiffiffiffiffiffiffiffi
Ω�
Ωd0

s
xþ 1

�����
1
2

× sign

 
3

2

ffiffiffiffiffiffiffiffi
Ω�
Ωd0

s
xþ 1

!
: ð3:7Þ

We have chosen the integrations constants, ϕ� and x�, such
that

ϕ� ¼ � 4ffiffiffi
3

p
κ

�
Ωd0

Ω�

�1
4

����� 32
ffiffiffiffiffiffiffiffi
Ω�
Ωd0

s
x� þ 1

�����
1
2

× sign

 
3

2

ffiffiffiffiffiffiffiffi
Ω�
Ωd0

s
x� þ 1

!
: ð3:8Þ

In addition, we have selected x� to be large enough to
ensure the validity of the approximation made in (3.6); that
is, we are far enough in the future such that the DM
component can be ignored in the Friedmann equation. For
practical purpose, we select x� ¼ 1.17, where the matter
energy density is 2 orders of magnitude smaller than the DE
density. Therefore, x� is large enough for the Universe to be
in an almost total DE domination phase. This numerical
value is not crucial for this subsection, but it has to be fixed
in the next subsection where numerical calculations are
required and therefore a fixed value of x� is needed. In
addition, our results do not change by imposing larger
values of x�. Finally, the function signðxÞ is the sign
function, that is

2The ΛCDM model is a homogeneous and isotropic Universe
filled with CDM and a cosmological constant which plays the
role of DE.
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signðxÞ ¼
8<
:

−1 if x < 0

0 if x ¼ 0

1 if x > 0

: ð3:9Þ

As mentioned before, the equation of state shown in
Eq. (2.1) describes a deviation from the standard ΛCDM
model through the parameter A. Therefore, for a vanishing
parameter A, the expected classical trajectory ϕðxÞ is
characterized by a constant, i.e., dϕ ¼ 0. This result can
be recovered by taking the limit Ω� → 0 in Eq. (3.6);
however, after the integration done in Eq. (3.7) the outcome
is not well defined for the limit Ω� → 0 (notice that ϕ�
could blow up in this case). To get a suitable expression for
small values of Ω�, we perform a Taylor expansion up to
first order of the general integral of Eq. (3.6), which reads

ϕðxÞ − ~ϕ� ≃�
ffiffiffi
3

p

κ

�
Ω�
Ωd0

�1
4ðx − ~x�Þ; ð3:10Þ

where in this case, we have chosen ~ϕ� and ~x� in such way
that

~ϕ� ¼ �
ffiffiffi
3

p

κ

�
Ω�
Ωd0

�1
4

~x�: ð3:11Þ

This result will be used later to determine the poten-
tial VðϕÞ.
In the little rip not only does the scale factor get very

large, but also the scalar field ϕ; see Fig. 1. From now on
we will focus on this regime.
For the case of Ω� ≠ 0, since the function (3.7) is

invertible, we can consequently write x ¼ xðϕÞ,

x ¼ κ2

8
ϕ2 −

2

3

ffiffiffiffiffiffiffiffi
Ωd0

Ω�

s
for 0 <

3

2

ffiffiffiffiffiffiffiffi
Ω�
Ωd0

s
xþ 1; ð3:12Þ

x ¼ −
κ2

8
ϕ2 −

2

3

ffiffiffiffiffiffiffiffi
Ωd0

Ω�

s
for

3

2

ffiffiffiffiffiffiffiffi
Ω�
Ωd0

s
xþ 1 < 0: ð3:13Þ

Once we have the relation between the potential and the
energy density, (3.2), we can write the potential in terms of
x, that is

VðxÞ ¼ ρd0

"
3

2

ffiffiffiffiffiffiffiffi
Ω�
Ωd0

s
xþ 1

#
2

þ 3H2
0

2κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωd0Ω�

p ����� 32
ffiffiffiffiffiffiffiffi
Ω�
Ωd0

s
xþ 1

�����: ð3:14Þ

As can be seen, for a vanishing Ω�, the potential becomes
constant as expected within the ΛCDM paradigm, i.e.
V ¼ ρd0. Using Eq. (3.12) in the latter expression, the
potential shows a quadratic dependence on the scalar field:

VðϕÞ ¼ b1ϕ4 þ b2ϕ2; ð3:15Þ

where the constants b1 and b2 are defined as

b1 ≡ 27

256
κ2H2

0Ω�; b2 ≡ 9

32
H2

0Ω�: ð3:16Þ

On the one hand, notice that b1 has physical dimension of
an inverse mass times length (and is thus dimensionless in
natural units where ℏ ¼ 1 and c ¼ 1), while b2 has the
dimension of an inverse length squared (mass squared in
natural units). As was mentioned above, (3.7) does not take
into account the contribution of DM; therefore, the result
shown in Fig. 1 is only valid for very large values of the
scale factor.
On the other hand, for a vanishing parameter A the

potential given in (3.15) cannot show the expected constant
value. This is not surprising as (3.15) was deduced using
(3.7) which is not valid for A ¼ 0. To recover this solution it
is necessary to replace in Eq. (3.14) the expression obtained
in Eq. (3.10) for small values of Ω�. In fact, in that case, we
obtain

VðϕÞ≃ ρd0

� ffiffiffi
3

p
κ

2

�
Ω�
Ωd0

�1
4

ϕþ 1

�2

þ 3H2
0

2κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωd0Ω�

p ����
ffiffiffi
3

p
κ

2

�
Ω�
Ωd0

�1
4

ϕþ 1

����: ð3:17Þ

As can be seen from the previous expression when A → 0,
VðϕÞ approaches a constant; i.e. the model in this case
behaves as ΛCDM.

FIG. 1. Plot of the scalar field, ϕ, versus x≡ lnða=a0Þ where
xc ¼ −2

ffiffiffiffiffiffiffiffi
Ωd0

p
=3

ffiffiffiffiffiffi
Ω�

p
. This plot is valid forΩ� ≠ 0 since xc is not

well defined for a vanishing Ω�, i.e. a vanishing A. The solution
(3.7) gives two branches, one above ϕ ¼ 0 (blue) and another
below ϕ ¼ 0 (red). The dashed curve describes a realm where the
neglected DM contribution is important, while the solid lines
describe a regime where we assume a complete DE domination.
We disregard the solutions for x < xc as our approximation
breaks down there. Therefore, only the solid lines are physically
relevant for our purpose.

IMANOL ALBARRAN et al. PHYSICAL REVIEW D 94, 063536 (2016)

063536-4



B. Including dark matter

Just for completeness and to get an accurate solution also
for small values of x (but still large enough to be in a matter
domination epoch after the radiation dominated epoch), it is
necessary to incorporate the DM contribution to the energy
density budget of the Universe. Following the same
approach we used before, (3.5) can be written as

dϕ ¼ �
_ϕ

H
dx ¼

�jpdðxÞ þ ρdðxÞj
H2

	1
2

dx: ð3:18Þ

The contribution of DM is here included in the Hubble
parameter. The equation for ϕðxÞ is now given by

ϕðxÞ ¼ �
ffiffiffi
3

p

κ

Z
x

x�

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω�Ωd0

p ��� 32 ffiffiffiffiffiffi
Ω�
Ωd0

q
xþ 1

���
Ωm0e−3x þ Ωd0



3
2

ffiffiffiffiffiffi
Ω�
Ωd0

q
xþ 1

�
2

9=
;

1
2

dx

þ ϕ�: ð3:19Þ

The integral in (3.19) cannot be solved analytically; there-
fore, we have performed a numerical integration in which the
integration constant ϕ� was fixed as after (3.7) to the value
imposed in Eq. (3.8). In this way, we ensure that the
approximated model and the numerical solution are equal
at the point x� as long as x� is large enough. For practical
purpose, we select x� ¼ 1.17, where the matter energy
density is 2 orders of magnitude smaller than the DE density.
Therefore, x� is large enough for the Universe to be in an
almost total DE domination phase. Figure 2 shows ϕðxÞ.
Once we have obtained the solution for the scalar field,

we get the numerical solution for the potential VðϕÞ, which
also takes into account the DM contribution. We compare
the obtained potential with the approximated potential
(which neglects DM) in Fig. 3.
Because DM is completely negligible at late times, the

quantum analysis of the little rip is unaffected by it. We will
thus neglect DM from now on.

IV. WHEELER-DEWITT EQUATION

The canonical formulation of general relativity leads to
four local constraints. If quantization is performed in the
Dirac sense, they turn into the Wheeler-DeWitt (WDW)
equation and the quantum diffeomorphism constraints [1].
Making from the outset a FRLWansatz, as we do here, only

FIG. 2. Plot of the rescaled scalar field, ðκ= ffiffiffi
3

p Þϕ, versus x, the
logarithmic scale factor. The solution (3.19) has two branches
which we have drawn as dashed lines in the bottom (red) and
upper (blue) panels. These lines take into account DM contri-
bution. The solid blue and red lines correspond to the solution
(3.7) where DM is neglected. All the plots have been obtained for
x� ¼ 1.17. For practical purpose, we see that for values larger
than x ¼ 0.42 (i.e. the energy density of DM is 10 times smaller
than that of DE), the difference between the two solutions
(inclusion of DM and exclusion of DM) is almost negligible.
For values of x smaller than x ¼ 0.42, the approximated solution
starts to show a relevant deviation from the exact solution and we
have drawn in this case the approximated solution as a curve with
crosses. In addition, we have fixed the other constants as
H0 ¼ 70.1 km s−1 Mpc−1, Ωm0 ¼ 0.274, and Aκ ¼ 3.46 ×
10−3 Gyr−1 according to the best fit obtained in [10].

FIG. 3. Plot of the dimensionless potential, ðκ=3H2
0ÞV, versus

the absolute value of the scaled scalar field, ðκ= ffiffiffi
3

p Þjϕj. The
dashed curve takes into account the presence of DM, while the
solid line neglects it. For consistency with the other plots, we take
x� ¼ 1.17. The deviation becomes significant when ðκ= ffiffiffi

3
p Þjϕj <

7.45 (drawn as thin curve with crosses), that is, x < 0.42,
corresponding to the energy density of DM being 10 times
smaller than that of DE.
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the WDW equation in the form of one partial differential
equation remains. To be concrete, the classical metric is (for
a flat spatial metric) given by

gμνdxμdxν ¼ −N2ðtÞdt2
þ a2ðtÞ½dr2 þ r2dθ2 þ r2sin2ðθÞdφ2�; ð4:1Þ

where N is the lapse function, a is the size of the Universe,
and t is the cosmic time. Choosing, in addition, a perfect
fluid and a set of minimally coupled scalar fields, the total
action consisting of Einstein-Hilbert action and matter
action reduces to [1,2,16–18,28]

S ¼
Z

L dt;

L ¼ V0

2π

�
−

3π

4GN
_a2a − 2π2Na3

×

�
ρ −

1

2N2

X
i

li _ϕ
2 þ Vðϕ1; ::ϕnÞ

��
; ð4:2Þ

where l ¼ 1, (−1) for standard (phantom) scalar fields. The
constant V0 stands for the volume of the three-dimensional
spatial sections for a ¼ 1. As we are dealing with spatially
flat sections, it is implicitly assumed that we either choose a
torus compactification with the correct volume or we leave
the volume open, that is, choose a reference volume V0. We
take the second option. Please note that this leads only to a
constant factor multiplying the Lagrangian and, therefore,
will not affect the results presented below.
Starting from the Lagrangian (4.2), the conjugate

momenta can be calculated and the classical Hamiltonian
can be obtained from a Legendre transformation. The
classical constraint H ¼ 0 then becomes after quantization
[1,2]

ĤΨ ¼ 0: ð4:3Þ

This equation enables an appropriate quantum approach
where the wave function of the Universe Ψ depends on the
degrees of freedom used to describe the physical system
under study, that is, the configuration space. We will
address quantization by means of (i) a single degree of
freedom corresponding to the scale factor, where the matter
content is given by a perfect fluid [with a known equation
of state corresponding to (2.1)], and (ii) 2 degrees of
freedom corresponding to the scale factor and a scalar field
(which portrays the matter content).
In the first approach, the scale factor is the only

independent variable. This is certainly a very simple model,
but it is interesting enough to study the behavior of the
wave function near singularities. In the absence of a full
quantum gravity framework it is, of course, an open
question what the correct criterion of singularity avoidance
is. A useful heuristic criterion is the one introduced by

DeWitt [29] in 1967; it states that the wave function should
vanish at the place of the classical singularity. This criterion
was successfully applied to a variety of cosmological
models; see [1,2,14,17,18,30–32].
In the second approach, an approximation describing

the matter content by a scalar field yields a suitable
framework with an additional degree of freedom. We move
from the classical trajectory, ϕ ¼ ϕðaÞ, to the correspond-
ing quantum analog where the wave function is defined
over the configuration space (a, ϕ). In this way, the
quantum nature arises and gains significance close to the
singularity, once the quantum effects become important.
Here, again, the DeWitt criterion is useful as a heuristic
device.

A. Wheeler-DeWitt equation with a perfect fluid

In this subsection, we will implement the quantization in
the simplest way, which consists in describing the matter
content as a perfect fluid with a given equation of state.
Therefore, the energy density can be written in terms of the
scale factor, which is the single variable within this
analysis. The Lagrangian for this model reads [1,2,17,33]

L ¼ −
3π

4GN
_a2a − 2Nπ2a3ρðaÞ: ð4:4Þ

The conjugate momentum is

πa ≡ ∂L
∂ _a ¼ −

3π

2G
Na _a; ð4:5Þ

and the Hamiltonian reads

H ¼ −N
G
3π

π2a
a
þ 2π2Na3ρðaÞ: ð4:6Þ

For the sake of simplicity, we introduce the new constants

η≡ πa30H0

Gℏ
; b≡ 3

2

ffiffiffiffiffiffiffiffiffiffi
Ω�
6Ωd0

s
: ð4:7Þ

The exact form of the WDW equation depends on the
chosen factor ordering. We shall employ two different such
orderings in order to study its influence.

1. First quantization procedure: aĤða; π̂aÞψðaÞ= 0
We choose here [16]

π̂2a ¼ −ℏ2∂2
a: ð4:8Þ

Employing this in the quantum version of (4.6) and
multiplying the result by [3πa=Gℏ2N], we get
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3π

Gℏ2

a
N
Ĥ ¼ ∂2

a þ
6π3

ℏ2G
a4ρ

�
a
a0

�
: ð4:9Þ

In order to get a dimensionless WDW equation, we will
rescale the scale factor and its partial derivative as

u≡ a
a0

; ∂2
u ≡ a20∂2

a: ð4:10Þ

After carrying the change of variable introduced above and
using (2.5) for the energy density, the WDWequation (4.3)
can be written as

�
∂2
u þ

�
3

2
η

�
2

Ωd0u4½1þ
ffiffiffi
6

p
b lnðuÞ�2

	
Ψ1ðuÞ ¼ 0;

ð4:11Þ

where we have used the definitions given in (4.7). The
approximated WKB solution up to first order reads (see, for
example, the method used in [17,18,34] and Appendix A)

Ψ1ðuÞ ≈ Ω−1
4

d0

ffiffiffiffiffi
2

3η

s
1

u
½1þ

ffiffiffi
6

p
b lnðuÞ�−1

2

× fD1ei
3η
2
S0ðuÞ þD2e−i

3η
2
S0ðuÞg; ð4:12Þ

where D1 and D2 are constants and

S0ðuÞ ¼
ffiffiffiffiffiffiffiffi
Ωd0

p Z
u

u1

y2½1þ
ffiffiffi
6

p
b lnðyÞ�dy

¼
ffiffiffiffiffiffiffiffi
Ωd0

p
3

u3
�
1þ

ffiffiffi
6

p
b

�
lnðuÞ − 1

3

�	

−
ffiffiffiffiffiffiffiffi
Ωd0

p
3

u31

�
1þ

ffiffiffi
6

p
b

�
lnðu1Þ −

1

3

�	
: ð4:13Þ

In addition, u1 is a large enough constant to ensure not only
a positive value of the above integral, but also to guarantee
that the system is well inside the DE domination regime,
that is, lnðu1Þ ≫ −1=ðb ffiffiffi

6
p Þ. Note that in the quantum

treatment, we disregard the contribution of DM by assum-
ing a single component through which the energy density is
expressed. This is in full agreement with the fact that by the
time the classical abrupt event is approached, DM con-
tribution is negligible; see Sec. III B. From the inspection of
(4.12), we see that the wave function vanishes for large
values of u. This is exactly the region where in the classical
model the little rip takes place. The DeWitt criterion is
fulfilled, and the little rip is avoided. It is interesting to note
that this criterion is here equivalent to the boundary
condition that Ψ1 → 0 for a → ∞ in analogy with the
boundary condition usually imposed on the Schrödinger
equation for bounded systems.

2. Second quantization procedure (Laplace-Beltrami
factor ordering): Ĥða; π̂aÞψðaÞ= 0

This quantization procedure is based on the Laplace-
Beltrami operator which is the covariant generalization of
the Laplacian operator in minisuperspace [1]. The corre-
sponding operator is different depending on the involved
degrees of freedom. For the case of a single component
described by a perfect fluid, it is written as (cf. for example
Ref. [17])

π̂2a
a

¼ −ℏ2

�
a−

1
2
d
da

��
a−

1
2
d
da

�
: ð4:14Þ

To diagonalize the operator, we suggest the following
change of variable

z≡
�
a
a0

�3
2

;
π̂2a
a

¼ −
9

4

ℏ2

a30

d2

dz2
: ð4:15Þ

Using this operator in the quantum version of (4.6) and
multiplying by [4πa30=3Gℏ

2N], we get the following
dimensionless expression,

4πa30
3Gℏ2N

Ĥ ¼ ∂2
z þ

8π3a60
3Gℏ2

z2ρðzÞ: ð4:16Þ

Using (2.5) for the energy density, the fundamental WDW
equation given in (4.3) reduces to

�
∂2
z þ η2Ωd0z2

�
1þ

ffiffiffi
8

3

r
b lnðzÞ

�2	
Ψ2ðzÞ ¼ 0; ð4:17Þ

where the constants η and b are defined in (4.7). The
approximated WKB solution up to first order reads (see, for
example, [17,34]; for a summary, see also Appendix A)

Ψ2ðaÞ ≈ Ω−1
4

d0

ffiffiffi
1

η

s
z−

1
2

�
1þ

ffiffiffi
8

3

r
b lnðzÞ

�−1
2

× fC1eiηQ0ðzÞ þ C2e−iηQ0ðzÞg; ð4:18Þ

where C1 and C2 are constants and

Q0ðzÞ ¼
ffiffiffiffiffiffiffiffi
Ωd0

p Z
z

z1

y

�
1þ

ffiffiffi
8

3

r
b lnðyÞ

�
dy

¼
ffiffiffiffiffiffiffiffi
Ωd0

p
2

z2
�
1þ

ffiffiffi
8

3

r
b

�
lnðzÞ − 1

2

�	

−
ffiffiffiffiffiffiffiffi
Ωd0

p
2

z21

�
1þ

ffiffiffi
8

3

r
b

�
lnðz1Þ −

1

2

�	
: ð4:19Þ

Like in the first quantization procedure, we assume that z1
is large enough to ensure a positive value of the above
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integral; in fact, it corresponds to the same scale factor u1
that we used in the previous quantization.
As can be seen, the wave function vanishes for large

values of z, where the little rip takes place. Therefore, the
DeWitt criterion is again fulfilled; this can be seen as an
indication that our results do not depend on the chosen
factor ordering.
Before concluding, we would like to highlight that both

WKB solutions at first order can be related by

jΨ1ðuÞj2
jΨ2ðzÞj2

¼ du
dz

; where z ¼ u
3
2; ð4:20Þ

where the equalities D1 ¼ C1 and D2 ¼ C2 have been
assumed. At zero order, the two WKB solutions coincide
as ð3=2ÞS0ðuÞ ¼ Q0ðzÞ.

B. Wheeler-DeWitt equation with
a phantom scalar field

For a system with a single (phantom) scalar field and a
given potential, the quantum Hamiltonian is written as
[1,2,16,18,28]

Ĥ ¼ Na−30 e−3x
�
ℏ2

4π2

�
κ2

6
∂2
x þ ∂2

ϕ

�
þ 2π2a60e

6xVðϕÞ
	
:

ð4:21Þ

Close to the little rip we can approximate the potential as
VðϕÞ≃ b1ϕ4. Since ĤΨðx;ϕÞ ¼ 0, we have

�
ℏ2

4π2

�
κ2

6
∂2
x þ ∂2

ϕ

�
þ σe6xϕ4

	
Ψðx;ϕÞ ¼ 0; ð4:22Þ

where we have gathered all parameters in a single one
called σ which reads3

σ ≡ 2π2a60b1 ¼
27

128
π2a60κ

2H2
0Ω�: ð4:23Þ

We next apply the following change of variables:

ϕ ¼ rðzÞφ; x ¼ z; ð4:24Þ

where r ¼ rðzÞ is a function that only depends on the new
variable z. Consequently, we have

∂2
ϕ ¼ r−2∂2

φ;

∂2
x ¼

�
r0

r

�
2

½φ2∂2
φ þ φ∂φ� − 2

r0

r
φ∂φ∂z

þ
��

r0

r

�
2

−
r00

r

�
φ∂φ þ ∂2

z ; ð4:25Þ

where the prime stands for derivatives with respect to z.
Applying this change of variable and multiplying (4.22) by
r2, we get

�
ℏ2κ2

24π2
r2
��

r0

r

�
2

½φ2∂2
φ þ φ∂φ� − 2

r0

r
φ∂φ∂z

þ
��

r0

r

�
2

−
r00

r

�
φ∂φ þ ∂2

z

�
þ ℏ2

4π2
∂2
φ þ σe6zr6φ4

	
×Ψðz;φÞ ¼ 0: ð4:26Þ

Now, we choose rðzÞ ¼ e−z with the aim to leave the
potential term with a single dependence on the variable φ,

�
ℏ2κ2

24π2
e−2z½φ2∂2

φ þφ∂φ þ 2φ∂φ∂z þ ∂2
z � þ

ℏ2

4π2
∂2
φ þ σφ4

	
×Ψðz;φÞ ¼ 0: ð4:27Þ

We next assume that in Eq. (4.27) some terms can be
neglected under the presumption

ℏ2κ2

24π2
e−2z½φ2∂2

φ þ φ∂φ þ 2φ∂φ∂z�Ψðz;φÞ

≪
ℏ2κ2

24π2
e−2z∂2

zΨðz;φÞ; ℏ2

4π2
∂2
φΨðz;φÞ; σφ4Ψðz;φÞ;

ð4:28Þ

for large values of z and φ which is the regime where we
want to solve the partial differential equation (4.27). This
approximation must be justified after obtaining the sol-
utions for Ψðz;φÞ (see Appendix B for details). As can be
seen, after disregarding these elements in Eq. (4.27) we
have two terms whereby each of them depends on a single
variable. Therefore, we can employ a separation ansatz, and
the wave function can be written as a sum over products of
two functions,

Ψðz;φÞ ¼
X
k

UkðφÞCkðzÞqk; ð4:29Þ

where qk denotes the amplitude for each solution and k is a
constant related to the “energy” of the system which
characterizes the states described through the functions
CkðzÞ andUkðφÞ. These functions, in turn, are the solutions
of the following differential equations

3This Wheeler-DeWitt equation can be solved following the
method introduced in Refs. [35–37] and, in particular, invoking
the Symanzik scaling law. We briefly summarize this method in
Appendix C. We thank the referee for pointing out this method
to us.
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�
ℏ2κ2

24π2
∂2
z þ ke2z

	
CkðzÞ ¼ 0; ð4:30Þ

�
ℏ2

4π2
∂2
φ þ σφ4 − k

	
UkðφÞ ¼ 0: ð4:31Þ

Equation (4.31) corresponds to the inverted anharmonic
oscillator in quantum mechanics; see, for example, [38].
For CkðzÞ, we get exact solutions corresponding to Bessel
functions with vanishing order:

(i) for k > 0,

CkðzÞ ¼ Ck1J0

�
2π

ℏκ

ffiffiffiffiffi
6k

p
ez
�
þ Ck2Y0

�
2π

ℏκ

ffiffiffiffiffi
6k

p
ez
�
;

ð4:32Þ

(ii) for k < 0,

CkðzÞ ¼ ~Ck1I0

�
2π

ℏκ

ffiffiffiffiffiffiffiffi
6jkj

p
ez
�
þ ~Ck2K0

�
2π

ℏκ

ffiffiffiffiffiffiffiffi
6jkj

p
ez
�
;

ð4:33Þ

where Ck1, Ck2, ~Ck1, and ~Ck2 are constants. Since the
functions I0ðzÞ diverge for z → ∞ [39], we choose ~Ck1 ¼ 0
to ensure that the wave function vanishes close to the little
rip. For large values of z, we then get

(i) for k > 0,

CkðzÞ ∼
�
ℏ2κ2

6π4k

�1
4

e−
z
2

�
Ck1 cos

�
2π

ℏκ

ffiffiffiffiffiffiffiffi
6jkj

p
ez −

π

4

�

þ Ck2 sin

�
2π

ℏκ

ffiffiffiffiffiffiffiffi
6jkj

p
ez −

π

4

�	
; ð4:34Þ

(ii) for k < 0,

CkðzÞ ∼ ~Ck2

�
ℏ2κ2

96k

�1
4

e−
z
2: ð4:35Þ

The second order differential equation for UkðφÞ is more
difficult to solve. Disregarding the constant term k in
(4.31), which is equivalent to finding the solution for
k ¼ 0, it can be written as (see the Appendix A)4

UðφÞ ¼ ffiffiffi
φ

p �
U1J1

6

�
2π

ffiffiffi
σ

p
3ℏ

φ3

�
þ U2J−1

6

�
2π

ffiffiffi
σ

p
3ℏ

φ3

�	
;

ð4:36Þ
whereU1 andU2 are integration constants. For large values
of φ, we have

UðφÞ ∼
ffiffiffiffiffiffiffiffiffiffiffi
6ℏ

2π2σ
1
2

r
1

φ

�
U1 cos

�
2π

ffiffiffi
σ

p
3ℏ

φ3 −
π

3

�

þ U2 sin

�
2π

ffiffiffi
σ

p
3ℏ

φ3 −
π

3

�	
; ð4:37Þ

and the wave function vanishes asymptotically. It is
worth noticing that for small values of the argument
ð2π ffiffiffi

σ
p

=3ℏÞφ3 in Eq. (4.37) we have

UðφÞ ∼U1

�
π
ffiffiffi
σ

p
3ℏ

�1
6 φ

Γð7
6
Þ −U2

�
π
ffiffiffi
σ

p
3ℏ

�−1
6 Γð1

6
Þ

π
: ð4:38Þ

This limit seems to correspond to a regime where σ (which
is proportional to the parameter Ω�, i.e. quadratic in A2) is
small enough to ensure infinitesimal values of the argument
in Eq. (4.36) even for large values of φ. It turns out that the
term proportional to U2 in Eq. (4.38) is not well defined
when σ or A vanishes. This might indicate that the wave
function for the ΛCDM universe is not well defined.
However, this is not the case because when σ or A
approaches zero VðϕÞ should be the one given in
Eq. (3.17) rather than what we used and defined in
Eq. (3.15). In addition, the solution (4.38) was obtained
after disregarding the term k in Eq. (4.31) which cannot be
ignored in the case of small σφ4.
After performing the approximation (k ≪ ½4π2σ=ℏ2�φ4)

in (4.31), we can find an exact solution, but in return, we
lose the information of k in UkðφÞ. A simple way to obtain
an approximated wave function keeping the contribution of
k is via the WKB approximation; the expression for the
approximated wave function up to first order is given by

UðφÞ≃
�
4π2

ℏ2
ðσφ4 − kÞ

�−1
4fUk1eiS0ðφÞ þ Uk2e−iS0ðφÞg;

ð4:39Þ
where Uk1 and Uk2 are constants and

S0ðφÞ ¼
2π

ℏ

Z
φ

φ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σy4 − k

q
dy; ð4:40Þ

where φ1 is large enough to ensure a purely real solution
even for positive values of k (0 < σφ4

1 − k). The latter
integral can be expressed as follows (see pp. 128 and 129
of [40]):

(i) for 0 < k,

Z
φ

φ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σy4 − k

q
dy ¼ 2π

3ℏ

�
yðσy4 − kÞ12 −

ffiffiffi
2

p k
3
2

σ
1
4

F

×

�
arccos

�
k
1
4

σ
1
4y

�
;
1ffiffiffi
2

p
�	����φ

φ1

;

ð4:41Þ
4Naively, we expect k to be irrelevant close to the little rip

where φ gets very large values; see below for a rigorous
justification of this observation.
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(ii) for k < 0,Z
φ

φ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σy4 − k

q
dy

¼ 2π

3ℏ

�
yðσy4 þ jkjÞ12 þ jkj32

σ
1
4

F

×

�
arccos

� ffiffiffiffiffijkjp
−

ffiffiffi
σ

p
y2ffiffiffiffiffijkjp þ ffiffiffi
σ

p
y2

�
;
1ffiffiffi
2

p
�	����φ

φ1

; ð4:42Þ

where the function F½hðyÞ; d� is an elliptic integral of the
first kind with argument hðyÞ and elliptic modulus d. Note
that for k ¼ 0 we recover the asymptotic solution given by
the Bessel functions (4.36). For large values of φ the
performed WKB approximation and the found Bessel
functions have the same asymptotic behavior, in this limit,
no matter what the value of k is. Therefore, for very large
values of φ we can write

Ψðz;φÞ≃UðφÞ
X
k

CkðzÞqk: ð4:43Þ

In any case, the resulting wave function has two oscillatory
terms modulated by a function which goes to zero for large
values. Returning to the initial variables for z → ∞ and
φ → ∞ limits the wave function decreases as

Ψðx;ϕÞ ∼ ½ϕe3
2
x�−1: ð4:44Þ

Therefore, the wave function vanishes close to the little rip,
fulfilling the DeWitt boundary condition.

V. CONCLUSIONS

A central issue in any theory of quantum gravity is the
avoidance of classical singularities. At the present state of
the field, this cannot be done in any sense close to the
rigor of the classical singularity theorems. The hope is
thus to get some insight from suitable models for which
concrete results can be obtained. As a heuristic sufficient
(though not necessary) criterion of singularity avoidance,
one can employ the DeWitt criterion of the vanishing
wave function. The applicability of this criterion has
already been studied for a wide class of classical
singularities. In the present paper, we have completed
the discussion by studying the situation of the little rip,
which is strictly speaking not a singularity, like it is the
case of a big rip, but an abrupt event, though it shares
some features with it. We have studied the two situations
of a perfect fluid and of a phantom scalar field, the first
being a phenomenological, the second a more funda-
mental dynamical model. A phantom field (field with
negative kinetic energy) is needed in order to implement
the equation of state leading to a little rip. We have found
that the DeWitt criterion can indeed be applied in both

cases and that the little rip can thus be avoided. We
should emphasize that models such as these, although
looking purely academic at first glance, are supported by
data [13]. If indeed true, the future of the Universe would
end in a full quantum era (without classical observers), in
full analogy to its quantum beginning.
Some words about the applicability of the DeWitt

criterion [[29], Eq. (6.31)] are in order. It is based on
the heuristic extrapolation of the quantum mechanical
probability interpretation (based on the Schrödinger
inner product) to quantum cosmology. But since the
Wheeler-DeWitt equation is of hyperbolic nature (with
and without matter), and thus resembles a Klein-Gordon
equation, one might think that a Klein-Gordon inner
product would be more appropriate. This is, however,
not the case, because it was proven that one cannot
separate positive and negative frequencies in the
Wheeler-DeWitt equation, and thus one is faced with
the problem of negative probabilities; see, for example,
[1], Sec. 5.2.2 for a discussion and references. This
problem can perhaps be avoided by going to “third
quantization,” but this is a framework different from
the present one. Our point of view here is that an inner
product of the Schrödinger type can be used in quantum
cosmology, even if the situation in the full theory is
unclear5 and even if this poses the danger of not allowing
normalizable solutions. At least in the models hitherto
considered, this inner product can be implemented and the
DeWitt criterion can be applied.
In our paper, we have restricted ourselves to the

minisuperspace approximation. The real Universe is, how-
ever, not homogeneous, so one possible extension of our
work is the inclusion of (scalar and tensor) perturbations
and solving the WDWequation near and at the region of the
little rip. The full quantum state then describes an entan-
glement between the minisuperspace part and the pertur-
bations. Tracing out the perturbation part from the full state
leads to a density matrix ρ for the minisuperspace part. If
the interaction with the perturbations leads to a suppression
of the off-diagonal elements in ρ, one can interpret this as
an effective quantum-to-classical transition or decoherence
for the background. Decoherence in quantum cosmology
was discussed in detail for many situations; see, for
example, [41] and the references therein. One might expect
that close to the little rip region, decoherence stops and
quantum interferences become important, enabling the
DeWitt criterion to be fulfilled there, as discussed in our
paper. Genuine quantum effects have also shown to be
important near the turning point of a classically recollaps-
ing universe [15]. We hope to address these and other issues
in future publications.

5The formalism of full loop quantum gravity, for example,
employs a Schrödinger inner product.

IMANOL ALBARRAN et al. PHYSICAL REVIEW D 94, 063536 (2016)

063536-10



ACKNOWLEDGMENTS

The work of I. A. is supported by a Santander-Totta
fellowship “Bolsas de Investigação Faculdade de Ciências
(UBI)-Santander Totta.” The work of M. B. L. is supported
by the Portuguese Agency Fundação para a Ciência e
Tecnologi through an Investigador FCT Research Contract
No. IF/01442/2013/CP1196/CT0001. She also wishes to
acknowledge the partial support from the Basque govern-
ment Grant No. IT592-13 (Spain) and FONDOS FEDER
under Grant No. FIS2014-57956-P (Spanish government).
This research work is supported by the Portuguese Grant
No. UID/MAT/00212/2013.

APPENDIX A: WKB APPROXIMATION

We next review briefly the WKB method for second
order differential equation�

d2

dy2
þ VeffðyÞ

�
ψðyÞ ¼ 0; ðA1Þ

where y is defined such that it is a dimensionless degree of
freedom and where the effective potential can be written as

VeffðyÞ ¼ ~η2gðyÞ: ðA2Þ
Moreover, ~η is a dimensionless parameter related with
the constants of the system. The general expression for
the WKB approximated solution (up to first order)
reads [34]

ψðyÞ ≈ ½−~η2gðyÞ�−1
4½B1eiS0ðyÞ þ B2e−iS0ðyÞ�; ðA3Þ

where B1 and B2 are constants and

S0ðyÞ ¼ ~η

Z
y

y1

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
dy: ðA4Þ

The solution (A3) is valid as long as the inequality

1

~η2

���� 5_g2ðyÞ − 4g̈ðyÞgðyÞ
16g3ðyÞ

����≪ 1 ðA5Þ

is fulfilled. When the left-hand side of Eq. (A5) goes to zero
we can be sure that the behavior of the exact solution in this
regime matches almost perfectly with the WKB approxi-
mation. The approximations used in Sec. IV for the first and
the second quantization procedure corresponds to an
effective potential whose general shape reads

VeffðyÞ≡ ~ηyn½1þ γ lnðyÞ�; ðA6Þ

where for each quantization procedure we have the
(i) first quantization procedure,

~η ¼ 2

3

ffiffiffiffiffiffiffiffi
Ωd0

p
η; n ¼ 2; γ ¼

ffiffiffi
6

p
b; ðA7Þ

(ii) second quantization procedure,

~η ¼
ffiffiffiffiffiffiffiffi
Ωd0

p
η; n ¼ 1; γ ¼

ffiffiffi
8

3

r
b: ðA8Þ

The necessary condition for the approximation to be valid
reads

1

~η2

���� 1

16ynþ2½1þ γ lnðyÞ�2
�
n2ð9 − 4nÞ þ 4γnð1 − 6n − 2γÞ

½1þ γ lnðyÞ�

þ γ2ð36 − 32n − 16γÞ
½1þ γ lnðyÞ�2

	����≪ 1: ðA9Þ

For both of the cases mentioned above, the little rip occurs
for large values of the variable y, where the latter expression
goes to zero when y → ∞; i.e. the WKB approximated
solution is valid.

APPENDIX B: JUSTIFICATION FOR THE
APPROXIMATION DONE IN EQ. (4.27)

The approximation done for the differential equa-
tion (4.27) consists of disregarding the first three terms
after the change of variable realized in (4.24). Once these
terms are neglected, the resulting differential equation is
separable and the approximation is valid if

ℏ2κ2

24π2
e−2z½φ2∂2

φ þ φ∂φ þ 2φ∂φ∂z�CðzÞUðφÞ ≪ ℏ2κ2

24π2
e−2z∂2

zCðzÞUðφÞ; ℏ2

4π2
∂2
φCðzÞUðφÞ; σφ4CðzÞUðφÞ: ðB1Þ

As a result of the realized approximation, the last two terms on the rhs of the above inequality have the same order of
magnitude for large values of z and φ or ϕ and x [see Eq. (B2)]. In fact, the dominant terms that we keep read

ℏ2

4π2
∂2
φCðzÞUðφÞ; σφ4CðzÞUðφÞ ∼ ℏ

2π

�
κ2

6k

�1
4

σ
3
4φ3e−

1
2
z ¼ ℏ

2π

�
κ2

6k

�1
4

σ
3
4ϕ3e

5
2
x;

ℏ2κ2

24π2
e−2z∂2

zCðzÞUðφÞ ∼ ℏ
2π

�
κ2k3

6

�1
4

σ−
1
4φ−1e−

1
2
z ¼ ℏ

2π

�
κ2k3

6

�1
4

σ−
1
4ϕ−1e−

3
2
x; ðB2Þ

while the neglected terms evolve asymptotically as
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ℏ2κ2

24π2
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5
2
z ¼ ℏ

12π

�
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24π2
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24π2

�
κ10

6k

�1
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5
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24π2
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1
2
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ℏ2κ2
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�
3κ6k
8
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4φ2e−

3
2
z ¼ ℏ

6π

�
3κ6k
8

�1
4

σ
1
4ϕ2e
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2
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Therefore, in order to obtain the compliance region of the
realized approximationwe compare the smallest of the saved
terms with the largest between the neglected ones, that is

ℏ
12π

�
κ10

6k

�1
4

σ
3
4ϕ5e

5
2
x ≪

ℏ
2π

�
κ2k3

6

�1
4

σ−
1
4ϕ−1e−

3
2
x;

⇒
κ2σ

6k
ϕ6e4x ≪ 1: ðB4Þ

Finally, the realized approximation is valid as long as
ðκ2σ=6kÞϕ6e4x ≪ 1. This means that for sufficiently small
values of σ, i.e. for small values of6 A, which is indeed
the observationally preferred situation, and large values of x,
i.e.x ≫ 1 (but finite), theapproximationwehaveused isvalid.

APPENDIX C: SCALAR FIELD EIGENSTATES
AND SYMANZIK SCALING BEHAVIOR

In this appendix we analyze Eq. (4.22) in the context of
the Symanzik scaling law, following the results found in
[35–37]. We start by performing, in the aforementioned
equation, the following change of variables,

x ¼ c1x̄; ϕ ¼ c2ϕ̄; ðC1Þ
where c1 and c2 are constants. We obtain�
ℏ2

4π2

�
κ2

6c21
∂2
x̄þ

1

c22
∂2
ϕ̄

�
þ σe6c1x̄c42ϕ̄

4

	
Ψðx̄; ϕ̄Þ ¼ 0; ðC2Þ

where by imposing

c1 ¼
ℏ

2
ffiffiffi
6

p
π
κ; c2 ¼ i

ℏ
2π

; ðC3Þ

we get �
∂2
x̄ − ∂2

ϕ̄
þ ℏ4

16π4
σe
ffiffi
6

p
2πℏκx̄ϕ̄4

�
Ψðx̄; ϕ̄Þ ¼ 0; ðC4Þ

which is precisely given by Eq. (1) of Ref. [35]. As done in
[35], we conclude that the general solutions of (C4) can be
expressed as

Ψðx̄; ϕ̄Þ ¼
Xþ∞

n¼0

Anðx̄ÞΦnðx̄; ϕ̄Þ; ðC5Þ

which can be rewritten in a vectorial notation as

Ψðx̄; ϕ̄Þ ¼ ΦTðx̄; ϕ̄Þ ·Aðx̄Þ; ðC6Þ
where the scalar part wave functions satisfy�

∂2
ϕ̄
þ Enðx̄Þ −

ℏ4

16π4
σe
ffiffi
6

p
2πℏκx̄ϕ̄4

�
Φnðx̄; ϕ̄Þ ¼ 0: ðC7Þ

Notice that the scalar part solutions depend on the scale
factor. Using the Symanzik scaling law [35–37], we have
that

Φnðx̄; ϕ̄Þ ¼
�

ℏ4

16π4
σe
ffiffi
6

p
2πℏκx̄

� 1
12

fnðχ̄Þ;

Enðx̄Þ ¼
�
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16π4
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6

p
2πℏκx̄

�1
3

εn; ðC8Þ

where

χ̄ ¼
�

ℏ4

16π4
σe
ffiffi
6

p
2πℏκx̄

� 1
12

ϕ̄: ðC9Þ

Furthermore, the vectorial scalar field wave equation can be
used to define a coupling matrix Ω as [35–37]

∂Φ
∂x̄ ¼ ΩΦðx̄; ϕ̄Þ: ðC10Þ

Given that fΦng are an orthonormal basis, we can conclude
that

Ωmn ¼
εm − εn

4

Z
dχ̄χ̄2fmðχ̄Þfnðχ̄Þ: ðC11Þ6Small values of A imply small deviations of our model from

the ΛCDM scenario.
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