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We propose a generalized star product that deviates from the standard one when the fields are considered at
different spacetimepoints by introducing a form factor in the standard star product.Wealso introduce a recursive
definition by which we calculate the explicit form of the generalized star product at any number of spacetime
points. We show that our generalized star product is associative and cyclic at linear order. As a special case,
we demonstrate that our recursive approach can be used to prove the associativity of standard star products for
same or different spacetime points. The introduction of a form factor has no effect on the standard Lagrangian
density in a noncommutative spacetime because it reduces to the standard star product when spacetime points
become the same. We show that the generalized star product leads to physically consistent results and can fit
the observed data on hemispherical anisotropy in the cosmic microwave background radiation.
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I. INTRODUCTION

A remarkable prediction of quantum gravity is that
spacetime might be noncommutative at the Planck scale.
The basic idea is that in order to probe short distances, we
require higher energies. However, at sufficiently high energy,
we shall necessarily form black holes and, hence, lose
precision about spacetime coordinates. This idea imposes
some uncertainty relationships among different coordinates
which can be implemented by proposing that these coordi-
nates do not commute [1–6]. It has been argued that this
noncommutativity of coordinates might have interesting
implications for cosmology [7–18]. In particular, the power
spectrum generated during inflation could be modified and
may lead to signatures of non-Gaussianity [17–19].
Thenoncommutativemodel is rather interesting since it has

the potential [19–21] to explain the observed hemispherical
anisotropy in cosmic microwave background radiation
(CMBR) [22–30]. This is because it produces a dipolar term
in the primordial power spectrum. Such an anisotropic model
cannot arise in the standard commutative spacetime.
Assuming that it is possible to generate the right form of
the dipolar power spectrum starting from a noncommutative
model, which leads to physically acceptable results, the
consequences are striking. It implies that the shortest-distance,
perhaps Planck-scale, physics associated with the noncom-
mutativity of spacetimemaycurrently beprobed at the largest-
distance scales in the Universe. Furthermore, anisotropies (or
inhomogeneities) at very early timesmay be observable today
as anisotropies on the largest-distance scales [31,32] and
might be responsible for some of the observed violations of
the cosmological principle [22–30,33–39].

The hemispherical anisotropy is parametrized in terms of
the phenomenological dipole modulation model [40–44]. It
has been argued [19–21] that the power spectrum obtained
in [18] is not acceptable because it produces imaginary
correlations among temperature spherical harmonic coef-
ficients, alm’s, while they should be real. Clearly there is
something wrong with the power spectrum obtained in
[18]. Some solutions to this problem have already been
proposed in Refs. [19,21]. However these do not really
solve the problem. In particular the prescription given in
[19] requires us to define the expectation value of different
parts of an operator differently. It is not clear how such a
prescription might emerge from a fundamental framework.
Reference [21] instead suggests that we should take a
different product while computing the power spectrum.
While this is permissible, it is ad hoc. It provides no
theoretical justification for why a different product is used
in the calculation of the power spectrum. In the present
paper we examine some of the assumptions that go into the
calculation of the power spectrum and, subsequently, the
temperature correlations. This might suggest a generaliza-
tion of the standard star product that may lead to an
acceptable cosmological power spectrum.
In their calculation of temperature correlations, the

authors of [17,18] assume that the transfer function which
relates the power spectrum in the early Universe is
approximately the same as that assumed in commutative
spacetimes. This is reasonable because by the end of
inflation all effects of noncommutativity are expected to
be negligible. Hence, the evolution can be well approxi-
mated by neglecting the effects of noncommutativity.
The power spectrum in [17,18] is obtained by assuming

that all products in a noncommutative spacetime must be
taken as star products. This is also a reasonable assumption
since a star product implements the basic commutation
relation among different coordinates, given by [1,2,4–6],
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½x̂μ; x̂ν� ¼ iΘμν: ð1Þ
Here the parameterΘμν is antisymmetric and the coordinate
functions, x̂μðxÞ, depend on the choice of coordinate
system. Different choices will lead to different models of
noncommutative spacetime. The authors of [17,18] con-
sider a scalar field theory in a background expanding
Universe. The coordinates x̂μ are taken to be the comoving
coordinates. They compute the two-point correlations of
the scalar field, ϕ, by assuming that their product can be
taken as a star product.
We next point out that imposing the commutation

relations on comoving coordinates is simply a model.
One can consider generalizations of it. Later in this
section, we explicitly discuss the deviation in this product
if we choose to impose the basic commutator, Eq. (1),
on coordinates different than comoving coordinates.
Furthermore, it is also possible to have different product
rules, such as the Wick-Voros product rule, which lead to
different field theories [45]. Finally, in our analysis we
require the correlation function,

Δð~x; ~x0Þ ¼ h0jϕð~x; tÞ ⋆ ϕð~x0; tÞj0i; ð2Þ
i.e., the product of fields at two different spatial positions. It
is precisely this correlation that leads to the problem with
the cosmological power spectrum mentioned above. If we
treat coordinates xμ as operators, then different spacetime
positions is not a well-defined concept. However, in the star
product representation, this is well defined and we need to
specify what is meant by the product of fields given in
Eq. (2). In principle, we can consider a generalization of the
star product when the fields are evaluated at different
positions. This will also lead to an acceptable field theory
as long as the action is well defined and does not violate
any basic principles.
Because of the ambiguities mentioned above, it is clear

that we do not have a unique definition of how to compute
the product defined in Eq. (2). Here we treat the resulting
theory as an effective field theory that might capture some
basic aspects of the underlying noncommutative frame-
work. In our analysis, we shall be interested only in the
leading-order term in Θμν. Our main interest is to obtain a
cosmological power spectrum which can lead to physically
acceptable results. Observationally, this power spectrum
can be probed to at most first order in the noncommutative
parameter Θμν. Hence, in our phenomenological approach,
we restrict ourselves to this order. For products of field at
different spacetime positions, we examine a generalized
star product involving a form factor Fðx; x0Þ and defined as
ϕð~x; tÞ ⋆ ϕð~x0; tÞ

¼
�
1þ i

2
Fð~x; ~x0ÞΘμν ∂

∂xμ
∂

∂x0ν þ � � �
�
ϕðxÞϕðx0Þ

����
t0→t

:

ð3Þ

Later, in Eq. (6), we generalize this for an arbitrary number
of spacetime points. We also impose the constraint that in
the limit x0 → x, Fð~x; ~x0Þ → 1, such that the generalized
star product reduces to the standard star product. Hence, the
action is not affected due to this generalization.
We next show that a form factor naturally arises if, for

example, we choose coordinates different from the comov-
ing coordinates in order to impose the basic commutation
rule, Eq. (1). Let these coordinates be denoted by XμðxÞ. We
now impose the standard star product with derivatives taken
with respect to the coordinates Xμ and X0μ. In this case the
standard star product, to leading order, becomes

ϕð~x; tÞ ⋆ ϕð~x0; tÞ

¼
�
1þ i

2
Θμν ∂xα

∂Xμ

∂x0β
∂X0ν

∂
∂xα

∂
∂x0β

�
ϕðxÞϕðx0Þ

����
t0→t

: ð4Þ

Hence, we find that a form factor has effectively appeared
in this equation. However, it is not of the kind we require
for our purpose. As we shall see later, we also require an
imaginary part in the form factor, whereas the one
generated by this procedure is real. Furthermore, additional
terms generated by this procedure do not vanish even in the
limit x0 → x, in contrast to the form factor Fð~x; ~x0Þ that
reduces to 1 in this limit.
In the next section, we show that the generalized star

product [i.e., Eq. (3)] is associative as well as cyclic.
In Sec. III we compute the power spectrum of the
scalar field after making a suitable choice of the form
factor Fð~x; ~x0Þ.

II. ASSOCIATIVITY AND CYCLICITY OF THE
GENERALIZED STAR PRODUCT

The standard star product satisfies some basic rules,
such as associativity and cyclicity. Associativity is a
useful mathematical requirement, for if the associativity
of an algebra G (with a given product law, say “∨”) is
established then the product of n elements ⋁n

i¼1xi where
xi ∈ G, 1 ≤ i ≤ n is unique (see, for example, Proposition
2.1.4 of [46]). In other words, associativity is a sufficient
condition to ensure unique product of n elements of G. In
literature, however, authors have also used nonassociative
star products (see Ref. [47]). The presence of associativity
in the context of the star product implies a unique
multiplication of n functions, without which the cyclicity
condition [discussed below in Eq. (14)] will not make
any sense.
In this section, we show that the generalized star product

is associative and cyclic to the order of our calculation. We
first perform a more general analysis and then specialize it
to our particular case [see Eq. (3)] by choosing a specific
form factor [in Eq. (20)]. Let fiðxjÞ represent an indexed
function fi depending upon the indexed spacetime point xj.
Let us consider the generalized m-point star function
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Ωj1;j2;…;jm
i1;i2;…;im

¼ fi1ðxj1Þ ⋆ ðfi2ðxj2Þ ⋆ … ⋆ ðfim−1
ðxjm−1

Þ ⋆ fimðxjmÞÞÞ;
¼ fi1ðxj1Þ ⋆ Ωj2;j3;…;jm

i2;i3;…;im
: ð5Þ

Here we have placed brackets clubbing a pair of functions.
These brackets are important because associativity of the
generalized star product has not been established yet. The
generalized star product between an m- and n-point star
function is defined to be

Ωj1;j2;…;jm
i1;i2;…;im

⋆ Ωl1;l2;…;ln
k1;k2;…;kn

¼
�
1þ i

2
Θμν

Xm
p¼1

Xn
q¼1

Fjplq

∂
∂xμjp

∂
∂xνlq

þ � � �
�

×Ωj1;j2;…;jm
i1;i2;…;im

Ωl1;l2;…;ln
k1;k2;…;kn

: ð6Þ
Here Fjpjq is an abbreviation for Fðxjp ; xjqÞ, i.e., the form
factor as a function of spacetime points xjp and xjq . In case
we desire to make two spacetime points the same, as in the
case of two-point star function Ω1;1

i1i2
, we simply take the

limit x2 → x1, as shown in the following:

Ω1;1
i1i2

¼ lim
x2→x1

Ω1;2
i1i2

¼ fi1ðx1Þ ⋆ fi2ðx2Þ
���
x2→x1

:

We emphasize that Eq. (6) is a recursive definition which
gives an m-point star function from an (m − 1)-point
equation only says that first we need to calculate m- and
n-point star products (recursively) star function, and that
nowhere in this equation has the associativity a priori been
assumed. The and then take the star product between them.
We may compare our generalized star product, i.e.,

Eq. (6), with the standard definition of the star product,
given in [48],

f1ðx1Þ ⋆ f2ðx2Þ ⋆ … ⋆ fnðxnÞ

¼
Yn
a;b¼1
a<b

exp

�
i
Θij

2

∂
∂xia

∂
∂xjb

�
f1ðx1Þf2ðx2Þ…fnðxnÞ: ð7Þ

When Fjpjq ¼ 1 for all spacetime coordinate pairs, we may
extend our recursive definition, Eq. (6), to all orders.
Assuming an exponential form, we can derive Eq. (7) as
shown in the Appendix. We also use this to establish the
associativity of the standard star product as a special case.
We point out that the proof of associativity of the standard
star product in the most general case, which includes the
product of fields at different spacetime points, is so far
lacking in the literature.

A. The definition’s modus operandi

We next illustrate our recursive definition’s mode of
operation using some simple examples. Let us first apply
this definition for two- and three-point star functions. From
Eq. (5),

Ωj1
i1
¼ fi1ðxj1Þ; ð8Þ

Ωj1;j2
i1;i2

¼ fi1ðxj1Þ ⋆ fi2ðxj2Þ;
¼ Ωj1

i1
⋆ Ωj2

i2
: ð9Þ

Here Eq. (9) follows from Eq. (8). Using Eqs. (6) and (9),
Ωj1;j2

i1;i2
is equal to

Ωj1
i1
⋆ Ωj2

i2
¼

�
1þ i

2
ΘμνFj1j2

∂
∂xμj1

∂
∂xνj2

�
Ωj1

i1
Ωj2

i2
;

¼
�
1þ i

2
ΘμνFj1j2

∂
∂xμj1

∂
∂xνj2

�
fi1ðxj1Þfi2ðxj2Þ:

ð10Þ

We emphasize that we are restricting ourselves to the
leading-order contributions in Θμν. Similarly, we can
calculate the quantity Ωj1;j2;j3

i1;i2;i3
which according to Eq. (5)

is Ωj1
i1
⋆ Ωj2;j3

i2;i3
. Again using Eq. (6) and neglecting any

second-order contribution coming from Ωj1;j3
i2;i3

, we obtain

Ωj1;j2;j3
i1;i2;i3

¼
�
1þ i

2
Θμν

�
Fj1j2

∂
∂xμj1

∂
∂xνj2

þ Fj1j3

∂
∂xμj1

∂
∂xνj3

þ Fj2j3

∂
∂xμj2

∂
∂xνj3

��
fi1ðxj1Þfi2ðxj2Þfi3ðxj3Þ: ð11Þ

As per Eq. (5), Ωj1;j2;j3
i1;i2;i3

is equal to fi1ðxj1Þ ⋆ ðfi2ðxj2Þ ⋆ fi3ðxj3ÞÞ. The same method can also be used to calculate
generalized an m-point star function for any number of points; the result is found to be (see Appendix)

Ωj1;j2;…;jm
i1;i2;…;im

¼
�
1þ i

2
Θμν

Xm
p;q¼1
p<q

Fjpjq

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…fimðxjmÞ: ð12Þ

Next we establish the associativity of generalized star product given in Eq. (6), for which we first need to calculate the
quantity Ωj1;j2

i1;i2
⋆ Ωj3

i3
. This quantity can be evaluated using Eq. (6) and can be shown to be the same as in Eq. (11). Thus

Ωj1;j2
i1;i2

⋆ Ωj3
i3
¼ Ωj1

i1
⋆ Ωj2;j3

i2;i3
, or in other words,
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ðfi1ðxj1Þ ⋆ fi2ðxj2ÞÞ ⋆ fi3ðxj3Þ
¼ fi1ðxj1Þ ⋆ ðfi2ðxj2Þ ⋆ fi3ðxj3ÞÞ: ð13Þ

Hence, the generalized star product is associative at the
leading order; therefore, at this order Ωj1;j2;…;jm

i1;i2;…;im
¼

fi1ðxj1Þ ⋆ fi2ðxj2Þ ⋆ … ⋆ fimðxjmÞ. Now we argue that
generalized star product satisfies cyclicity as well. The
cyclicity property is (see Refs. [48,49])

Z
d4xf1ðxÞ ⋆ f2ðxÞ ⋆ … ⋆ fnðxÞ

¼
Z

d4xfnðxÞ ⋆ f1ðxÞ ⋆ … ⋆ fn−1ðxÞ: ð14Þ

Because the result (12) is true for any indexed set i and j, let
us take i1 ¼ j1 ¼ 1, i2 ¼ j2 ¼ 2, and so on. In this case,
the m-point generalized star function Ω1;2;…;m

1;2;…;m in Eq. (12)
becomes

Ω1;2;…;m
1;2;…;m ¼

�
1þ i

2
Θμν

Xm
p;q¼1
p<q

Fpq
∂
∂xμp

∂
∂xνq

�

× f1ðx1Þf2ðx2Þ…fmðxmÞ:

When all spacetime coordinates become the same, the form
factor Fpq is equal to 1, in which case this equation reduces
to a standard star product at linear order. Thus, the
generalized star product is cyclic.
As stated before, the form factor introduced will be

chosen in order to fit the cosmological data; hence, in this
sense our proposed star product in Eq. (6) is purely
phenomenological. However, it is mathematically well
defined in the sense that it requires only a single product
rule [i.e., Eq. (6)] applicable in all cases. As stated above,
we treat this as an effective framework, which may in future
provide some guidance in constructing a consistent funda-
mental framework. In the next section we compute the
power spectrum of the scalar field, making a suitable choice
of the form factor Fð~x; ~x0Þ using expression (3) in Eq. (2).

III. POWER SPECTRUM IN FRIEDMANN-
ROBERTSON-WALKER BACKGROUND

In this section we compute the correlation function
Δð~x; ~x0Þ defined in Eq. (2) for the case of an expanding
de Sitter universe at leading order in Θμν. The scalar field
may be expressed as

ϕð~x; tÞ ¼
Z

d3~k
ð2πÞ3 ða~ke

i~k·~xζ~kðtÞ þ a†~ke
−i~k·~xζ⋆~kðtÞÞ; ð15Þ

where ζ~k ¼ u~k=a and the mode function u~k ¼ e−ikηffiffiffiffi
2k

p ð1 − i
kηÞ.

A direct calculation yields

Δð~x − ~x0Þ ¼ h0jϕð~x; tÞϕð~x0; tÞj0i þ Δ1ð~x − ~x0Þ; ð16Þ

where we have used translational invariance and set
Δð~x; ~x0Þ ¼ Δð~x − ~x0Þ. Here the first term on the right-hand
side is the standard contribution in commutative spacetime
and the second term is the leading-order correction. We are
interested in its Fourier transform,

δPð~kÞ ¼
Z

d3 ~Re−i~k·~RΔ1ð~x − ~x0Þ; ð17Þ

where ~R ¼ ~x − ~x0. We obtain

δPð~kÞ ¼ 1

2
Θ0i

Z
d3 ~Rd3~q
ð2πÞ3 eið~q−~kÞ·~RFð~RÞqifðqÞ; ð18Þ

where

fðqÞ ¼ _ζ~qζ
⋆
~q þ _ζ⋆~qζ~q ¼ −

η2H3

q
ð19Þ

and H is the Hubble’s constant. We next make the
following choice for the form factor:

Fð~RÞ ¼ cosð~λ · ~R=ηÞ þ iB~R · ~R sin2 ð~α · ~RÞ; ð20Þ

where B and λ are parameters. The form factor approaches

1 in the limit ~R → 0. Hence, δPð~kÞ, upon performing the
binomial expansion assuming j ~αk j ≪ 1 and keeping the first
nonzero term (quadratic terms in αÞ will be

−
1

2
Θ0iη2H3

�
1

2

�
ηki − λi

jη~k − ~λj
þ ηki þ λi

jη~kþ ~λj

�
þ 2iB

k5
ð3kij~αj2

− 15kið~α · k̂Þ2 þ 6kαi~α · k̂Þ
�
:

The form factor has to be dimensionless, therefore,
B ∼ ½L�−2; we choose it to be B ¼ b

η2
, b ∈ R. In the limit

η → 0 we obtain

δPð~kÞ ¼ i
bΘ0iH3

k5
ð15kið~α · k̂Þ2 − 3kij~αj2 − 6kαi~α · k̂Þ:

ð21Þ

Hence, we obtain a power spectrum of the form anticipated
in [19,21]; i.e., it will lead to physically acceptable temper-
ature correlations. The imaginary part of the form factor has
been chosen so that we obtain the power required to fit the
data [44,50]. We point out that the dipolar power spectrum
was found to decay by approximately one power of k
higher than the standard scale invariant power spectrum
[50]. This is exactly what is found in our analysis.
However, Eq. (21) contains additional structure that is
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not present in the power spectrum assumed in [50]. This
corresponds to the first and third terms inside the bracket in
Eq. (21). These will lead to additional correlations whose
structure depends on the choice of the vector ~α. Whether
these correlations are present in data is so far not known. In
any case, these depend on the precise choice of the form
factor in Eq. (20). We have considerable freedom in
choosing this function; our main motivation in this paper
is to show that a form exists that leads to physically sensible
results, rather than a detailed fit to data. Furthermore, our
model is phenomenological and it remains to be determined
whether such a model can arise from a fundamental
framework. More detailed analyses and applications to
CMBR data are left to future research.

IV. CONCLUSION

We have proposed a generalized star product Eq. (3) that
is applicable when the fields are evaluated at two different
spacetime positions, x1 and x2, and which is derived with
the help of a recursive definition, i.e., Eq. (6). The product
involves an effective form factor that becomes unity when
x1 ¼ x2. Using a model for this form factor we compute the
cosmological primordial power spectrum produced during
inflation. The model may be regarded as an effective field
theory within the framework of noncommutative coordi-
nates. The formalism is mathematically well defined but
introduces an unknown form factor. We are forced to
introduce it in order to avoid the physically inconsistent
results predicted by the standard star product. We hope our
model might provide some guidance in constructing a
fundamental theory that may lead to physically sensible
results. We find that in Fourier space the power spectrum
acquires a dipolar imaginary structure exactly as antici-
pated in [19,21]. Such a structure is required in order for it
to yield an acceptable CMB temperature anisotropy pattern.
It has been argued that this might provide an explanation of
the observed hemispherical anisotropy [22–30] or, equiv-
alently, the dipole modulation [40–43,51,52] of the CMB
temperature field. Thus, our results show that it is possible
to explain the hemispherical anisotropy using spacetime
noncommutativity.
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APPENDIX: SOME MATHEMATICAL
PROPERTIES OF STANDARD AND
GENERALIZED STAR PRODUCTS

In this appendix we deduce the results referred to in the
preceding sections. As mentioned before, we now first
extend our recursive definition [Eq. (6)] to all orders when
Fpq ¼ 1;∀p and q, in which case, assuming an exponen-
tial form, we obtain

Ωj1;j2;…;jm
i1;i2;…;im

⋆ Ωl1;l2;…;ln
k1;k2;…;kn

¼ exp

�
i
2
Θμν

Xm
p¼1

Xn
q¼1

∂
∂xμjp

∂
∂xνlq

�
Ωj1;j2;…;jm

i1;i2;…;im
Ωl1;l2;…;ln

k1;k2;…;kn
:

ðA1Þ

Next we establish associativity of this product rule. We
must point out that our analysis in this appendix also serves
to establish the associativity of the standard star product for
the most general case, when we consider products of fields
which depend on different spacetime positions. It must be
noted that even for this case, Eq. (A1) does not have the
same form as the standard star product, defined in Eq. (7).
However the two are found to be equal, as shown later in
this appendix. Finally, we prove Eq. (12).
Theorem 1: The recursive definition given in Eq. (A1)

at all orders in the noncommutative parameter Θμν is
associative. Thus, in this case the n-point star function
can be uniquely written as a product of one-point functions
Ωj1

i1
≡ fi1ðxj1Þ in the following way:

Ωj1;j2;…;jn
i1;i2;…;in

¼ fi1ðxj1Þ ⋆ fi2ðxj2Þ ⋆ … ⋆ finðxjnÞ:

Furthermore, in the same limit it has the following
explicit form:

fi1ðxj1Þ ⋆ fi2ðxj2Þ ⋆ … ⋆ finðxjnÞ ¼ exp

�
i
2
Θμν

Xn
p;q¼1
p<q

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…finðxjnÞ: ðA2Þ

Proof.—First, we prove associativity. Let us calculate Ωj1
i1
⋆ Ωj2;j3

i2;i3
. For this we first need Ωj2;j3

i2;i3
, which from Eq. (A1)

equals

Ωj2;j3
i2;i3

¼ exp

�
i
2
Θμν ∂

∂xμj2
∂

∂xνj3
�
fi2ðxj2Þfi3ðxj3Þ: ðA3Þ
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Again using Eqs. (A1) and (A3), Ωj1
i1
⋆ Ωj2;j3

i2;i3
becomes

Ωj1
i1
⋆ Ωj2;j3

i2;i3
¼ exp

�
i
2
Θμν

� ∂
∂xμj1

∂
∂xνj2

þ ∂
∂xμj1

∂
∂xνj3

��
fi1ðxj1Þ exp

�
i
2
Θρσ ∂

∂xμj2
∂

∂xνj3
�
fi2ðxj2Þfi3ðxj3Þ;

but the second exponential does not have any xj1 dependence; therefore, this term can also be written as

Ωj1
i1
⋆ Ωj2;j3

i2;i3
¼ exp

�
i
2
Θμν

� ∂
∂xμj1

∂
∂xνj2

þ ∂
∂xμj1

∂
∂xνj3

��
exp

�
i
2
Θρσ ∂

∂xμj2
∂

∂xνj3
�
fi1ðxj1Þfi2ðxj2Þfi3ðxj3Þ: ðA4Þ

Now, notice that if

Xðp;qÞ ¼
i
2
Θμν ∂

∂xμp
∂
∂xνq ; ðA5Þ

then ½Xðp;qÞ; Xðr;sÞ� ¼ 0 for all p, q, r, and s, and also that

i
2
Θμν

� ∂
∂xμj1

∂
∂xνj2

þ ∂
∂xμj1

∂
∂xνj3

�
¼ Xðj1;j2Þ þ Xðj1;j3Þ;

i
2
Θρσ ∂

∂xμj2
∂

∂xνj3
¼ Xðj2;j3Þ;

It is concluded that ½Xðj1;j2Þ þ Xðj1;j3Þ; Xðj2;j3Þ� ¼ ½Xðj1;j2Þ; Xðj2;j3Þ� þ ½Xðj1;j3Þ; Xðj2;j3Þ� ¼ 0. Therefore, by the Zassenhaus
formula (see, for example, [53] according to which if ½X; Y� ¼ 0 then eXþY ¼ eXeY) Eq. (A4) can be written as

Ωj1
i1
⋆ Ωj2;j3

i2;i3
¼ exp

�
i
2
Θμν

� ∂
∂xμj1

∂
∂xνj2

þ ∂
∂xμj1

∂
∂xνj3

þ ∂
∂xμj2

∂
∂xνj3

��
fi1ðxj1Þfi2ðxj2Þfi3ðxj3Þ: ðA6Þ

In a similar manner, using the same kind of reasoning, Ωj1;j2
i1;i2

⋆ Ωj3
i3
can be shown to be equal to Eq. (A6). Thus, it is

concluded that the generalized star product when Fpq ¼ 1 for all p, q and at all orders in the noncommutative parameters
Θμν is associative. Because of the associativity, Eq. (5) in this case becomes

Ωj1;j2;…;jn
i1;i2;…;in

¼ fi1ðxj1Þ ⋆ fi2ðxj2Þ ⋆ … ⋆ finðxjnÞ ¼ Ωj1
i1
⋆ Ωj2

i2
⋆ …Ωjn

in
:

The next part is proved by induction. Let PðnÞ be the statement that Eq. (A2) is true. Clearly, from Eq. (A1) with l1 ¼ j2 and
k1 ¼ i2, we have

fi1ðxj1Þ ⋆ fi2ðxj2Þ ¼ exp

�
i
2
Θμν ∂

∂xμj1
∂

∂xνj2
�
fi1ðxj1Þfi2ðxj2Þ;

which is exactly what we get from Eq. (A2) when n ¼ 2; hence, Pð2Þ is true. After this we assume the induction hypothesis
that PðmÞ is true, that is, the following equation holds:

Ωj1;j2;…;jm
i1;i2;…;im

¼ exp

�
i
2
Θμν

Xm
p;q¼1
p<q

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…fimðxjmÞ;

and we show Pðmþ 1Þ to be true too. Again using Eq. (A1), we get

Ωj1;j2;…;jm
i1;i2;…;im

⋆ Ωjmþ1

imþ1
¼ exp

�
i
2
Θμν

Xm
p¼1

∂
∂xμjp

∂
∂xνjmþ1

�
Ωj1;j2;…;jm

i1;i2;…;im
Ωjmþ1

imþ1
;

the rhs of which is equal to
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exp

�
i
2
Θμν

Xm
p¼1

∂
∂xμjp

∂
∂xνjmþ1

�
exp

�
i
2
Θμν

Xm
p;q¼1
p<q

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…fimðxjmÞfimþ1

ðxjmþ1
Þ:

Again observing that [see Eq. (A5)]

�Xm
p¼1

Xðjp;jmþ1Þ;
Xm
r;q¼1
r<q

Xðjr;jqÞ

�
¼

Xm
r;q¼1
r<q

Xm
p¼1

½Xðjp;jmþ1Þ; Xðjr;jqÞ� ¼ 0;

and invoking the Zassenhaus formula, it is concluded that

fi1ðxj1Þ ⋆ fi2ðxj2Þ… ⋆ fimþ1
ðxjmþ1

Þ ¼ exp

�
i
2
Θμν

Xmþ1

p;q¼1
p<q

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…fimðxjmÞfimþ1

ðxjmþ1
Þ:

Thus Pðmþ 1Þ is also true; hence, by the principle of
mathematical induction (see for example [54]), PðnÞ is true
for all n ≥ 2. ▪
We next show the equivalence between the generalized

star product for the case Fpq ¼ 1 and the standard star
product.
Proposition 2: The standard n-point star product

fi1ðxj1Þ ⋆ fi2ðxj2Þ ⋆ … ⋆ finðxjnÞ given in Eq. (7) is the
same as

exp

�
i
2
Θμν

Xn
p;q¼1
p<q

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…finðxjnÞ: ðA7Þ

Proof.—The proof is really a corollary to the result that if
½Xi; Xj� ¼ 0∀i and j, then exp ðPXiÞ ¼

Q
expðXiÞ. We

now prove this result. First, notice that the commutator
½X1;

P
n
i¼2 Xi� is the same as

P
n
i¼2 ½X1; Xi�, but this is zero

by assumption because ½Xi; Xj� ¼ 0. Therefore by the
Zassenhaus formula

exp

�
X1 þ

Xn
i¼2

Xi

�
¼ expðX1Þ exp

�Xn
i¼2

Xi

�
:

The same argument can also be used for the second term,
and can be continued further till one ends up with only
one term in the summation. Now, because in our case
½Xðjp;jqÞ; Xðjr;jsÞ� ¼ 0 [see Eq. (A5) for definition] for all
jp, jq, jr, and js, and it can be shown that for all p and
q, Xðjp;jqÞ will form an indexed sequence of operators,
hence

Yn
p;q¼1
p<q

exp

�
i
Θμν

2

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…finðxjnÞ;

is equal to

exp

�
i
2
Θμν

Xn
p;q¼1
p<q

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…finðxjnÞ:

The derivation done until now is valid for any arbitrary
index. As a final step, let us take jp ¼ p and ip ¼ p
to get

Yn
p;q¼1
p<q

exp

�
i
Θμν

2

∂
∂xμp

∂
∂xνq

�
f1ðx1Þf2ðx2Þ…fnðxnÞ ¼ exp

�
i
2
Θμν

Xn
p;q¼1
p<q

∂
∂xμp

∂
∂xνq

�
f1ðx1Þf2ðx2Þ…fnðxnÞ:

Therefore, it is concluded that the generalized star product in expression (6) reduces to Eq. (7) under appropriate
conditions. ▪
Now we prove Eq. (12).
Proposition 3: The explicit form of an m-point generalized star function Ωj1;j2;…;jm

i1;i2;…;im
defined through Eq. (6) is

Ωj1;j2;…;jm
i1;i2;…;im

¼
�
1þ i

2
Θμν

Xm
p;q¼1
p<q

Fjpjq

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…fimðxjmÞ: ðA8Þ
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Proof.—We use induction in this case. Let PðmÞ be the statement that Eq. (A8) is true. Using Eq. (6) Ωj1j2
i1i2

we obtain the
same form using Eq. (A8) for m ¼ 2; thus, Pð2Þ is true. Let us next assume PðkÞ to be true where PðkÞ is the following
induction hypothesis:

Ωj1;j2;…;jk
i1;i2;…;ik

¼
�
1þ i

2
Θμν

Xk
p;q¼1
p<q

Fjpjq

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…fikðxjkÞ:

We prove that Pðkþ 1Þ is also true. From Eqs. (5) and (6) we have

Ωj1;j2;…;jkþ1

i1;i2;…;ikþ1
¼ Ωj1;j2;…;jk

i1;i2;…;ik
⋆ Ωjkþ1

ikþ1
;

and thus

Ωj1;j2;…;jkþ1

i1;i2;…;ikþ1
¼

�
1þ i

2
Θμν

Xk
p¼1

Fjpjkþ1

∂
∂xμjp

∂
∂xνjkþ1

�
Ωj1;j2;…;jk

i1;i2;…;ik
Ωjkþ1

ikþ1
;

which, after using the induction hypothesis, becomes

Ωj1;j2;…;jkþ1

i1;i2;…;ikþ1
¼

�
1þ i

2
Θμν

Xk
p¼1

Fjpjkþ1

∂
∂xμjp

∂
∂xνjkþ1

��
1þ i

2
Θμν

Xk
p;q¼1
p<q

Fjpjq

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…fikþ1

ðxjkþ1
Þ:

Keeping only linear order in the noncommutative parameter Θμν, we get

Ωj1;j2;…;jkþ1

i1;i2;…;ikþ1
¼

�
1þ i

2
Θμν

�Xk
p¼1

Fjpjkþ1

∂
∂xμjp

∂
∂xνjkþ1

þ
Xk
p;q¼1
p<q

Fjpjq

∂
∂xμjp

∂
∂xνjq

��
fi1ðxj1Þfi2ðxj2Þ…fikþ1

ðxjkþ1
Þ;

which is equal to

Ωj1;j2;…;jkþ1

i1;i2;…;ikþ1
¼

�
1þ i

2
Θμν

Xkþ1

p;q¼1
p<q

Fjpjq

∂
∂xμjp

∂
∂xνjq

�
fi1ðxj1Þfi2ðxj2Þ…fikþ1

ðxjkþ1
Þ:

Thus, Pðkþ 1Þ is true; hence, by principle of mathematical induction PðnÞ is true for all n ≥ 2. ▪
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