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We study the production of light particles due to the oscillation of the Hubble parameter or the scale
factor. Any coherently oscillating scalar field, irrespective of its energy fraction in the Universe, imprints
such an oscillating feature on them. Not only Einstein gravity but the extended gravity models, such as
models with nonminimal (derivative) coupling to gravity and fðRÞ gravity, lead to oscillation of the scale
factor. We present a convenient way to estimate the gravitational particle production rate in these
circumstances. Cosmological implications of gravitational particle production, such as dark matter/
radiation and moduli problem, are discussed. For example, if the theory is described solely by the standard
model plus the Peccei-Quinn sector, the Starobinsky R2 inflation may lead to an observable amount of
axion dark radiation.
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I. INTRODUCTION

A scalar field often plays an important role in cosmology.
Inflaton, which drives the accelerated expansion in the early
Universe, is an obvious example of such a scalar field [1,2].
The curvaton [3,4], which may offer seeds of the present
large-scale structure of the Universe, is another example.
A scalar field can also generate the baryon-to-photon ratio in
the present Universe [5,6]. These scalar fields typically have
to transfer their energy to other components of the Universe,
e.g., radiation, during their oscillating regimes. Hence,
particle production by a coherently oscillating background
is rather common. One of the most prominent examples is
(p)reheating after inflation caused by violent oscillation of
the inflaton. See Refs. [7–11], for instance.
In most cases studied so far, an explicit coupling between

the oscillating scalar field ϕ and another light field χ is
introduced in the action. However, the simplest situation is
that ϕ and χ interact only through gravity: there are no
interactions between them if the cosmic expansion is shut
off or they interact only through the evolution of the
Universe.1 It is known that even in such a case, particle
production occurs through the change of the cosmic
evolution caused by the ϕ field, which is often called
“gravitational particle production” [12,13]. Recently, we
have pointed out that a (small) oscillation of the Hubble
parameter or the scale factor caused by inflaton oscillation
generates particles which couple to gravity nonconformally
[14]. Such gravitational production takes place even in
Einstein gravity, and its effect becomes stronger for some

extended gravity theories. Although the production rate is
suppressed by the Planck scale, still it can have impacts on
cosmology.
In this paper, we extend our previous analysis to cope

with more general cases where the oscillation of the scale
factor is caused by coherent oscillation of an either
dominant or subdominant scalar field. First we consider
the system with Einstein gravity and a scalar field coupled
minimally with gravity. Then the gravity sectors are
extended. As examples, we consider the fðϕÞR, fðRÞ,
and alsoGμν∂μϕ∂νϕmodels where ϕ is the scalar field, R is
the Ricci scalar, andGμν is the Einstein tensor, respectively.
In these models, the oscillation of the scale factor is more
prominent than that in the Einstein gravity, and, hence,
gravitational particle production becomes more efficient.
We also discuss the cosmological implications of the
gravitational particle production such as the dark matter/
radiation and the moduli problem in each case.
Before starting the analysis, let us clarify the differences

of our study from the existing literature. For example, in
Ref. [15], the particle production of the fðϕÞR theory is
considered with ϕ being the inflaton. The authors in
Refs. [16–18] discussed the particle production of the
fðRÞ theory for the case of fðRÞ ¼ Rþ cR2 where the
second term is dominant. Therefore, our study has some
overlaps with these papers. However, the goal of our paper
is to offer a systematic way to estimate the particle
production rate. For that purpose, we pay particular
attention to an oscillating feature of the scale factor. In
fact, we will see that we can treat a wider class of gravity
models in a unified way from this viewpoint. It also makes
manifest how the background oscillation produces particles
coupled with gravity nonconformally. In addition to the

1In our terminology, if Planck-suppressed operators involving
ϕ and χ are introduced explicitly in the action, they are regarded
as explicit couplings, which are not of our interest.
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above point, we also discuss the case where the oscillating
scalar field is subdominant. A subdominant scalar field can
have some cosmological implications, especially in the
extended gravity theories, as we will see below.
In this paper, we calculate the particle production rate in

the original defining frame [i.e., the Jordan frame for the
fðϕÞR and fðRÞ theories]. This is partly because we cannot
go to the Einstein frame in some classes of extended gravity,
such as the Gμν∂μϕ∂νϕ theory. In order to estimate the
production rate including such a case, we would like to
understand what is happening in the original frame in our
unified framework. Roughly speaking,we are looking for the
effects of Planck-suppressed interactions of the oscillating
scalar field on particle production. As expected, it is not so
violent compared with the preheating in the usual context
[8–11], but still it can play an important role in cosmology,
e.g., dark matter/dark radiation production. The effect is
prominent in some extended gravity models, and the gravi-
tational coupling itself can be the main source of reheating.
The organization of this paper is as follows. In Sec. II, we

consider the Einstein gravity and show that a (small)
oscillating part of the scale factor is induced by the
coherently oscillating scalar field even in such a minimal
case. We show that this process can be understood as
annihilation of the scalar field. In Sec. III, we consider the
fðϕÞR theory. In this case, we show that the oscillating part
of the scale factor linearly depends on the scalar field in
general, and, hence, the scalar field can decay into light
particles gravitationally, in contrast to the annihilation
process in the previous section. In Sec. IV, we consider
the fðRÞ theory. We find that the situation is rather similar
to that of the fðϕÞR theory in this case. In Sec. V, we
consider the Gμν∂μϕ∂νϕ theory. In this case, we limit
ourselves to the case where the scalar field is subdominant
to avoid a gradient instability. Section VI is devoted to the
conclusions and discussion.

II. EINSTEIN GRAVITY

In this section, we consider gravitational particle pro-
duction in Einstein gravity. We will show that the scale
factor has an oscillating feature caused by the coherent
oscillation of a scalar field ϕ even if it is subdominant. If it
dominates the Universe, the amount of produced particles,
whose dominant contribution comes from the onset of its
oscillation, becomes comparable to that produced by the
change of the background geometry [12,14], as expected.

A. Background dynamics

Let us consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PR −
1

2
ð∂ϕÞ2 − VðϕÞ þ LM

�
;

ð2:1Þ

where g ¼ detðgμνÞ is the determinant of the metric, MP is
the reduced Planck scale, and R is the Ricci scalar. Here and
hereafter, we adopt the ð−þþþÞ convention for the metric
gμν. The scalar field ϕ, which is of our main interest,
oscillates coherently and imprints an oscillatory feature in
the scale factor.LM denotes the Lagrangian for matter other
than the scalar ϕ. We assume thatLM does not depend on ϕ.
The background equation of motion of ϕ is given by

ϕ̈þ 3H _ϕþ V 0 ¼ 0; ð2:2Þ

whereH is the Hubble parameter, and the prime denotes the
derivation with respect to ϕ. This is also rewritten as

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ 0; ð2:3Þ

where ρϕ ≡ _ϕ2=2þ V and pϕ ≡ _ϕ2=2 − V. The Einstein
equation reads

3H2 ¼ ρϕ þ ρM
M2

P
; ð2:4Þ

3H2 þ 2 _H ¼ −
pϕ þ pM

M2
P

; ð2:5Þ

where

ρM ¼ g00LM − 2
δLM

δg00
; pM ¼ LM: ð2:6Þ

Note that δLM=δgij ¼ 0 for the background part. By using
these equations, we obtain

_ρM þ 3HðρM þ pMÞ ¼ 0: ð2:7Þ

Hereafter, we assume that the matter part satisfies the
equation of state pM ¼ wρM. This shows that ρM exactly
scales as ρM ∝ a−3ð1þwÞ.
The cosmological setup we are considering is as follows.

After inflation, inflaton decays and the Universe is domi-
nated by the “matter,”2; which is characterized by the
energy density ρM and the equation of state w. We leave it
as a free parameter for a while, although hot thermal plasma
with w ¼ 1=3 is typically produced by the inflaton decay.
The scalar field ϕ begins to oscillate around the time H ¼
mϕ in a background dominated by ρM, with m2

ϕ ≡
jð∂V=∂ΦÞ=Φj being the effective mass squared of ϕ and
Φ being the amplitude of ϕ oscillation. In the following, we
consider the deeply oscillating regime mϕ ≫ H. We do not
necessarily assume that ϕ dominates the Universe in the
following discussion. Even if ϕ is subdominant, it induces a

2Here and in what follows, matter does not always mean
nonrelativistic fluids.
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small oscillating feature in the Hubble parameter or the
scale factor and leads to particle production, as we will
see below.
Henceforth, we will extract an oscillating part of the

scale factor, which is important for the gravitational particle
production. In particular, we will express it in terms of ϕ
explicitly. To do so, we divide quantities into the oscil-
lation-averaged part, which only evolves due to the Hubble
expansion and the rapidly oscillating part with frequency of
order ∼mϕ:

H ¼ hHi þ δH; ð2:8Þ

a ¼ hai þ δa; ð2:9Þ

ρϕ ¼ hρϕi þ δρϕ; ð2:10Þ

ρM ¼ hρMi þ δρM: ð2:11Þ

Here the bracket h…i denotes the oscillation average, and
quantities with δ denote the oscillating part. We treat the
oscillating parts as perturbations and keep only terms up to
first order in them. This treatment is justified in the deeply
oscillating regime.
We first note that ρM exactly scales as ρM ∝ a−3ð1þwÞ

and, also, _ρϕ ∼OðHρϕÞ. Thus, we can use the Virial
theorem for ϕ in the limit mϕ ≫ H and take the oscillation
average to obtain

_hρϕi þ
6n

nþ 2
hHihρϕi ¼ 0; ð2:12Þ

where we have assumed V ∼ ϕn dominates in the poten-
tial.3 This implies that ρϕ scales as hρϕi ∝ a−6n=ðnþ2Þ.
In order to extract the oscillating part, the following
equation is useful:

_H ¼ −
X
i¼ϕ;M

ρi þ pi

2M2
P

: ð2:13Þ

From this expression, we obtain the oscillating part of the
Hubble parameter as

_δH ≃ −
1

2M2
P
ð _ϕ2 − h _ϕ2i þ ð1þ wÞδρMÞ: ð2:14Þ

Let us make an order-of-magnitude estimation to under-
stand its approximated behavior. We have δρM=ρM ∼
δa=a ∼OðδH=mϕÞ since the relation ρM ∝ a−3ð1þwÞ holds
exactly. Therefore, we obtain δρM=M2

P ≲OðH2δH=mϕÞ ≪

mϕδH. Thus, the last term on the rhs of Eq. (2.14) can be
neglected, and, hence, we find

_δH ≃ −
1

2M2
P
ð _ϕ2 − h _ϕ2iÞ: ð2:15Þ

It can be expressed as

_δH þ 6n
nþ 2

hHiδH ≃ −
1

nþ 2

1

M2
P

�
d
dt

þ 3H

�
ðϕ _ϕÞ;

ð2:16Þ

where we have used the oscillating part of Eq. (2.4). A
similar equation was derived in Ref. [14] in the case where
ϕ dominates the Universe. In contrast, here, we have not
necessarily assumed ϕ domination. In Eq. (2.16), only the
relevant terms are the first terms of the lhs and rhs. This is
because δH and ϕ _ϕ are oscillating functions with fre-
quency ∼mϕ, and, hence, the second terms of the lhs and
rhs are suppressed by OðH=mϕÞ. Thus, we arrive at

δH ≃ −
1

nþ 2

ϕ _ϕ

M2
P
: ð2:17Þ

By integrating this, we obtain

aðtÞ
haðtÞi≃ 1 −

1

2ðnþ 2Þ
ϕ2 − hϕ2i

M2
P

: ð2:18Þ

This equation explicitly relates the oscillating part of the
scale factor to the (subdominant) oscillating scalar field.
Note that ϕ2 appears regardless of the exponent n of the
potential.

B. Particle production rate

In the previous subsection, we obtained

aðtÞ≃ haðtÞi
�
1 −

1

2ðnþ 2Þ
ϕ2 − hϕ2i

M2
P

�
: ð2:19Þ

Now let us estimate the particle production rate due to the
oscillating part of the scale factor a. Intuitively, in the
present case, such a particle production may be understood
as the pair annihilation of ϕ, since the oscillating part of the
scale factor depends quadratically on ϕ. Thus, we call it
“gravitational annihilation” [14].4 On the other hand, we

3If ϕ oscillates around the finite vacuum expectation value ϕ0,
ϕ should be interpreted as its deviation from the potential
minimum.

4In Ref. [15], the gravitational annihilation due to fðϕÞR
coupling was discussed. There it was claimed that this effect does
not exist in the Einstein gravity limit. This is not true, however, as
shown here and also in Ref. [14]: the gravitational annihilation
takes place even in Einstein gravity. Recently, Refs. [19,20]
considered dark matter production by the gravitational annihila-
tion of particles in a thermal bath.
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will see that the oscillating part of the scale factor depends
linearly on the scalar field for extended gravity theories
such as the fðϕÞR and fðRÞ models. In contrast to the
present case, we can view it as the decay of the scalar field,
and, hence, we will use the word “gravitational decay” in
such cases.
Below we consider particle production of a minimally

coupled scalar and graviton. The production of fermions
and vector bosons is suppressed by their masses and
couplings because they are classically Weyl invariant
and do not feel the oscillation of the scale factor in the
massless limit.

1. Scalar

First we consider a scalar field χ which minimally
couples with gravity

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂χÞ2 − 1

2
m2

χχ
2

�
; ð2:20Þ

withmχ ≪ mϕ. In the standard model (SM), only the Higgs
boson would be a minimally coupled scalar. Here we do not
limit ourselves to the case where χ is the Higgs boson but
consider general scalar fields. By using the master
formula (A26) derived in Appendix A, the number density
of χ particles produced during one Hubble time after ϕ
begins to oscillate is given by.5

nχðtÞ≃ C
32πH

�
1

nþ 2

�
2
�
m2

ϕΦ
2

M2
P

�2

; ð2:21Þ

where Φ denotes the oscillation amplitude of ϕ. This result
may be translated into the effective annihilation process of
ϕ particles with a rate of

Γϕϕ→χχ ≡ nϕhσviϕϕ→χχ ≃ C
16π

�
1

nþ 2

�
2 Φ2

M2
P

m3
ϕ

M2
P
: ð2:22Þ

Taking into account the Hubble expansion, one can easily
see that the largest contribution comes from the very
beginning of the ϕ oscillation at H ¼ mϕ unless w is
unlikely large and/or n is so small. Note that even if χ
obtains a Hubble-induced mass term, this production
mechanism becomes effective soon after the ϕ oscillation.

2. Graviton

Next we apply our formalism to the graviton production.
The graviton action is given by

S ¼
Z

dτd3xa2ðtÞM
2
P

8

��∂hij
∂τ

�
2

− ð∂khijÞ2
�
; ð2:23Þ

where τ is the conformal time, and hij is the metric
perturbation satisfying the transverse and traceless con-
ditions hii ¼ ∂ihij ¼ 0. The indices i, j, and k run the space
coordinates. Hence, the production rate is similar to the
minimal scalar, except for the factor 2 corresponding to the
two polarization states of the graviton:

nhðtÞ≃ C
16πH

�
1

nþ 2

�
2
�
m2

ϕΦ
2

M2
P

�2

: ð2:24Þ

C. Cosmological implications

The gravitational annihilation of a subdominant scalar
field ϕ yields the abundance given in (2.21), but the
gravitational annihilation of the inflaton also gives a
significant contribution [12,14]. The ratio of χ abundance
produced by a subdominant scalar field ϕ to that produced
by the inflaton is estimated as

nðϕÞχ

nðinfÞχ

≃ ϵ
mϕ

Hinf

�
ϕi

MP

�
4

; ð2:25Þ

where

ϵ ¼ min
h
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ=Γinf

q i
; ð2:26Þ

with Hinf and Γinf being the Hubble scale at the end of
inflation and the inflaton decay rate, respectively. Here we
have assumed that the inflaton oscillation behaves as
nonrelativistic matter, and the inflaton decays into radia-
tion. Also, ϕ is assumed to be subdominant at the onset of
its oscillation. The dominant contribution comes from the
gravitational annihilation of the inflaton sincemϕ < Hinf in
order for ϕ to begin coherent oscillation after inflation. In
this case, cosmological implications were studied in [14],
and we briefly discuss them here. The energy-density-to-
entropy ratio of χ with a sizable mass term is estimated to
be

ρðinfÞχ

s
≃ 1

Δ
9C
512π

mχTRHinf

M2
P

≃ 1 × 10−9 GeV
C
Δ

�
mχ

106 GeV

�

×

�
TR

1010 GeV

��
Hinf

1014 GeV

�
; ð2:27Þ

where s is the entropy density, TR is the reheating temper-
ature, andΔ denotes the dilution factor due to the late decay
of ϕ, which is given by6

5If ϕ dominates the Universe, we have nχðtÞ ∼ ðconstÞ ×H3,
as found in [12,14].

6Here we have introduced some interactions that induce a
complete decay of ϕ, in order for the ϕ oscillation not to dominate
the Universe. For simplicity, we assume that this interaction does
not involve χ.
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Δ ¼ max
h
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hdom=Γϕ

q i
: ð2:28Þ

Here, Hdom is the Hubble parameter when ϕ would
dominate the Universe: Hdom ¼ Γinfðϕ2

i =6M
2
PÞ2 for mϕ >

Γinf and Hdom ¼ mϕðϕ2
i =6M

2
PÞ2 for mϕ < Γinf when the

exponent of the potential of ϕ is n ¼ 2.
Suppose that χ is a massive noninteracting stable

particle. Then, its abundance should be smaller than ρχ=s≲
4 × 10−10 GeV to avoid the dark matter (DM) overpro-
duction.7 Next, suppose that χ is a moduli that has only
Planck-suppressed interactions with SM fields. It is
severely constrained from cosmology due to its longevity.
If its mass is about Oð1Þ TeV, big bang nucleosynthesis
(BBN) gives a stringent bound on the χ abundance, ρχ=s≲
10−14 GeV [21]. Thus, we roughly have

ρχ
s
≲ 10−14 − 4 × 10−10 GeV ð2:29Þ

depending on the mass, lifetime, decay modes, etc. Various
cosmological constraints on massive particles in broad
parameter space are found in Ref. [22]. There is no such
constraint if χ decays well before BBN begins. Finally, if χ
is (nearly) massless, like an axionlike particle, it contributes
to dark radiation. In this case, however, the χ abundance as
well as the gravitational wave abundance is so small that it
does not affect observations.
Note also that χ can have either (dominantly) an

adiabatic or isocurvature fluctuation depending on whether
ϕ is massive or not during inflation. If ϕ remains light

during inflation (mϕ ≲Hinf ), it obtains long-wavelength
quantum fluctuations and contributes to the curvature
perturbation as

ζϕ ≃ Rϕ

3

Hinf

πϕi
; ð2:30Þ

where Rϕ is the fraction of ϕ energy density at its decay,
and it can act as the curvaton [3,4]. If ϕ is the dominant
source of the curvature perturbation, χ produced by the
inflaton oscillation has totally anticorrelated isocurvature
perturbation, and it cannot be the dominant component of
DM [23]. If the curvature perturbation is dominantly
sourced by the inflaton, there is no significant constraint
from the isocurvature perturbation. Also, if ϕ is heavy
enough during inflation, there is no isocurvature
perturbation.
Figure 1 shows contours of Yχ ≡ nχ=s produced by the

inflaton for mϕ ¼ Hinf=10 (left) and mϕ ¼ Hinf=1000
(right) on the plane of ðϕi; HinfÞ for n ¼ 2 and
w ¼ 1=3.8 In this plot, we have assumed that ϕ decays
via Planck-suppressed interaction: Γϕ ≃m3

ϕ=ð128πM2
PÞ.

We have also fixed the reheating temperature after inflation
as TR ¼ 1010 GeV. We can deduce the cosmological
constraint mentioned above by multiplying mχ as ρχ=s ¼
mχYχ for an arbitrary value of mχ below the inflaton mass.
The shaded region is excluded due to too large curvature
perturbation if ϕ remains light during inflation. The above-
mentioned cosmological constraints crucially depend on
the mass and lifetime of χ, which is not fixed in the figure,
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FIG. 1. Contour plot of Yχ produced by the inflaton for mϕ ¼ Hinf=10 (left) and mϕ ¼ Hinf=1000 (right) on the plane of ðϕi; HinfÞ.
We fix the decay rate of ϕ as Γϕ ¼ m3

ϕ=128πM
2
P and the reheating temperature as TR ¼ 1010 GeV. The shaded region is excluded due to

too large curvature perturbation if ϕ remains light during inflation.

7Depending on mχ and mϕ, the free-streaming length of χ can
be so long that it fails to be a cold DM. In such case, its
abundance must be well below the observed DM abundance. In
order for χ to be cold, it should become nonrelativistic before the
cosmic temperature drops to ∼1 keV.

8One can convert the quantity ρχ=s ¼ mχYχ to the present
density parameter Ωχ ¼ ρχ=ρcr with a critical density ρcr through
Ωχh2 ≃ 2.8 × 108ðmχYχ=GeVÞ if χ is a stable and nonrelativistic
particle. Here, hð∼0.7Þ is the present Hubble parameter in units of
100 km/s/Mpc.
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but we can easily infer ρχ=s (orΩχh2) from these plots once
the mass is fixed and compare with various constraints. One
can see that the cosmological constraints from the gravi-
tational particle production are rather weak so that almost
all parameter space is allowed.

III. f ðϕÞR MODEL

In this section, we consider gravitational particle
production in fðϕÞR models. One famous example of
this class of models is the Higgs inflation [24–27], with
fðϕÞ ¼ ξϕ2=M2

P. Interestingly, this coupling ξϕ2R=2 is
inevitably generated by radiative corrections [28]. Here we
analyze gravitational particle production for general fðϕÞR
models in the Jordan frame.

A. Background dynamics

Let us consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PfðϕÞR −
1

2
ð∂ϕÞ2 − VðϕÞ þ LM

�
;

ð3:1Þ

where LM denotes the Lagrangian for matter other than the
scalar ϕ. The equation of motion of ϕ is given by

ϕ̈þ 3H _ϕþ V 0 − 3M2
Pð2H2 þ _HÞf0 ¼ 0: ð3:2Þ

It can be expressed as

_ρϕ þ 3Hðρϕ þ pϕÞ − 3M2
Pð2H2 þ _HÞ _f ¼ 0; ð3:3Þ

where ρϕ and pϕ are the same as before. The Einstein
equation reads

3H2f þ 3H _f ¼ ρϕ þ ρM
M2

P
; ð3:4Þ

f̈ þ 2H _f þ ð3H2 þ 2 _HÞf ¼ −
pϕ þ pM

M2
P

: ð3:5Þ

By using these equations, we also obtain

_ρM þ 3HðρM þ pMÞ ¼ 0: ð3:6Þ

Hereafter, we again assume that the matter part satisfies the
equation of state pM ¼ wρM. This shows that ρM exactly
scales as ρM ∝ a−3ð1þwÞ. The cosmological setup we are
considering is the same as the one in the previous section.
We will estimate the oscillating part of the Hubble
parameter or the scale factor induced by the coherent
oscillation of ϕ which may or may not dominate the
Universe. The equation of state of the matter part is taken
as a free parameter.

In the following, we solve these equations of motion by
the following perturbative expansion. We expand fðϕÞ as
follows:

fðϕÞ≡ 1þ f1ðϕÞ ¼ 1þ c1
ϕ

MP
þ c2

ϕ2

2M2
P
þ… ð3:7Þ

and regard f1 as a small perturbation.9 To be more precise,
we require jf̈j ≪ H2. Other quantities are also expanded as

H ¼ H0 þH1; ð3:8Þ

a ¼ a0 þ a1; ð3:9Þ

ρϕ ¼ ρϕ0 þ ρϕ1; ð3:10Þ

ρM ¼ ρM0 þ ρM1; ð3:11Þ

where the subscript 0 denotes solutions in the f1 → 0 limit,
i.e., solutions in Einstein gravity. Since f1 directly depends
on ϕ and, hence, is a rapidly oscillating function, quantities
such as H1, ρϕ1, … are also expected to be rapidly
oscillating.
Our goal is to express the oscillating part H1, a1, … in

terms of ϕ. We retain only first order in the oscillating parts
induced by the nonminimal coupling in the following. In
the equations of motion, the oscillating parts satisfy

2H0H1 ¼ −H0
_f1 −H2

0f1 þ
ρϕ1 þ ρM1

3M2
P

; ð3:12Þ

_ρϕ1 þ 3H1ðρϕ0 þ pϕ0Þ þ 3H0ðρϕ1 þ pϕ1Þ
¼ 3M2

Pð2H2
0 þ _H0Þ _f1: ð3:13Þ

Noting that _ρϕ1 ∼Oðmϕρϕ1Þ, we can neglect terms of
∼OðHρϕ1Þ in Eq. (3.13). Then we have

_ρϕ1 ≃
�
3M2

Pð2H2
0 þ _H0Þ þ

3

2
ðρϕ0 þ pϕ0Þ

�
_f1: ð3:14Þ

This implies ρϕ1 ∼Oðρtotf1Þ. Also, ρM1 is suppressed by
mϕ since ρM ∝ a−3ð1þwÞ is exact. Thus, by noting that
_f1 ∼Oðmϕf1Þ, we find that the second term and the third
term on the rhs of Eq. (3.12) are safely neglected. As a
result, we obtain a simple relation

H1 ≃ −
_f1
2
≃ −

1

2

�
c1

_ϕ

MP
þ…

�
: ð3:15Þ

9Again, ϕ should be regarded as a deviation from the potential
minimum ϕ ¼ ϕmin. If ϕmin ≠ 0, the first term of (3.7) should be
modified as 1 − c1ϕmin=MP.
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This is the oscillating part of the Hubble parameter induced
by the nonminimal coupling. Therefore, we arrive at

a1
a0

≃ 1 −
1

2
f1; ð3:16Þ

and, hence, we finally find a relation between the oscillat-
ing part of the scale factor and ϕ.
Equation (3.15) is the same as the result obtained from

the adiabatic invariant proposed in Ref. [29], though the
proof given in Ref. [29] is applicable only to the cases
where matter is subdominant. The point is that there is a so-
called “adiabatic invariant” J10:

J ≡ −
1

6M2
P

∂L
∂H ¼ 1

2
ð2Hf þ _fÞ ¼ 1

2a2
∂ða2fÞ
∂t : ð3:17Þ

Here, we call a quantity Q an adiabatic invariant if it
satisfies _Q ¼ OðHQÞ. In the deeply oscillating regime,
such a quantity is almost constant within one oscillation,
and, hence, we can approximately view it as a conserved
quantity. In Einstein gravity, the Hubble parameter, or,
equivalently, the energy density of the scalar field, is
obviously an adiabatic invariant, but in extended gravity
models, the conserved quantity is nontrivial. Since J is
almost constant within one oscillation, we can easily extract
the oscillation part H1 as

H1 ≃ −
_f1
2
: ð3:18Þ

B. Particle production rate

In the previous subsection, we obtained

aðtÞ≃ haðtÞi
�
1 −

c1
2

ϕ

MP

�
: ð3:19Þ

This expression is valid up to first order in ϕ. In contrast to
Einstein gravity, here is a linear term in ϕ in the oscillating
part of the scale factor, and it induces gravitational decay of
ϕ. There also exist quadratic terms of the order of c21 and c2
in addition to the Einstein gravity contribution, which
induce the gravitational annihilation of ϕ [14,15], although
they are omitted in this expression. Note that the gravita-
tional decay is possible only when the nonminimal cou-
pling exists, while the gravitational annihilation takes place
even in pure Einstein gravity. Below we consider the
production of scalar particles and the graviton. The pro-
duction of fermions and gauge bosons is suppressed by
their masses and couplings as we explained before.

1. Scalar

First let us consider the particle production rate of a
scalar minimally coupled with gravity, whose action is
given by Eq. (2.20). The number density of χ particles
produced during one Hubble time after ϕ begins to oscillate
is given by

nχðtÞ≃ C
32πH

�
c1m2

ϕΦ

2MP

�2

: ð3:20Þ

It can be interpreted as the decay of ϕ into the χ pair with
the decay rate

Γϕ→χχ ¼ C
c21

128π

m3
ϕ

M2
P
: ð3:21Þ

This decay rate coincides with that calculated in the
Einstein frame [30]. Contrary to the annihilation case, this
effect becomes significant at late time for reasonable
choices of w and n. Noting that each χ particle has the
energy of mϕ=2 at the production, we find

ρχðtÞ
ρϕðtÞ

≃ Cc21m
3
ϕ

128πM2
PH

¼ Γϕ→χχ

H
: ð3:22Þ

Thus, ϕ completely decays into χ at H ∼ Γϕ→χχ if there is
no other decay mode of ϕ.

2. Graviton

Next we apply our formalism to the graviton production.
The graviton action is given by

S¼
Z

dτd3xa2ðtÞfðϕÞM
2
P

8

��∂hij
∂τ

�
2

− ð∂khijÞ2
�
: ð3:23Þ

It should be noticed that the c1 dependence vanishes in the
overall coefficient a2fðϕÞ. Hence, there is no gravitational
decay of ϕ into the graviton pair, as opposed to the case of
scalar particles [14]. Still there exists a gravitational
annihilation of ϕ into the graviton pair, which exists even
in Einstein gravity. The abundance of the graviton is similar
to Eq. (2.24) except for the modification of Oðc2; c21Þ.

C. Cosmological implications

In the present case, the contribution from ϕ often
becomes the dominant one. The abundance of a massive
χ produced by the gravitational decay of ϕ is given by

ρχ
s
≃ Δ0 3mχTϕ

2mϕ
Brϕ→χχ ; ð3:24Þ

where Tϕ ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
ΓϕMP

p
is the decay temperature of ϕ with Γϕ

being the total decay width of ϕ, Brϕ→χχ ≡ Γϕ→χχ=Γϕ is the
branching ratio of ϕ into χχ, and

10Here, integration by parts should be done to remove _H in the
Lagrangian.
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Δ0 ¼ min
h
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hdom=Γϕ

q i
; ð3:25Þ

which roughly corresponds to the ratio ρϕ=ðρϕ þ ρMÞ at
H ¼ Γϕ. If the gravitational decay is the only decay mode,
the branching ratio is Oð1Þ. In that case, using Eq. (3.21),
we obtain

ρχ
s
≃ 3 × 10−8 GeV

Δ0c1ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
�

mϕ

106 GeV

�
1=2

�
mχ

1 GeV

�
;

ð3:26Þ

where we have assumed that there are N light scalar fields
other than χ that thermalize with SM degrees of freedom
and, hence, Brϕ→χχ ¼ 1=ðN þ 1Þ. Within the framework of
the SM, we have N ¼ 4 corresponding to the 4 real degrees
of freedom of the Higgs boson. Strong constraints are
imposed as discussed in Sec. II C: ρχ=s≲ 4 × 10−10 GeV if
χ is a noninteracting stable particle and ρχ=s≲ 10−14 GeV
if χ is a late-decaying particlelike moduli.11

Then, suppose that χ is a (nearly) massless particle such
as axionlike particles including the QCD axion. In this case,
there is a danger of overproduction of dark radiation. It is
convenient to express the abundance of dark radiation in
terms of the effective number of neutrino species

ΔNeff ¼
43

7

�
10.75
g�sðTϕÞ

�
1=3

Δ0Brϕ→χχ ∼
3Δ0

N þ 1
: ð3:27Þ

Therefore, if ϕ is a dominant component of the Universe at
the decay (i.e., Δ0 ¼ 1), we may need N ≳ 5 to satisfy the
current constraint on the dark radiation [31], which is
marginal for the SM.12 The bound can be relaxed if ϕ has
decay modes other than the gravitational decay mode.
Figure 2 shows contours of Yχ (left) and ΔNeff (right)

produced by ϕ for c1 ¼ 1 on the plane of ðϕi; mϕÞ for n ¼
2 and w ¼ 1=3. In this plot, we have assumed that ϕ decays
only via the gravitational decay mode and N ¼ 4. We have
also fixed the reheating temperature as TR ¼ 1010 GeV.
The shaded region is excluded due to too large curvature
perturbation for Hinf ¼ 1013 GeV if ϕ remains light
during inflation. Again, we emphasize that the cosmologi-
cal constraints crucially depend on the mass and lifetime
of χ. Comparing with the typical constraint (2.29), one
finds that the large parameter space of the present scenario
is excluded if χ has a long lifetime. Of course, the
constraints become weaker for small initial amplitude ϕi.
The results presented here are also applied to the

inflaton decay by simply regarding ϕ as the inflaton and
taking Δ0 ¼ 1.

IV. f ðRÞ MODEL

In this section, we consider gravitational particle produc-
tion in the fðRÞ models [33]. In the fðRÞ models, there is 1
additional degree of freedom in the metric sector, and it
induces rapidoscillationof thescale factor.A famousexample
is the Starobinsky inflation [2], in which a scalar degree of
freedom causes inflation and reheating [16–18,34–37].
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FIG. 2. Contour plot of Yχ (left) and ΔNeff (right) on the plane of ðϕi; mϕÞ. The shaded region is excluded due to too large curvature
perturbation for Hinf ¼ 1013 GeV if ϕ remains light during inflation.

11In the present model, it is likely that ϕ obtains a mass of
Hubble scale during inflation from fðϕÞR coupling. Then there is
no DM/dark radiation isocurvature mode even if we consider the
DM contribution from inflaton decay. Also, ϕ is displaced from
the minimum of its potential VðϕÞ during inflation owing to the
fðϕÞR coupling. Thus, typically, the initial amplitude is close to
the Planck scale, unless the potential becomes steeper than the
quadratic for a large field value, like V ∼ ϕ2n ðn ≥ 2Þ.

12Note also that there may be a preference for ΔNeff ≃ 0.5
according to a recent observation of the Hubble constant [32].

EMA, JINNO, MUKAIDA, and NAKAYAMA PHYSICAL REVIEW D 94, 063517 (2016)

063517-8



Here we analyze gravitational particle production for general
fðRÞ models in the Jordan frame.

A. Background dynamics

The action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PfðRÞ þ LM

�
; ð4:1Þ

where LM denotes the Lagrangian for matter. This model
includes 1 scalar degree of freedom (“scalaron”) if
F≡ ∂f=∂R ≠ const. The background equations of motion
are given by

3FH2 ¼ 1

2
ðFR − fÞ − 3H _F þ ρM

M2
P
; ð4:2Þ

F̈ −H _F þ 2F _H ¼ −
ρM þ pM

M2
P

: ð4:3Þ

Note that the second equation is derived from the first
equation just by taking a time derivative if there is no matter
sector.13 This is natural because there is only one dynamical
degree of freedom, i.e., the Hubble parameter, in the gravity
sector. These two equations are combined to yield

F̈ þ 3H _F þ 1

3
ð2f − FRÞ ¼ ρM − 3pM

3M2
P

; ð4:4Þ

_ρM þ 3HðρM þ pMÞ ¼ 0: ð4:5Þ

Hereafter, we assume that the matter satisfies the equation
of state pM ¼ wρM, which implies ρM ∝ a−3ð1þwÞ.
In the following, we consider the case where fðRÞ is

given as

fðRÞ ¼ R

�
1þ c

n

�
R
M2

P

�
n−1

�
≡ R

�
1þ cF1

n

�
; ð4:6Þ

where c is a positive constant, and n ð≥2Þ is an even
integer. The equation of motion of F1 reads

F̈1 þ 3H _F1 þ
∂VF1

∂F1

¼ 0; ð4:7Þ

where14

VF1
¼ n − 1

n
M2

P

3c
jF1jn=ðn−1Þ

�
1 −

n − 2

2n − 1
cF1

�

−
1 − 3w
3cM2

P
ρMF1 þ V0: ð4:8Þ

Here we have included an F1-independent term V0 to make
VF1

¼ 0 at the minimum of the potential F1 ¼ hF1i:

V0 ¼
1 − 3w
3ncM2

P
ρMhF1i: ð4:9Þ

From Eq. (4.8), we easily find that the minimum of the
potential is given by

hF1i ¼
�
R0

M2
P

�
n−1

; ð4:10Þ

for cjF1j ≪ 1, as expected. Equation (4.7) shows that F1

exhibits a similar motion to the scalar field under the
potential VF1

.
Now let us consider the case m2

F ≡ jð∂VF1
=∂F1Þ=F1j ≫

H2; i.e., F1 is oscillating rapidly in the effective potential
VF1

. We also assume that the inequality

cjF1j ≪ 1 ð4:11Þ

is satisfied. In this case, we can expand the quantities as

R ¼ R0 þ R1; ð4:12Þ

H ¼ H0 þH1; ð4:13Þ

ρM ¼ ρM0 þ ρM1 ð4:14Þ

to the first order in c. Here, the quantities with a subscript 0
correspond to those in the limit c → 0:

H2
0 ¼

ρM0

3M2
P
; R0 ¼ ð1 − 3wÞ ρM0

M2
P
: ð4:15Þ

If there is no matter ðρM ¼ 0Þ, F1 oscillates around F1 ¼ 0.
Otherwise, it oscillates around a finite expectation value.
Thus, we further divide F1 and H1 into the oscillating part
and nonoscillating part as

F1 ¼ hF1i þ δF1; ð4:16Þ

H1 ¼ hH1i þ δH1: ð4:17Þ

Note that for w ¼ 1=3, R0 ¼ 0, and, hence, hF1i ¼ 0.
Our goal is to express the oscillating part of the Hubble

parameter or the scale factor in terms of F1. When matter is
subdominant, the adiabatic invariant J is useful for this
purpose. In Appendix B, we show that J is given by

13Recall that the Ricci scalar is given by R ¼ 6ð _H þ 2H2Þ.
14The potential VF1

is unbounded from below for n > 2. We
only consider the region cjF1j ≪ 1 below so that the whole
dynamics is described in the metastable region. Although there
can be a quantum tunneling from the metastable vacuum to the
deeper minimum, we do not discuss it here because higher order
terms in fðRÞ can easily change the structure of the potential for
cjF1j ≫ 1.
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J ¼ HF þ
_F
2
; ð4:18Þ

for the fðRÞ models. Thus, by expanding with respect to c,
we obtain the oscillating part of the Hubble parameter as

δH1 ≃ −
c
2

_δF1: ð4:19Þ

Below, we show that this is correct even when matter is
non-negligible by solving the equations of motion directly.
For completeness, we consider both of the cases where the
scalaron is dominant and subdominant.
For later convenience, here we expressH1 in terms of F1

by using Eq. (4.2):

H1 ≃ −
1

2
c _F1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρF1

3M2
P
þ ρM
3M2

P

�
1 − cF1 þ

1

2
ð1 − 3wÞc

�
F1 −

1

n
hF1i

��s
−

ffiffiffiffiffiffiffiffiffiffi
ρM0

3M2
P

r
; ð4:20Þ

where we have kept only leading terms in cjF1j and defined
the “energy density” of the scalaron F1 as

ρF1
≡ 3

2
c2M2

P

�
1

2
_F1
2 þ VF1

�
: ð4:21Þ

This is also a nonoscillating quantity.15 We call this energy
density because the Hubble parameter is given by H2 ∼
ρF1

=ð3M2
PÞ for ρF1

≫ ρM as we will show below. Actually,ffiffiffiffiffiffiffiffi
3=2

p
cMPF1 coincides with the canonical scalaron field in

the Einstein frame for cjF1j ≪ 1. As one may see from
Eqs. (4.19) and (4.20), and as we will see in the following,
the dominant contribution to the oscillation mode of the
Hubble parameter comes from the first term in Eq. (4.20).

1. Matter-dominated case

First let us consider the matter-16 dominated case in
which ρM ≫ ρF1

, i.e., cjF1j ≪ 1 and cj _δF1j ≪ H0. For
ρF1 ≪ cjF1jρM0 or ~δF1 ≪ hF1i with ~δF1 being an oscil-
lation amplitude of δF1, we obtain

hH1i ∼ chF1iH0; ð4:22Þ

and for ρF1
≫ cjF1jρM0 or ~δF1 ≫ hF1i, we obtain

hH1i ∼H0

ρF1

ρM0

: ð4:23Þ

Note that the latter always holds if w ¼ 1=3. In both cases,
we have

δH1 ≃ −
c
2

_δF1; ð4:24Þ

since the oscillating part of ρM1 is suppressed by mϕ as we
discussed before. This implies jδH1j ≪ H0 in the matter-
dominated case. Thus, the scale factor a has also an
oscillating part in this model as

aðtÞ≃ haðtÞi
�
1 −

c
2
δF1

�
: ð4:25Þ

We can estimate the gravitational particle production rate
from this expression.
Let us see the evolution of ρF1

and ρM. From the equation
of motion (4.7), we find that ρF1

scales as ρF1
∝ a−6n=ð3n−2Þ.

This means that the amplitude scales as ~δF1 ∝
a−6ðn−1Þ=ð3n−2Þ while hF1i ∝ a−3ð1þwÞðn−1Þ. Therefore, as
time goes on, the relative amplitude of ~δF1 to the mean
value hF1i becomes larger for n > 2ð2þ wÞ=3ð1þ wÞ,
which is satisfied for n ≥ 2 and w > −1=2. It also tends to
dominate the Universe at a later epoch. For n ¼ 2, for
example, we have ρF1

∝ a−3, and it scales in the same way
as the nonrelativistic matter. Thus, the oscillation energy
density will dominate the Universe if the equation of state
of background matter is w > 0. For n > 2, ρF1

decreases
more slowly than the nonrelativistic matter, and, hence,
the oscillation energy density eventually dominates the
Universe even if w ¼ 0, unless δF1 decays before the
domination due to the production of nonconformally
coupled particles, as discussed later.

2. Oscillation-dominated case

Next, let us consider the opposite limit ρM ≪ ρF1
. As we

have seen above, ρF1
may eventually dominate the Universe

at a later epoch even if we start with the matter-dominated
Universe. In this case, the second term in the potential (4.8)
can be neglected, and, hence, F1 oscillates around zero:
~δF1 ≫ hF1i. From Eq. (4.20), we obtain

hH1i≃
ffiffiffiffiffiffiffiffiffiffi
ρF1

3M2
P

r
; ð4:26Þ

hence, hH1i ≫ H0 and

15The contribution to ρF1
from the constant term V0 is always

smaller than ρM for chF1i ≪ 1.
16Again, this should not be confused with fluids with the

nonrelativistic equation of state w ¼ 0. We do not specify w in the
following discussion.
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δH1 ≃ −
c
2

_δF1: ð4:27Þ

This is the same expression as that of the previous case. The
scale factor a can be expressed as

aðtÞ≃ haðtÞi
�
1 −

c
2
δF1

�
: ð4:28Þ

In this case, we have jδH1j ∼ hH1i ∼H, and, hence, the
Hubble parameter H violently oscillates.17 Similar to the
previous case, from the equation of motion Eq. (4.7), we
find ρF1

∝ a−6n=ð3n−2Þ and ~δF1 ∝ a−6ðn−1Þ=ð3n−2Þ, while

hF1i ∝ a−3ð1þwÞðn−1Þ; hence, ~δF1 ≫ hF1i is always satis-
fied for n ≥ 2 and w > −1=2 until δF1 decays due to
particle production, as discussed later. The Ricci curvature
R oscillates rapidly around R ∼ 0, and its amplitude
decreases as ~R1 ∝ a−6=ð3n−2Þ. Thus, the Hubble parameter
scales as hHi≃ hH1i≃ ð3n − 2Þ=ð3ntÞ ∝ a−3n=ð3n−2Þ.
In any case, the oscillation of F1 or the oscillation of the

scale factor leads to production of nonconformally coupled
particles, and, hence, it decays. In the next subsection, we
estimate the particle production rate.

B. Particle production rate

In the previous subsection, we obtained

aðtÞ≃ haðtÞi
�
1 −

c
2
δF1

�
: ð4:29Þ

As in the case of the fðϕÞR models, here is also a linear
term in the oscillating part of the scale factor. Thus, the
gravitational decay of the scalaron occurs, and the scalaron
can transfer its energy to other particles efficiently through
this process. We also have terms which induce the
gravitational annihilation, although omitted in this expres-
sion. Below we consider the production of minimally
coupled scalar particles and the graviton. The production
of fermions and gauge bosons is again suppressed by their
masses and couplings.

1. Scalar

First let us consider the particle production rate of the
minimally coupled scalar, whose action is given by
Eq. (2.20). By noting that ä=a≃ −ðc=2Þm2

FF1 and using
Eq. (A24), we obtain the number density of χ created in one
Hubble time as

nχðtÞ≃ C ~R2

1152πH
; ð4:30Þ

where ~R is the amplitude of the Ricci scalar R. This
expression does not depend on n except for the small
dependence in the Oð1Þ constant C. From this we can read
off the effective “decay rate” of F1 as

ΓF1→χχ ¼
C

384π

n
n − 1

m3
F

M2
P
; ð4:31Þ

which coincides with the decay rate of a canonical scalaron
field calculated in the Einstein frame [34]. The ratio of the
energy density of the created particles in each Hubble time
to the scalaron energy density is given by

ρχðtÞ
ρF1

ðtÞ≃
C

384π

n
n − 1

m3
F

M2
PH

¼ ΓF1→χχ

H
: ð4:32Þ

This ratio becomes Oð1Þ at some epoch, even if it is
initially much smaller since mF is an increasing function of
time. At that time, δF1 completely “decays” into χ
particles. If ρF1

dominates the Universe, it corresponds
to the completion of the reheating. Actually, if χ is the SM
Higgs boson, they are thermalized soon.

2. Graviton

The graviton action is given by

S¼
Z

dτd3xa2ðtÞFðRÞM
2
P

8

��∂hij
∂τ

�
2

− ð∂khijÞ2
�
: ð4:33Þ

It is the combination a2ðtÞFðRÞ that determines the
graviton production rate. It is estimated as

a2ðtÞFðRÞ≃ a20ð1þOðc2F2
1ÞÞ: ð4:34Þ

Note that similar to the case of the fðϕÞRmodels, the linear
term in cδF1 vanishes; hence, there is no decay of F1 into
the graviton pair. Compared with the scalar, the graviton
abundance is suppressed by c2F2

1:

nhðtÞ≃ CðcF1
~RÞ2

1152πH
: ð4:35Þ

The graviton production becomes less efficient as time goes
on due to the time-dependent suppression factor F2

1.
18 It

corresponds to the gravitational annihilation of the oscil-
lating scalaron field in the Einstein frame interpretation as
written in Sec. II B 2.

17Although the oscillation amplitude of the Hubble parameter
δH1 and its averaged value hH1i are the same order, H > 0 is
always ensured, as is easily checked by solving the Friedmann
equation (4.2).

18This is inconsistent with Ref. [38]. Probably, they did not
take into account FðRÞ appearing in front of the graviton kinetic
term.
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C. Cosmological implications

Let us discuss the cosmological implications of gravi-
tational particle production in fðRÞmodels. To be concrete,
we take n ¼ 2 in the following. If there is no matter
initially, it can cause successful Starobinsky inflation, but
here we concentrate on the cases where the inflation occurs
in some other sector, and F1 oscillation begins after
inflation, which later becomes a dominant or subdominant
component of the total energy density.
The effects of gravitational particle production in the

fðRÞmodel are similar to the case of the fðϕÞRmodel with
c1 ≠ 0 studied in Sec. III C. The massive χ abundance
produced by the gravitational F1 decay is given by

ρχ
s
≃ Δ0 3mχTF

2mF
BrF1→χχ ; ð4:36Þ

where TF ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓF1

MP
p

is the decay temperature of F1, and
BrF1→χχ ≡ ΓF1→χχ=ΓF1

is the branching ratio of F1 into χχ
with ΓF1

being the total decay width of F1 and

Δ0 ¼ min
h
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hdom=ΓF1

q i
: ð4:37Þ

Here, Hdom is the Hubble parameter at which F1 would
dominate the Universe, and Δ0 roughly corresponds to the
ratio ρF1=ðρF1

þ ρMÞ at H ¼ ΓF1
. Writing the initial con-

dition of F1 as F1i, we obtain Hdom ¼ ΓinfðF2
1i=6M

2
PÞ2 for

mF > Γinf and Hdom ¼ mFðF2
1i=6M

2
PÞ2 for mF < Γinf,

respectively. The energy density of χ is then given by

ρχ
s
≃ 2 × 10−8 GeV

Δ0ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
�

mF

106 GeV

�
1=2

�
mχ

1 GeV

�
:

ð4:38Þ
This is severely constrained if χ is a stable noninteracting
particle, or if it is a late-decaying moduli as shown in
Sec. II C. In our setup, F1 remains light during inflation,
and it obtains long-wavelength quantum fluctuation.
Whether χ has (large) isocurvature perturbation or not
depends on the dominant source of the curvature perturba-
tion: if it is the inflaton, the fluctuation of χ is mostly an
uncorrelated isocurvature and cannot be a dominant DM,
while if it is F1, there is essentially no isocurvature mode
except for a (small) contribution from the inflaton oscillation.
Also, there is no isocurvature mode ifF1 itself is the inflaton.
If χ is a practically massless noninteracting particle, we

have

ΔNeff ¼
43

7

�
10.75
g�sðTFÞ

�
1=3

Δ0BrF1→χχ ∼
3Δ0

N þ 1
: ð4:39Þ

Again we have a stringent constraint.19 The constraints are
similar to the case of the fðϕÞR model with c1 ¼ 1 after ϕi
is replaced with F1i, and readers are referred to Fig. 2.

These results can be applied to the reheating of the
Starobinsky inflation model once we take Δ0 ¼ 1 and
mF ≃ 3 × 1013 GeV. It is noticeable that in the
Starobinsky model with a minimal extension of the
QCD axion, we have N ¼ 4 (corresponding to the SM
Higgs boson), and the axion dark radiation may be
detectable in a future CMB experiment.20 Such axion dark
radiation can also have an isocurvature mode depending on
the origin of the dominant curvature perturbation.

V. Gμν∂μϕ∂νϕ MODEL

Finally, we study a scalar field with a nonminimal
derivative coupling to gravity, namely, L ∼Gμν∂μϕ∂νϕ
with Gμν being the Einstein tensor. An example with such a
coupling is the new Higgs inflation model [40]. This class
of model has an advantage in that it does not introduce an
additional degree of freedom, although the action itself
contains higher derivatives. In fact, it is the simplest version
of the G5-type (or the G4 type involving the kinetic term)
models in the context of the Horndeski or generalized
Galileon theories [41–43].

A. Background dynamics

We consider the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PR −
1

2

�
gμν −

Gμν

M2

�

× ∂μϕ∂νϕ − VðϕÞ þ LM

�
: ð5:1Þ

The background equation of motion of ϕ is given by

�
1þ 3H2

M2

�
ϕ̈þ 3H

�
1þ 3H2 þ 2 _H

M2

�
_ϕþ V 0 ¼ 0: ð5:2Þ

The Friedmann equation reads

3H2 ¼ ρϕ þ ρM
M2

P
; ρϕ ≡

�
1þ 9H2

M2

�
_ϕ2

2
þ V; ð5:3Þ

3H2 þ 2 _H ¼ −
pϕ þ pM

M2
P

;

pϕ ≡
�
1 −

3H2

M2

�
_ϕ2

2
− V −

1

M2

d
dt

ðH _ϕ2Þ; ð5:4Þ

where ρM and pM are the same as before. From these
equations, we obtain

19Dilaton dark radiation from the decay of scalaron field in the
R2 model was discussed in Ref. [39].

20If the radial component of the Peccei-Quinn scalar is lighter
than the inflaton, we have N ¼ 5. But it dominantly decays into
the axion pair, and the axion dark radiation becomes even more
abundant.
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_ρϕ þ 3Hðρϕ þ pϕÞ ¼ 0; ð5:5Þ

_ρM þ 3HðρM þ pMÞ ¼ 0: ð5:6Þ

The oscillating regime of this system without the matter
ðρM ¼ 0Þ was extensively studied in Refs. [44,45]. It is
found that this system has a so-called gradient instability in
the oscillating epoch if ϕ dominates the Universe and the
nonminimal kinetic term dominates over the standard one
ðH ≳MÞ [45].21 The gradient instability indicates that the
sound speed squared of the scalar perturbation becomes
negative for a finite period during one oscillation, which
means that the scalar fluctuations are exponentially
enhanced. In particular, the enhancement rate is larger
for higher momentum modes. The system soon becomes
nonlinear, and it is quite difficult to follow the dynamics at
least analytically. In order to avoid this instability when ϕ
dominates the Universe, the nonminimal kinetic term must
be so small that the model effectively reduces to just a
canonical scalar field with Einstein gravity. Therefore, we
limit ourselves to the case where ρM dominates the
Universe and the ϕ oscillation is a subdominant component
and also require that there is no gradient instability.
For later convenience, we define the effective mass of the

scalar as

meff ≡min

�
1;
M
H

�
×

ffiffiffiffiffi
V 0

ϕ

s ����
ϕ¼Φ

; ð5:7Þ

where Φ denotes the oscillation amplitude of ϕ. This
roughly corresponds to the scalar oscillation frequency.
Note that the energy conservation (5.5) immediately means
that

_ρϕ ∼

8>><
>>:

meffρϕ for H ≳M;
H2

M2 meffρϕ for M2=meff ≲H ≲M;

Hρϕ for H ≲M2=meff :

ð5:8Þ

This implies that ρϕ is a rapidly oscillating quantity for
H ≫ M. The relative amplitude of the oscillating part of ρϕ
is estimated as

δρϕ
ρϕ0

∼

8>><
>>:

Oð1Þ for H ≳M;

OðH2

M2Þ for M2=meff ≲H ≲M;

Oð H
meff

Þ for H ≲M2=meff :

ð5:9Þ

The last case is the same as that of the canonical scalar with
Einstein gravity. On the other hand, as usual, ρM just scales
as a−3ð1þwÞ, and, therefore, its relative oscillation amplitude
is small: δρM=ρM ∼ δH=meff . Therefore, the oscillating part
of the Hubble parameter is expressed as

δH
H0

≃ δρϕ
2ρM

: ð5:10Þ

The scale factor can also be expanded as

aðtÞ≃ a0

�
1þO

�
δH
meff

��
: ð5:11Þ

We can calculate the particle production using these
expressions.
Let us make an order estimation on the condition to

avoid the gradient instability. The sound speed squared of
the scalar field is given by [45]22

c2s ∼

(
1þOð _H

H2Þ for H ≫ M;

1þOð _H
M2Þ for H ≪ M:

ð5:12Þ

If H is violently oscillating, the sound speed squared may
be negatively large, which leads to a gradient instability.
Thus, we require min ½j _H=H2j; j _H=M2j�≲ 1 to avoid the
instability. From Eq. (5.3), one can see that this condition is
written as

min

�
1;
H4

M4

�
meff

H

ρϕ
ρM

≲ 1 for M2=meff ≲H: ð5:13Þ

No condition is required for H ≲M2=meff. Hereafter, we
assume that this inequality is always satisfied. From this
expression it is clear that if ϕ is the dominant component of
the Universe, we must haveH ≪ M to avoid the instability,
as stated above.
Sincewe have imposed the condition (5.13), the evolution

of ϕ is greatly simplified. By noting _H ≃ −3ð1þ wÞH2=2,
the equation of motion is approximated as

ϕ̈ − 3Hw _ϕþ M2

3H2
V 0 ¼ 0 for H ≫ M: ð5:14Þ

ForH ≪ M, the equation of motion is the same as that of the
canonical scalar field. Using the Virial theorem, we find

21References [46,47] argued a subtlety on the gauge choice
δϕ ¼ 0 around the end point of the field oscillation _ϕ ¼ 0 in
analyzing the perturbation of the scalar field oscillation. It does
not matter, however, for the discussion here. This is because
the gradient instability occurs in the time scale much shorter than
the one scalar oscillation period: the relevant wave number for the
instability is jcsjk ≫ meff with cs being the sound speed.

22It can be estimated as c2s ∼ ð1 − a2Gij=M2Þ=ð1þ G00=M2Þ
with G00 ¼ 3H2 and Gij ¼ −a−2ð3H2 þ 2 _HÞδij.
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Φ ∝
�
a−3ð1−wÞ=ðnþ2Þ for H ≫ M;

a−6=ðnþ2Þ for H ≪ M;
ð5:15Þ

where we have assumed V ∝ ϕn.

B. Particle production rate

In the previous subsection, we have seen that

aðtÞ≃ haðtÞi
�
1þO

�
δH
meff

��
; ð5:16Þ

with the oscillation part of theHubble parameter δH given by
Eqs. (5.9) and (5.10). Thus, we can view the particle
production as the gravitational annihilation in the present
case. In addition, there is a direct coupling between the
graviton and the scalar field induced by the nonminimal
derivative coupling to gravity, and it can also cause the
graviton production. Below we analyze the gravitational
particle production of a minimally coupled scalar field and
graviton.Wedonot discuss fermions andvector bosons since
they are classically Weyl invariant in the massless limit.

1. Scalar

Now we evaluate the production rate of a minimally
coupled scalar (2.20). The number density of the produced
particles per one Hubble time is estimated by Eq. (A24) as

nχðtÞ ∼
8<
:

C
512πH

	
Hm3

effΦ
2

M2M2
P



2

for M2=meff ≲H;

C
512πH

	
m2

effΦ
2

M2
P



2

for H ≲M2=meff :
ð5:17Þ

From this, we can deduce the effective “annihilation rate”
of ϕ into the χ pair, as

Γϕϕ→χχ ∼

8>>>>><
>>>>>:

C
512π

Φ2m5
eff

M2M4
P

for H ≳M;

C
512π

H2Φ2m5
eff

M4M4
P

for M2=meff ≲H ≲M;

C
512π

Φ2m3
eff

M4
P

for H ≲M2=meff :

ð5:18Þ

To obtain these results, we have defined the number density
of ϕ as nϕ ≡ ρϕ=meff . It is soon realized that Γϕϕ→χχ=H is
the nondecreasing function of time during H ≳M for
5=2þ 9=2ð1þ 6wÞ ≥ n (i.e., 2 ≤ n ≤ 4 for w ≤ 1=3). It
is easily shown that Γϕϕ→χχ never exceeds H under the
condition (5.13).

2. Graviton

For the graviton production, in addition to the “usual”
gravitational production similar to Eq. (5.17), there is a
contribution coming from the direct coupling between ϕ
and the graviton through the nonminimal kinetic term. The
former is the same as that of the scalar field, and, hence, we

concentrate on the latter here. As shown in Ref. [45], the
graviton kinetic term is written as

S∼
Z

dt0d3x
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�ðdϕ=dt0Þ2
2M2

PM
2

�
2

s ��∂hij
∂t0

�
2

− ð∂lhijÞ2
�
;

ð5:19Þ

where

dt0 ≡
0
B@1þ _ϕ2

2M2M2
P

1 − _ϕ2

2M2M2
P

1
CA

1=2

dt; ð5:20Þ

and we have omitted the scale factor here. The effective
annihilation rate of ϕ into the graviton pair is

Γϕϕ→hh

Γϕϕ→χχ
∼

8>>><
>>>:

ðmeff
H Þ2ðρϕρMÞ2 for H ≳M;

H4

M4 ðmeff
H Þ2ðρϕρMÞ2 for M2=meff ≲H ≲M;

ð H
M2=meff

Þ4ðρϕρMÞ2 for H ≲M2=meff :

ð5:21Þ

Therefore, this annihilation mode cannot exceed the ordi-
nary gravitational production if we prohibit the gradient
instability.23

C. Cosmological implications

Now we discuss the cosmological implications of the
gravitational particle production. To be concrete, we take
n ¼ 2 and w ¼ 1=3. The dominant contribution to the
abundance of the minimally coupled scalar comes from
H ∼M, since Γϕϕ→χχ=H is an increasing function of time
for H ≳M, while it is decreasing at H ≲M. We obtain

Yχ jH>M ∼
αm2

effT
M2

PH

�
ρϕ
ρM

�
2

; ð5:22Þ

for H ≳M, where T ∼ ρM=s is the “temperature” of the
Universe, and α ∼ 10−3 is a numerical coefficient. As an
extreme case, let us assume that the inequality (5.13) is
almost saturated at H ∼M. Then we have

ρχ
s
≲ αmχM3=2

M3=2
P

∼ 3 × 10−10 GeV

�
α

10−3

�

×

�
mχ

106 GeV

��
M

1010 GeV

�
3=2

: ð5:23Þ

23If we allow the gradient instability to occur, the graviton (or
gravitational wave) signal would be much more stronger,
although the precise analysis is difficult to perform.
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The observational upper bound is ρχ=s≲ 4 × 10−10 GeV
for a stable noninteracting χ field and ρχ=s≲ 10−14 GeV
for χ as massive moduli. Note again that if ϕ remains light
during inflation, the χ particle produced in this way has
isocurvature fluctuation and, hence, cannot be a dominant
component of DM. In the present model, ϕ cannot
dominantly contribute to the curvature perturbation because
the energy density of ϕ must be sufficiently small to avoid
the gradient instability, and such a subdominant curvaton
would lead to too large non-Gaussianity.
The graviton abundance is also the same as that of the

light scalar field. The corresponding peak frequency is
estimated as

fGW ∼ 2 × 109 Hz

�
mϕ

1013 GeV

��
1010 GeV

M

�
1=2

: ð5:24Þ

Around this frequency range, the gravitational wave abun-
dance is too small to detect.
Figure 3 shows contours of Yχ (left) andΔNeff (right) for

mϕ ¼ 100M on the plane of ðϕi;MÞ for n ¼ 2 and
w ¼ 1=3. We have implicitly assumed that the inflation
scale Hinf satisfies Hinf > ðM=HinfÞmϕ (Hinf > 10M for
mϕ ¼ 100M), and ϕ decays into radiation after H ∼M but
before the domination. In the red shaded region, there is a
gradient instability. From this figure, it is seen that once we
avoid the gradient instability, which would otherwise
invalidate the reheating analysis, cosmological constraints
are not so stringent [compared with a typical constraint for
a massive long-lived particle (2.29)].

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have studied the gravitational particle
production caused by a coherently oscillating scalar field in
the Universe. We have treated the Einstein gravity, fðϕÞR
gravity, fðRÞ gravity, and Gμν∂μϕ∂νϕ gravity theories

where ϕ is the scalar field, R is the Ricci scalar, and
Gμν is the Einstein tensor, respectively.
We have estimated the particle production rate for such a

broad class of models in a unified framework. In particular,
we have paid attention to an oscillating part of the scale
factor, which makes manifest how the background oscil-
lation produces nonconformally coupled particles. A coher-
ently oscillating scalar field, no matter if it is dominant or
subdominant, induces an oscillating feature of the scale
factor. It exists even in the Einstein gravity theory and is
more violent for the extended gravity theories. All particles
couple to the scale factor unless they are Weyl invariant and
feel the oscillation of the scale factor. Thus, gravitational
particle production by the scalar field occurs through its
oscillation. In the previous paper [14], we considered only
the case where the scalar field dominates the Universe. In
this paper, we have extended our study so that it can be
applied to a subdominant scalar field as well. We have also
treated a broader class of gravity theories systematically.
For the Einstein gravity theory, the production caused by
the inflaton is larger than any other subdominant scalar
fields. However, in the extended gravity theories, the
contribution from the subdominant scalar field, other than
inflaton, can be the dominant one.
An interesting feature of our viewpoint is that, once we

express the oscillating part of the scale factor by the
coherently oscillating scalar field, we can easily deduce
effective couplings between the scalar field and other
particles mediated by the gravity from the Lagrangian.
In the Einstein andGμν∂μϕ∂νϕ theories, the oscillating part
of the scale factor depends quadratically on the scalar field,
and, hence, we can view it as gravitational annihilation. In
the fðϕÞR and fðRÞ theories, it depends linearly on the
scalar field in general, and, hence, we can view it as
gravitational decay. We can easily estimate the production
rate, which coincides with that obtained from more
rigorous calculations. For example, in our viewpoint, it
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FIG. 3. Contour plot of Yχ (left) and ΔNeff (right) for mϕ ¼ 100M on the plane of ðϕi;MÞ. In the shaded region there is a gradient
instability.
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is clear that the scalar field (or the scalaron) does not decay
into the gravitons in the fðϕÞR and fðRÞ theories. Indeed,
we have explicitly seen that the direct coupling cancels with
the oscillating part of the scale factor, resulting in no
effective coupling between the scalar field and the graviton.
It is consistent with the results in the Einstein frame.
We have also discussed the cosmological implications of

the gravitational particle production. All particles whose
masses are smaller than that of the oscillating scalar field
are produced by the gravitational particle production if they
are not Weyl invariant. Thus, it is possible that the daughter
particle itself is quite massive. If it is stable and heavy
enough, it can serve a sizable contribution to the dark
matter abundance. Alternatively, if it is a long-lived particle
such as moduli, a severe constraint on the abundance is
obtained from the observation of big bang nucleosynthesis.
If it is massless, on the other hand, it can contribute to the
dark radiation that is constrained by the cosmic microwave
background observation. One of the well-motivated exam-
ples of such a light particle is the axion. For example, if the
theory is described solely by the standard model, the
Peccei-Quinn sector and the Starobinsky R2 inflation, it
may produce an observable amount of axion dark radiation.
A detailed study on this respect may be interesting, which
we leave as a future work.
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APPENDIX A: PARTICLE PRODUCTION RATE
IN OSCILLATING BACKGROUND

We consider a real scalar field χ with time-dependent
mass:

S ¼
Z

d4x

�
−
1

2
ð∂χÞ2 − 1

2
m2

χðtÞχ2
�
: ðA1Þ

Let us estimate the production rate of the χ particle.
Typically, mχðtÞ is proportional to powers of another
coherently oscillating scalar field ϕðtÞ whose mass scale
ismϕ. Hereafter, we do not assume a specific form ofmχðtÞ
but only assume that it is an oscillating function with
frequency of Ω.

1. Quantization

Let us expand χ as

χ ¼
Z

d3k
ð2πÞ3 χ~ke

i~k·~x: ðA2Þ

From the reality condition χ� ¼ χ, we have χ�~k ¼ χ−~k. The

equation of motion of the Fourier mode is given by

χ̈~k þ ω2
kðtÞχ~k ¼ 0; ðA3Þ

where ω2
k ≡ k2 þm2

χðtÞ. Now we write χk in terms of the
ladder operator as

χ~k ¼ a~kv~kðtÞ þ a†
−~k
v�~kðtÞ; ðA4Þ

where v~kðtÞ and v�~kðtÞ are independent solutions of (A3).

Note that we should have v~k ¼ v−~k to satisfy the reality
condition. By using the freedom to choose the overall
normalization of v~kðtÞ and v�~kðtÞ, we can take a~k and a†~k so

that they satisfy the following commutation relation,

½a~k; a†~k0 � ¼ ð2πÞ3δð~k − ~k0Þ; ½a~k; a~k0 � ¼ ½a†~k; a
†
~k0
� ¼ 0:

ðA5Þ

On the other hand, we must have the following canonical
commutation relation:

½χð~xÞ; _χð~x0Þ� ¼ iδð~x − ~x0Þ: ðA6Þ

From this, we obtain

v~k _v
�
~k
− v�~k _v~k ¼ i: ðA7Þ

Now let us assume the solution of the form

v~kðtÞ ¼
1ffiffiffiffiffiffiffiffi
2ωk

p ½α~kðtÞe−i
R

t

0
dt0ωkðt0Þ þ β~kðtÞei

R
t

0
dt0ωkðt0Þ�:

ðA8Þ

There is a functional degree of freedom to impose an arbitrary
condition between α~kðtÞ and β~kðtÞ. We choose it as

_α~k ¼
_ωk

2ωk
e2i

R
t

0
dt0ωkðt0Þβ~k;

_β~k ¼
_ωk

2ωk
e−2i

R
t

0
dt0ωkðt0Þα~k;

ðA9Þ

with α~kð0Þ ¼ 1 and β~kð0Þ ¼ 0 to satisfy the initial condition
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v~kðt → 0Þ≃ 1ffiffiffiffiffiffiffiffi
2ωk

p e−iωkt; _v~kðt → 0Þ≃ −i
ffiffiffiffiffiffi
ωk

2

r
e−iωkt:

ðA10Þ

Under these conditions, _v~k is expressed as

_v~kðtÞ ¼ −i
ffiffiffiffiffiffi
ωk

2

r
½α~kðtÞe

−i
R

t

0
dt0ωkðt0Þ − β~kðtÞe

i
R

t

0
dt0ωkðt0Þ�:

ðA11Þ

Note that (A7) requires the following normalization
condition,

jα~kj2 − jβ~kj2 ¼ 1; ðA12Þ

which is automatically satisfied at all times once we impose
the condition (A9).

2. Production rate

The occupation number or the phase space distribution
of χ is given by

fχðkÞ ¼
1

2ωk
ðj _vkj2 þ ω2

kjvkj2Þ −
1

2
¼ jβ~kj2: ðA13Þ

Thus, fχðkÞ ¼ 0 at t → 0, but it grows after that. The total
number density is given by

nχðtÞ ¼
Z

d3k
ð2πÞ3 fχðkÞ: ðA14Þ

Thus, the remaining task is to derive time evolution of β~k.
It is easily calculated from (A9) as long as α~k ≃ 1 and
jβ~kj ≪ 1 hold. In this case, we have

βkðtÞ≃
Z

t

0

dt0
_ωk

2ωk
e−2i

R
t0
0
dt00ωkðt00Þ

¼
Z

t

0

dt0
mχ _mχ

2ω2
k

e−2i
R

t0
0
dt00ωkðt00Þ: ðA15Þ

Recall that mχðt0Þ is an oscillating function with frequency
ofΩ. It is not hard to imagine that the time integral in (A15)
cancels out if Ω and ωk are much different from each other.
However, if ωk ≃ Ω, the time integral gives a linearly
growing result with t.
To see only the time growing part, we perform integra-

tion by parts and assume k2 ≫ m2
χ to rewrite (A15) as

βkðtÞ≃ i
2ωk

Z
t

0

dt0m2
χðt0Þe−2iωkt0 : ðA16Þ

Now we consider a frequency range

Ω − ΔΩ≲ ωk ≲Ωþ ΔΩ: ðA17Þ

At t≲ 1=ΔΩ, the phase ofm2
χðtÞ and e−2iωkt roughly cancel

with each other, and, hence, βk in this frequency range
linearly grows with t. After that, however, the oscillation
feature forbids further growth. Conversely, for fixed t, the
frequency range with ΔΩ≃ 1=t experienced a linear
growth. Therefore, we have

f~kðtÞ≃
~m4
χ

4ω2
k

t2 for Ω −
1

t
≲ ωk ≲ Ωþ 1

t
: ðA18Þ

Here, ~mχ stands for the amplitude ofmχðtÞ. This expression
is valid as long as fk ≪ 1, i.e., t≲ 1=ðqΩÞ with
q≡ ~m2

χ=Ω2ð≪ 1Þ. The total number density linearly grows
with t as24

nχðtÞ≃ C
~m4
χ

32π
t: ðA19Þ

This expression does not refer to the parent field ϕ. We only
assumed that mχðtÞ is an oscillating function with fre-
quency Ω.
This result is easily understood in terms of ρϕ and Γϕ, if

the coherent oscillation of ϕ is responsible for the oscillat-
ing mχðtÞ. Assuming that ϕ is canonically normalized, the
perturbative decay rate of ϕ into the χ pair is given by
(notice that Ω ∼mϕ).

25

Γϕ ∼
C
32π

~m4
χ

Φ2mϕ
∼

C
32π

q2m3
ϕ

Φ2
; ðA20Þ

with Φ being the amplitude of ϕ. Since the energy density
of ϕ is given by ρϕ ≃m2

ϕΦ
2=2, we obtain

nχðtÞ≃ 2C
ρϕΓϕ

mϕ
t ∼ C

~m4
χ

32π
t: ðA21Þ

3. Gravitational production rate

Now let us consider the production of the χ field which
couples to ϕ gravitationally:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
fðχÞR −

1

2
ð∂χÞ2 − 1

2
m2χ2

�
: ðA22Þ

24In the case of the three-point interaction as m2
χ ¼ μϕ (hence,

Ω ¼ mϕ=2), we can explicitly calculate (A16) and find (A19)
with a numerical coefficient C ¼ 1. For the other types of
interactions, C slightly deviates from 1.

25Again, in the case of the three-point interaction as m2
χ ¼ μϕ,

we find that the perturbative decay rate ϕ → χχ is given by (A20)
with a numerical coefficient C ¼ 1. For the other types of
interactions, C slightly deviates from 1.
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Here, m is constant and assumed to be smaller than the
Hubble scale so that we can neglect it, and fðχÞ is a
function of χ. In the minimal case, we have fðχÞ ¼ M2

P,
and, hence, χ feels the background oscillation only through
the Hubble parameter or the scale factor. By using the
conformal time dτ ¼ dt=a and defining ~χ ≡ aχ, it is
rewritten as

S ¼
Z

dτd3x
1

2

�
~χ02 − ð∂i ~χÞ2 þ

a00

a
ð~χ2 þ 6a2fðχÞÞ

�
;

ðA23Þ

where we have dropped the mass term because we consider
the case mϕ ≫ m from now. It is seen that ~χ generally
obtains a mass of ∼a00=að¼ a2R=6Þ, and it is an oscillating
function if there is a coherently oscillating scalar field as
repeatedly shown in the main text, which leads to ~χ particle
production. Note that the scale factor dependence vanishes
in the conformal coupling fðχÞ ¼ −χ2=6þM2

P. Therefore,
there is no particle production in this case.
Below we consider the minimal case: fðχÞ ¼ M2

P. Then
we can apply the formula (A19) as a number density created
within oneHubble time by interpretingm2

χðτÞ ¼ a00=a. Thus,

d½a3nχ �
dτ

≃ C
ða00=aÞ2
32π

→
dnχ
dt

≃ C
32π

�
ä
a
þ
�
_a
a

�
2
�
2

: ðA24Þ

Here we estimate a00=a with its amplitude. In the second
similarity,wehave omitted terms from the cosmic expansion.
If one can express a in terms of ϕ as

aðtÞ ¼ haðtÞi
�
1 −

cn
n
ϕn − hϕni

Mn
P

�
; ðA25Þ

we have the χ number density produced in a time interval
t ¼ H−1 as

nχðtÞ≃ C
32πH

�
cnm2

ϕΦ
n

Mn
P

�2

: ðA26Þ

APPENDIX B: ADIABATIC INVARIANT
IN f ðRÞ THEORIES

In Ref. [29], we introduced an adiabatic invariant
J for the generalized Galileon theories. This quantity
satisfies _J ∼OðHJÞ even when H oscillates rapidly as
_H ∼OðmeffHÞ. In this appendix we generalize this quantity
to fðRÞ theories.
We consider the action (4.1) in the absence of matter.

Using an auxiliary field ϕ, this system is rewritten as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
P

2
½fðϕÞ þ FðϕÞðR − ϕÞ�: ðB1Þ

Using integration by parts, we have

S ¼
Z

d4xa3
M2

P

2
½fðϕÞ − FðϕÞϕ − 6FðϕÞH2 − 6 _FðϕÞH�;

ðB2Þ

which now has the form of the generalized Galileon action.
The adiabatic invariant can be derived by taking derivative
with respect to H:

J ≡ −
1

6M2
P

∂L
∂H ¼ FH þ 1

2
_F: ðB3Þ

Since we have ϕ ¼ R from the action (B2), F in Eq. (B3) is
understood as FðRÞ with R being the background
value R ¼ 12H2 þ 6 _H.
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