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Gamma-ray experiments seeking to detect evidence of dark matter annihilation in dwarf spheroidal
galaxies require knowledge of the distribution of dark matter within these systems. We analyze the effects
of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic
and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing
(or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight
velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo.
We provide analytic formulas and a simple numerical approach to estimate the correction to the J- and
D-factors required over simple spherical modeling. The formulas are validated with a series of equilibrium
models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute
corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that
they are all prolate or all oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly
altered (typical correction factors for an ellipticity of 0.4 are 0.75 for the oblate case and 1.6 for the prolate
case). We demonstrate that spherical estimates of the D-factors are very insensitive to the flattening and
introduce uncertainties significantly less than the uncertainties in the D-factors from the other observables
for all the dwarf spheroidals (for example, þ10per cent

−3per cent for a typical ellipticity of 0.4). We conclude by
investigating the spread in correction factors produced by triaxial figures and provide uncertainties in the
J-factors for the dwarf spheroidals using different physically motivated assumptions for their intrinsic shape
and axis alignments. We find that the uncertainty in the J-factors due to triaxiality increases with the
observed ellipticity and, in general, introduces uncertainties of a factor of 2 in the J-factors. We discuss our
results in light of the reported gamma-ray signal from the highly flattened ultrafaint Reticulum II. Tables of
the J- and D-factors for the Milky Way dwarf spheroidal galaxies are provided (assuming an oblate or
prolate structure) along with a table of the uncertainty on these factors arising from the unknown triaxiality.
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I. INTRODUCTION

In recent years, gamma-ray observations of Milky Way
dwarf spheroidal galaxies (dSphs) have led to great strides
in sensitivity to dark matter annihilation. Here the goal is to
probe particles which interact with the Standard Model
with the well-motivated weak-scale annihilation cross
section hσvi≃ 3 × 10−26 cm3 s−1. Particles having this
cross section will exist today with an abundance equal
to that observed for dark matter ΩDM, making this so-called
relic cross section a natural target for experimental searches
for annihilation. Combined analyses of dSphs using data
from the Fermi Large Area Telescope (LAT) first ruled out
the relic cross section for dark matter particle masses of a
few tens of GeV [1,2] and follow-up analyses incorporating
more dSphs and increased observation time continue to

improve sensitivity (e.g. Refs. [3–5]). For higher dark
matter masses (M ≳ TeV), the three major Cherenkov
telescope collaborations continue to invest significant time
on pointed observations of Milky Way dSphs. The resulting
upper limits are 2 to 3 orders of magnitude from the relic
cross section [6–10], but the situation bodes well for the
future CTA project (e.g. Ref. [11]).
An exciting development in this field is the recent and

ongoing discovery of large numbers of new Milky Way
satellites made possible by wide-area photometric surveys
(e.g. Refs. [12–15]). Since 2015 the number of known
Milky Way satellites has approximately doubled thanks to
Southern hemisphere data from the Dark Energy Survey
and Pan-STARRS. These new dSphs have the potential to
significantly build on current efforts to uncover evidence of
dark matter annihilation (e.g. Refs. [16–20]).
Intriguingly, the first of these new dwarf spheroidal

galaxies discovered, Reticulum II, shows indications of a
gamma-ray signal exceeding background in the Fermi-LAT
data [17]. Two methods of modeling the gamma-ray
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background yield false-alarm probabilities of p ¼ 0.0001
and 0.01 for detecting such a signal. Subsequent analysis
[19] confirmed the results of Ref. [17] and argued that the
Reticulum II signal was consistent with the gamma-ray
excess reported from the Galactic center and claimed as
dark matter. With a reprocessing of the raw Fermi data [18],
the Fermi-LAT Collaboration found an increased proba-
bility for a background fluctuation explaining the
Reticulum II signal (p ¼ 0.05) and concluded the signal
is insignificant. Making sense of the results of Refs. [17]
and [18] is complicated by the fact that the two data sets are
only partially independent, sharing approximately half the
detector events. A separate analysis is needed to compute
joint probabilities of background fluctuation in the partially
correlated data sets.
In this work we follow a different path towards assessing

dark matter interpretations of gamma-ray signals. Rather
than analyzing the gamma-ray data, we consider the
determination of the dark matter content of the
Milky Way’s dSphs, a necessary ingredient for performing
optimized combined searches using dSphs. A critical test of
any alleged dark matter signal from dSphs is that the
amplitude of the gamma-ray signal must scale amongst the
dSphs according to their J-factors (see, e.g., Refs. [21,22]).
The J-factor is the square of the dark matter density
integrated along the line of sight and over the solid angle
of the observation,

J ¼
Z Z

ρDM
2ðl;ΩÞdldΩ: ð1Þ

While annihilating dark matter models are theoretically
better motivated, there are models in which dark matter
decays [23]. In these models, the relevant astrophysical
factor is the D-factor, which is the dark matter density
integrated along the line of sight and over the solid angle of
the observation.
Robust determinations of the relative J-factors are of prime

importance. For instance, the Fermi-LATCollaboration [18],
under the assumption that each of eight considered dSphs
was equally likely to produce a signal, further diluted the
significance of the Reticulum II gamma-ray excess to
p ¼ 1 − ð1 − 0.05Þ8 ¼ 0.33, concluding that it is insignifi-
cant. However, there are reasons to doubt the usefulness of
this argument as Reticulum II is closer and very highly
flattened, both of which can enhance the amplitude of an
annihilation signal compared to other dSphs. Therefore, we
require accurate relative estimates of the J- andD-factors, but
unfortunately the data on the most tempting dSph candidates
are often of limited quality. Motivated by this Ref. [24]
(hereafter Paper I) provided simple formulas for the J- and
D-factors for a spherical Navarro-Frenk-White (NFW) pro-
file and infinite spherical cusps. The formulas relied on the
empirical law that themasswithin the half-light radius iswell
constrained as [25,26]

Mh ¼ MðRhÞ ≈
5

2G
hσ2losiRh; ð2Þ

where Rh is the (projected) half-light radius of the stars
and hσ2losi is the luminosity weighted squared line-of-sight
velocity dispersion.
However, an entirely characteristic feature of dSphs is in

the name—spheroidal! They are flattened (with a typical
ellipticity between 0.3 and 0.5), and some of the ultrafaints
are very highly flattened with ellipticities exceeding 0.5,
such as Hercules [27], Ursa Major I [28], Ursa Major II
[29], and indeed Reticulum II [12]. Therefore, the under-
lying physical model of a spherical dark halo containing a
round distribution of stars may fail to capture important
aspects of the physics. Here we extend the scope of
spherical analyses, to account for the effects of flattening
in both the stellar and dark matter profiles. Bonnivard et al.
[30] provided a systematic investigation of J-factors of
flattened figures. Here, two mildly triaxial numerical
models of dSphs (created for The Gaia Challenge) were
viewed along each of the short, medium and long axes. This
investigation revealed that the projection effects can have a
significant impact on the velocity dispersion, and con-
cluded that the J-factors constructed by Jeans analyses can
vary from the true values by ∼2.5. Recently, Ref. [31]
computed J-factor estimates for the dSphs using axisym-
metric Jeans modeling. These authors attributed the
differences between their measured J-factors and those
from spherical analyses primarily to other modeling
assumptions.
It is natural to expect that the dissipationless dark matter

distribution is rounder—or at least no more flattened—than
the dissipative baryonic component. So, large classical
dSphs which appear roundish on the sky (such as Leo I and
II) may have almost spherical dark matter halos. However,
the dark halos of the ultrafaints are expected to be more
highly flattened than those of the classical dSphs, as it is
known that baryonic feedback effects drive the dark matter
distribution towards sphericity [32,33]. The ultrafaints have
such a puny baryonic content that pure dissipationless
simulations [34,35], which find strongly triaxial and nearly
prolate dark halos, may be a much better guide to the true
shape. For instance, recent simulations have found that the
baryonic distribution is just ∼10 percent flatter than the
dark-matter distribution for dark-matter halos of 1010M⊙
[36]. Throughout this paper, we work under the assumption
that the dark matter distribution is flattened in the same way
as the stellar distribution.
The effects of flattening can be understood qualitatively

for a few simple configurations. The simplest is the face-on
case when the dark-matter and stellar distributions are
flattened along the line of sight. Observationally, the
isophotes still appear circular and the measured half-light
radius remains the same, but we have increased (decreased)
the density of dark matter in the oblate (prolate) case.
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Naturally, this effect—which we refer to as the geometric
factor—gives rise to a larger (smaller) J-factor than a
spherical analysis would infer. But, we must also consider
the effect of flattening on the line-of-sight velocity
dispersion, which we call the kinematic factor. For the
oblate case, the stellar distribution is more compressed, so
the line-of-sight dispersion is now smaller than the spheri-
cally averaged dispersion. Less contained mass is inferred
and so the spherical J-factor underestimates the total
J-factor. Therefore, for face-on viewing of an oblate figure,
both the geometric and kinematic effects cause the J-factor
inferred from a spherical analysis to be an underestimate of
the true value. For the prolate case, the velocity dispersion
is larger than the spherically averaged dispersion and so
more mass is inferred and the spherical J-factor is an
overestimate.
When the dSph is viewed edge on such that it appears

flattened in the sky, the combined result of the kinematic
and geometric effects is less clear. For oblate figures, the
density is increased over the spherical case, while the half-
light radius remains the same. These geometric effects
cause the J-factor assuming sphericity to be an under-
estimate. However, the kinematic factor works the other
way, as the measured velocity dispersion is greater than the
spherical average. We will see that the combination of these
two competing effects leads to a small decrease in the true
J-factor over that inferred from a spherical analysis. For
the prolate case, we have the converse situation with the
geometric factor leading to an overestimate while the
kinematic factor leads to an underestimate. However,
now the stretching of the stellar profile in the sky causes
the half-light radius to increase. We will see that the net
result is an increase in the true J-factor over the spherical
J-factor.
This qualitative explanation is tested in Sec. II where we

construct equilibriummodels of the Reticulum II galaxy via
the made-to-measure method. We explore a range of
different flattenings and provide simple fits for the correc-
tion factors. In Sec. III, we use these fits to derive J-factors
for the known dwarf spheroidals under the assumption that
they are either prolate or oblate. In Sec. IV, we build
intuition for our numerical results by considering two
families of axisymmetric equilibria for which analytic
progress is possible and present a more rapid general
approach for estimating the correction factors using the
virial theorem. Section V extends these findings to the
triaxial case and demonstrates how the correction factors
vary for a triaxial figure as a function of the viewing angle.
In Sec. VI, we discuss the constraints and evidence on the
intrinsic shapes and alignments of the Milky Way dSphs
and give estimates of the uncertainties in the J-factors of the
dSphs due to unknown triaxiality. In Sec. VII we summa-
rize our findings and discuss possible implications for the
claimed signal from Reticulum II in light of our work.

II. MADE-TO-MEASURE FLATTENED
EQUILIBRIA

We begin our analysis of the J-factors of flattened
dSphs with numerical models constructed by the made-to-
measure (M2M) methods [37] as implemented by Dehnen
[38]. The models have two components: dark and stellar.
Each component has a target density of the form

ρðmÞ ∝ p−1q−1
�
m
rs

�
−γ
�
1þ

�
m
rs

�
α
�ðγ−βÞ=α

sech
m
rt
; ð3Þ

where m2 ¼ x2 þ ðy=pÞ2 þ ðz=qÞ2. This is the familiar
double power law with scale radius rs, with an exponential
taper at the tidal radius rt. For r ≪ rs, the density falls like
r−γ , while for r ≫ rs, it falls like r−β. The case α ¼ 1,
β ¼ 3, γ ¼ 1 is the NFW dark halo. Plummer models are
often used to describe the light profiles of dSphs (see e.g.,
Refs. [39,40]). They correspond to the parameters α ¼ 2,
β ¼ 5, γ ¼ 1 and rt ¼ ∞.
We begin by constructing two flattened spheroidal

(p ¼ 1) models of the Reticulum II dSph. For both models,
the dark halo is a NFW model (α ¼ 1, β ¼ 3, γ ¼ 1,
rs ¼ 1, rt ¼ 10). The stars follow a Plummer profile
(α ¼ 2, β ¼ 5, γ ¼ 0, rs ¼ 0.5, rt ¼ 9). The chosen ratio
of the dark matter scale radius to the stellar scale radius lies
within the measured range for the Local Group dSphs
(∼1.25 to ∼30) [41]. The two models differ in their shape.
The first model is oblate in both the stars and the dark
matter with an axis ratio of q ¼ 0.4 (chosen to match the
observed axis ratio of Reticulum II of 0.39 [12]). The
second model is prolate with an axis ratio of q ¼ 2.5. When
viewed along the x axis both models appear flattened with
axis ratio 0.4. In addition, we construct a third spherical
model as a reference. This has the same parameters, but
without the flattening in either the dark matter or the stars.
The dark NFW halos source the potential (computed

using a bi-orthonormal basis expansion [38]) in which the
weights of the Plummer models are adjusted until the target
densities are reached. No other constraints on the distri-
bution functions are used. We use a 107 particle realization
of the flattened NFW distribution to compute the potential.
The constraints on the Plummer model are generated with
100 realizations of 106 particles and 106 particles are used
in the M2M simulation. To check convergence, the models
were run turning off the weight adjustment in the M2M
code. Both flattened models exhibit a slow drift in the
density constraint suggesting they are not perfect equilib-
rium models. However, this is almost certainly true for the
actual dSphs which reside in the tidal field of the
Milky Way.
Reticulum II has a half-light major axis length of

5.63 arcmin, is at a distance of ∼30 kpc [12] and has a
line-of-sight velocity dispersion of 3.22 km s−1 [42]. To
match the final models to the observed constraints on
Reticulum II, we compute the projected half-light major
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axis length (fitted with a Plummer model) and the projected
line-of-sight velocity dispersion. We then compute the scale
factors R and V that scale the radial distributions and the
velocity distributions to the observations. The correspond-
ing total mass of the dark matter profile (set to unity in the
simulation) is then scaled by a factor M ¼ RV2. For the
spherical model we match the half-light major axis length
to an “ellipticity corrected” radius given by the geometric
mean of the half-light major and minor axis lengths. This is
related to the observed half-light major axis length Rh as
Rh

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
where ϵ is the ellipticity.

In Fig. 1, we show the final projected distributions of the
two flattened models. Note that for the prolate case, the
models do not completely reproduce the target density
profile as there is a clear X shape in the ðx; yÞ plane.
Additionally, we show the surface density of the two
models (using a mass-to-light ratio of 500, [42]) and the
line-of-sight velocity distributions. The prolate velocity
distribution is slightly more peaked than the oblate case
but such a small difference would not be detectable
observationally.
To explore the effects of adjusting the stellar and dark-

matter profiles, we also build two further models, one with
a central cusp in the stellar profile (γ ¼ 1) and one with a
cored dark-matter profile with parameters α ¼ 1, β ¼ 4
and γ ¼ 0.

A. J- and D-factors

For our five models of Reticulum II, we proceed to
calculate the J- and D-factors. The J-factor for a distant
source is given by1

JðθÞ ¼ 1

D2

Z þ∞

−∞
dz

Z
Dθ

0

dRR
Z

2π

0

dϕρ2DM; ð4Þ

whereD is the distance to the source (30 kpc for Reticulum
II) and θ is the beam angle. Similarly, the D-factor is given
by

DðθÞ ¼ 1

D2

Z þ∞

−∞
dz

Z
Dθ

0

dRR
Z

2π

0

dϕρDM: ð5Þ

In Table I we report the J- and D-factors at θ ¼ 0.5° (the
typical observational resolution). We also show the J- and
D-factors for the spherical model computed from the
formulas of Paper I. We see that these formulas under-
estimate the J-factor by a factor of 1.2 and the D-factor by a
factor of 1.05. We also record the correction factor between
the prolate/oblate models and the spherical models using
the notation

F J ¼ log10ðJ=JsphÞ;
FD ¼ log10ðD=DsphÞ: ð6Þ

The oblate model with NFW dark matter and Plummer light
has a J-factor that is diminished by a factor of 1.4 over the
spherical model and a D-factor that is diminished by a
factor of 1.3. On the other hand, the prolate model has an
enhancement in the J-factor by a factor of 3.4 and a small
decrease in the D-factor of 10 percent. The near-prolate
model with a cuspy stellar profile produces a very similar
J-factor to the Plummer prolate model, but here the D-factor
is enhanced over the spherical model by 20 percent. Finally,
in a similar fashion to the prolate NFW profile, the prolate
cored dark matter profile also produces an enhancement
in the J-factor of a factor of 3 and a small diminution in the
D-factor of order 10 percent.

B. A range of flattenings

We have established that a prolate model of Reticulum II
viewed edge on produces a significant enhancement in the
J-factor over its spherical counterpart, while an oblate
model has a slight diminution. However, the observed
dSphs span a whole range of ellipticities, so we now go on
to explore models with a variety of flattenings. We

FIG. 1. Reticulum II M2M equilibria of a flattened Plummer
distribution of stars in a flattened NFW dark halo. The top left
panel shows the logarithm of the projected mass distribution of an
oblate model viewed edge on with axis ratio 0.4. The contours are
logarithmically spaced. The top right panel shows the logarithm
of the projected mass distribution of a prolate model viewed edge
on with axis ratio 0.4. Note the X-shape in the prolate case. The
bottom left panel shows the surface density profiles in elliptical
bins with Plummer profile fits (oblate in blue, prolate in dashed
green). The bottom right panel shows the line-of-sight velocity
distributions (oblate in blue, prolate in dashed green).

1When computing these integrals numerically, we have found
it useful to perform the coordinate transformation tan χ ¼ z=rs
where rs is the scale radius of the density profile.
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construct three oblate M2M models with the same param-
eters as the spherical reference model in Table I but with
flattenings q ¼ 0.5, 0.6, 0.7, and similarly three prolate
M2M models with flattenings q ¼ 1.423, 1.667, 2. Again
the M2M models are normalized to match the line-of-sight
velocity dispersion and half-light major-axis length of
Reticulum II.
The J- and D-factors for our series of models are plotted

in Fig. 2. All models are viewed such that they appear
maximally flattened (along the short axis for the prolate
cases and along the long axis for the oblate cases). We also
show the J- and D-factors computed using the simple
formulas [Eqs. (15) and (19)] from Paper I. We see that this
formula disagrees with the spherical case by∼0.2 due to the
use of the empirical relation for the half-light mass. As
shown in Paper I, for most dSphs this is less than the
uncertainty in the J-factor due to uncertainties in the line-
of-sight velocity dispersion and half-light radius.
The prolate models produce a sequence of more

enhanced J-factors at all angles as we increase the flattening
q. The oblate models produce a similar sequence of
decreasing J as we decrease the flattening q. These trends
are reproduced in the D-factor. Note the asymmetry with q
in both J and D: the equivalent flattening for a prolate
model produces a larger difference from the spherical
model than the corresponding oblate model.
With this sequence of models, we also investigate how

the J-factor for an apparently round dSph changes as the
dSph is flattened along the line of sight. In Fig. 3, we show
the range of J- and D-factors for the set of flattened models
viewed face on such that the isophotes appear round and all
models have the same half-light radius. We see that the
range of possible J-factors with flattening along the line of
sight varies by a factor of 10. The oblate models all have a
similar decrease in the J-factor. The D-factor is unaffected
by flattening along the line of sight.

For the series of flattened M2M models, we compute the
correction factors F J and FD by comparing each model
with the spherical model with the same line-of-sight
velocity dispersion and the “ellipticity corrected” half-light

TABLE I. J- and D-factors for a beam angle of 0.5° for a series of Reticulum II models. The J-factors are in units of GeV2 cm−5 and the
D-factors are in units of GeV cm−2. Each model was normalized such that the line-of-sight velocity dispersion and half-light major axis
length matched that of Reticulum II. For the spherical model, an “ellipticity corrected” half-light radius of Rh

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
(where ϵ is the

ellipticity) was used to scale the models. Note the correction factors are with respect to the spherical NFW, spherical Plummer model in
the first row and not with respect to the corresponding spherical model.

Model Paper I J Paper I D log10ðJð0.5°ÞÞ log10ðDð0.5°ÞÞ F J FD

Spherical NFW 18.56 17.56 18.64 17.58 0.00 0.00
Spherical Plummer
Oblate NFW, p ¼ 1, q ¼ 0.4 � � � � � � 18.45 17.62 −0.19 0.05
Oblate Plummer, p ¼ 1, q ¼ 0.4
Prolate NFW, p ¼ 1, q ¼ 2.5 � � � � � � 19.05 17.67 0.40 0.09
Prolate Plummer, p ¼ 1, q ¼ 2.5
Near-prolate NFW, p ¼ 0.5, q ¼ 0.4 � � � � � � 19.01 17.78 0.37 0.20
Near-prolate cuspy Plummer α⋆ ¼ 2,
β⋆ ¼ 5, γ⋆ ¼ 1, p ¼ 0.4, q ¼ 0.38

Prolate cored DM αDM ¼ 1, βDM ¼ 4,
γDM ¼ 0, p ¼ 1, q ¼ 2.5

� � � � � � 18.90 17.66 0.26 0.08

Prolate Plummer, p ¼ 1, q ¼ 2.5

FIG. 2. J- andD-factors as a function of beam angle for a range of
flattened models viewed edge on with identical line-of-sight
velocity dispersions and half-light major-axis lengths. The models
are colored by the flattening in the density of both the stars and dark
matter, q. The spherical model is shownwith the short-dashed line,
while the analytic formula for the NFWmodel [Eqs. (15) and (19)
from Paper I] is shown with the long-dashed line.
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radius. The trends of F J and FD with respect to q are very
smooth so we opt to fit the corrections from the models
with a simple functional form

F fit ¼ ηlog10ðqÞ ð7Þ

where we fit q < 1 and q > 1 separately. The values of η
chosen are given in Table II. Although our fit is an

extrapolation for q < 0.4 and q > 2.5, we will see that it
agrees well with the more involved models of Sec. IV. In
reality, the correction factors are functions of the beam
angle. We have found that the correction factors are very
insensitive to the beam angle so this formula is appropriate
for all dSphs irrespective of their size compared to the
resolution of the instrument.

III. J- AND D-FACTORS FOR
THE MILKY WAY DSPHS

We now apply the corrections to the J- and D-factors of
the observed dSphs. They are listed in Table III along with
their measured ellipticities ϵ ¼ 1 − b=a where b=a is the
observed axis ratio. We take the majority of the ellipticities
and �1σ error bars from the review of Ref. [43]. The
ellipticities of the new dSphs discovered in the Dark Energy
Survey are taken from Ref. [12], the ellipticity of Pisces II
is taken from Ref. [44] and that of Hydra II from Ref. [45].
For both Leo T and Horologium I, only upper bounds on
the ellipticity are available.
For each dSph, we compute the correction factor

assuming the dSph is either oblate or prolate and observed
edge on. We draw samples from the error distributions of
the ellipticities and compute the median and �1σ values of
the correction factors for both the J- and D-factors using
Eq. (7). The baseline spherical model to which we are
comparing uses an effective half-light radius of Rh

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
.

We combine these estimates with the spherical estimates
computed in Paper I (adding the errors in quadrature).
The results of this procedure are reported in Tables III
and IV.
We show this data in Fig. 4. We plot the distribution of

J- and D-factors for the dSphs assuming they are spherical,
oblate or prolate. Ursa Major I has the largest ellipticity and
hence the largest prolate correction factor (a factor of ∼4).
Reticulum II, Ursa Major II and Hercules all have elliptic-
ities ∼0.6 and so the prolate correction factors are approx-
imately ∼2.2–2.7. For ellipticities less than ∼0.4, the
correction factors are less than the errors on the spherical
J-factors. For every dSph the correction to the D-factors is
smaller than the errors in the spherical D-factor. Hence,
we conclude that flattening has a negligible effect on the
D-factor estimates.
If the entire population of dSphs is prolate then only

Tucana II and Willman 1 have potentially higher J-factors
than Reticulum II, with both Ursa Major II and Segue 1
having a very similar J-factor to Reticulum II. We remark
that Tucana II is consistent with having circular isophotes
[12], while the assumption of dynamical equilibrium for
Willman 1 is dubious [46]. Similarly, Ursa Major II appears
to be in the process of severe tidal disruption [29]. Finally,
the J-factor of Segue 1 has been shown to be extremely
sensitive to the presence of foreground contaminants (e.g.,
Refs. [47,48]). These final three dSphs have been marked in
red in Fig. 4 to indicate their dubious J-factors. Therefore, it

FIG. 3. J- and D-factors as a function of beam angle for a range
of flattened models viewed face on with identical line-of-sight
velocity dispersions and half-light major-axis lengths. The
models are colored by the flattening in the density of both
the stars and dark matter, q. The spherical model is shown with
the short-dashed line and the model using the formulas from
Paper I is shown with the long-dashed line.

TABLE II. Slopes η of the base-10 logarithms of the correction
factors with respect to log10 q fitted to the made-to-measure
models of Sec. II. The prolate and oblate cases are treated
separately. The multiplicative factor by which a J- or D-factor
from a spherical analysis must be corrected is given by qη. Note
the spherical models to which we compare use an “ellipticity
corrected” half-light radius of Rh

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
where ϵ ¼ 1 − q is the

ellipticity in the oblate case and ϵ ¼ 1 − 1=q in the prolate case.

View η Oblate (q < 1) η Prolate (q > 1)

F J Edge on 0.534 0.899
Face on −1.647 −1.181

FD Edge on 0.056 0.177
Face on −0.335 −0.089
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is possible that the Reticulum II gamma-ray signal may be
due to annihilation if the dwarf has a prolate shape. We can
robustly conclude from Fig. 4 that if Reticulum II has a
prolate shape then an observed annihilation signal from
only Reticulum II is not in tension with the lack of signals
from all the other dSphs irrespective of their shapes. If,
however, Reticulum II is oblate and has an observed
annihilation signal we begin to have some tension if there
is a lack of signal from the other dSphs. The majority of this
tension arises from those problematic dSphs already
mentioned. However, if both Ursa Minor and Tucana II
have prolate shapes it becomes unlikely that they both have
smaller J factors than an oblate Reticulum II.

IV. SEMIANALYTIC MODELS

Numerical M2M models provide a robust method for
determining the corrections required when modeling flat-
tened systems as spherical. However, they are computa-
tionally expensive to construct so they cannot be employed
in a Markov chain Monte Carlo analysis that requires many
models. We have provided a simple fitting formula for our
model setup, but there will be some variation in the
correction factors depending on, for instance, the light
profile, the density profile of the dark matter, and the ratio
of the scale lengths of the light to the dark matter.
We now proceed to understand and reproduce the

results of the M2M models using simpler methods. In

TABLE III. Annihilation correction factors for dwarf spheroidals due to their observed ellipticity ϵ (note Leo T and Horologium I only
have upper bounds on the ellipticity). We report the spherical J-factor for a beam angle of 0.5° in units of GeV2 cm−5 along with the
corrections F J assuming the galaxy is observed exactly edge on and is either oblate or prolate. We report the resultant J-factors for these
cases as Jobl and Jpro in units of GeV2 cm−5. The dSphs are ordered by their ellipticity.

Name ϵ log10ðJsphð0.5°ÞÞ Oblate F J Prolate F J log10ðJoblð0.5°ÞÞ log10ðJproð0.5°ÞÞ
Hydra II 0.01þ0.20

−0.01 16.56þ0.87
−1.85 −0.002þ0.002

−0.052 0.004þ0.087
−0.003 16.56þ0.87

−1.85 16.56þ0.87
−1.85

Leo T <0.10 17.32þ0.38
−0.37 −0.012þ0.008

−0.009 0.020þ0.015
−0.014 17.31þ0.38

−0.37 17.34þ0.38
−0.37

Leo II 0.13þ0.05
−0.05 17.44þ0.25

−0.25 −0.032þ0.011
−0.017 0.054þ0.029

−0.018 17.41þ0.25
−0.25 17.49þ0.25

−0.25
Segue 2 0.15þ0.10

−0.10 17.11þ0.85
−1.76 −0.037þ0.019

−0.042 0.063þ0.070
−0.032 17.07þ0.85

−1.76 17.17þ0.85
−1.76

Leo I 0.21þ0.03
−0.03 17.80þ0.28

−0.28 −0.055þ0.008
−0.010 0.092þ0.017

−0.014 17.75þ0.28
−0.28 17.89þ0.28

−0.28
Horologium I <0.28 18.64þ0.95

−0.39 −0.034þ0.024
−0.028 0.058þ0.047

−0.040 18.61þ0.95
−0.39 18.70þ0.95

−0.39

Fornax 0.30þ0.01
−0.01 18.15þ0.16

−0.16 −0.083þ0.003
−0.003 0.139þ0.006

−0.005 18.07þ0.16
−0.16 18.29þ0.16

−0.16
Draco 0.31þ0.02

−0.02 18.86þ0.24
−0.24 −0.086þ0.006

−0.007 0.145þ0.012
−0.011 18.77þ0.24

−0.24 19.00þ0.24
−0.24

Sculptor 0.32þ0.03
−0.03 18.65þ0.29

−0.29 −0.090þ0.010
−0.011 0.151þ0.019

−0.016 18.56þ0.29
−0.29 18.80þ0.29

−0.29

Carina 0.33þ0.05
−0.05 17.99þ0.34

−0.34 −0.093þ0.016
−0.020 0.156þ0.034

−0.026 17.90þ0.34
−0.34 18.15þ0.34

−0.34
Sextans 0.35þ0.05

−0.05 17.87þ0.29
−0.29 −0.100þ0.016

−0.020 0.169þ0.034
−0.028 17.77þ0.29

−0.29 18.04þ0.29
−0.29

Coma Berenices 0.38þ0.14
−0.14 18.67þ0.33

−0.32 −0.108þ0.039
−0.071 0.182þ0.120

−0.066 18.56þ0.33
−0.33 18.85þ0.35

−0.33
Boötes I 0.39þ0.06

−0.06 16.65þ0.64
−0.38 −0.114þ0.020

−0.026 0.192þ0.043
−0.033 16.54þ0.64

−0.38 16.84þ0.64
−0.38

Canes Venatici I 0.39þ0.03
−0.03 17.27þ0.11

−0.11 −0.115þ0.011
−0.012 0.194þ0.020

−0.018 17.15þ0.11
−0.11 17.46þ0.11

−0.11
Tucana II 0.39þ0.10

−0.20 19.05þ0.87
−0.58 −0.114þ0.053

−0.049 0.193þ0.082
−0.090 18.94þ0.87

−0.58 19.24þ0.87
−0.59

Pisces II 0.40þ0.10
−0.10 17.90þ1.14

−0.80 −0.119þ0.032
−0.048 0.200þ0.081

−0.053 17.78þ1.14
−0.80 18.10þ1.14

−0.80
Grus I 0.41þ0.20

−0.28 17.96þ0.90
−1.93 −0.117þ0.064

−0.117 0.198þ0.196
−0.107 17.84þ0.90

−1.93 18.16þ0.92
−1.93

Willman 1 0.47þ0.08
−0.08 19.29þ0.91

−0.62 −0.147þ0.030
−0.040 0.247þ0.067

−0.051 19.14þ0.91
−0.62 19.54þ0.91

−0.62
Segue 1 0.48þ0.13

−0.13 19.41þ0.39
−0.40 −0.151þ0.045

−0.076 0.255þ0.128
−0.076 19.26þ0.39

−0.41 19.66þ0.41
−0.41

Leo IV 0.49þ0.11
−0.11 16.64þ0.90

−0.90 −0.156þ0.041
−0.064 0.262þ0.108

−0.068 16.48þ0.90
−0.90 16.90þ0.91

−0.90

Leo V 0.50þ0.15
−0.15 16.94þ1.05

−0.72 −0.159þ0.053
−0.096 0.268þ0.161

−0.089 16.78þ1.05
−0.73 17.21þ1.06

−0.73
Canes Venatici II 0.52þ0.11

−0.11 17.65þ0.40
−0.40 −0.171þ0.042

−0.065 0.288þ0.109
−0.071 17.48þ0.40

−0.41 17.94þ0.41
−0.41

Ursa Minor 0.56þ0.05
−0.05 19.15þ0.25

−0.24 −0.191þ0.024
−0.029 0.321þ0.049

−0.040 18.96þ0.25
−0.24 19.47þ0.25

−0.24
Reticulum II 0.59þ0.02

−0.03 18.71þ0.84
−0.32 −0.207þ0.016

−0.012 0.348þ0.020
−0.027 18.50þ0.84

−0.32 19.06þ0.84
−0.32

Ursa Major II 0.63þ0.05
−0.05 19.38þ0.39

−0.39 −0.231þ0.028
−0.035 0.389þ0.060

−0.047 19.15þ0.39
−0.39 19.77þ0.39

−0.39

Hercules 0.68þ0.08
−0.08 16.83þ0.45

−0.45 −0.266þ0.050
−0.069 0.447þ0.116

−0.084 16.56þ0.45
−0.46 17.28þ0.46

−0.46
Ursa Major I 0.80þ0.04

−0.04 18.48þ0.25
−0.25 −0.373þ0.041

−0.053 0.629þ0.089
−0.070 18.11þ0.25

−0.26 19.11þ0.27
−0.26
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subsection A, we describe a general virial method to
compute J-factors for flattened halo models. This numeri-
cal algorithm can be applied to any dark matter density,
but in the two following subsections, we provide analytic
shortcuts to evaluate the J-factors for two specific
families: the infinite flattened cusps and the flat rotation
curve halos. Readers primarily interested in the results,
rather than the details of the methods, should skip to
subsection D, where we compare our models to the M2M
results. Figures 6 and 7 provide summary plots, which
show the range of correction factors as a function of the
flattening of the stellar density.

A. The virial method

We can construct approximate equilibrium models much
more cheaply than with the full M2M apparatus by using

the virial theorem. The two constraints provided by the
data are the integrated line-of-sight velocity dispersion
hσ2losi and the half-light major-axis length Rh. We describe
a method to match these observations given density
models for the light (ρ⋆) and dark matter (ρDM).
(1) For a given viewing angle ðϑ;φÞ, we find the

measured ellipticity and orientation of the observed
minor axis [using, for instance, Eqs. (A1), (A2),
and (A6) of Ref. [49]] and compute the elliptical
half-light radius R0

h. This gives us a length scaling
R ¼ Rh=R0

h, and encodes the geometric factor
described in the Introduction.

(2) In principle, to solve for the kinematics of the stars in
the dark matter potential, we could use the axisym-
metric Jeans equations. However, there are degen-
eracies in the solution space and only a few
algorithms exist for a solution [50,51]. As we need

TABLE IV. As in Table III, but for the decay correction factors. The D-factors are quoted in units of GeV cm−2.

Name ϵ log10ðDsphð0.5°ÞÞ Oblate FD Prolate FD log10ðDoblð0.5°ÞÞ log10ðDproð0.5°ÞÞ
Hydra II 0.01þ0.20

−0.01 16.89þ0.44
−0.92 −0.000þ0.000

−0.005 0.001þ0.017
−0.001 16.89þ0.44

−0.92 16.89þ0.44
−0.92

Leo T <0.10 17.35þ0.37
−0.37 −0.001þ0.001

−0.001 0.004þ0.003
−0.003 17.35þ0.37

−0.37 17.35þ0.37
−0.37

Leo II 0.13þ0.05
−0.05 17.62þ0.25

−0.25 −0.003þ0.001
−0.002 0.011þ0.006

−0.004 17.62þ0.25
−0.25 17.63þ0.25

−0.25
Segue 2 0.15þ0.10

−0.10 17.08þ0.86
−1.75 −0.004þ0.002

−0.004 0.012þ0.014
−0.006 17.08þ0.86

−1.75 17.09þ0.86
−1.75

Leo I 0.21þ0.03
−0.03 17.89þ0.28

−0.28 −0.006þ0.001
−0.001 0.018þ0.003

−0.003 17.88þ0.28
−0.28 17.91þ0.28

−0.28
Horologium I <0.28 17.78þ0.47

−0.20 −0.004þ0.002
−0.003 0.011þ0.009

−0.008 17.78þ0.47
−0.20 17.79þ0.47

−0.20
Fornax 0.30þ0.01

−0.01 18.26þ0.17
−0.17 −0.009þ0.000

−0.000 0.027þ0.001
−0.001 18.25þ0.17

−0.17 18.29þ0.17
−0.17

Draco 0.31þ0.02
−0.02 18.39þ0.25

−0.25 −0.009þ0.001
−0.001 0.029þ0.002

−0.002 18.38þ0.25
−0.25 18.42þ0.25

−0.25
Sculptor 0.32þ0.03

−0.03 18.33þ0.29
−0.29 −0.009þ0.001

−0.001 0.030þ0.004
−0.003 18.32þ0.29

−0.29 18.36þ0.29
−0.29

Carina 0.33þ0.05
−0.05 17.98þ0.34

−0.34 −0.010þ0.002
−0.002 0.031þ0.007

−0.005 17.97þ0.34
−0.34 18.01þ0.34

−0.34
Sextans 0.35þ0.05

−0.05 18.07þ0.29
−0.29 −0.011þ0.002

−0.002 0.033þ0.007
−0.005 18.06þ0.29

−0.29 18.10þ0.29
−0.29

Coma Berenices 0.38þ0.14
−0.14 18.06þ0.32

−0.32 −0.011þ0.004
−0.007 0.036þ0.024

−0.013 18.05þ0.32
−0.32 18.10þ0.32

−0.32
Boötes I 0.39þ0.06

−0.06 17.28þ0.64
−0.38 −0.012þ0.002

−0.003 0.038þ0.008
−0.007 17.27þ0.64

−0.38 17.32þ0.64
−0.38

Canes Venatici I 0.39þ0.03
−0.03 17.78þ0.11

−0.11 −0.012þ0.001
−0.001 0.038þ0.004

−0.004 17.77þ0.11
−0.11 17.82þ0.11

−0.11
Tucana II 0.39þ0.10

−0.20 18.45þ0.88
−0.58 −0.012þ0.006

−0.005 0.038þ0.016
−0.018 18.44þ0.88

−0.58 18.49þ0.88
−0.58

Pisces II 0.40þ0.10
−0.10 17.41þ0.57

−0.40 −0.012þ0.003
−0.005 0.039þ0.016

−0.010 17.40þ0.57
−0.40 17.45þ0.57

−0.40
Grus I 0.41þ0.20

−0.28 17.59þ0.46
−0.96 −0.012þ0.007

−0.012 0.039þ0.039
−0.021 17.58þ0.46

−0.96 17.63þ0.46
−0.96

Willman 1 0.47þ0.08
−0.08 18.03þ0.91

−0.62 −0.015þ0.003
−0.004 0.049þ0.013

−0.010 18.01þ0.91
−0.62 18.08þ0.91

−0.62
Segue 1 0.48þ0.13

−0.13 18.17þ0.39
−0.39 −0.016þ0.005

−0.008 0.050þ0.025
−0.015 18.15þ0.39

−0.39 18.22þ0.39
−0.39

Leo IV 0.49þ0.11
−0.11 17.22þ0.90

−0.90 −0.016þ0.004
−0.007 0.052þ0.021

−0.013 17.20þ0.90
−0.90 17.27þ0.90

−0.90

Leo V 0.50þ0.15
−0.15 17.23þ1.05

−0.70 −0.017þ0.006
−0.010 0.053þ0.032

−0.018 17.21þ1.05
−0.70 17.28þ1.05

−0.70
Canes Venatici II 0.52þ0.11

−0.11 17.37þ0.40
−0.40 −0.018þ0.004

−0.007 0.057þ0.022
−0.014 17.35þ0.40

−0.40 17.43þ0.40
−0.40

Ursa Minor 0.56þ0.05
−0.05 18.45þ0.24

−0.24 −0.020þ0.002
−0.003 0.063þ0.010

−0.008 18.43þ0.24
−0.24 18.51þ0.24

−0.24
Reticulum II 0.59þ0.02

−0.03 17.93þ0.85
−0.32 −0.022þ0.002

−0.001 0.069þ0.004
−0.005 17.91þ0.85

−0.32 18.00þ0.85
−0.32

Ursa Major II 0.63þ0.05
−0.05 18.48þ0.39

−0.39 −0.024þ0.003
−0.004 0.077þ0.012

−0.009 18.46þ0.39
−0.39 18.56þ0.39

−0.39

Hercules 0.68þ0.08
−0.08 17.38þ0.45

−0.45 −0.028þ0.005
−0.007 0.088þ0.023

−0.017 17.35þ0.45
−0.45 17.47þ0.45

−0.45
Ursa Major I 0.80þ0.04

−0.04 18.15þ0.25
−0.25 −0.039þ0.004

−0.006 0.124þ0.018
−0.014 18.11þ0.25

−0.25 18.27þ0.25
−0.25
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only match an integrated quantity, we use the virial
theorem to compute hσ2losi as

hσ02losi ¼
Wlos

W
hσ2toti ¼

Wlos

M
; ð8Þ

where

Wlos ¼
Z

d3xρ⋆Rijxj
∂ΦDM

∂xk Rki: ð9Þ

ΦDM is the dark matter potential (generically com-
puted using a multipole expansion [52]), M is the
total dark matter mass and Rij is the projection

FIG. 4. J- (top) and D-factors (bottom) integrated over a beam angle of 0.5° for 27 dSphs. The diamonds with red error bars are
computed assuming a spherical model and are taken from Paper I. The circles with blue error bars show the spherical J-factors adjusted
by the oblate correction factors marginalized over the uncertainty in the ellipticity (assuming the galaxy is observed edge on) and the
squares with black error bars show the spherical J-factors adjusted by the prolate correction factors marginalized over the uncertainty in
the ellipticity (assuming the galaxy is observed edge on). The dSphs are ordered by their median spherical J-factors. The top set of red
numbers gives the ordering of the upper limits on the spherical J-factors, and the bottom set of black numbers gives the ordering of the
upper limits on the prolate J-factors. The gray dashed lines show the 1σ upper limit for the Reticulum II assuming it is prolate or oblate.
The three dSphs with red names have unknown additional systematic uncertainties due to the presence of contaminants or the
questionable assumption of dynamical equilibrium.
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matrix along the line-of-sight from coordinates
aligned with the principal axes of the dSph. We
have used the Einstein summation convention. For
triaxial symmetry, the cross terms in the integral
vanish so we need only project the velocity dis-
persions along the principal axes. This gives us a
velocity scaling V ¼ hσ2losi=hσ02losi, and encodes the
kinematic factor described in the Introduction.

(3) We compute a mass scaling M ¼ V2R. The initial
model is scaled by M and R and the J- and
D-factors are computed. These can be compared
to the spherical model with the same line-of-sight
velocity dispersion and half-light radius.

This algorithm is completely general. For some special
choices of stellar and dark matter density, the integration in
the virial theorem can be performed analytically. We now
give two examples—infinite flattened cusps and flat rota-
tion curve halos—for which the virial integrals can be done.
This means that the behavior of the J-factor at fixed
observables (line-of-sight velocity dispersion and half-light
radii) can be mapped out analytically as a function of
flattening or concentration.

B. Flattened cusps

Let us take the dark matter halo as an axisymmetric cusp
stratified on similar concentric spheroids with an axis ratio
q. If the cusps have the same massMh within the spheroidal
half-light radius mh, then the mass enclosed is

MðmÞ ¼ Mh

�
m
mh

�
3−γDM

for m ≤ rt ð10Þ

and M ¼ Mhðrt=mhÞ3−γDM otherwise. m2 ¼ x2 þ y2 þ
z2q−2 ¼ R2 þ z2q−2 and rt is a hard truncation ellipsoidal
radius. The dark matter density is

ρDMðmÞ ¼ Mh

4πqm3−γDM
h

3 − γDM
mγDM

for m ≤ rt; ð11Þ

and zero otherwise. Note the factor of q in the denominator
which comes from the Jacobian. It means that the oblate
models (q < 1) in the sequence have an increased density
as compared to their spherical progenitor, while the prolate
models (q > 1) have a decreased density. The spherical
member of the family obeys the empirical law (2). As the
mass Mh is preserved along the sequence, we can still use
Eq. (2) for the flattened cusps provided we correct the
observables—the line-of-sight velocity dispersion and the
projected half-light radius—to the spherical parent.
For comparison purposes, it is useful to define the

J-factor and D-factor of the infinite spherical cusp
[rt → ∞, Eqs. (8) and (11) in Paper I] as

Jsph ¼
1

D2R3
h

�hσ2losiRh

G

�
2
�
Dθ

Rh

�
3−2γDM

PðγDMÞ; ð12Þ

Dsph ¼
1

D2

hσ2losiRh

G

�
Dθ

Rh

�
3−γDM

QðγDMÞ; ð13Þ

where both PðγDMÞ and QðγDMÞ are constants given in
Paper I. In these expressions, the half-light radius Rh is the
“ellipticity corrected” half-light radius that includes a factor
of

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
. The J- and D- factors for our axisymmetric

models can now be written in the form

J ¼ JsphJgeoJkin;

D ¼ DsphDgeoDkin: ð14Þ

If an oblate model is viewed along the short axis, or a
prolate model is viewed along the long axis, then it appears
round. The line of sight coincides with the symmetry or z
axis. The geometric corrections are then straightforward to
evaluate as

Jgeo;face ¼
1

q
; Dgeo;face ¼ 1: ð15Þ

This case is very simple because both the field of view
and the surface density contours are circular. Note that
both factors are independent of the slope of the density
profile γDM.
If an infinite (rt → ∞) oblate or prolate model is

viewed edge on, it appears flattened with axis ratio q.
The line of sight then coincides with, say, the y direction.
Observationally, the effective radius of a flattened model is
always measured along the projected major axis. For an
oblate model, the measured effective radius is Rh whereas
for the prolate model, the effective radius of its spherical
progenitor is actually Rh=q. Additionally, comparison with
the “ellipticity corrected” spherical model gives rise to an
additional factor of

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
in the effective radius

which equals
ffiffiffi
q

p
for the oblate case and

ffiffiffiffiffiffiffiffi
1=q

p
for the

prolate case.
The geometric corrections (i.e. the ratio of the J- and

D-factors to those for a spherical model with the same Mh)
are now

Jgeo;edge ¼
q2−γDM

2πq2

Z
2π

0

dθðcos2θ þ q−2sin2θÞ1=2−γDM ; ð16Þ

and

Dgeo;edge ¼
q1−γDM=2

2πq

Z
2π

0

dθðcos2θ þ q−2sin2θÞ1=2−γDM=2:

ð17Þ
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The factors can only be reduced to a single quadrature due
to the mismatch between the circular beam aperture and the
elliptical isophotes. For oblate (prolate) models, the geo-
metric correction leads to an increase (decrease) in the
J-factor as compared to a spherical model with the sameMh
if γDM ≤ 2. If the dark matter halo is truncated at a finite
ellipsoidal radius rt < Dθ, the beam encloses all the dark
matter and the edge-on geometric factors reduce to

Jgeo;edge ¼ q1−γDM ; Dgeo;edge ¼ q1−γDM=2: ð18Þ

These equations are preferable as for γDM < 3 they corre-
spond to finite mass models and for γDM < 3=2 they
produce finite J-factors. We have found that they give
much better representations of the correction factors for
more general models.
We have computed the ratio of the J- and D-factors to

those of the spherical model with the same Mh. As Mh is
estimated from the line-of-sight velocity dispersion, we
must now compute the ratio of the trueMh to that computed
using only the line-of-sight velocity dispersion. This ratio is
the kinematic correction, which we compute using the
tensor virial theorem [53,54]. The effect of flattening on the
kinematics of the stars is given by

TRR

Tzz
¼ WRR

Wzz
¼

R
d3xρ⋆ðσ2RR þ σ2ϕϕÞR

d3xρ⋆σ2zz
ð19Þ

where T and W are the kinetic energy and potential energy
tensors [52,54,55]. The stellar density in dSphs is well
approximated by a Plummer or King profile. Such laws do
not lead to tractable integrals in the virial theorem (19).
Instead, we approximate the stellar density as a power-law
stratified on similar concentric spheroids with m2⋆ ¼ R2 þ
z2q−2⋆ and so q⋆ is the stellar flattening. This means we can
take advantage of Eqs. (19)–(24) in Ref. [54], which give
the virial ratios for stellar populations whose density is a
pure scale-free power law declining like distance−γ⋆ . Note
that as all the considered models have infinite mass we
must work with the ratios of the velocity dispersions.
If we assume the equipotentials are spheroidally strati-

fied, the correction is a function of Q⋆ ¼ q2ϕ=q
2⋆, where qϕ

is the flattening of the dark halo equipotentials, which is
related to the flattening q in the dark halo density via

qϕ ¼ 1

2
ð1þ ð1þ 8q2Þ1=2Þ1=2: ð20Þ

This formula is given in Refs. [56,57]. As is well known,
the equipotentials are always rounder than the density
contours, so that qϕ ≈ 1 even if the dark halo is quite
flattened. Then for γ⋆ ¼ 3, we have from Ref. [54]

hσ2xxi
hσ2zzi

¼
8<
:

Q⋆Q−
ffiffiffiffiffi
Q⋆

p
ArcsinhQ

2½ ffiffiffiffiffi
Q⋆

p
ArcsinhQ−Q� ; Q⋆ > 1

Q⋆Q−
ffiffiffiffiffi
Q⋆

p
ArcsinQ

2½ ffiffiffiffiffi
Q⋆

p
ArcsinQ−Q� ; Q⋆ < 1;

ð21Þ

where

QðQ⋆Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q⋆ − 1
p

Q⋆ > 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q⋆

p
Q⋆ < 1:

ð22Þ

Our formulas are appropriate if rt → ∞ or the stellar profile
is truncated at a smaller radius than the dark-matter profile.
This virial ratio is unity when Q⋆ ¼ 1. This follows
because if the stellar density is constant on the equipoten-
tials, then the velocity dispersion is isotropic. It is greater
than unity whenQ⋆ > 1 (that is, when the model is oblate),
as the globally averaged velocity dispersion component
along the long or x axis must be larger than that along the
short or z axis. It is less than unity when Q⋆ < 1, as the
roles of the x and z axes are now reversed for the prolate
figure. Formulas for other values of γ⋆, or stellar density
fall-off, are given in Appendix A. We plot the logarithm of
the virial ratio in Fig. 5 along with the ratio calculated from
the M2M models. The line for γ⋆ ¼ 3 agrees well with the
M2M data. The green dashed line shows the virial ratio
computed using the virial method. For a stellar density
stratified on the same concentric ellipsoids as the dark-
matter density, the virial ratio is simply a function of the
shape of the ellipsoids and is independent of the radial
density profile so the plotted line has a very simple
functional form [52,58,59].
It can be shown that along the sequence of models the

total luminosity-averaged square velocity dispersion σtot is
constant. Therefore, for a given model the kinematic factor
is the ratio of the total velocity dispersion to the line-of-
sight velocity dispersion. When viewed down the x axis, the
kinematic correction factor is

FIG. 5. Kinematic ratio for oblate and prolate figures. Each line
shows the prediction from a stellar axisymmetric cusp with
density slope γ⋆ flattened with axis ratio q embedded in a halo
also with flattening q. The black points show the numerical
results from the M2M models.
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Jkin;edge ¼
�hσ2toti
hσ2losi

�
2

¼
�
2

3
þ hσ2zzi
3hσ2xxi

�
2

: ð23Þ

This is the ratio of the squared velocity dispersion along the
line of sight to the average value. This is smaller (larger)
than unity for oblate (prolate) models. When viewed down
the z axis, the kinematic correction factor is

Jkin;face ¼
�
1

3
þ 2hσ2xxi

3hσ2zzi
�

2

: ð24Þ

This is smaller (larger) than unity for prolate (oblate)
models. Note that, as the D-factors are proportional to
σ2tot, the D-factor kinematic factor Dkin ¼

ffiffiffiffiffiffiffi
Jkin

p
.

C. Flat rotation curve models

A simple but widely used model of a dark halo has the
potential-density pair [52,56]

ρDMðR; zÞ ¼
v20

4πGq2ϕ

ð2q2ϕ þ 1ÞRd
2 þ R2 þ z2ð2 − q−2ϕ Þ

ðRd
2 þ R2 þ z2q2ϕÞ2

;

ΦDMðR; zÞ ¼
v20
2
lnðRd

2 þ R2 þ z2q−2ϕ Þ: ð25Þ

Here, v0 is a velocity scale that is the asymptotic value of
the flat rotation curve, while Rd is the dark matter length
scale and qϕ is the axis ratio of the equipotentials. The dark

matter density is everywhere positive provided qϕ > 1=
ffiffiffi
2

p
,

so the model can be oblate, spherical or prolate. Unless
qϕ ¼ 1, the flattening of the dark matter density changes
with radius such that the oblate models become more oblate

in the outskirts while the prolate models become more
prolate. At large radii qϕ is related to the isodensity
flattening q via Eq. (20). The dark halo is cusped if
Rd ¼ 0, but the cusp is isothermal and so much more
severe than in the NFW model.
The J-factor for the model viewed along the z axis or

symmetry axis is

J ¼ v40
96RdD2G2q3ϕ

½3ð1 − yÞ − 4q2ϕðy3 − 1Þ

þ q4ϕð8 − 3y − 2y3 − 3y5Þ�; ð26Þ

with y ¼ Rd=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
d þD2θ2

q
. At large angles, y → 0 and so

the asymptotic value is

J →
v40

96RdD2G2q3ϕ
½3þ 4q2ϕ þ 8q4ϕ�: ð27Þ

Similarly, the D-factor for a model viewed along the z axis
is given by

D ¼ v20Rd

GD2

qϕðDθ=RdÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðDθ=RdÞ2

p : ð28Þ

Note that the total mass of the model is not finite so the
D-factor does not tend to a finite value as θ → ∞. Viewed
edge on, two of the integrations for the J-factor are analytic,
leaving a final integral over the spherical aperture to be
performed numerically

Jðθ → ∞Þ ¼ v40
1536πRdD2G2q8ϕ

Z
2π

0

dϕ
G1ðqϕÞ þG2ðqϕÞ cosð2ϕÞ þ G3ðqϕÞ cosð4ϕÞ

ðcos2ϕþ q−2ϕ sin2ϕÞ3 ; ð29Þ

G1ðqϕÞ ¼ 120þ 280Q2 þ 221Q4 þ 64Q6 þ 9Q8;

G2ðqϕÞ ¼ 4Q2ð14þ 3Q2ð3þQ2Þ2Þ;
G3ðqϕÞ ¼ Q4ð7þ 8Q2 þ 3Q4Þ; ð30Þ

and Q2 ¼ q2ϕ − 1. The D-factor can also be expressed as a
single quadrature but the expression is too bulky to present
here. Into this dark halo, we embed a population of stars to
model the dSph, namely

ρðR; zÞ ¼ ρ0Rc
β⋆

ðRc
2 þ R2 þ z2q−2⋆ Þβ⋆=2 :

Here, ρ0 is a normalization constant, while q is the axis
ratio of the spheroidal isodensity contours. If β⋆ ¼ 5, this is
the familiar Plummer model. If the scale length of the stars
Rc is equal to the scale length of the dark matter Rd, and the
flattening of the stellar density q⋆ is equal to the flattening
of the dark matter equipotentials qϕ, then the phase space
distribution function is an isothermal [56]. We derive more
general formulas below, but note that this simple limit
enables an easy check of the correctness of our results.
As both the density and the potential are simple, we can

calculate the velocity dispersions seen on viewing the
stellar distribution along the short or long axis. We give
the results for β⋆ ¼ 5 here, and delegate other formulas to
Appendix B. We begin by defining
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Δ2
1 ¼ q2ϕ − q2⋆; Δ2

2 ¼ Rd
2 − Rc

2;

D2 ¼ q2ϕRd
2 − q2⋆Rc

2: ð31Þ

Then the velocity dispersions are

hσ2RRi ¼
v20qϕRc

2

Δ4
1Δ4

2D
2

�
2Δ4

1Rd
3DArccosh

�
qϕRd

q⋆Rc

�

− Δ1D2ð2q2ϕRd
2 þ q2⋆ðRc

2 − 3Rd
2ÞÞArccosh

�
qϕ
q⋆

�

− qϕΔ2
1Δ2

2D
2

�
;

hσ2zzi ¼
v20q

2⋆Rc
2

Δ4
1Δ2

2D
2

�
q2⋆Δ2

1Δ2
2D

2 − qϕΔ1D4Arccosh

�
qϕ
q⋆

�

þ qϕΔ4
1DRd

3Arccosh

�
qϕRd

q⋆Rc

��
: ð32Þ

The formulas hold generally on using the identity (for
S < 1)

Arccosh S≡ −i arccos S:

These formulas give the line-of-sight velocity dispersion of
an axisymmetric Plummer model viewed along the short
and long axes in a dark halo of arbitrary flattening and
length scale. If Rc ¼ Rd, then

hσ2RRi ¼
v20qϕ

4ðq2ϕ − q2⋆Þ3
�
5q4⋆qϕ − 7q2⋆q3ϕ þ 2q5ϕ

þ 3q4⋆ðq2ϕ − q2⋆Þ1=2Arccosh
�
qϕ
q

��
;

hσ2zzi ¼
v20q

2⋆
2ðq2ϕ − q2⋆Þ3

�
q4ϕ þ q2ϕq

2⋆ − 2q4⋆

− 3q2⋆qϕðq2ϕ − q2⋆Þ1=2Arccosh
�
qϕ
q

��
: ð33Þ

If additionally q⋆ ¼ qϕ, then

hσ2RRi ¼
2v20
5

; hσ2zzi ¼
v20
5
: ð34Þ

With the line-of-sight velocity dispersion in hand, we can
simply rescale the model so that the J-factors are computed
for models with the same observables (line-of-sight veloc-
ity dispersion and half-light radius) as the flattenings and
the ratio of dark to luminous scale length Rc=Rd varies.

D. Comparisons

The models in Secs. IV B and IV C are complementary.
The infinite cusps allow us to vary the central slope of the
dark matter. The cored models allow us to vary the ratio of

the luminous to the dark matter length scale. Taken
together, a gamut of possibilities of dark halo cusps,
density profiles and length scales can be swept out.
The base-10 logarithms of the correction factors (6) are

plotted as a function of dark halo flattening q in Fig. 6. The
flattening of the stellar population q⋆ is the same as that of
the dark halo q. For all plots we use the observed
parameters of Reticulum II with a beam angle of 0.5°.

FIG. 6. J-factor correction factors for oblate and prolate figures
viewed face on (top) and edge on (bottom). The black points
show the numerical results from the M2M models of stellar
Plummer models flattened with axis ratio q embedded in NFW
dark-matter halos also of axis ratio q. The dashed green line
shows the results of the virial method of Sec. IVA. The blue band
shows a range of axisymmetric cusp models from Sec. IV B. The
central line corresponds to a model with γDM ¼ 1, γ⋆ ¼ 3. In
the top panel, we have varied the slope of the light profile (note
the face-on correction factor is independent of γDM in this case).
In the bottom panel, we have varied the slope of the dark matter.
In both panels, the red band shows a series of cored flat rotation
curve models from Sec. IV C. The central line has an outer stellar
density profile of β⋆ ¼ 5 and a ratio of dark-matter to stellar scale
radii of Rd=Rc ¼ 20. The band corresponds to varying this scale
radii ratio by a factor of 10.
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The correction factors are a function of the beam angle but
we have found that this dependence is very weak and that
the correction factors are essentially independent of the size
of the dSph with respect to the beam size. Therefore, the
reported correction factors are appropriate for all beam
angles.
We show the correction factors for models viewed face

on (top panels) and edge on (bottom panels). Any correc-
tion factor between these extremes should be possible as
the inclination angle can be varied between these extremes.
The correction factors computed from the M2M Plummer
models in NFW halos with axis ratio q are shown as black
points. They are in good agreement with the results of the
virial method of Sec. IVA applied to the self-same model,
which are shown as a green curve. Note that the exception
to this is the q ¼ 2.5 prolate model. As noted in Sec. II, the
made-to-measure method in this case produces an equilib-
rium figure that significantly deviates from a spheroidally
stratified Plummer model. We also show as blue bands the
range of results for the axisymmetric cusps of Sec. IV B, in
which both the slopes of the dark matter and stellar cusps
are allowed to vary. Finally, the red band shows a series of
cored flat rotation curve models from Sec. IV C. The
central line has an outer stellar density slope of β⋆ ¼ 5
and a ratio of dark-matter to stellar scale radii of
Rd=Rc ¼ 20. The band corresponds to varying this scale
radii ratio by a factor of 10. As we move along the curves,
the models have the same line-of-sight velocity dispersion
and the same half-light radius. As the models make
different assumptions as to the dark matter density and
potential, we do not expect these curves to match up exactly
with the M2M models, but it is encouraging that they all
show similar trends.
When an oblate model is viewed along the short axis or

face on, it appears circular, but there is always a boost to the
J-factor. For flattenings of q ¼ q⋆ ¼ 0.5, this can be a
factor of 3 boost over the spherical J-factor. When the
model is viewed edge on, or along the long axis, then it
appears flattened with isophotes of ellipticity 1 − q⋆.
However, the geometric and kinematic corrections work
in different directions, i.e., to boost and reduce the J-factor,
respectively. The net effect is less significant than in the
face-on case and is ∼0.1–0.2 dex for 0.4 < q < 0.7.
When a prolate model is viewed along the long or z axis,

it appears round. Here, the geometric and the kinematic
corrections both diminish the J-factor. Although the model
looks round on the sky, its J-factor can be substantially less
than that computed by a spherical analysis. For example, if
the true flattening is q ¼ q⋆ ¼ 2.5, then the J-factor is
decreased by a factor≲0.3. When the model is viewed edge
on, the isophotes have ellipticity 1 − q−1⋆ , and the kinematic
and geometric factors act in opposite directions with the net
result being a small boost. If the flattening is q ¼ q⋆ ¼ 2.5
the J-factor is increased by ∼0.3 dex over the spherical
estimate.

The blue bands give an indication of how the correction
factors vary as the dark-matter density slope is adjusted. We
find steeper cusps give smaller corrections for models
viewed edge on, but have no effect on the corrections for
models viewed face on as the geometric factor is indepen-
dent of γDM. For the face-on case we see that making the
slope of the stellar density profile steeper produces larger
corrections to the J-factor.
From the red bands we observe that making the dark

matter halo more extended (increasing Rd=Rc) produces
larger corrections for the face-on case but smaller correc-
tions for the edge-on case. The width of the red bands when
the length scales Rc=Rd are varied is at most 0.5 dex, even
at the most extreme flattenings. Most of the Milky Way
dSphs are rounder than q⋆ ¼ 0.5. In this regime, the red
band is thinner, and gives rise to an uncertainty of at most
∼0.25 dex. This suggests that varying the concentration of
the dark matter halo will not have a significant effect on the
flattened J-factors. This is corroborated by experiments
with the Plummer profile embedded in the NFW profile.

FIG. 7. D-factor correction factors for oblate and prolate figures
viewed face on (top) and edge on (bottom). See the caption of
Fig. 6 for details on each line.
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Additionally, making the stellar density in these models fall
off more rapidly increases the magnitude of the J-factor
correction factors when viewing face on but decreases the
magnitude of the correction when viewing edge on.
The equivalent results for the D-factors are shown in

Fig. 7. The correction factors for the M2M models are all
≲0.2 dex, and suggest that for most applications, the
spherical approximation suffices for the D-factors. Note
that in the face-on case, the cored models give a similar
approximation of the correction factors as the cuspy models
while for the edge-on case the cored models more faithfully
represent the true correction factors than the cuspy models.
Increasing the outer stellar density slope for the flat rotation
curve models increases the magnitude of D-factor correc-
tion factors when viewing face on but has little effect for the
edge-on case.
Finally, we note that for a ðα; β; γÞ stellar model of

Eq. (3) embedded in another ðα; β; γÞ dark-matter model the
J-factor correction factors are very insensitive to the choice
of the density slopes of the stellar and dark-matter
distributions and the ratio of the stellar to dark-matter
scale lengths. The same is broadly true for the D-factor
correction factors except that the edge-on correction factor
has a weak dependence with the outer slope of the dark
matter profile. This is slightly at odds with the flat rotation
curve model results but this may be due to the flat rotation
curve models having a density flattening that varies with
radius while the ðα; β; γÞ models have a constant density
flattening.

V. THE EFFECTS OF TRIAXIALITY

Generically, we might expect the light and dark-matter
distributions in dwarf spheroidals to be triaxial [60].
Triaxiality can introduce additional flattening (stretching)
along the line of sight and so naturally increases (decreases)
the J-factor and gives rise to larger (smaller) correction
factors. Here we extend the formulas given in the previous
section to account for intrinsic triaxial shapes. We begin by
focusing on the infinite cusp models where some analytic
progress can be made before moving on to consider more
general density profiles.
We extend the models of Eq. (11) and introduce

an intermediate-to-major axis ratio p in addition to the
minor-to-major axis ratio q. Here we restrict q < p < 1
such that a prolate model has p ¼ q ≠ 1. It is conventional
to use a triaxiality parameter T to describe the figures
defined by

T ¼ 1 − p2

1 − q2
: ð35Þ

Note that figures with T ¼ 0 are oblate while those with
T ¼ 1 are prolate. The density for the triaxial cusp
models is

ρDMðmÞ ¼ Mh

4πpqm3−γDM
h

3 − γDM
mγDM

for m ≤ rt; ð36Þ

and zero otherwise. m2 ¼ x2 þ y2p−2 þ z2q−2 and rt is a
truncation ellipsoidal radius. When an infinite (rt → ∞)
model is viewed along the z axis, the observed flattening is
p and the geometric factor is a combination of Eqs. (15)
and (16) such that

Jgeo;z ¼
p2−γDM

2πp2q

Z
2π

0

dθðcos2θ þ p−2sin2θÞ1=2−γDM : ð37Þ

In this case, the observed major-axis length corresponds to
the intrinsic model scale radius. for γDM ≤ 2, the integral is
a monotonic function of q that is greater than unity for
q < 1 and less than unity for q > 1. If viewed along the y
axis the observed flattening is q and the J-factor is given by

Jgeo;y ¼
q2−γDM

2πq2p

Z
2π

0

dθðcos2θ þ q−2sin2θÞ1=2−γDM ; ð38Þ

and again the observed major-axis length coincides with the
intrinsic model scale radius. When viewed along the major
axis, the observed flattening is q=p and the observed major-
axis length coincides with the intermediate axis so the
resultant measured scale length must be scaled by a factor
of 1=p. This gives rise to a geometric factor of

Jgeo;x¼
ðq=pÞ2−γDM
2πðq=pÞ2p

Z
2π

0

dθðcos2θþðq=pÞ−2sin2θÞ1=2−γDM :

ð39Þ

As with the axisymmetric case, the infinite cusps have
limited use and it is more practical to use models with finite
truncation ellipsoidal radii rt < Dθ. In this case, the geo-
metric factors are given by

Jgeo;x ¼ ðqpÞ1−γDM ;
Jgeo;y ¼ q1−γDM=p;

Jgeo;z ¼ p1−γDM=q: ð40Þ

For the models that produce a finite J-factor (γDM < 3=2),
we find Jgeo;x < Jgeo;y < Jgeo;z. For the astrophysically
motivated case of γDM ¼ 1 the geometric factors are simply
Jgeo;x ¼ 1, Jgeo;y ¼ 1=p and Jgeo;z ¼ 1=q.
If the infinite model is observed along a line of sight

oriented with spherical polar angles ðφ; ϑÞ with respect to
the intrinsic Cartesian coordinates of the model, the geo-
metric factor must be computed with the full three-
dimensional integrals as

Jgeo ¼
1

JsphD2

Z
∞

−∞
dz0

Z
2π

0

dθ
Z

Dα

0

dRRρDM2ðxÞ; ð41Þ
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where x ¼ R cos θφ̂þ R sin θϑ̂ þ z0r̂ with ðr̂; φ̂; ϑ̂Þ being
the set of spherical polar unit vectors. Making the model
finite with rt < Dθ produces J=Jsph ¼ 1=ðpqÞ. However,
for this general viewing angle the calculation of the
observed scale radius seems intractable. The kinematic
factors Jkin ¼ ðhσ2toti=hσ2losiÞ2 can be derived for these more
general viewing angles as

Jkin ¼
�
1

3

1þ f1 þ f2
cos2ϑþ f1sin2ϑcos2φþ f2sin2ϑsin2φ

�
2

; ð42Þ

where

f1 ¼
hσ2xxi
hσ2zzi

¼
R
π
0 dθ

R
2π
0 dϕFðθ;ϕÞsin3θcos2ϕR

π
0 dθ

R
2π
0 dϕFðθ;ϕÞ sin θcos2θ > f2

f2 ¼
hσ2yyi
hσ2zzi

¼
R
π
0 dθ

R
2π
0 dϕFðθ;ϕÞsin3θsin2ϕR

π
0 dθ

R
2π
0 dϕFðθ;ϕÞ sin θcos2θ > 1; ð43Þ

and

Fðθ;ϕÞ ¼ ðsin2θcos2ϕþ P2⋆sin2θsin2ϕþQ2⋆cos2θÞ−γDM=2:
ð44Þ

Here P⋆ ¼ pϕ=p andQ⋆ ¼ qϕ=q with pϕ and qϕ being the
axis ratios of the dark matter potential. We see that when
viewing down the major axis (ϑ ¼ π=2, φ ¼ 0) the kin-
ematic correction factor is less than unity while viewing
down the minor axis (ϑ ¼ 0, φ ¼ 0) produces a kinematic
correction factor greater than unity. Generally, we find that
Jkin;x < Jkin;y < Jkin;z such that the total correction factors
for γDM < 3=2 obey the hierarchy F J;x < F J;y < F J;z. We
have found that the effects of triaxiality seem to be in
accordance with our expectation from the axisymmetric
case. When there is additional flattening along the line of
sight the geometric and kinematic correction factors com-
bine to increase the correction factor, while additional
stretching decreases the correction factor.
We now compute general triaxial correction factors using

the method of Sec. IVA. We show an example of the
J-factor correction factors for the Reticulum II model
presented in Sec. II but with stellar minor-to-major axis
ratio q ¼ 0.4 and stellar intermediate-to-major axis ratio
p ¼ 0.73. We assume the dark-matter distribution is
flattened in the same way as the stellar distribution. This
model has triaxiality parameter T ¼ 0.55, (which was
deemed the best fit to the Local Group dSphs by
Ref. [60]). The base-10 logarithm of the correction factor
for all viewing angles is given in Fig. 8. We see that, in
agreement with the simple predictions from the infinite
cusp models, the largest correction factor occurs when the
model is viewed down the short axis (the z axis) while the
smallest is when viewing down the long axis (the x axis).
The black contours on the sphere show lines of constant

observed ellipticity. We see that for this figure an observed
ellipticity of 0.3 gives rise to a variation in the correction
factor of 0.6 dex.
In conclusion, additional flattening along the line of sight

can lead to an increase in the correction factors. For a
general triaxial figure the largest correction factor is
obtained when viewing the model down the short axis
while the smallest correction factor is yielded when view-
ing the model down the long axis.

VI. INTRINSIC SHAPES AND AXIS ALIGNMENTS
OF DWARF SPHEROIDAL GALAXIES

We have presented corrections to the J- and D-factors
based on the assumption that the dSphs are prolate or oblate
figures with axes aligned with the line of sight. Such
configurations are quite unlikely as we anticipate that
generically the dSph principal axes are misaligned with
the line of sight. In this section we will discuss what is

FIG. 8. J-factor correction factors for a triaxial model of
Reticulum II: each point on the sphere is colored by the correction
factor when viewing the model along the radial vector that passes
through that point. The black contours show the observed
ellipticity when viewed from that direction. The small ellipsoid
shows an isodensity contour for the considered model which has
axis ratios p ¼ 0.73 and q ¼ 0.4 in both the stellar and dark-
matter distributions. The largest correction factor is achieved
when viewing the model down the short axis (z) while the
smallest correction factor is achieved when viewing the model
down the long axis (x). When viewing down the intermediate axis
(y) the observed ellipticity matches that of Reticulum II.
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known regarding the intrinsic shapes of the dSphs and how
this translates into observed properties via their axes
alignment with respect to the line of sight.
For a given individual galaxy, we have a couple of probes

of its intrinsic shape [61–63]. The first of these is the
presence of isophotal twisting, that is the change in the
orientation of the major axis of the isodensity contours with
on-sky distance from the galaxy center. Isophotal twisting
is a clear signature of a triaxial figure with varying axis
ratios with radius, although isophotal twisting may also be
caused by tidal effects [64]. Another indicator of triaxiality
is evidence of kinematic misalignment between the axis of
rotation and the minor axis of the projected density.
For entire populations of galaxies, progress can be made

by analyzing statistics of the population (e.g., Ref. [49]).
Recently, Ref. [60] demonstrated that under the assumption
that the intrinsic axes of the dSphs are randomly oriented,
the Local Group dSph population is best reproduced by
triaxial models with mean triaxiality T̄ ¼ 0.55þ0.21

−0.22 and a
mean intrinsic ellipticity [E ¼ 1 − ðc=aÞ] of Ē ¼ 0.51þ0.07

−0.06 .
The assumption of random orientation is perhaps to be
questioned, particularly for the Milky Way dSphs. Dark-
matter only simulations [65,66] have demonstrated that the
major axes of subhalos tend to be aligned with the radial
direction to the center of their host halo and this picture has
been corroborated when baryons have been included [67].
The main exception to this is near the subhalo’s
pericentric passage where the major axis is briefly aligned
perpendicular to the radial direction.
Most of the dSphs are distant enough for the radial

direction and our line of sight to approximately coincide,
which suggests that for many dSphs the observed flattening
corresponds to the intermediate-to-minor axis ratio and that
there is significant stretching of the dSphs along the line of
sight. As demonstrated in this paper, this gives rise to
overestimates of the J-factors from spherical analyses for
the prolate face-on models and for the triaxial model
viewed down the major axis.
Based on this discussion, we now compute the expected

J correction factors with their associated uncertainties
under a number of assumptions regarding the intrinsic
shape and alignment of the dSphs. We use the EMCEE

package from Ref. [68] to draw 500 samples of ðT; E; ϑ;φÞ
i.e. the triaxiality, the intrinsic ellipticity and the two
viewing angles. Our likelihood is the distribution of the
observed ellipticity for each dSph given by, for instance,
Eqs. (A1) and (A2) of Ref. [49]. For those dSphs with
upper bounds on their ellipticity we use a normal distri-
bution with mean zero and standard deviation of half the
upper bound. We consider three different prior distributions
on the parameters ðT; E;ϑ;φÞ:
(1) Uniform (U): T ∼ Uð0; 1Þ, E ∼ Uð0; 0.95Þ,

cosϑ ∼ Uð0; 1Þ, φ ∼ Uð0; π=2Þ.
(2) Viewing down the major axis (R): T ∼ Uð0; 1Þ,

E∼Uð0;0.95Þ, ϑ∼N ðπ=2;0.1radÞ, φ∼N ð0;0.1radÞ.

(3) Sanchez-Janssen et al. [60] priors (T): T ∼
N ð0.55;0.04Þ, E∼N ð0.51;0.12Þ, cosϑ∼Uð0;1Þ,
φ ∼ Uð0; π=2Þ,

where Uða; bÞ is a uniform distribution from a to b and
N ðμ; σÞ is a normal distribution with mean μ and standard
deviation σ. For each sample we compute the base-10
logarithm of the correction factor F J to construct a
distribution of correction factors.
In Fig. 9, we show the full one-dimensional distributions

of the correction factors for Reticulum II. All three prior
assumptions produce a correction factor distribution that
peaks near zero. The broadest distribution corresponds to
the case where uniform priors have been adopted in all
parameters. In this case, the largest correction factors
correspond to models with high intrinsic ellipticity E
viewed down the short axis. These models have triaxiality
T close to unity so they are near prolate models. The
smallest correction factors correspond to models with low
intrinsic ellipticity viewed down the long axis.
For the prior assumption that we are viewing along the

major axis, we find the median correction factor peaks at
∼ −0.2 dex. For this prior assumption, there is an approxi-
mate one-to-one relationship between T and E as well as T
andF J. Models with smaller T correspond to smaller E and
hence smaller amplitude correction factors as these models
are approximately edge-on oblate, while larger T and larger
E produce larger amplitude negative correction factors as
these models are nearer prolate stretched along the line of
sight. For the prior assumption that the models have some
fixed triaxiality and intrinsic ellipticity, the largest correc-
tion factors correspond to viewing angles nearer the short
axis and the smallest correction factors correspond to
viewing angles closer to the long axis.
The medians and�1σ error bars of the correction factors

for all the dSphs computed for the three prior assumptions
are given in Table V. This information is also displayed in
Fig. 10. If we assume the dSphs are preferentially viewed

FIG. 9. Distribution of the base-10 logarithm of the J-factor
correction factors for triaxial models of Reticulum II under three
different assumptions on the prior distributions of the intrinsic
triaxiality, ellipticity and viewing angles as described in the text.
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along the major axis, the median correction factor is less
than unity and is weakly decreasing with increasing
ellipticity. As the dSphs become more flattened on the
sky, they are forced to become more extended along the
line of sight and so the J-factor decreases. The medians of
the correction factors for dSphs with small ellipticity
under the uniform prior assumption is around 0.05 dex
and the upper error bars are in general larger than the
lower error bars but the spread encompasses zero. The
median shift is due to the asymmetry in the correction
factors between oblate and prolate models seen in Fig. 6.
This suggests that all J-factors are underestimated
by ∼10 percent but naturally this conclusion is very

sensitive to the exact prior assumptions. For small
ellipticity, the spreads in the correction factors for the
uniform and fixed shape priors are approximately equal
with the spread weakly increasing with increasing ellip-
ticity for the uniform case. For the fixed shape prior the
spread decreases at large ellipticity as models viewed
down the minor axis become inconsistent with the
observed ellipticity. We have fitted a simple relation to
the uncertainty in the correction factors from the uniform
priors ΔF J (the average of the �1σ uncertainties) as a
function of ellipticity as

ΔF J ≈ 0.4
ffiffiffi
ϵ

p ð45Þ

TABLE V. Median and �1σ J correction factors for the known dSphs for three different assumptions about the
intrinsic shapes and alignments. The first correction factor (marked “U”) uses flat uniform priors on the triaxiality,
minor-to-major axis ratio and viewing angles. The second (marked “R”) uses a normal prior on the viewing angles
centered on ðθ ¼ π=2;ϕ ¼ 0Þ with width 5°. The third (marked “T”) uses a normal prior on the triaxiality and
minor-to-major axis ratios with means (0.55,0.49) and widths (0.04,0.12) (based on the fits to the Local Group
dSphs of Sanchez-Janssen et al. [60]).

Name Ellipticity F J;U F J;R F J;T

Hydra II 0.01þ0.20
−0.01 −0.01þ0.10

−0.02 −0.05þ0.04
−0.12 0.07þ0.19

−0.17
Leo T < 0.10 −0.00þ0.07

−0.02 −0.06þ0.04
−0.13 0.03þ0.08

−0.06
Leo II 0.13þ0.05

−0.05 0.02þ0.18
−0.07 −0.11þ0.06

−0.14 0.09þ0.15
−0.15

Segue 2 0.15þ0.10
−0.10 0.01þ0.25

−0.07 −0.11þ0.07
−0.13 0.09þ0.21

−0.17
Leo I 0.21þ0.03

−0.03 0.03þ0.28
−0.11 −0.16þ0.07

−0.15 0.13þ0.20
−0.23

Horologium I < 0.28 0.00þ0.13
−0.04 −0.08þ0.06

−0.13 0.09þ0.19
−0.15

Fornax 0.30þ0.01
−0.01 0.04þ0.38

−0.13 −0.19þ0.07
−0.15 0.06þ0.33

−0.21
Draco 0.31þ0.02

−0.02 0.04þ0.28
−0.13 −0.19þ0.06

−0.13 0.05þ0.30
−0.17

Sculptor 0.32þ0.03
−0.03 0.04þ0.36

−0.15 −0.21þ0.08
−0.13 0.04þ0.28

−0.19

Carina 0.33þ0.05
−0.05 0.06þ0.31

−0.15 −0.20þ0.08
−0.13 0.03þ0.27

−0.18
Sextans 0.35þ0.05

−0.05 0.06þ0.27
−0.16 −0.21þ0.08

−0.12 0.00þ0.24
−0.16

Coma Berenices 0.38þ0.14
−0.14 0.04þ0.32

−0.15 −0.21þ0.08
−0.13 0.03þ0.28

−0.16
Boötes I 0.39þ0.06

−0.06 0.04þ0.42
−0.15 −0.22þ0.07

−0.12 0.00þ0.24
−0.18

Canes Venatici I 0.39þ0.03
−0.03 0.07þ0.27

−0.17 −0.22þ0.07
−0.13 −0.01þ0.17

−0.14
Tucana II 0.39þ0.10

−0.20 0.03þ0.33
−0.13 −0.20þ0.09

−0.14 0.01þ0.22
−0.14

Pisces II 0.40þ0.10
−0.10 0.07þ0.36

−0.18 −0.20þ0.07
−0.12 0.00þ0.21

−0.16
Grus I 0.41þ0.20

−0.28 0.01þ0.29
−0.12 −0.21þ0.11

−0.12 0.01þ0.24
−0.14

Willman 1 0.47þ0.08
−0.08 0.08þ0.33

−0.21 −0.24þ0.07
−0.12 −0.01þ0.16

−0.13
Segue 1 0.48þ0.13

−0.13 0.05þ0.35
−0.18 −0.23þ0.06

−0.12 −0.01þ0.19
−0.16

Leo IV 0.49þ0.11
−0.11 0.07þ0.32

−0.20 −0.24þ0.07
−0.11 −0.02þ0.15

−0.15
Leo V 0.50þ0.15

−0.15 0.05þ0.33
−0.18 −0.24þ0.08

−0.11 −0.01þ0.20
−0.15

Canes Venatici II 0.52þ0.11
−0.11 0.09þ0.33

−0.22 −0.23þ0.06
−0.11 −0.02þ0.15

−0.13
Ursa Minor 0.56þ0.05

−0.05 0.03þ0.41
−0.18 −0.25þ0.06

−0.12 −0.03þ0.08
−0.11

Reticulum II 0.59þ0.02
−0.03 0.08þ0.29

−0.23 −0.26þ0.07
−0.10 −0.04þ0.08

−0.12
Ursa Major II 0.63þ0.05

−0.05 0.06þ0.32
−0.22 −0.26þ0.06

−0.09 −0.04þ0.07
−0.13

Hercules 0.68þ0.08
−0.08 0.08þ0.35

−0.23 −0.24þ0.06
−0.09 −0.05þ0.07

−0.10
Ursa Major I 0.80þ0.04

−0.04 0.02þ0.39
−0.19 −0.22þ0.08

−0.08 −0.06þ0.06
−0.10
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which gives a fractional uncertainty in the J-factor of

ΔJ
J

≈ 100.4
ffiffi
ϵ

p
− 1: ð46Þ

This expression gives 50 percent uncertainty for ϵ ≈ 0.2, a
factor of 1.8 uncertainty for ϵ ≈ 0.4 and a factor of 2.3
uncertainty for ϵ ≈ 0.6. For small ϵ, ΔJ=J ≈ 0.9ϵ. We
conclude for a typical dSph ellipticity of 0.4 there is
approximately a factor of 2 uncertainty in the J-factors due
to the unknown triaxiality and alignment of the dSph.

VII. DISCUSSION AND CONCLUSIONS

Flattening is a crucial attribute of a dwarf spheroidal
galaxy. Both the dark halo and the stellar distribution can be
flattened. The ultrafaint dSphs have many fewer baryons
than the classical dwarfs so it is anticipated that feedback
effects have a weaker effect on the shape of the dark matter
distribution in the ultrafaints. Therefore, for the ultrafaints,
a flattened stellar distribution probably corresponds to a
flattened dark matter distribution. Of these ultrafaints,
Reticulum II is an interesting object as it is particularly
nearby and also one of the most highly flattened of all the
ultrafaints, at least as judged by the stellar light. On these
grounds, we might well expect that flattening may provide
an explanation as to why a gamma-ray signal may have
been seen towards Reticulum II as opposed to other
ultrafaints.
We have explored the impact of flattening on the J- and

D-factors, which control the expected dark matter annihi-
lation and decay signals from the dSphs. The effects of
flattening on these factors can be decomposed into two

separate corrections: the geometric and the kinematic
factors. The first of these corresponds to the increase
(decrease) in dark-matter density produced by squeezing
(stretching) the models. The latter corresponds to how the
observed velocity dispersion relates to the total velocity
dispersion or the enclosed dark matter mass. When viewing
oblate (prolate) models face on, these two factors act
together to increase (decrease) the J-factor over a spherical
analysis, whereas, when viewing these models edge on, the
two factors compete and result in a decrease (increase) in
the J-factor over a spherical analysis.
We have used made-to-measure techniques [37,38] to

build numerical equilibrium models of Reticulum II. These
reproduce the flattened shape, the major-axis length and the
line-of-sight velocity dispersion of Reticulum II. For the
models with a prolate dark matter halo with ellipticity ∼0.6
viewed edge on, flattening could cause an additional
amplification of ∼2–2.5 for Reticulum II over that expected
for spherical dark halos. This factor could be still larger if
the stellar profile falls off more slowly than a Plummer law
(which could increase the kinematic factor). It could also be
larger if the dark halo of Reticulum II is triaxial (as
anticipated from dark-matter-only simulations) and hence
more flattened along the line of sight. However, this
scenario is disfavored by dark-matter simulations with
and without baryons that produce subhalos which prefer-
entially point towards the center of their host halo and so we
might anticipate dSphs to be elongated along the line
of sight.
We corroborated the results of the made-to-measure

simulations with a simpler virial method that allows for
more rapid calculation of the correction factors for general

FIG. 10. Medians and �1σ error bars for the base-10 logarithms of the J-factor correction factors for all the dSphs ranked by their
ellipticity. The three different error bars correspond to three different prior assumptions regarding the intrinsic shapes and alignments of
the dSphs as described in the text.
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geometries. A simple fitting relation has been provided for
rapid estimation of the correction factors for the oblate and
prolate cases. Additionally, we have inspected two cases
where some analytic progress can be made in the compu-
tation of the J-factors. This has allowed us to characterize
how the correction factors change as a function of the
stellar and dark-matter distributions. We found that the
correction factors for the made-to-measure models agree
well with the trends seen in the analytic models.
We used our models to estimate the J-factors for the

dSphs under the assumption that the figures are aligned
with the line of sight and are either oblate or prolate. The
ranking of the J-factors of the dSphs is slightly altered when
accounting for flattening under the assumption that all the
dSphs are either prolate or oblate. Typical correction factors
for a dSph with ellipticity 0.4 are 0.75 in the oblate case and
1.6 in the prolate case. We also demonstrated that the
corrections to the D-factors are much smaller than the
scatter in the spherical D-factor from the other observables.
For instance, a dSph with ellipticity 0.4 has a D-factor
correction factor of 0.97 in the oblate case and 1.1 in the
prolate case. Therefore, we concluded that flattening is
unimportant for D-factor computation.
We concluded our discussion of the effects of flattening

by computing correction factors for triaxial figures. The
findings from the axisymmetric cases were found to simply
extend when considering triaxiality. The largest J-factor
correction factor corresponds to viewing the figure along
the minor axis, while the smallest corresponds to viewing
the figure along the major axis. We found that for a
Reticulum II-like model the J-factor correction factor varies
by a factor of ∼6–10 as one changes the viewing angle. For
a fixed observed ellipticity, the correction factor can vary by
a factor of ∼4. We demonstrated that for the known dSphs
the uncertainty in the correction factors due to unknown
triaxiality increases with the observed ellipticity of the
dSph and is typically a factor of 2 for ϵ ∼ 0.4. If all dSphs
have their major axes aligned with the line of sight (as
suggested by some simulations), the correction factors
decrease as a function of observed ellipticity and are
typically a factor of 1=2 for 0.4≲ ϵ≲ 0.6.
Deviations from sphericity in both the light profile and

the dark matter are important. This suggests fundamental
limitations to the spherical Jeans modeling which is
common in the field (although see Ref. [31] for J-factors
computed using axisymmetric Jeans modeling). In particu-
lar, increasingly sophisticated statistical techniques [69,70]
will fail to include an inherent uncertainty if the assumption
of a spherical stellar density profile in a spherical dark halo
breaks down. The uncertainties, which are different for
different dSphs, must be accounted for in joint analyses of
multiple dSphs.
Spherical Jeans modeling is probably most useful for

large classical dwarf spheroidal galaxies that look nearly
round (such as Leo I or Fornax). It ignores important

uncertainties for the ultrafaints, which is unfortunate as
these are the most promising targets of all for indirect dark
matter detection. We hope that the work presented here—a
systematic foray into the domain of flattening—is the
beginning of a systematic exploration of more general
flattened and triaxial dark halo shapes.
Finally, this study was partly inspired by the gamma-ray

detection [17] toward the very flattened ultrafaint,
Reticulum II. Our work demonstrates that Reticulum II
could have a J-factor that is higher than spherical analyses
suggest if it is a prolate figure. However, the correction for
the prolate shape does not make Reticulum II stand out as
the dSph with the highest J-factor nor does a lack of signal
from the other dSphs create any tension, irrespective of the
shapes of the other dSphs. If, however, Reticulum II is an
oblate figure the J-factor is lower than that found through
spherical analyses and a lack of signal from the other dSphs
may give rise to some tension if the other dSphs (such as
Ursa Minor) are prolate. More generically we have dem-
onstrated that unknown triaxiality produces an uncertainty
in the J-factor for Reticulum II of a factor of ∼2.
In general, we have shown that the effect of flattening on

expected dark matter annihilation fluxes cannot be ignored.
Indeed, flattening can shift expected signals by amounts
larger than error bars due to current velocity dispersion
measurements. These currently unknown shifts change the
ranking of dSph targets for gamma-ray experiments.
However, if the orientations of the Milky Way dSphs
can be determined, the results presented here can help
pin down relative J-factors and allow tests of dark matter
explanations of gamma-ray detections.
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APPENDIX A: VIRIAL RATIOS FOR
CUSPED MODELS

In Sec. IV B we presented the virial ratio hσ2xxi=hσ2zzi for
a flattened cusped model with density slope γ⋆ ¼ 3. Here
we provide formulas for other values of γ⋆. For γ⋆ ¼ 2, the
virial ratio is

hσ2xxi
hσ2zzi

¼ Q⋆TðQÞ −Q
2½Q − TðQÞ� ; ðA1Þ

where T ¼ Arctanh for Q⋆ < 1 and T ¼ Arctan for
Q⋆ > 1, and Q is defined in Eq. (22). For γ⋆ ¼ 4, the
virial ratio is

hσ2xxi
hσ2zzi

¼ Q⋆½ðQ2 − 1ÞTðQÞ þQ�
2½Q⋆TðQÞ −Q� ðA2Þ
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where we have corrected a typographical error in Eq. (21)
of Ref. [54]. For γ⋆ ¼ 5, the virial ratio is simply

hσ2xxi
hσ2zzi

¼ Q⋆: ðA3Þ

A plot of the ratios as a function of flattening are given in
Fig. 1 in Ref. [54]

APPENDIX B: VELOCITY DISPERSIONS
FOR FLAT ROTATION CURVE MODELS

In Sec. IV C, we presented formulas for the velocity
dispersions of a cored stellar profile with outer density
slope β⋆ ¼ 5 embedded in a cored dark matter density
profile. Here we provide equivalent formulas for the cases
β⋆ ¼ 4 and β⋆ ¼ 6.
Let us recall the definitions

Δ2
1 ¼ q2ϕ − q2⋆; Δ2

2 ¼ Rd
2 − Rc

2; ðB1Þ

and let us introduce the function

F ¼ 1

Δ1Δ2

�
Arctan

�
RdΔ1

q⋆Δ2

�
− Arctan

�
RcΔ1

qϕΔ2

��
: ðB2Þ

Notice that if Rc > Rd or q⋆ > q, this function remains well
defined on using the identity (for S < 0)

1ffiffiffi
S

p Arctan
ffiffiffi
S

p ≡ 1ffiffiffiffiffiffi
−S

p Arctanh
ffiffiffiffiffiffi
−S

p
:

For the case β⋆ ¼ 4,

hσ2RRi ¼
v20qϕRc

Δ2
1Δ2

2

½ðq2ϕRd
2 þ q2⋆ðRc

2 − 2Rd
2ÞÞF

− qϕRc þ q⋆Rd� ðB3Þ

hσ2zzi ¼
v20q

2⋆Rc

Δ2
1

�
qϕF −

q⋆
q⋆Rc þ qϕRd

�
: ðB4Þ

If Rc ¼ Rd, then the velocity dispersions are a lot
simpler. A careful Taylor expansion gives

hσ2RRi ¼
2qϕð2q⋆ þ qϕÞv20

3ðq⋆ þ qϕÞ2
;

hσ2zzi ¼
q2⋆v20

ðq⋆ þ qϕÞ2
ðB5Þ

so that when q⋆ ¼ qϕ, we obtain

hσ2RRi ¼
v20
2
; hσ2zzi ¼

v20
4
: ðB6Þ

Finally, we give the results for β⋆ ¼ 6,

hσ2RRi¼
v20qϕRc

2

Δ2
1Δ4

2

�
RdðRc

2þ2Rd
2ÞΔ2

1−q⋆qϕRcΔ2
2

q⋆RcþqϕRd

−Rcð3q2ϕRd
2þq2⋆ðRc

2−4Rd
2ÞÞF

�
;

hσ2zzi¼
v20q

2⋆Rc
2

Δ2
1Δ2

2

�
−qϕRcFþq⋆qϕRcRdþq2ϕRd

2−q2⋆Δ2
2

ðq⋆RcþqϕRdÞ2
�
:

ðB7Þ

If Rc ¼ Rd, then

hσ2RRi ¼ 2v20
qϕð8q2⋆ þ 9q⋆qϕ þ 3q2ϕÞ

15ðqþ qϕÞ3
;

hσ2zzi ¼ v20
q2⋆ð3q⋆ þ qϕÞ
3ðq⋆ þ qϕÞ3

ðB8Þ

and if additionally q⋆ ¼ qϕ, we recover

hσ2RRi ¼
v20
3
; hσ2zzi ¼

v20
6
: ðB9Þ
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