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We compute the stochastic gravitational wave background generated by cosmic superstrings using a
semianalytical velocity-dependent model to describe their dynamics. We show that heavier string types
may leave distinctive signatures on the stochastic gravitational wave background spectrum within the reach
of present and upcoming gravitational wave detectors. We examine the physically motivated scenario in
which the physical size of loops is determined by the gravitational backreaction scale and use NANOGrav
data to derive a conservative constraint of GμF < 3.2 × 10−9 on the tension of fundamental strings. We
demonstrate that approximating the gravitational wave spectrum generated by cosmic superstring networks
using the spectrum generated by ordinary cosmic strings with reduced intercommuting probability (which
is often done in the literature) leads, in general, to weaker observational constraints on GμF. We show that
the inclusion of heavier string types is required for a more accurate characterization of the region of the
ðgs; GμFÞ parameter space that may be probed using direct gravitational wave detectors. In particular, we
consider the observational constraints that result from NANOGrav data and show that heavier strings
generate a secondary exclusion region of parameter space.
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I. INTRODUCTION

The recent detection of gravitational waves by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) [1]
ushered a new era of astronomy and fundamental physics by
opening the possibility of observing previously undetected
or poorly known sources (see [2,3] for recent reviews).
One such source is a network of (1þ 1)-dimensional
topological defects known as cosmic strings. The production
of cosmic string networks as remnants of symmetrybreaking
phase transitions is expected in a large variety of grand
unified scenarios [4]. Moreover, recent developments in
string theory raised the possibility that fundamental strings
(F strings) and one-dimensional Dirichlet branes (D strings)
may grow to macroscopic sizes and play the role of cosmic
strings. These F and D strings—generally referred to as
cosmic superstrings—are expected to have reduced inter-
commuting probabilities and to form highly entangled
networks with junctions that have a hierarchy of tensions
[5,6]. Cosmic superstrings are expected to be copiously
created at the end of several brane inflationary scenarios
(which often end with a symmetry breaking phase transition)
[7–9]. Although cosmic strings and cosmic superstrings are
created in the early Universe, they are expected to persist and
survive throughout cosmichistory.However—in spite of their
characteristic imprints on the cosmic microwave background

(CMB) [10–13], small structure formation [14–16], reioniza-
tion history [17–19], and gravitational lensing observations
[20–23]—both cosmic strings and cosmic superstrings have
as of yet evaded detection.
Cosmic string interactions play a key role in the

evolution of cosmic string networks. They often result in
the formation of cosmic string loops that detach from the
network and decay by emitting gravitational waves. The
superposition of the transient gravitational wave bursts
emitted by cosmic string loops—which exist in large
numbers at any given time in cosmic history—is expected
to generate a stochastic gravitational wave background
[24–27]. Different regions of the gravitational wave
spectrum may be probed using current and upcoming
astrophysical experiments: direct gravitational wave
detectors—either ground based (Advanced LIGO [28],
Advanced Virgo [29], and KAGRA [30]) or space borne
(evolved LISA [31] and DECIGO [32]), pulsar timing
experiments (Parkes [33], European [34] pulsar timing
arrays, NANOGrav [35], and the Square Kilometer Array
[36]), small-scale fluctuations and B-mode polarization of
the CMB [37], and big bang nucleosynthesis [38]. There is
thus the prospect either for the detection of the stochastic
gravitational wave background generated by cosmic string
and superstring networks or for the tightening of current
constraints on their tension.
The stochastic gravitational wave background generated

by ordinary cosmic string networks has been extensively
studied in the literature [39–52]. This is, however, not the
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case for cosmic superstrings. Some attempts at modeling
the spectrum generated by these strings have been made
(see e.g. [42,49,53]). These often treat cosmic superstrings
as ordinary cosmic strings with reduced intercommuting
probability, considering only the lightest strings (F strings)
and ignoring the effect of junctions on the network’s
dynamics. As demonstrated in [50], an accurate modeling
of the large-scale dynamics of the networks is essential for
an accurate characterization of the shape and amplitude of
the gravitational wave spectrum generated by them. Here,
we compute the stochastic gravitational wave background
generated by cosmic superstring by resorting to the semi-
analytical velocity-dependent model for cosmic super-
strings described in [54]. This model allows us, not only
to incorporate the effect of the junctions, but also to
compute the contribution of heavier string types to the
spectrum. We find that, although in some instances the
lightest superstring type may be well described using
ordinary cosmic strings with reduced intercommuting
probability to model their dynamics, heavier modes may
leave observable signatures in the stochastic gravitational
wave spectrum. We thus show that including these heavier
strings is essential to accurately characterize the shape and
amplitude of the spectrum.
This paper is organized as follows. In Sec. II, we briefly

review the velocity-dependent one-scale model for cosmic
string network dynamics. In Sec. III, we describe the
emission of gravitational waves by cosmic string loops,
and the method for computing the stochastic gravitational
wave background they generate. In Sec. IV, we review the
velocity-dependent one-scalemodel for cosmic superstrings.
In Sec.V,we start by investigating the impact of the junctions
on the dynamics of F strings (Sec. VA). We then study
the effect of including heavier string types on the shape
of the stochastic gravitational wave background spectrum, in
Sec. V B, for different loop sizes. In Sec. V C, we discuss the
spectrum of gravitational waves generated by realistic
cosmic superstring networks. In Sec. VI, we derive the
observational constraints on the tension of fundamental
strings, GμF, for which loop size is determined by the
gravitational backreaction scale set by (indirect) CMB data
(Sec. VI A) and NANOGrav (Sec. VI B). We then conclude
in Sec. VII.

II. COSMIC STRING EVOLUTION

The velocity-dependent one-scale (VOS) model [55,56]
describes the time evolution of the characteristic length scale
of the network,L, and of its root-mean-square (rms) velocity,
v̄, thus allowing for a quantitative characterization of string
network dynamics. If one assumes that the cosmic string
network is roughlyhomogeneous on sufficiently large scales,
one may define its characteristic length scale as

ρ ¼ μ

L2
; ð1Þ

where μ is the cosmic string tension, and ρ is the average
energy density of long strings. For infinitely thin cosmic
strings—whose thickness is much smaller than their curva-
ture radius—the following evolution equations for L and v̄
can be obtained by averaging the microscopic Nambu-Goto
equations of motion [55,56] (see also [57–59] for a more
general derivation of the VOS equations):

2
dL
dt

¼
�
2H þ v̄2

ld

�
L; ð2Þ

dv̄
dt

¼ ð1 − v̄2Þ
�
kðv̄Þ
L

−
v̄
ld

�
; ð3Þ

whereH ¼ ðda=dtÞ=a is the Hubble parameter, and a is the
cosmological scale factor. We have also introduced the
damping length scale, l−1

d ¼ 2H þ l−1
f , that accounts not

only for the deceleration caused by theHubble expansion but
also for the effect of frictional forces caused by interactions
with other fields (encoded in the frictional length scale, lf).
We shall assume for the remainder of this paper thatlf ¼ ∞.
Moreover, kðv̄Þ is an adimensional curvature parameter that
encodes the effects caused by the existence of small-scale
structure on long strings. In [56], the following ansatz was
suggested

kðv̄Þ ¼ 2
ffiffiffi
2

p

π
ð1 − v̄2Þð1þ 2

ffiffiffi
2

p
v̄3Þ 1 − 8v̄6

1þ 8v̄6
: ð4Þ

String interactions are a key ingredient in the evolution
of cosmic string networks. When two cosmic strings
collide, they may exchange partners and intercommute.
This process has important consequences for the dynamics
of a network, since it leads to the production of cosmic
string loops that detach from the long-string network. The
energy lost into loops by the long-string network may be
written as [60]

dρ
dt

����
loops

¼ ~c v̄
ρ

L
; ð5Þ

where ~c is a phenomenological parameter that characterizes
the efficiency of the loop-chopping mechanism. Numerical
simulations indicate that ~c ¼ 0.23� 0.04 is a good fit both
in the matter and radiation eras, for standard cosmic string
networks [56].
These loops start decaying radiatively once they detach

from the cosmic string network and, thus, they have a finite
life span. Consequently, the network loses energy at the rate
given by Eq. (5). This effect is included in the VOS
equations by adding the following term to the right-hand
side of Eq. (2):
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dL
dt

����
loops

¼ 1

2
~c v̄ : ð6Þ

Equations (2), (3), and (6) are the basis of the VOS
model and they describe the large-scale evolution of cosmic
string networks. Interestingly, the linear scaling regime
[61–65] arises naturally in this model. Indeed, a regime of
the form

L
t
¼ ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ ~cÞ
4βð1 − βÞ

s
and v̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

kþ ~c
1 − β

β

s
ð7Þ

is an attractor solution of the VOS equations, in the case of
a decelerating power-law expansion of the Universe—with
a ∝ tβ and 0 < β < 1. (For a detailed discussion of this and
other scaling solutions of cosmic string and other p-brane
networks, see [58,59,66].) Note however that, in a realistic
cosmic background, such scaling solutions are only attain-
able deep into the radiation and matter epochs (for β ¼ 1=2
and β ¼ 2=3, respectively). During the radiation-matter
transition, the network enters a long-lasting transitional
period during which it is not in a linear scaling regime
[50,66]. This “delay” in scaling is what one should
realistically expect: cosmic string networks have to slowly
adapt, after the onset of the radiation-matter transition, to
the changes in the underlying cosmological background.
Note also that the matter era might not be long enough for
the network to reestablish scale-invariant evolution before
the onset of dark-energy domination. In the latter phase, the
expansion of the Universe is accelerated and the network
becomes conformally stretched [58] with L ∝ a and v̄ → 0.
Cosmic string networks are, then, diluted away rapidly by
the accelerated expansion once the Universe becomes dark-
energy dominated.
Finally, it should be remarked that the VOS model has

enough plasticity to allow for the description of nonstand-
ard cosmic string networks, through a recalibration of its
free parameters and/or through the inclusion of additional
terms (as we shall see in Sec. IV for the case of cosmic
superstrings).

III. THE STOCHASTIC GRAVITATIONAL
WAVE BACKGROUND GENERATED

BY COSMIC STRINGS

The creation of cosmic string loops is expected to occur
copiously throughout the evolution of cosmic string net-
works. Once a loop detaches from the long-string network,
it oscillates relativistically and decays through the emission
of gravitational radiation. There are, at any given time in
cosmic history, several cosmic string loops emitting
gravitational waves (GWs) in different directions. The
superposition of these emissions gives rise to a stochastic
gravitational wave background (SGWB) with a character-
istic shape, spanning a wide range of frequencies [24–27].

A. Cosmic string loop emission

In this context, it is often assumed that cosmic string
loops are created with a size that is a fixed fraction of the
characteristic length of the network at the time of birth (tb),

lb ¼ αLðtbÞ; ð8Þ

where α is a constant parameter. Realistically, one does not
expect all the loops produced at a given time to have
precisely the same length. Instead, the distribution of the
sizes of the loops formed at the time tb is expected to have a
peak around lb. If the width of the distribution of loop sizes
is not very large, assuming that all the loops have the same
size at the moment of formation should be a good
approximation (the effect of relaxing this assumption
was studied in [46]).
Loops emit gravitational waves in a discrete set of

frequencies

fj ¼
2j
l
; ð9Þ

where l is the length of the loop, j is the harmonic mode
number, and fj is the corresponding frequency. Gravita-
tional backreaction damps higher-frequency modes more
efficiently than it does low-frequency ones [67,68]. The
power emitted in each mode is

dEj

dt
¼ Gμ2

Γ
E
j−q; ð10Þ

where E ¼ Pns
m m−q and q is a parameter that depends on

the shape of the loops. It has been shown that q ≈ 2 for
loops with kinks and q ≈ 4=3 for cuspy loops [4]. Here, we
have also introduced a cutoff, ns, to the summation in E.
Previous work [46,50] has shown that it is sufficient to
consider modes up to ns ¼ 103ð105Þ for loops with kinks
(cusps): the spectrum remains unchanged by the inclusion
of higher order modes. Moreover, Γ ∼ 65 [24,69] (see also
[70–72]) is a parameter characterizing the efficiency of GW
emission, and G is the gravitational constant.
Cosmic string loops thus lose energy roughly at a

constant rate, dE=dt ¼ ΓGμ2, and their length decreases
as GWs are emitted:

lðtÞ ¼ αLðtbÞ − ΓGμðt − tbÞ; ð11Þ

for tb < t < td ¼ ððαLðtbÞÞ=ðΓGμÞ þ 1Þ−1tb, where td is
the time of the loop disappearance.
There is presently no consensus in the literature regard-

ing the most appropriate choice of α. Several early studies
[63,65,73,74] suggested that α should be smaller than (or
close to) the gravitational backreaction scale α≲ ΓGμ,
while more recent studies [75–79] suggest scales much
closer—albeit 1 to 3 orders of magnitude smaller—to the
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characteristic length scale of the network. There are also
recent studies which indicate that string loops might be
formed with lengths similar to the string thickness [80–82].
Recently, however, there is mounting evidence [83–85]
(coming from Nambu-Goto simulations) that loop forma-
tion may happen at two fundamentally different scales, so
that two different populations of loops are produced. As a
matter of fact, recent simulations [86] seem to indicate that
90% of the energy lost due to loop production is in the form
of small loops with α ∼ ΓGμ, while the rest is mostly in the
form of large loops with α ∼ 1=20.

B. Spectral density of gravitational waves

The amplitude of the stochastic gravitational wave
background is often measured by the energy density in
gravitational waves, ρGW, per logarithmic frequency inter-
val in units of critical density (ρcrit),

ΩGWðfÞ ¼
1

ρcrit

dρGW
d log f

; ð12Þ

where ρcrit ¼ 3H2
0=ð8πGÞ and the subscript “0” denotes the

present epoch. This spectral density may be written as [51]

ΩGWðfÞ ¼
Xns
j

j−q

E
Ωj

GWðfÞ; ð13Þ

with

Ωj
GWðfÞ ¼

16π

3

�
Gμ
H0

�
2 Γ
fa50

Z
t0

ti

jnðljðt0Þ; t0Þa5ðt0Þdt0;

ð14Þ

where ti is the time instant in which the chopping of loops
from the long-string network begins, and nðl; t0Þdl is the
number density of cosmic string loops with lengths
between l and lþ dl at time t. Here we have also defined

ljðt0Þ≡ 2j
f
aðt0Þ
a0

ð15Þ

as the physical length that the cosmic string loops should
have at each instant t0 in order to emit, in the harmonic
mode j, gravitational waves that have a frequency f at the
present time.
It is straightforward to show that

Ωj
GWðjfÞ ¼ Ω1

GWðfÞ; ð16Þ

since ljðt0Þ and l1ðt0Þ are identical if the frequencies under
consideration satisfy fj ¼ jf1. Therefore, once the spectral
density of GWs emitted in the fundamental mode (n ¼ 1),
Ω1

GWðfÞ is computed, one may easily construct Ωj
GWðfÞ for

any arbitrary emission mode j (thus significantly reducing
computation time).

C. Number density of loops

In order to compute ΩGWðfÞ, it is crucial to have a good
estimate of the loop distribution function nðljðt0Þ; t0Þ. Let
ncðtÞ be the total number density of loops that have been
formed as the result of intercommutation between the time
of formation of the string network and a time t. The VOS
model for cosmic strings implies that the rate of loop
production per unit volume is

dnc
dt

¼ ~c
α

v̄
L4

: ð17Þ

This expression may simply be obtained by dividing the
total energy density that is lost by the string network due to
loop formation [Eq. (5)] by the energy of each loop at the
moment of creation.
After formation, loop size shrinks as a consequence of

gravitational radiation emission. Therefore, nðljðt0Þ; t0Þ has
contributions from all preexisting loops that have physical
lengths ljðt0Þ at time t0. Determining the times of creation
(tib) of the loops that contribute to a given frequency at any
given time t0 is essential to computing nðljðt0Þ; t0Þ. Given
these instants, the number density of loops is given [50]

nðljðt0Þ; t0Þ ¼
X
i

�
1

αdLdt jt¼tib
þ ΓGμ

~c
α

v̄ðtibÞ
L4ðtibÞ

�
aðtibÞ
aðt0Þ

�
3
	
:

ð18Þ

Note that, given the strong dependence of Eqs. (17) and
(18) on L and v̄, an accurate characterization of the large-
scale cosmic string dynamics is necessary for a precise
estimation of the number density of loops. So, in perform-
ing this calculation—contrary to what is generally done in
the literature (see e.g. [43,45–47])—we did not assume the
network to be in a linear scaling regime. It was demon-
strated in [50] that this assumption leads to an under-
estimation of the number density of loops produced in the
matter era, and thus to a significant underestimation of the
amplitude of the SGWB generated by cosmic strings during
this epoch.

D. The small-loop regime

In Ref. [51], an alternative method for the computation of
the SGWB generated by small cosmic string loops was
proposed. This method produces identical results to stan-
dard methods, but has the advantage of requiring signifi-
cantly less computation time. For this reason, we shall use
this method when computing the SGWB spectrum in the
small-loop regime.
In the small-loop regime, cosmic string loops live less

than a Hubble time, tH ¼ H−1. It is, therefore, reasonable to
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assume that their energy is radiated in GWs immediately
after formation. This energy, however, is not radiated in a
single frequency: as the loop size decreases, the GW
frequency must increase. In this case, though, this occurs
effectively immediately in the cosmological time scale.
Thus, if the size of the loop at the moment of creation is
lðtÞ, it radiates GWs with frequencies

f > fmin ¼
2j
lðtÞ

aðtÞ
a0

; ð19Þ

at the present time.
The distribution of the power radiated by small loops

over the different frequencies is described by the following
probability distribution function [51]

pðfÞ ¼ pðlÞ
���� dldf

����Θðf − fminÞ ¼
fmin

f2
Θðf − fminÞ; ð20Þ

where Θðf − fminÞ ¼ 1, for f ≥ fmin, and vanishes for all
other f. Hence

dρGW
dtdf

����
loops

¼ dρ
dt

����
loops

�
aðtÞ
a0

�
4 fmin

f2
Θðf − fminÞ; ð21Þ

where dρ=dtjloops is given by Eq. (5). The spectral density
of gravitational waves in the jth mode of emission may,
then, be computed as follows [51]

Ωj
GWðfÞ ¼

16πG
3H2

0a
5
0

Z
t0

tmin

dρ
dt

����
loops

2ja5ðtÞ
αfLðtÞ dt; ð22Þ

where tmin is the time of creation of the loops that
have fmin ¼ f.

IV. COSMIC SUPERSTRINGS

Cosmic superstrings and ordinary cosmic strings have
different phenomenologies. First of all, there are two types
of cosmic superstrings—fundamental strings, or F strings,
and one-dimensional Dirichlet branes known as D strings—
that have different tensions μF ¼ gsμD (where μF and μD
are, respectively, the tension of F and D strings and gs is the
dimensionless string coupling). Moreover, cosmic super-
strings may have a reconnection probability P that is
significantly smaller than unity: it has been shown that 0.1≲
P ≲ 1 for D-string interactions, while for F-string crossings
10−3 ≲ P ≲ 1 [6]. Then, when two superstrings of the same
type collide, they may either pass through each other without
interacting or intercommute. As a result, these networks lose
energy less efficiently and may, thus, be expected to have an
energy density that is larger than that of ordinary cosmic
string networks.
The most significant difference between super- and

ordinary cosmic string networks results, however, from

interactions between strings of different kinds. F and D
strings do not intercommute: when an intersection occurs,
the strings coalesce along their length and bind, forming a
new type of string. As a matter of fact, this process
occurring recursively may lead to the formation of bound
states of p F strings and qD strings known as ðp; qÞ strings,
with a tension of

μðp; qÞ ¼ μF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2=g2s

q
; ð23Þ

where p and q are coprime. One may then expect the
natural evolution of cosmic superstring networks to lead to
an infinite hierarchy of cosmic superstrings with increasing
tension, forming highly entangled networks with Y-type
junctions in which three types of strings meet.
In Refs. [54,87], the VOS model for ordinary cosmic

strings was extended to allow for the description of
multitension networks with junctions. This was done by
assuming that networks of cosmic strings of different types
have different energy densities, ρi, and that they should be,
as a consequence, characterized by different characteristic
lengths Li:

ρi ¼
μi
L2
i
: ð24Þ

Here, the subscript i is used to refer to the ith type of string.
Whenever two string species i and j interact, a portion of
their length is used to create a new segment of type k. This
results in a transference of energy from the i and j networks
into the network of k strings. This energy transfer may be
described using the function

μkDk
ij ¼ μk ~d

k
ij
v̄ijlij

L2
i L

2
j
; ð25Þ

where ~dkij ¼ ~dkji is a phenomenological parameter that
describes the efficiency of the junction formation mecha-

nism in collisions of i and j strings, v̄ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄2i þ v̄2j

q
, v̄i is

the rms velocity of the string of type i, and lij is the average
length of the new segment of string (lij cannot be larger
than the smallest of the characteristic lengths of the
interacting networks). Here, we shall make the choice

l−1
ij ¼ L−1

i þ L−1
j ð26Þ

introduced in [54].
Note that, since in general μk ≠ μi þ μj, there is some

excess energy left behind in the junction formation process.
One of the open questions about cosmic superstring
dynamics is what happens to this excess energy: it may
either be acquired by the new segment as kinetic energy, or
radiated away (e.g. due to the production of microscopic F
strings [87]). One may take these possibilities into account
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by including in the velocity evolution equation, for each
possible interaction, an acceleration term of the form

dv̄k
dt

����
juncs

¼ ð1 − v̄2kÞBDk
ij

μi þ μj − μk
μk

L2
k

v̄k
; ð27Þ

where 0 ≤ B ≤ 1 is a parameter that sets the portion of
energy that is radiated away in the junction formation
process: for B ¼ 0, all the excess energy is radiated away,
while, for B ¼ 1, it is absorbed as kinetic energy.
The evolution equations for the characteristic length and

rms velocity of a network of superstrings of type i are, then,
of the form [54,87]

dv̄i
dt

¼ ð1 − v̄2i Þ
�
kiðv̄iÞ
Li

− 2Hv̄i þ B
X
b;a≤b

Di
ab
μa þ μb − μi

μi

L2
i

v̄i

�
; ð28Þ

dLi

dt
¼ HLið1þ v̄2i Þ

þ 1

2
~civ̄i þ

1

2

�X
a;k

Dk
ia −

X
b;a≤b

Di
ab

�
L3
i ; ð29Þ

where ~ci is the self-intersection (or loop-chopping) effi-
ciency parameter for strings of type i, and we have assumed
that kiðv̄iÞ≡ kðv̄Þ for all types of strings.
Note that when a ðp; qÞ string meets a ðp0; q0Þ string,

there are two possible outcomes: either a ðpþ p0; qþ q0Þ
string or a ðp − p0; q − q0Þ string is formed, depending on
the relative velocity of the strings and on the angle of
incidence. However, as p and q (and/or p0 and q0) increase,
the probability of an additive process occurring decreases.
The creation of heavy string types is thus not favored and
one should expect the energy density of strings to decrease
steeply as their tension increases. As matter of fact, it has
been shown in [87,88] that, in general, it suffices to
consider the three lightest string types: (1,0), (0,1), and
(1,1). For the remainder of this paper, we shall consider
only these three types of strings, which will be labeled 1, 2,
and 3, respectively.

To fully determine the cosmological evolution of
cosmic superstrings, one thus needs six parameters: three
self-interaction coefficients—~c1, ~c2, and ~c3—and three
cross-interaction coefficients— ~d312, ~d213, and ~d123. These
parameters are determined by the microphysical intercom-
muting probabilities Pij (that describe the interactions of
strings of types i and j at a quantum level). The value of
these parameters was computed in Ref. [88]. In general, one
may expect that

~ci ¼ ~cPγ
i ; ð30Þ

where ~c is the loop-chopping efficiency of ordinary cosmic
strings and Pi ≡ Pii is the intercommuting probability of
cosmic strings of type i. In the context of a one-scale
model, one would expect γ ¼ 1. Note however that Nambu-
Goto simulations of cosmic string network evolution with
reduced intercommuting probability [89] indicate that the
amount of small-scale structure on strings increases sig-
nificantly as Pi is reduced and, as a consequence, a smaller
value of γ ¼ 1=3 is observed. On the other hand, flat
spacetime simulations [90] indicate a different exponent:
γ ¼ 1=2. In Ref. [88], when computing the self- and cross-
interaction parameters, the authors assumed that γ ¼ 1=3
(and, thus, by using the values obtained therein, so do we).
There, it is also assumed that the ~dij parameters have the
following dependence on the microphysical probabilities

~dkij ¼ dkijS
k
ij; with dkij ¼ κP1=3

ij ; ð31Þ

where κ ∼ 1 and Skij describes the conditional probability of
a segment of type k being produced in a collision of strings
of types i and j, given that an interaction has occurred. The
formation of a zipper of type k in collisions of i and j
strings is subject to kinematic constraints [87,91–93] (in
particular, due to the existence of an additive and sub-
tractive channel). The factors Skij account for the reduction

in the average values of ~dkij coefficients that results from
“removing” all kinematically forbidden interactions (that
realistically do not occur). The resulting values of the
coefficients—recorded in Table I—are also dependent on

TABLE I. The auto- and cross-interaction parameters, ~ci and ~dkij, for the three lightest string types, for different values of gs and w.
These coefficients were computed in Ref. [88].

w gs ~c1 ~c2 ~c3 ~d312 ~d213 ~d123 w gs ~c1 ~c2 ~c3 ~d312 ~d213 ~d123

1 0.04 0.02 0.13 0.13 0.05 0.08 0.55 0.1 0.04 0.01 0.13 0.13 0.05 0.07 0.55
0.1 0.03 0.16 0.16 0.04 0.11 0.62 0.1 0.02 0.16 0.16 0.04 0.1 0.62
0.2 0.05 0.19 0.19 0.03 0.14 0.63 0.2 0.02 0.19 0.19 0.03 0.13 0.63
0.3 0.07 0.20 0.20 0.03 0.16 0.61 0.3 0.03 0.20 0.20 0.02 0.14 0.61
0.5 0.10 0.21 0.21 0.02 0.21 0.54 0.5 0.05 0.20 0.21 0.01 0.15 0.54
0.7 0.12 0.22 0.22 0.02 0.26 0.49 0.7 0.06 0.15 0.22 0.01 0.17 0.39
0.9 0.15 0.22 0.22 0.02 0.31 0.45 0.9 0.07 0.12 0.21 0.01 0.20 0.31
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the string theory model that originates the superstrings:
they depend not only on the string coupling gs, but also on
the volume of the compact extra dimensions that strings
may explore. Here, as in [88], this is parametrized by a
volume factor w≡ Vmin=VFF, where Vmin is the string scale
volume and VFF is the effective volume the strings can
explore.
Once the kinematic constraints on the junction for-

mation process are taken into account (using the values in
Table I for the self- and cross-interaction parameters),
linear scaling regimes seem to be a generic attractor
solution of the generalized VOS equations for cosmic
superstrings, both in radiation and matter-dominated
universes. Although, it is currently not clear what happens
to the excess energy liberated in the binding process,
these linear scaling regimes seem to occur, in general, for
all 0 ≤ B ≤ 1. As pointed out in [87], changing the
value of B does not affect the overall dynamics of
the network drastically: it only seems to affect the heavier
modes.

V. SGWB GENERATED BY
COSMIC SUPERSTRING

Cosmic superstrings, despite having a reduced inter-
commuting probability, are still expected to produce a
copious amount of loops. The cosmological evolution of
superstrings results, as we have seen, in the creation of a
hierarchy of string networks with increasing tension. One
thus expects the evolution of cosmic superstring networks
to give rise to several populations of loops of strings of
different types. These different loop populations are
(mostly) independent, and, thus, their contributions to
the SGWB may be calculated separately.
Usually, when forecasting the SGWB spectrum gen-

erated by cosmic superstrings, it is common to merely
compute the spectrum generated by ordinary cosmic
strings with reduced intercommuting probability (see
e.g., [45–47,94–97]). These studies only take into
account the contributions of the lightest string type to
the SGWB, and do not take into account the effect of the
energy loss caused by junction formation. At a first
glance, considering only the lightest string species—the F
strings—seems to be a reasonable assumption: heavier
strings have a larger characteristic length and, conse-
quently, their rate of loop production, as Eq. (5) indicates,
is expected to be significantly smaller than that of lighter
strings. This means that one should expect, in general,
the amplitude of the SGWB produced by the heavier
strings to be significantly smaller. Note however that,
since the characteristic length of the different species is
different (and, thus, they emit gravitational waves with
different frequencies), there may be signatures of the
heavier strings on the total SGWB spectrum. In this
section, we investigate this possibility.

A. Can the VOS model for ordinary strings be used to
describe F strings (at least to some extent)?

The VOS model for ordinary cosmic strings may be
straightforwardly reparametrized to describe string net-
works with reduced intercommuting probability: one sim-
ply needs to adjust the energy loss parameter according to
Eq. (30). Including the effect of junctions, however, is not
as easy: it would require a numerical fitting of the ~c
parameter. Note however that, when the energy lost by F
strings in the junction formation process is negligible—or,
equivalently, if D strings are considerably heavier than F
strings (gs ≪ 1)—this rescaling of the ~c parameter should
suffice to obtain a correct description of the dynamics of F
strings using the ordinary VOS model.
In this case, one may easily estimate the effect that

the reduction of P has on the radiation era amplitude
of the SGWB. It has been demonstrated in [66] that, during
the radiation era, weakly interacting networks experience a
linear scaling regime of the form

ξ ¼
ffiffiffi
2

p
~c and v̄ ¼ 1ffiffiffi

2
p −

π

12
~c ð32Þ

for Gμ ≪ ~c ≪ 1. It is, therefore, straightforward to show
that, during the radiation era, the rate of loop production
scales as

dnc
dt

∝ ~c−3 ∝ P−1; ð33Þ

while the frequency of the emitted radiation suffers a
shift of

f ∝ ~c−1 ∝ P−1=3: ð34Þ

The amplitude of the flat portion of the SGWB conse-
quently scales as

ΩGWðfÞ ∝ ~c−2 ∝ P−2
3: ð35Þ

Note however that the effect on the peak of the spectrum
(generated in the matter era) is not trivial: since after the
radiation-matter transition is triggered, the network can no
longer be assumed to be in a linear scaling regime, finding
the explicit dependence of ΩGWðfÞ on P is not possible. In
this case, Eqs. (34) and (35) are approximately verified;
however the increase in the amplitude of ΩGWðfÞ may be
smaller in the large-loop regime. So—although the cos-
mological constraints on cosmic strings that result from
probes that test the flat portion of the spectrum (for
instance, ground-based interferometers) may be trivially
extended for F string—the accurate computation of the
constraints that result from the portion of the spectrum
associated to the gravitational radiation produced during
the matter era necessarily involves a full recomputation of
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the spectrum (even when considering the lightest
strings only).
Notice also that the shift in frequency of the emitted

gravitational radiation in Eq. (34) is often ignored in the
literature, with authors considering simply an enhancement
of the amplitude of ΩGWðfÞ when P is reduced. This shift
necessarily occurs and it has a simple physical interpreta-
tion. The effect of reducing the intercommuting probability
is to also reduce the amount of energy that is lost into loops.
This leads to an increase in the cosmic string energy density
and to the corresponding reduction of the characteristic
length scale. One therefore should have production of loops
with a smaller physical size—even assuming the same
α—that emit gravitational waves with larger frequency. The
position of the peak of the spectrum is altered by this
increase in the frequency of gravitational waves and, thus,
ignoring this effect necessarily introduces errors in the
computation of observational constraints for cosmic string
with reduced P. By using the VOS model parametrized by
~c, to describe the cosmological evolution of the cosmic
string networks, we shall take this effect into account
throughout this paper.
Figure 1 shows the evolution of the rms velocity and

characteristic length scale of F strings for different values of
the string coupling gs. There, we also plot the evolution of v̄
and L for ordinary cosmic strings with the same (reduced)
intercommuting probability. This is straightforwardly done
by rescaling the value of the loop-chopping parameter to
that of the F strings: ~c ¼ ~c1. Such procedure corresponds to
what is usually done in the literature when dealing with the
SGWB generated by cosmic superstrings and we shall refer
to this model as the simplified model. In this computation
and throughout the remainder of this paper, we take
H0 ¼ 100h km s−1 Mpc−1, with h ¼ 0.673, for the current
value of the Hubble parameter, a fractional cosmological
constant density of Ω0

Λ ¼ 0.685, and a radiation-matter
equality redshift of zeq ¼ 3393, as indicated by the Planck
2015 data [98]. Moreover, we shall also include the

dynamical effects associated with the alteration of the
number of degrees of freedom caused by the annihilation
of massive particles during the radiation era. This causes a
sudden change on H that affects temporarily cosmic string
dynamics. Here, this effect on H is modeled as in [99]. As
this figure clearly illustrates, the fit of the simplified model
becomes increasingly poor as gs increases, despite provid-
ing a pretty good description of F strings for gs ≲ 0.1. This
difference is necessarily amplified in the SGWB spectrum,
since the amplitude of ΩGWðfÞ has a strong dependence on
L and v̄. One may therefore conclude that, in most
instances, ignoring the heavier strings may introduce error
in the computation of the SGWB generated by cosmic
superstring networks. This figure also illustrates the effects
of particle annihilation on the evolution of cosmic strings:
when these events occur, the network is temporarily
“knocked out” of the scale-invariant regime. After each
event, the network then slowly evolves towards this regime
again (which is, as we have seen, an attractor).

B. Can the GW emitted by heavier
strings really be neglected?

Heavier string species may affect the shape of the SGWB
in two ways: they may not only affect the dynamics of F
strings‡which are, in general, the dominant contributors to
the spectrum—but also generate GWs themselves that
contribute to this background. To investigate the relevance
of this contribution, we compute the SGWB spectrum
generated by the three lightest cosmic string types sepa-
rately and add their contributions to each particular
frequency. In these calculations, we shall assume that
the three loop species are characterized by the same loop
size parameter α1 ¼ α2 ¼ α3 ¼ α, and that the gravitational
emission efficiency parameter Γ is equal for all of them.
Moreover, we shall start by studying loops created at two
typical sizes (motivated by simulation results): large loops,
which we shall assume to be characterized by α ¼ 1=20,
and small loops, with α ¼ Gμ1. We will discuss the

FIG. 1. The cosmological evolution of the rms velocity and characteristic length of F strings described by the VOS model for
superstrings (solid lines), alongside that of cosmic strings described by the simplified model (dashed lines), for different values of gs.
Here, we have assumed that w ¼ 1 and B ¼ 0.
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intermediate scales when appropriate. We shall also some-
what relax the assumption that all loops have the same α
later in this section. Finally, in this subsection, we choose
the fiducial set of parameters GμF ¼ 10−9, B ¼ 0, and
w ¼ 1. The effect of the variation of the cosmic string
tension on the shape and amplitude of the spectrum was
discussed elsewhere (see e.g. [46,50]). We shall discuss the
impact of B and w on the shape of the spectrum in the next
subsection.
Figure 2 shows three examples of the SGWB generated

by cosmic superstring networks in the large-loop regime
(solid lines), for different values of gs and w ¼ 1. For each
of these, we also plot the SGWB generated by cosmic
superstrings described by the simplified model (dotted
line). One may notice that, for large loops, the simplified
model provides a fairly good description of most of the
SGWB spectrum generated by cosmic superstrings for
sufficiently low gs (if one takes into account, as we do
here, the frequency increase that accompanies the reduction
of P). Note however that these spectra are not identical:
there is a small difference in the amplitude throughout [that
is not apparent in the figures because the ΩGWðfÞh2 axis
spans 12 orders of magnitude]. This similarity in the
spectrum necessarily means that one may not be able to
distinguish between cosmic superstrings and ordinary
strings that have a reduced intercommuting probability
due to nonstandard interaction mechanisms (e.g. friction
caused by interaction with other cosmological components,
the existence of conserved currents, etc.) if a signal is
detected. This difficulty may even arise if gs is large: one
may always fit the superstring spectrum using the sim-
plified model by using different Gμ and ~c values. This
degeneracy is only broken if one looks to small enough
frequencies: in that range, there exist clear signatures of
heavier modes (that emit at lower frequencies because their
characteristic length is larger). Detecting them would allow
us, at least in principle, to obtain more information not only
about the string coupling but also about the underlying

string theory. Note, however, that the expected frequency
range and the magnitude of the predicted signatures may be
beyond the reach of current gravitational wave experi-
ments. This discussion applies for all values of α in the
large-loop regime (with α ≫ Gμ)—although, as α
increases, the peaks generated by the different string types
get closer in amplitude.
The same is not true in the small-loop regime. In Fig. 3,

we plot the total spectrum of gravitational waves generated
by cosmic superstrings with different gs values (solid lines),
alongside that of superstrings described by the simplified
model, in the small-loop regime. Although, as previously
discussed, the fit of the simplified model to the SGWB
generated by F strings may be considered fairly good in
most instances, the signatures of heavier modes on the peak
of the spectrum are, in this case, much more prominent. As
a matter of fact, their detection is indeed conceivable in this
instance. Furthermore, the type of signature left by the
heavier modes is dependent on the relative tension of the
different species (or, equivalently, the value of gs). For
gs ∼ 1, F and D strings have comparable tensions and, thus,
they contribute mostly to the same frequency range and
their peak has a similar location. The SGWB signal of F
strings is therefore enhanced by the contribution of D
strings—which makes the simplified model a poorer fit in
this case. Evidence of the existence of (1,1) strings may be
found in the lowest-frequency range in the form of a small
“bump.” If, however, gs ≪ 1, type 2 and 3 strings have
similar tensions and, thus, their contribution to the spec-
trum may be observed in the form of a larger “bump”—
almost a second peak—in the low-frequency range.
Although, at a first glance, these two situations may look
similar, in the case of gs ≪ 1, the signature of heavier
modes is significantly more prominent and there is a
tenuous signature of the type 3 strings (caused by the fact
that the peak of their SGWB spectrum is not exactly
coincident with that of type 2 strings). Finally, for inter-
mediate values of gs, we may have a situation in which

FIG. 2. The stochastic gravitational wave background generated by cosmic superstrings (solid lines) characterized by GμF ¼ 10−9,
B ¼ 0, and w ¼ 1, for different values of the fundamental string coupling gs, in the large-loop regime (α ¼ 1=20). Here, we also plot the
SGWB generated by each of the string species (dashed lines) and that of cosmic superstrings described by the simplified model
(dashed line).
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signatures of all three types of strings are observable (since
their peaks happen at different frequencies). In this case,
therefore, there is a significant broadening of the peak of
the observed spectrum. In either case, the signatures of the
heavier modes seem to be within the sensitivity window of
upcoming gravitational wave detectors and, therefore, a
direct detection of these features is conceivable. Having
said this, notice that we have only considered the three
lightest types of strings. Heavier modes may also leave
specific signatures, albeit at even lower frequencies and
with significantly fainter amplitude.
As to relaxing the assumption that all string species

produce loops with the same characteristic loop size
parameter, one may clearly construct spectra with com-
pletely different shapes and with different string types
providing the dominant signatures. Note however that there
is no physical evidence supporting loop production occur-
ring at significantly different scales for different string
types. The situation in which the loop size is close to (but
slightly smaller than) the gravitational backreaction scale—
i.e., αi ∼ Gμi—however, is of physical interest: (standard)

Nambu-Goto simulations indicate that 90% of the energy
lost into loop production is in the form of loops created at
the gravitational backreaction scale. In Fig. 4, we plot the
SGWB generated by cosmic superstring networks that have
αi ¼ Gμi for three values of the fundamental string
coupling (gs). As one might expect, this situation is quite
similar to that of the small-loop regime when all α’s are
equal, that was discussed previously in this section. Note
however that, in this situation—wherein strings with larger
tension also have a correspondingly larger α—the signa-
tures of heavier strings are more prominent and may be
easier to detect.

C. What can we realistically
expect for cosmic superstrings?

The shape of the SGWB generated by cosmic super-
strings is, as is also the case for ordinary cosmic strings, not
only dependent on the macroscopic properties of the
network (Gμi, Li, and vi) but also on the size and emission
spectrum of cosmic string loops. There are several aspects

FIG. 4. The stochastic gravitational wave background generated by cosmic superstrings (solid lines) characterized by GμF ¼ 10−9,
B ¼ 0, and w ¼ 1, for different values of the fundamental string coupling gs, for which loop production happens close to the
gravitational backreaction scale (αi ¼ Gμi). Here, we also plot the SGWB generated by each of the string species (dashed lines) and that
of cosmic superstrings described by the simplified mode (dashed line).

FIG. 3. The stochastic gravitational wave background generated by cosmic superstrings (solid lines) characterized by GμF ¼ 10−9,
B ¼ 0, and w ¼ 1, for different values of the fundamental string coupling gs, in the small-loop regime (with α ¼ 10−9). Here, we also
plot the SGWB generated by each of the string species (dashed lines) and that of cosmic superstrings described by the simplified model
(dashed line).
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of the evolution of cosmic superstring networks that are not
entirely understood yet. However, there are several studies
of cosmic superstring dynamics in the literature that may
help us shorten the parameter space.
In [89], it has been demonstrated, using Nambu-Goto

simulations of cosmic string dynamics, that there is a
buildup of small-scale structure on cosmic strings as the
reconnection probability is reduced. It was also suggested
therein that, due to this buildup of small-scale structure, the
reduction of P should not be expected to have a significant
impact on the production of small loops. The production of
large loops, however, should be suppressed in cosmic string
networks with reduced intercommuting probability [89].
As we have discussed, recent simulations of Nambu-Goto
cosmic strings with P ¼ 1 indicate that only 10% of the
energy lost as a result of string intercommutation is in the
form of large loops. For cosmic superstrings, which may
have a significantly reduced intercommuting probability,
one would then expect the fraction of energy lost into large
loops to be significantly reduced, and, therefore, that their
contribution to the SGWB would be subdominant (if not
negligible). It is therefore reasonable to assume that all
loops (from all different cosmic string species) are created
at the gravitational backreaction scale.
Moreover, the existence of extra dimensions that the

string may explore decelerates the strings in the non-
compact dimensions. As a consequence, the formation of
cusps—in which strings are locally ultrarelativistic—is
significantly suppressed [100,101]. The authors found that
the formation of “near cusp events” (wherein the velocity of
the string is locally smaller) may still occur, but, in this
instance, their gravitational wave emission is significantly
weaker. Kinks, on the other hand, are produced as a result
of intercommutation and, therefore, should also be a
generic feature of cosmic superstrings [102]. As a matter
of fact, it has been shown in [53,103] that kinks proliferate
on superstrings due to the presence of Y-type junctions:
when a kink, as it is propagating on a string, encounters a
junction, it is reflected and it gives rise to two daughter

kinks in the other two connecting strings. This effect could
be dramatic in superstring loops with junctions—in that
case, the number of kinks on the loop would grow
exponentially; however, when dealing with small loops,
it is highly unlikely that such loops would be chopped off
of the network. Loops with junctions may also result from
the collision of two loops of strings of different types. In
this case, however, the newly formed string segment
unzips, leading to the separation of the loops [104].
It seems therefore that, in realistic scenarios, one may

expect the natural evolution of cosmic superstring networks
to give rise to a large population of small and kinky loops
created at the gravitational backreaction scale—which
happens to be the case in which the signatures of heavier
strings are more prominent.
In Fig. 5, we plot the SGWB generated by kinky cosmic

string loops, whose size is set by the gravitational back-
reaction scale, for different values of gs. We have assumed a
spectral index q ¼ 2 and considered modes of emission up
to ns ¼ 103 (which is the saturation mode for loops with
kinks [46,50]). In this figure, we also relax the assumption
that w ¼ 1 and B ¼ 0. The effect of including higher
modes of emission in the shape of the peak of the SGWB
spectrum is well known: it causes a slight decrease in its
maximum amplitude that is accompanied by a broadening
of the peak. Figure 5 shows that the inclusion of higher
modes does not alter the general conclusions of the
previous subsection: heavier strings do leave clear detect-
able signatures on the SGWB generated by cosmic super-
strings. Thus, if cosmic superstrings are present, one
should, in principle, be able to detect these signatures that
distinguish them from ordinary cosmic strings.
Furthermore, Fig. 5 allows us to understand the effect of
the existence of extra dimensions on the shape of the
spectrum: if the strings can move in more than 3þ 1
dimensions (or if w < 1), they are more likely to miss each
other and avoid collision. This is the equivalent of having a
reduction of the effective probability of reconnection and of
having a less-efficient energy loss mechanism. As a

FIG. 5. The stochastic gravitational wave background generated by realistic cosmic superstrings networks—with GμF ¼ 10−9,
αi ¼ Gμi, q ¼ 2, and ns ¼ 103—for different values of the fundamental string coupling gs. Here, we plot this spectra for two values of
w—w ¼ 1 (red line) and w ¼ 0.1 (green line)—and for B ¼ 0 (solid lines) and B ¼ 1 (dashed lines).
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consequence, there is an enhancement of the string energy
density and a resulting increase in the energy density of
gravitational waves. This increase is particularly evident on
type 1 strings, since heavier strings explore a smaller
fraction of extra dimensions [6,88].
Finally, as discussed in Sec IV, changing the value of B

only seems to affect significantly the heavier cosmic
strings. If one allows the energy left out in the junction
formation process to be absorbed by the new segment, there
is an increase in the rms velocity of the corresponding
string type and a consequent increase in its characteristic
length. The effect of these changes is to lower the amplitude
of the signatures generated by the heavier strings on the
SGWB spectrum [see Eq. (17)]. This decrease is larger for
increasing gs; however, in either case, it is not sufficient to
render these signatures unnoticeable.

VI. OBSERVATIONAL CONSTRAINTS
ON COSMIC SUPERSTRINGS

As previously discussed, the state of the art on cosmic
superstrings seems to indicate that their cosmological
evolution results in the copious production of loops with
kinks whose size is set by the gravitational backreaction
scale. In this section, we shall use the current observational
constraints on the amplitude of the SGWB to derive
constraints on the tension of fundamental strings, GμF.

A. CMB constraints

In the case of cosmic string networks that produce small
loops—which is the case when α ∼Gμ—indirect CMB
constraints often provide the strongest limits on the SGWB
generated by cosmic strings. These indirect CMB con-
straints do not come from constraints on the B-mode
polarization of CMB (which probe gravitational waves
directly), but are inferred from the constraints on the
number of relativistic degrees of freedom. The existence
of a gravitational wave background in the early Universe—
which behaves as a free-streaming gas of massless particles
(as do neutrinos)—necessarily affects the CMB and matter
power spectra [37]. Any deviations of the observed
effective number of relativistic degrees of freedom from
the predicted value would then indicate the presence of
additional relativistic radiation. Current Planck data com-
bined WMAP, SPT, and ACT data, as well as baryon
acoustic oscillation and lensing data allowed the authors of
[97] to derive, at a 95% confidence level, the following
upper limit on the total energy density of gravitational
waves, in units of critical density, created until the time of
decoupling, td, as would be observed today

ΩðtdÞTotalGW jt0 ¼
Z

td

ti

ΩGWðfÞdðlnfÞ< 3.8×10−6h−2; ð36Þ

where ti is the time instant when the emission of gravi-
tational waves is initiated. For cosmic strings, one should

expect ti ∼ tf ∼ tplðGμÞ−2 [4], where tf is the end of the
friction-dominated era (during which the movement of
strings is heavily damped) and tpl is the Planck time. Note
that this constraint leaves out most of the gravitational
waves created during the matter era, during which the peaks
of the spectra (and thus most of the signatures of heavier
string types) are created. However, signatures of type 2 and
3 strings are still present in the low-frequency range. Note
also that big bang nucleosynthesis (BBN) allows us to put a
constraint of similar magnitude on ΩðtBBNÞTotalGW jt0h2 <
8.1 × 10−6 [38] (where tBBN is the time in which big bang
nucleosynthesis occurs). However, since in this case, only
gravitational waves emitted until tBBN are constrained, this
would result necessarily in weaker constraints. Having said
this, we shall point out that when addressing the indirect
CMB or BBN constraints on SGWBs it is essential to
include the effects of the annihilation of massive particles in
the cosmological history. As we have shown in Sec. VA,
these cause a significant reduction of the amplitude of the
gravitational wave power spectrum created early in the
radiation era and, since this reduction significantly affects
the total energy density in gravitational waves, not includ-
ing their effect may lead to a significant overestimation of
the constraints on GμF.
In Fig. 6, we plot the observational constraints on the

tension of fundamental strings, GμF, as a function of
the fundamental string coupling gs, that result from the
(indirect) CMB constraints on SGWBs [in Eq. (36)] for
kinky loops with αi ¼ Gμi. Here, we have chosen B ¼ 0,
since this choice leads to weaker constraints. Note that
changing the value of B has a negligible impact on the
constraints on GμF for small gs, and, as gs increases, the

FIG. 6. Indirect CMB constraints on the tension of fundamental
strings, GμF, as a function of the string coupling gs, for cosmic
superstrings with αi ¼ Gμi, q ¼ 2, and ns ¼ 103. Black lines
correspond to models for which w ¼ 1, while red lines represent
the constraints for w ¼ 0.1. Solid lines represent the constraints
derived using the velocity-dependent model for cosmic super-
strings and dashed lines correspond to those obtained using the
simplified model. Shaded areas correspond to the excluded
parameter regions. Here, we chose B ¼ 0.
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effect on the constraints also increases until it reaches about
5% (1%) for gs ¼ 0.9 and w ¼ 1 (w ¼ 0.1) and B ¼ 1. In
this figure, one may see that models with smaller gs are
more tightly constrained by the CMB data than those with
larger gs. This happens because the total energy density in
gravitational waves emitted by cosmic superstrings is larger
for smaller intercommuting probabilities and, thus, for
smaller gs. For the same reason, the constraints on GμF
for smaller w are stronger than those with larger w: as Fig. 6
shows, changing the value of w from 1 to 0.1 leads to an
increase of the area of parameter space that is excluded
(represented in this picture by the pink shaded area). Note
that cosmic superstrings may, in fact, have significant
motion in the compact dimensions and they may be able
to explore a larger fraction of their value than previously
expected [101]—instead of being localized in the internal
dimensions, while fluctuating around a minimum of the
potential well [6]. In this case, one expects w to assume
values that are significantly smaller than unity, and the
constraints on GμF to be stronger than the one pre-
sented here.
Indirect CMB constraints on SGWBs result in a

conservative constraint on the tension of fundamental string
of GμF < 2.9 × 10−6. This constraint is conservative in the
sense that it is the maximum tension allowed by CMB data
independent of the value of gs and w. This constraint is
approximately 2 orders of magnitude weaker than the
constraints on cosmic superstrings that result from primary
CMB anisotropies [105]:GμF < 2.8 × 10−8. Note however
that the constraints for w ¼ 0.1 and gs ¼ 0.04 are slightly
stronger: GμF < 1.9 × 10−8. This clearly shows that indi-
rect CMB constraints on the SGWB generated by cosmic
superstrings have the potential of increasing the current
exclusion region of parameter space: for instance, they
yield stronger constraints for small enough gs and/or
small w.
Finally, this figure also reveals the effect that using the

simplified model to describe cosmic superstring dynamics
has on the derived observational constraints. For small gs,
the simplified model provides a good estimate of the
observational constraints on GμF. However, for increasing
gs, the quality of this approximation becomes increasingly
poor: the estimated constraints on GμF may be weaker by
as much as 25% for gs ¼ 0.9. Still, the simplified model
may be used, in this case, to provide robust conservative
observational constraints. Note however that indirect
CMB probes—which only probe the total energy
density in gravitational waves created until the time of
decoupling—are not very sensitive to the errors introduced
by the simplification since the dominant contributors are
type 1 strings. As we shall see in the next subsection, direct
gravitational wave probes sensitive to the frequencies at
which the peaks of the spectra are located can be more
affected by these errors.

B. Pulsar timing array constraints

Pulsar timing arrays probe the existence of SGWBs in
the low-frequency range (f ∼ 10−9–10−8) of the gravita-
tional wave spectrum and, for this reason, they have the
strongest constraining power on the cosmic string tension
for networks that produce large loops. Note however that,
given the high sensitivity of these experiments in this
region, one should expect them to also provide relevant
constraints on the tension of cosmic superstrings for which
loop production happens at the gravitational backreac-
tion scale.
Pulsar timing constraints on the stochastic gravitational

wave background are often expressed in terms of the strain
of the spectrum, hGW—usually modeled as a power law of
the form

hGWðfÞ ¼ AGWðνÞ
�

f
yr−1

�
ν

; ð37Þ

where AGW is the characteristic strain of the spectrum—
which is related to the spectral density in gravitational
waves by

ΩGWðfÞ ¼
2π2

3H2
0

f2h2GW: ð38Þ

Observational constraints on the strain amplitude are
dependent on the spectral index of the SGWB, ν.
NANOGrav nine-year data [106] places an upper limit of
AGW < 1.5 × 10−15 (at a 95% confidence level), at a fre-
quency f ¼ 1 yr−1, for supermassive black hole binaries
with ν ¼ −2=3 (which are expected to be a significant
source in this frequency range). However, they also
provide an analytical fit for the upper limit of the strain
amplitude for different values of the power spectral index:
AGW ∝ 10−0.4ð3−2νÞ.
For cosmic strings, it is often assumed that ν ¼ −7=6,

following estimations of the strain of the SGWB generated
by cuspy loops [94]. However, as pointed out in [46,49]
(and as one may realize by analyzing the shape of the
typical cosmic string spectrum), the slope of the SGWB
cannot be assumed to be constant. One thus expects the
upper limits on the spectral density that result from
NANOGrav (and other pulsar timing arrays) to depend
on the spectral index of the spectrum d—defined by
assuming that locally ΩGW ∝ fd—at the reference fre-
quency of f ¼ 1 yr−1 ≃ 32n Hz:

ΩGWðf ¼ 1 yr−1Þh2 < 4.15 × 10−10þ0.8d; ð39Þ

where d ¼ 2ðνþ 1Þ. For ν ¼ −2=3 (or equivalently
d ¼ −1=3), this yields an upper limit on the SGWB of
cosmic strings of 2.4 × 10−10 (which is the constraint
quoted in [106]). However, since d > −1=3 in large extents
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of the spectrum, using simply this upper limit may lead to
overestimation of the constraints on GμF.
In Fig. 7, we plot the constraints on the tension of

fundamental strings, GμF, as a function of the string
coupling gs, for w ¼ 1 and w ¼ 0.1. As this figure
illustrates, for the case of cosmic superstring networks
with αi ¼ Gμi, the constraints that result from NANOGrav
at f ¼ 1 yr−1 are significantly stronger than those resulting
indirectly from CMB data: they allow us to establish a
conservative limit on the tension of fundamental strings of

GμF < 3.2 × 10−9: ð40Þ

This is about an order of magnitude stronger than the
constraints that result from primary CMB anisotropies (in
Ref. [105]) and it is merely the constraint that results from F
strings only.
Note however that these constraints go significantly

beyond the conservative limit in Eq. (40). Pulsar timing
arrays may be used to detect not only the SGWB generated
by F strings but also that of D strings directly. The
secondary exclusion region—represented by the pink
shaded area—corresponds to the case in which the ampli-
tude of the spectrum generated by D strings—sometimes in
combination with that of (1,1) strings when their frequency
ranges coincide (for small gs)—exceeds the observational
limits set by NANOGrav. This region is only present for
small enough gs, when the spectra of type 1 and type 2
strings are well separated. As a matter of fact, a larger range
of the tension of fundamental strings is excluded as gs
decreases (for gs ¼ 0.09, it spans about 2 orders of
magnitude). When using the simplified model to describe
the SGWB generated by superstrings (and neglecting the
signatures of heavier modes), one loses information about
this exclusion region. Moreover, as was the case for indirect
CMB constraints, this figure also shows that using the

simplified model is fairly successful in predicting the
constraints on GμF that result from F strings for small
gs—despite resulting in an underestimation by around 30%
of the constraint for large gs. This model, however, cannot
predict the secondary exclusion region and, thus, does not
allow for a full exploration of the parameter space. These
limitations of the simplified model apply not only to
observational constraints resulting from pulsar timing
arrays, but also to those that result from any direct probes
of ΩGWðfÞ. Finally, note that although heavier string
composites—(1,1) strings and beyond—seem to be outside
of the reach of current pulsar timing arrays, their detection
with future experiments with larger sensitivity—such as
IPTA, SKA, or eLISA—is indeed conceivable.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have studied in detail the SGWB
generated by the three lightest types of cosmic superstrings.
We have demonstrated that the inclusion of heavier string
types is essential to make accurate predictions of the
shape of the SGWB, and that type 2 and type 3 strings
leave distinct signatures on the total spectrum on the low-
frequency range. The commonly used simplified model—
which approximates the spectrum of cosmic superstrings
by that of ordinary strings with reduced intercommuting
probability—is, to some extent, successful in describing the
spectrum generated by F strings (particularly so if gs ≪ 1).
However, by not including heavier strings (and their
dynamical effects on type 1 strings), it introduces inaccur-
acies in the computation of observational constraints on the
tension of fundamental strings. These inaccuracies are
significant for direct gravitational wave detectors that probe
the frequency range in which the peaks of heavier strings
are located (such as pulsar timing arrays or space-borne
observatories), since, as we have demonstrated, the sim-
plified model does not predict the secondary exclusion

FIG. 7. NANOGrav constraints on the tension of fundamental strings,GμF, as a function of gs, for cosmic superstrings with αi ¼ Gμi,
q ¼ 2, and ns ¼ 103. The left panel corresponds to models with w ¼ 1 and the right panel to w ¼ 0.1. Solid lines represent the
constraints derived using the velocity-dependent model for cosmic superstrings and dashed lines to those obtained using the simplified
model. The blue shaded area represents the exclusion region that results from F strings, while the pink shaded area represents that
resulting from heavier string types. Here, we chose B ¼ 0.
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region that results from heavier strings. However, since the
constraints derived using the simplified model are, in
general, weaker than those obtained using the VOS model
for superstrings, they may be considered “safe” con-
servative bounds.
We have focused our study on the motivated scenario in

which loops are kinky and their size is determined by the
gravitational backreaction scale. This scenario is motivated
theoretically and by numerical simulations of ordinary
cosmic strings. However, since the properties of cosmic
superstrings are significantlydifferent from thoseofordinary
strings, merely extrapolating the results on loop production
of ordinary cosmic strings may be overreaching. To accu-
rately characterize loop production in cosmic superstring
network evolution, one will need detailed numerical studies
of cosmic superstring dynamics. Until those are performed,
one should probably be conservative in the choice of range
for the parameter αwhen deriving observational constraints
on the fundamental string tensionor predicting the parameter
space available for future missions.
There are other aspects of loop production in cosmic

superstrings that are not completely understood. For
instance, the velocity-dependent model for cosmic super-
strings (as well as that for ordinary strings) describes only
the large-scale dynamics of the networks, and does not
provide a detailed model of the small-scale structure along
the strings. Small-scale structure is expected to play a key
role in loop formation—particularly so in the case of small
loops, whose size is expected to be dependent on the typical
size of this structure. Understanding how small-scale
structure evolves is essential to determine the length with
which loops are created. Note however that studies per-
formed using more complex models to describe cosmic
string dynamics [107,108] indicate that the characteristic
length scale of small-scale structure scales with the char-
acteristic length of the network. This justifies the choice of
using l ¼ αL even in the small-loop regime or when the
size of the loop is determined by gravitational backreaction.
Another relevant question for the case of superstrings is

whether the characteristic lengths of the different types
of strings are adequate measures of their physical length.

This is, in general, the case for ordinary cosmic strings
(except in ultrarelativistic regimes that are only attained in
contracting universes); however it may not be the case
when zipper-type junctions are present. In general, one may
expect the characteristic lengths of F and D strings to be an
accurate measure of their physical length (since they form
networks that may exist independently). However, the same
may not be true for compound strings. The characteristic
length—which is a measure of the energy density of the
network—may assume a large value if the strings have a
large physical length or if there exists a small number of
segments with small physical length. Field theory simu-
lations of cosmic superstrings seem to favor this latter
scenario [109,110] (note however that these do not include
the case in which gs ≪ 1). The physical length is the
relevant length determining the size of loops. So, by using
L, one may be overestimating the size of loops created by
type 3 strings. Note, however, that this may be easily
corrected by rescaling the value of α to a smaller value for
compound strings. In the small-loop regime, this merely
causes the SGWB generated by type 3 strings to shift
towards higher frequencies and, thus, has no effect on the
constraints resulting from the CMB. As to the constraints
that result from the pulsar timing array data, this shift may
put the spectrum of type 3 strings out of the probe’s range.
However, since their contribution to the spectrum is
subdominant, the impact on the shape of the secondary
exclusion region is expected to be limited too.
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