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In this paper we investigate the non-Abelian cosmic string in de Sitter and anti–de Sitter spacetimes. In
order to do that we construct the complete set of equations of motion considering the presence of a
cosmological constant. By using numerical analysis we provide the behavior of the Higgs and gauge fields
and also of the metric tensor for specific values of the physical parameters of the theory. For the de Sitter
case, we find the appearance of an horizon. This horizon is consequence of the presence of the
cosmological constant, and its position strongly depends on the value of the gravitational coupling. In the
anti–de Sitter case, we find that the system does not present horizons. In fact the new feature of this system
is related with the behavior of the (00) and ðzzÞ components of the metric tensor. They present a strong
increasing behavior for large distance from the string.
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I. INTRODUCTION

Our understanding about the Universe is based upon the
standard cosmological model known as the big bang theory.
The main feature of the big bang theory is the expansion
of the Universe. Under this basis, as the Universe expands it
has been cooling. During its cosmological expansion, the
Universe underwent a series of phase transitions [1]. These
phase transitions are characterized by spontaneously broken
gauge symmetries, and they have important roles in the
cosmological context [2]. They provide amechanism for the
formation of topological defects that can be described by
classical field theorieswhose configurations of vacuumhave
elegant and topologically stable solutions with relevant
physical implications. Such solutions are specified as the
domain wall, monopoles, and cosmic strings, among others
[3]. Among them, cosmic strings have been studied most.
They can be considered as a candidate to explain the
temperature anisotropies of the cosmic microwave back-
ground (CMB) [4] and they are associated with the emission
of gravitational waves and high-energy cosmic rays [5,6].
Stringlike solutions were obtained by Nielsen and Olesen

[7] through a relativistic classical field theory considering a
system composed by Abelian and non-Abelain gauge fields
coupled with Higgs fields. In the system under consider-
ation, a potential interaction that presents a nontrivial
vacuum solution was taken into account. This potential is
responsible for the spontaneously breaking of gauge sym-
metries. The authors were able to find a static, cylindrically
symmetric and stable solution from the equations of motion,
which corresponds to a magnetic field along the z-direction.

This solution was named the “vortex.” Unfortunately the
complete set of equations associated with this topological
object is nonlinear and, in general, there is no closed solution
for it. Only asymptotic expressions, for points near or very
far from the vortex’s core, can be found for the Higgs and
gauge fields. A more complex system is formed when one
decides to analyze the influence of this linear defect on the
geometry of the spacetime. This huge challenge was faced
initially by Garfinkle [8] and two years later by Laguna-
Castillo and Matzner [9] considering the Abelian version of
the Nielsen and Olesen model. The authors have shown that
there exists a class of static, cylindrically symmetric sol-
utions of these equations representing a string; moreover,
they have showed that these solutions approach asymptoti-
cally to aMinkowski spacetimeminus awedge. Linet in [10]
analyzed a special kind of Abelian vortex solution that
satisfies the Bogomol’nyi-Prasad-Sommerfield (BPS) con-
dition and showed that for the case of an infinite electric
charge and Higgs field self-coupling limit, it is possible to
obtain exact solutions for the metric tensor, which is
determined in terms of the linear energy density of the string.
The analysis of the spacetime geometry in the presence

of an infinitely long, straight, static, Abelian cosmic string
formed during phase transitions at energy scales larger than
the grand-unified-theory scale was developed in [11,12].
For these supermassive configurations, two different types
of solutions were found: one [11] in which the components
of metric tensor gtt ¼ gzz vanish at finite distance from the
axis, and another in which these components remain finite
everywhere while gϕϕ decreases outside the core of the
string. Although both types of geometries present different
asymptotic behaviors, they are solutions of the same set of
differential equations. This apparent contradiction was
clarified in the papers [13,14], where the authors pointed
out that the coexistence of two different kinds of solutions
is a consequence of boundary conditions imposed on the
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metric fields. In fact, the two different kinds of asymptotic
behaviors for the metric tensor correspond to the two
different branches of cylindrically symmetric vacuum sol-
utions of the Einstein equations [15]. The solution analyzed
in [11] corresponds to the so-called Melvin branch, and the
case analyzed in [12] corresponds to the so-called string
branch. The string branch solutions are those of astrophysi-
cal interest, since they describe solutions with a planar angle
deficit [16]; moreover, the Melvin branch has no flat
spacetime counterpart. In [17] it was discussed how the
presence of multiple supermassive cosmic strings in the
Abelianmodel can induce the spontaneous compactification
of the transverse space to a cosmic string and to construct
solutions where the gravitational background becomes
regular everywhere.
In general relativity, de Sitter (dS) and anti–de Sitter

(AdS) spacetimes are maximally symmetric solutions of
Einstein’s field equations in the presence of a positive and
negative cosmological constant, Λ, respectively. Due to the
symmetry of de Sitter and anti–de Sitter spacetimes,
numerous physical problems have been exactly solved.
In particular, astronomical observations of high redshift
supernovae, galaxy clusters, and the cosmic microwave
background [18,19] indicate that during the present epoch
in which we live, the Universe may be described by de
Sitter spacetime. On the other hand, anti–de Sitter space-
time plays an important role in theoretical physics such as
the realization of the holographic principle known as AdS/
CFT correspondence [20]. So, in the context of a gravi-
tating local cosmic string, a natural question takes place:
how does the presence of the cosmological constant,
positive or negative, modify the geometry of the spacetime
produced by an Abelian or non-Abelian cosmic string? The
answer to this question is the main objective of the present
analysis.
In fact, the numerical analysis of the Abelian Nielsen and

Olesen string minimally coupled to gravity including a
positive cosmological constant has been studied in [21].
Moreover, the analysis of Abelian strings in a fixed
background spacetime with positive cosmological constant
has been investigated in [22,23]. In addition, the spherically
symmetric topological defect named the global monopole
[24] was investigated in dS and AdS spacetimes by Li and
Hao in [25] and by Bertrand et al. in [26].
In the paper by Nielsen and Olesen, the non-Abelian

string system was described by an SUð2Þ gauge invariant
Lagrangian density composed of gauge fields and two
Higgs sectors. A potential responsible for the spontane-
ously broken gauge symmetry was present. The analysis of
the non-Abelian Nielsen and Olesen string and its influence
on the geometry of the spacetime was only recently
considered in [27]. In this analysis, the presence of a
cosmological constant was not taken into account. All the
modifications in the Minkowski spacetime were caused by
the defect. So, as an additional motivation to develop this

work, we would like to complete this analysis considering
now that the non-Abelian string, and also the Abelian one,
is in dS and AdS spacetimes.
This paper is organized as follows: In Sec. II we present

the non-Abelian Higgs model in de Sitter and anti–de Sitter
spaces and analyze the conditions that the physical param-
eters contained in the potential should satisfy so that the
system presents stable topological solutions. Also we
present the ansatz for the Higgs and gauge fields and for
the metric tensor. The equations of motion and boundary
conditions are presented in Sec. III. In Sec. IV we provide
our numerical results, exhibiting the behaviors of the
Higgs, gauge, and metric fields as functions of the distance
to the core of the string. Moreover, we present a compari-
son of the non-Abelian system in Minkowski, de Sitter, and
anti–de Sitter spaces, and point out the most relevant
aspects that distinguish the behaviors of those fields in
the presence/absence of a cosmological constant. Finally in
Sec. V we give our conclusions.

II. THE MODEL

In a previous work [27], we studied the behavior of
gravitating non-Abelian strings in the absence of a cos-
mological constant. We mainly considered the planar angle
deficit in the spacetime caused by the string and the energy
density by unit length associated with this system, and we
compared both quantities, separately, with the correspond-
ing ones for the Abelian string. The aim of this paper is to
examine the influence of the cosmological constant in the
non-Abelian and Abelian cosmic string spacetimes. For the
present purposes, we introduce the cosmological constant
in the model described by the following action, S:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
ðR − 2ΛÞ þ Lm

�
; ð2:1Þ

where R is the Ricci scalar, G denotes the Newton’s
constant, and Λ is the cosmological constant.1 The matter
Lagrangian density of the non-Abelian Higgs model is
given by

Lm ¼ −
1

4
Fa
μνFμνa þ 1

2
ðDμφ

aÞ2 þ 1

2
ðDμχ

aÞ2

− Vðφa; χaÞ; a ¼ 1; 2; 3; ð2:2Þ

where Fa
μν denotes the field strength tensor,

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ eϵabcAb

μAc
ν: ð2:3Þ

The covariant derivative is given by Dμφ
a ¼ ∂μφ

aþ
eϵabcAb

μφ
c, where the latin indices denote the internal

gauge groups. Ab
μ is the SUð2Þ gauge potential and e the

1For de Sitter space Λ>0 and for anti–de Sitter space Λ<0.
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gauge coupling constant. The interaction potential,
Vðφa; χaÞ, is defined by the expression

Vðφa; χaÞ ¼ λ1
4
½ðφaÞ2 − η21�2 þ

λ2
4
½ðχaÞ2 − η22�2

þ λ3
2
½ðφaÞ2 − η21�½ðχaÞ2 − η22�; ð2:4Þ

where the λ1 and λ2 are the Higgs fields self-coupling
positive constants and λ3 is the coupling constant between
both bosonic sectors. η1 and η2 are parameters correspond-
ing to the energy scales where the gauge symmetry is
broken. The potential above has different properties accord-
ing to the sign of Δ≡ λ1λ2 − λ23 [27]:

(i) For Δ > 0, the potential has positive value and its
minimum is attained for ðφaÞ2 ¼ η21 and ðχaÞ2 ¼ η22.

(ii) ForΔ < 0, these configurations lead to saddle points
and two minima occur for

ðφaÞ2 ¼ 0; ðχaÞ2 ¼ η22 þ
λ3
λ2

η21 ð2:5Þ

and

ðχaÞ2 ¼ 0; ðφaÞ2 ¼ η21 þ
λ3
λ1

η22: ð2:6Þ

The values of the potential for these cases are,
respectively,

Vmin ¼
η41
4λ2

Δ and Vmin ¼
η42
4λ1

Δ: ð2:7Þ

Both values for Vmin are negatives, since Δ < 0.

A. The ansatz

First let us consider the most general, cylindrically
symmetric line element invariant under boosts along the
z-direction. By using cylindrical coordinates, this line
element is given by

ds2 ¼ N2ðρÞdt2 − dρ2 − L2ðρÞdϕ2 − N2ðρÞdz2: ð2:8Þ

For this metric, the nonvanishing components of the Ricci
tensor, Rμν, are

Rtt ¼ −Rzz ¼
NLN00 þ NN0L0 þ LðN0Þ2

L
; ð2:9Þ

Rρρ ¼
2LN00 þ NL00

NL
; ð2:10Þ

Rϕϕ ¼ Lð2N0L0 þ NL00Þ
N

; ð2:11Þ

where the primes denotes derivative with respect to ρ.
For the Higgs and gauge fields we have the following

expressions [28]:

φaðρÞ ¼ fðρÞ

0
B@

cosðϕÞ
sinðϕÞ

0

1
CA; ð2:12Þ

χaðρÞ ¼ gðρÞ

0
B@

− sinðϕÞ
cosðϕÞ

0

1
CA; ð2:13Þ

~AaðρÞ ¼ ϕ̂

�
1 −HðρÞ

eρ

�
δa;3 ð2:14Þ

and

Aa
t ðρÞ ¼ 0; a ¼ 1; 2; 3: ð2:15Þ

From the above expressions, we can see that both isovector
bosonic fields satisfy the orthogonality condition, φaχa ¼ 0.

III. EQUATION OF MOTION

In this paper we shall use the same notation as in [27] for
the dimensionless variables and functions, as shown below:

x ¼
ffiffiffiffiffi
λ1

p
η1ρ; fðρÞ ¼ η1XðxÞ;

gðρÞ ¼ η1YðxÞ; LðxÞ ¼
ffiffiffiffiffi
λ1

p
η1LðρÞ: ð3:1Þ

Adopting these notations, the Lagrangian density will
depend only on dimensionless variables and parameters:

α ¼ e2

λ1
; q ¼ η1

η2
; β2i ¼

λi
λ1

; i ¼ 1; 2; 3;

γ ¼ κη21; Λ̄ ¼ Λ
η21λ1

and κ ¼ 8πG: ð3:2Þ

For the de Sitter or anti–de Sitter spacetime, it is convenient
to use the Einstein field equations in the form

Rμν ¼ −κ
�
Tμν −

1

2
gμνT

�
þ Λgμν; with

T ¼ gμνTμν and μ; ν ¼ t; x;ϕ; z: ð3:3Þ

For the energy-momentum tensor associated with the
matter field we use the usual definition given below,
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Tμν ¼
2ffiffiffiffiffiffi−gp δS

δgμν
; g ¼ detðgμνÞ: ð3:4Þ

Varying the action (2.1) with respect to matter fields, we
obtain the Euler-Lagrange equations below:

ðN2LX0Þ0
N2L

¼ X

�
X2 − 1þ β23ðY2 − q2Þ þH2

L2

�
; ð3:5Þ

ðN2LY 0Þ0
N2L

¼ Y

�
β23ðX2 − 1Þ þ β22ðY2 − q2Þ þH2

L2

�
; ð3:6Þ

L
N2

�
N2H0

L

�0
¼ αðX2 þ Y2ÞH: ð3:7Þ

As for the Einstein equations (3.3), we obtain

ðLNN0Þ0
N2L

¼−Λ̄þ γ

�
H02

2αL2
−
1

4
ðX2−1Þ2

−
β22
4
ðY2−q2Þ2−β23

2
ðX2−1ÞðY2−q2Þ

�
ð3:8Þ

and

ðN2L0Þ0
N2L

¼−Λ̄− γ

�
H02

2αL2
þðX2þY2ÞH

2

L2
þ1

4
ðX2−1Þ2

þβ22
4
ðY2−q2Þ2þβ23

2
ðX2−1ÞðY2−q2Þ

�
: ð3:9Þ

The primes in Eqs. (3.5)–(3.9) stand for derivatives with
respect to x. As we can see, this set of nonlinear coupled
differential equations is a difficult system to analyze. We
shall leave this task for the next section. Defining
u ¼ ffiffiffiffiffiffi−gp ¼ N2L, we obtain the following equation:

u00ðxÞ
uðxÞ ¼−3Λ̄− γ

�
−

H02

2αL2
þðX2þY2ÞH

2

L2
þ3

4
ðX2−1Þ2

þ3β22
4

ðY2−q2Þ2þ3β23
2

ðX2−1ÞðY2−q2Þ
�
: ð3:10Þ

Before finishing this subsection, we would like to point
out that the set of differential equations above reduces itself
to the corresponding one for the Abelian Higgs model by
taking β2 ¼ β3 ¼ 0 and setting one of the Higgs fields
equal to zero. Because one of our objectives is to compare
the non-Abelian results with the corresponding one for the
Abelian case, we shall take, when necessary, the bosonic
field χ ¼ 0, which, in terms of dimensionless functions,
corresponds to taking Y ¼ 0.

A. Boundary conditions

The boundary conditions imposed on the fields at the
origin are determined by the requirements of regularity at

this point. However, the sign of the cosmological constant,
Λ̄, will establish different kinds of boundary conditions for
the matter and gauge fields at large distances.

(i) For de Sitter space ðΛ̄ > 0Þ, the boundary conditions
for the matter and gauge fields are

Hð0Þ ¼ 1; Xð0Þ ¼ 0; Yð0Þ ¼ 0: ð3:11Þ

As we shall see, the cosmological constant will
provide a cosmological horizon for the metric tensor.
Then we must integrate the equations until we obtain
this value of the coordinate, x ¼ x0, in order to have
the core of the cosmic string located inside the
horizon. So, we require

Xðx ¼ x0Þ ¼ 1; Yðx ¼ x0Þ ¼
η2
η1

¼ q;

Hðx ¼ x0Þ ¼ 0: ð3:12Þ

(ii) For anti–de Sitter space ðΛ̄ < 0Þ, the cosmological
horizon does not appear. Therefore the boundary
conditions for the matter and gauge fields are

Hð0Þ ¼ 1; Hð∞Þ ¼ 0; ð3:13Þ

Xð0Þ ¼ 0; Xð∞Þ ¼ 1; Yð0Þ ¼ 0;

Yð∞Þ ¼ η2
η1

¼ q: ð3:14Þ

The boundary conditions for the metric fields are

Nð0Þ ¼ 1; N0ð0Þ ¼ 0; Lð0Þ ¼ 0; L0ð0Þ ¼ 1

ð3:15Þ

in both spaces.
B. Vacuum solution

The vacuum solution of our system is attained by setting
XðxÞ ¼ 1, YðxÞ ¼ q, and HðxÞ ¼ 0 in Eq. (3.10). So,
we have

(i) For de Sitter spacetime (Λ̄ > 0), we get

N2ðxÞLðxÞ ¼ A1 sinð
ffiffiffiffiffiffi
3Λ̄

p
xÞ þ B1 cosð

ffiffiffiffiffiffi
3Λ̄

p
xÞ:
ð3:16Þ

Using the boundary condition Eq. (3.15), we find the
following solution:

N2ðxÞLðxÞ ¼ 1ffiffiffiffiffiffi
3Λ̄

p sinð
ffiffiffiffiffiffi
3Λ̄

p
xÞ: ð3:17Þ

Following the method suggested by Linet [29], we
find the solutions
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NðxÞ ¼ cos2=3
� ffiffiffiffiffiffi

3Λ̄
p x

2

�
ð3:18Þ

and

LðxÞ ¼ 22=3ffiffiffiffiffiffi
3Λ̄

p
�
sinð

ffiffiffiffiffiffi
3Λ̄

p
xÞ
�
1=3

�
tan

� ffiffiffiffiffiffi
3Λ̄

p x
2

��
2=3

:

ð3:19Þ

(ii) For anti–de Sitter spacetime (Λ̄ < 0), we get

N2ðxÞLðxÞ¼A2 expð
ffiffiffiffiffiffiffiffiffi
3jΛ̄j

q
xÞþB2 expð−

ffiffiffiffiffiffiffiffiffi
3jΛ̄j

q
xÞ:

ð3:20Þ

Using the boundary condition Eq. (3.15), we find the
following solution:

N2ðxÞLðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi
3jΛ̄j

q sinhð
ffiffiffiffiffiffiffiffiffi
3jΛ̄j

q
xÞ: ð3:21Þ

By means of [29], we find the solutions

NðxÞ ¼ cosh2=3
� ffiffiffiffiffiffiffiffiffi

3jΛ̄j
q

x
2

�
ð3:22Þ

and

LðxÞ ¼ 22=3ffiffiffiffiffiffiffiffiffi
3jΛ̄j

q
�
sinhð

ffiffiffiffiffiffiffiffiffi
3jΛ̄j

q
xÞ
�
1=3

×

�
tanh

� ffiffiffiffiffiffiffiffiffi
3jΛ̄j

q
x
2

��
2=3

: ð3:23Þ

Here we would like to point out that naturally a
cosmological horizon takes place in de Sitter spacetime.
In the vacuum conditions, the cosmological horizon
appears at the first zero of NðxÞ. This occurs at
xv0 ¼ πffiffiffiffi

3Λ̄
p . At the same position, Lðx → xv0Þ → ∞. We also

want to mention that the singular behavior of the functions
NðxÞ and LðxÞ near xv0 is similar to the singular behavior of
the corresponding components of the metric tensor asso-
ciated with the supermassive configuration analyzed in
[11]. Near their corresponding singular point, these func-
tions behave as

NðxÞ≈ ðxsing−xÞ2=3 and LðxÞ≈ ðxsing−xÞ−1=3: ð3:24Þ

However we would like to emphasize that the physical
reasons for both singular behaviors are different. The
source of the singular behavior found in [11] is a

supermassive configuration of matter fields. Here is the
presence of a positive cosmological constant. As for the
anti–de Sitter spacetime, there is no cosmological horizon.
Although the above analysis present important informa-

tion about the behaviors of the metric fields N and L, we
expect that the nontrivial structures of the Higgs and gauge
fields produce relevant modifications on these behaviors.2

We leave this analysis for the next section.

IV. NUMERICAL SOLUTIONS

In this section we shall analyze numerically our system.
To do that we integrate numerically Eqs. (3.5)–(3.9)
with the appropriated boundary conditions specified in
(3.11)–(3.15), corresponding to the dS and AdS cases, by
using the ordinary differential equation (ODE) solver
COLSYS [30]. Relative errors of the functions are typically
of the order of 10−8 to 10−10 (and sometimes even better).
Our objective is to analyze the behavior of the solutions

of the non-Abelian cosmic string in de Sitter and anti–de
Sitter spacetime. In order to do this, we construct solutions
by specifying the set of physical parameters of the system
for positive (de Sitter spacetime) and negative (anti–de
Sitter spacetime) values of the cosmological constant, Λ̄.
Moreover, we are also interested in comparing these
behaviors with the corresponding one for the Abelian
gravitating strings, observing, separately, the influence of
each system on the geometry of the spacetime.

A. de Sitter spacetime

In the first moment, we shall analyze the behaviors of
Higgs, gauge, and metric fields for the non-Abelian cosmic
strings in de Sitter spacetime. Our results for the non-
Abelian case are shown in Fig. 1. In the left plot we present
the Higgs fields, X and Y, and gauge field, H, as functions
of x. In the right plot we present the behavior of the metric
functions, N and L. In both plots we set the parameters as
α ¼ 0.8, γ ¼ 0.61, Λ̄ ¼ 0.0075, β2 ¼ 2.0, β3 ¼ 1.0, and
q ¼ 1.0.
In Fig. 2 we present the behavior of the Higgs and gauge

fields, and the metric functions for the Abelian case in de
Sitter spacetime. In the left plot, we exhibit the Higgs and
gauge fields, X and H, respectively, as functions of the
dimensionless variable x. In the right plot we present the
metric functions, N and L, as functions of x. For both
plots we consider the parameters α ¼ 0.8, γ ¼ 0.61, and
Λ̄ ¼ 0.0075.
By comparing Fig. 1(b) with Fig. 2(b), it can be seen that

both systems present cosmological horizons, x0. Moreover,
the corresponding values for the horizons for the

2Specifically in the Minkowski spacetime, it is well known that
the Abelian and also non-Abelian strings produce significant
modifications in the geometry when compared with vacuum. The
most relevant one is associated with the decreasing slope of L
causing a planar angle deficit.

NON-ABELIAN COSMIC STRINGS IN DE SITTER AND … PHYSICAL REVIEW D 94, 063524 (2016)

063524-5



non-Abelian system are smaller than the Abelian one.
Another point that can be mentioned is that, for values of
the parameters that we have chosen, the matter fields and
gauge fields reach their asymptotic values in the region
inside the horizons.
In the vacuum solution we have found that the cosmo-

logical horizon is reached for xv0 ¼ πffiffiffiffi
3Λ̄

p , which for the value

of the cosmological constant adopted in the plots, provides
xv0 ≈ 20.94395. More realistic values for the cosmological
horizons were obtained in both plots, considering the
nontrivial behaviors of the fields. Motivated by this fact,
now we want to investigate how the cosmological horizon
depends on the gravitational coupling, γ, and also on the
cosmological constant itself, Λ̄.
First we consider the dependence of x0 with γ. In order to

make this analysis we fixed α, β2, β3, Λ̄, and q. The value of
the cosmological horizon is obtained when the metric

function Nðx ¼ x0Þ is zero. Our numerical results for
α ¼ 0.8; β2 ¼ 2.0; β3 ¼ 1.0; Λ̄ ¼ 0.0075, and q ¼ 1.0 are
presented in Fig. 3(a). Note that the cosmological horizon
decreases as the value of γ increases.
As for the influence of Λ̄ on the cosmological

horizon, we adopted a similar procedure to the case
above. Nevertheless we fixed α, γ, β2, β3, and q, and we
determined the value of x at which NðxÞ vanishes. Our
results are presented in Fig. 3(b). We clearly note that the
value of the cosmological constant decreases as the value of
Λ̄ increases. Also in this plot, we provide the behaviour for
the cosmological horizon in the vacuum case.

B. Anti–de Sitter spacetime

Here, we are interested to analyze the influence of a
negative cosmological constant on the behavior of the non-
Abelian and Abelian cosmic string systems.

x

0.0

0.5

1.0

1.5

0 5 10 15 20 0 5 10 15 20
x

0.0

0.5

1.0

1.5

N

L

H

X

Y

(a) (b)

FIG. 1. Non-Abelian string. Left: Behavior for the Higgs and gauge fields as functions of x. Right: Behavior of the metric functions as
functions of x. In both plots we consider the parameters α ¼ 0.8, γ ¼ 0.61, Λ̄ ¼ 0.0075, β2 ¼ 2.0, β3 ¼ 1.0, and q ¼ 1.0.
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0 5 10 15 20 0 5 10 15 20
x

0.0

0.5

1.0

1.5
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H

X
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FIG. 2. Abelian string. Left: Behavior for the Higgs and gauge fields as functions of x. Right: Behavior of the metric functions as
functions of x. In both plots we consider the parameters α ¼ 0.8, γ ¼ 0.61, Λ̄ ¼ 0.0075.
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In Fig. 4(a) we present the behavior of the Higgs fields,
X and Y, and gauge field, H, for the non-Abelian case as
functions of the dimensionless variable x, considering
specific values attributed to the set of parameters. In
Fig. 4(b) we plot the behavior of the corresponding metric
functions, N and L, as functions of x. In both plots
we considered the parameters α ¼ 0.8; γ ¼ 0.6; β2 ¼ 2.0;
β3 ¼ 1.0; Λ̄ ¼ −0.03, and q ¼ 1.0.
In Fig. 5(a) we present the behavior of the Higgs field, X,

and gauge field, H, in the Abelian case for specific values
attributed to the set of appropriated parameters. In Fig. 5(b)
we plot the metric functions, N and L. In both plots we
consider the parameters for the Abelian case as α ¼ 0.8,
γ ¼ 0.6, and Λ̄ ¼ −0.03. For both systems we can see that
the function N presents a strong increment for large value
of x.

Finally we present in Fig. 6 the behavior of the metric
fields for two different values of the cosmological constant,
Λ̄ ¼ −0.010 and Λ̄ ¼ −0.007, in the non-Abelain case with
parameters α¼ 0.8;γ¼ 0.6;β2¼ 2.0;β3¼ 1.0, and q ¼ 1.0.
We notice that the metric field N increases with the
cosmological constant.

C. Comparative analysis

In this section we would like to present plots comparing
the behaviors of the metric fields, LðxÞ and NðxÞ, as
functions of x for different background spacetimes: (a) the
non-Abelian cosmic sting in Minkowski ( M) and in de
Sitter (dS) spacetimes, and (b) the non-Abelian cosmic
string in Minkowski (M) and anti–de Sitter (AdS) space-
times. In addition we have included the behaviors of these
metric functions in the vacuum (vac) for dS and AdS
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FIG. 3. (a) The behavior of the cosmological horizon, x0, as a function of γ considering the parameters
α ¼ 0.8; β2 ¼ 2.0; β3 ¼ 1.0; Λ̄ ¼ 0.0075; q ¼ 1.0. (b) The dashed line represents the behavior of the cosmological horizon, x0, as
a function of Λ̄ for the non-Abelian string case, considering α ¼ 0.8; γ ¼ 0.61; β2 ¼ 2.0; β3 ¼ 1.0; q ¼ 1.0. The solid line corresponds
to the trivial behavior of the cosmological horizon, xvo, in the vacuum case.
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FIG. 4. Non-Abelian string. Left: Behavior of the Higgs and gauge fields in anti–de Sitter space. Right: Metric functions. In both plots
we have considered α ¼ 0.8; γ ¼ 0.6; β2 ¼ 2.0; β3 ¼ 1.0; Λ̄ ¼ −0.03, and q ¼ 1.0.
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spacetimes, given by Eqs. (3.18), (3.19), (3.22), and (3.23).
In the plots we label these curves with the subscriptsM, dS,
AdS, and vac, according to the space background consid-
ered. In this way we intend to point out the most relevant
aspects that distinguish the behaviors of those functions. In
our analysis presented in Fig. 7, we adopted the following
values for the parameters: γ ¼ 0.6; α ¼ 0.8; β2 ¼ 2.0;
β3 ¼ 1.0, and q ¼ 1.0. For dS space we take Λ̄ ¼
0.0075 and for AdS we take Λ̄ ¼ −0.03. The behaviors
of the Higgs and gauge fields are almost insensitive to the
presence of a cosmological constant; for this reason we
decided not to include them in the plots.
In Fig. 7(a) we present the behaviors of L and N as

functions of x considering the non-Abelian cosmic string in
Minkowski and de Sitter spacetimes. Also we present their
behaviors in vacuum de Sitter space, named vacuum
solutions. We can see that the main difference is in the
behaviors of the component N. In Minkowski space, this
component tends to be a constant value below unity while

in dS space it goes to zero. In addition, comparing N in dS
with N in the vacuum, we can see that the cosmological
horizon for the first case is smaller than that for the second
one. A less evident difference is in the behavior of L.
Comparing the plot of this component in the vacuum, Lvac,
in the non-Abelian string in dS, LdS, and non-Abelian
string in Minkowski, LM, spacetimes, respectively, we can
notice a progressive bending. Specifically there is a small
deviation between LdS and LM. Another point that deserves
to be mentioned is the decreasing slope of L when one
compares Lvac with LdS. The slope of the latter is smaller
for any given point. This resembles the decreasing in the
slope of LM when compared with the one in the vacuum in
Minkowski spacetime. In fact, by comparing the slope of
LM at infinity with that at unity, it is possible to find a
planar angle deficit by

δ=2π ¼ 1 − L0
Mð∞Þ ¼ 0.865: ð4:1Þ

In Fig. 7(b) we present the behaviors of L and N as
functions of x considering the non-Abelian cosmic string in
Minkowski and in anti–de Sitter spacetimes. In addition we
present their behaviors in the vacuum of anti–de Sitter
space. Here also we can see that the main difference in the
geometry of the spacetime is given by N: NAdS increases
with x while NM presents a small decay. As for L, we
observe that for a given value of x, LM is bigger than LAdS;
moreover, both are smaller that Lvac. So, we conclude that
the nontrivial structure of the Higgs and gauge fields
modify the behavior of L. Specifically the slope of LAdS
is smaller than that of Lvac.
So, from these two plots, Figs. 7(a) and 7(b), two

different observations deserve to be mentioned:
(i) The presence of a cosmological constant affects

substantially the geometry of the non-Abelian cos-
mic string spacetime, modifying mainly the compo-
nents gtt ¼ gzz of the metric tensor.
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FIG. 6. The metric fields as functions of x for different values of
the cosmological constant. For solid lines we adopt Λ̄ ¼ −0.010,
and for dashed lines Λ̄ ¼ −0.007. In both plots we consider
α ¼ 0.8; γ ¼ 0.6; β2 ¼ 2.0; β3 ¼ 1.0, and q ¼ 1.0.
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(ii) In the other direction we can see that the presence of
the matter field in dS and AdS spaces also produces
relevant consequences on the behavior of the metric
tensor. Specifically in dS space, the value of the
cosmological horizon decreases significantly.

V. CONCLUSION

In this paper, we have examined the influence of the
cosmological constant in the geometry of non-Abelian and
Abelian cosmic string spacetimes. In agreement with a
previous work [27], where the gravitating non-Abelian
cosmic strings were studied in the absence of cosmological
constant, we have shown that it is also possible to obtain a
non-Abelian stable topological string considering two
bosonic isovectors with a Higgs mechanism in de Sitter
and anti–de Sitter spaces.
Regarding the analysis in de Sitter space, we have shown

that there appears a cosmological horizon. In fact, this
observation was presented in the paper by Linet for the
vacuum configuration in [29] and in [21] for the Abelian
string. Here we also returned to this analysis considering
both non-Abelian and Abelian strings. These investigations
were presented in Figs. 1(b) and 2(b) for specific values of
the parameters. By these graphs we have pointed out that
the non-Abelian case presents a smaller cosmological
horizon than the corresponding Abelian one.
We also provided the behavior of the cosmological

horizon, x0, with the gravitational coupling constant, γ,
and with the cosmological constant, Λ̄. In Fig. 3(a), we can
observe that the cosmological horizon decreases when one
increases γ. In Fig. 3(b) we can see that the cosmological
horizon also decreases for larger values of the cosmological
constant. Moreover, we also compare this behavior with the

corresponding one for the vacuum case. We see that for a
given value of Λ̄, the horizon associated with the vortex
system is smaller than the vacuum one.
The behaviors of the Higgs and gauge fields and metric

functions in anti–de Sitter spacetime for the non-Abelian
cosmic strings were displayed in Fig. 4. We have also
shown the behaviors of Higgs and gauge fields and metric
functions for the Abelian cosmic strings in Fig. 5. We
noticed that in both cases NðxÞ diverges for large values of
x; however, by our numerical results, we observe that in the
non-Abelian case, the slope of NðxÞ is bigger than the
corresponding Abelian one. In Fig. 6, we have shown
the behavior of metric fields, N and L, as functions of x for
the non-Abelian system considering two different values of
Λ̄. By this graph and others not presented in this paper, we
observe that while increasing the cosmological constant,
the two lines representing these functions approach each
other. This behavior is compatible with the vacuum case.
Finally we have presented in Figs. 7(a) and 7(b)

comparative plots of the behaviors of the components
NðxÞ and LðxÞ of the metric tensor as functions of x,
considering the non-Abelian string in Minkowski and de
Sitter backgrounds and in Mikowski and anti–de Sitter
backgrounds, respectively. We have observed that the
presence of the cosmological constant strongly modifies
the geometry of the spacetimes produced by the defect. The
most relevant modifications are due to the component
NðxÞ. For dS, N goes to zero for a finite distance to the
string, and for AdS this component increases. Also in these
graphs we have presented the behaviors of these two
functions in vacuum scenarios. By comparison of the
functions in the vacuum scenarios with the full system
in dS or AdS, we have observed significant deviations
caused by the Higgs and gauge fields in the slopes of L.
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FIG. 7. The metric fields LðxÞ and NðxÞ as functions of x. (a) Comparison of the behavior of the metric fields L and N in de Sitter
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