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Approximation of the potential in scalar field dark energy models
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We study the nature of potentials in scalar field based models for dark energy—with both canonical and
noncanonical kinetic terms. We calculate numerically, and using an analytic approximation around a = 1,
potentials for models with constant equation-of-state parameter w,,. We find that for a wide range of models
with canonical and noncanonical kinetic terms there is a simple approximation for the potential that holds
when the scale factor is in the range 0.6 < a < 1.4. We discuss how this form of the potential can also be
used to represent models with nonconstant w, and, hence, how it could be used in reconstruction from

cosmological data.
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I. INTRODUCTION

The origin of the cosmic acceleration is one of the most
significant open questions in cosmology and fundamental
physics. A cosmological constant is still very much con-
sistent with the data [1,2], but in order to either refute or
confirm this simple hypothesis one needs to consider
alternative models to explain the observations. One very
simple idea is to postulate a dark energy component
dominated by a scalar field either with a canonical or
noncanonical kinetic term. Such models are known as
quintessence models [3—10] and k-essence models [11-13],
respectively.

The standard approach when constraining cosmological
models with a dark energy component that is not the
cosmological constant is to define an equation-of-state
parameter wy, = P;/p, # —1, where Py is the pressure of
dark energy and p,, is its density, making no assumption as
to the origin of the dark energy. In principle this is a general
function of time, but it is often considered to be either
constant or to be represented by a specific functional form,
for example [14,15]. At the moment the data barely
constrain anything beyond a constant w,, but this is likely
to change in the near future as more observations probing
the equation of state become available, such as Euclid
[16-18], LSST [19,20] and SKA [21-25]. Various
ideas have been put forward to extend to time-varying
situations. These include various limited functional forms
[14,15,26-28], the Om diagnostic [29,30], the state-finder
approach [31,32] and even using principal component
analysis on general piecewise linear parametrizations of
wy [33]. For a review of the parametric and nonparametric
methods to reconstruct the dark energy equation-of-state
parameter, we refer to [34]. Since many of the observations
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are sensitive to perturbations in the dark energy it is also
necessary to make some assumptions about the perturba-
tions, but we will not consider this here.

An alternative is to presume that the origin of the dark
energy is a model based on a scalar field. However, such
models usually involve one or more arbitrary functions
which would need to be specified before any model
prediction could be made. One of these is the potential
V(¢) of the scalar field which one might try to reconstruct
from observations. One obvious suggestion [35], which
extends the approach of [36] for inflation, is to represent the
potential as a Taylor series expanded around the present-
day value of the field ¢g:

V() =Vo+ Vi(d— o) + Vol — o) + - - (1)

and attempt to fit for the coefficients V;. However, it is not
clear where to truncate this series in a controlled way.
Similar and complementary methods have been proposed
by [37-40]. Other reconstruction methods are valid in the
slow-roll regime, that is, when 1+ w, ~ 0. For quintes-
sence models, a one-parameter [41] or two-parameter
[42—44] formula has been used and for k-essence models
we refer to works by [11,45].

In this paper we first calculate potentials for a range of
minimally coupled scalar field models with canonical
(Sec. IT) and noncanonical (Sec. III) kinetic terms assuming
initially that w, is constant. It is possible to derive an
analytic solution for the potential in quintessence models,
but this is not possible in general for the case of k-essence
models and therefore we resort to numerical calculations
and an analytic approximation around the present day
which is valid for 0.6 <a < 1.4. Based on this analytic
approximation we suggest a form of a potential with just
four parameters which we demonstrate can lead to a wide
range of behavior for w, as a function of time (Sec. IV) and,
by design, includes models with constant W Of course,
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this functional form will not include every possible
behavior in a general model, but it does provide more
physical insights and it is useful for models which are not
significantly different from a linearly evolving equation-of-
state parameter. We conclude and discuss our results
in Sec. V.

In the following, we will use natural units with
¢ = h = 1, the Planck mass is M, = G~'/? and we assume
a metric with signature (—, 4+, +, +).

II. MINIMALLY COUPLED SCALAR FIELDS
WITH CONSTANT w,

The Lagrangian for minimally coupled scalar fields is
1
L= _Engﬂyvﬂ¢vy¢ - V(¢)v (2)
and its corresponding stress-energy tensor
T,uy = g/w£ + ”vy¢vu¢

1
= ’/]vﬂ¢vu¢ - g/w Engaﬂva(ﬁvﬁ(ﬁ + V(¢) . (3)

The constant 7 distinguishes between the quintessence case
(n=+1, =1 <wy < 1) and the phantom case (n = —1,
wy < —1) [46].

Density and pressure are given by

1.
Py =T =n1¢" + V(¢).

| 1 .
P{/,:gT’,»:qubz—V(qﬁ), <4)

and the conservation equation p, +3H(p, + Py) =0
gives rise to the Klein-Gordon equation, which describes
the time evolution of the scalar field

dv
3H =0. 5
+3HD+n 7 (5)
To achieve an accelerated expansion, we require
wy < —1/3. In fact, observations require wy = —1 (due

to the cosmological constant case) [1], and hence we can
evaluate deviations of wy, from —1 with the help of (5):

2
Vo

l+wy)y=—5—"—5—,
’ 9H2(§s + 1)2P¢

(6)

with & = ¢/(3H¢) [18]. Note that in a pure slow-roll
approximation, &, = 0.

By using Friedmann equations, we can determine the
time evolution of the scalar field and its potential for a given
wy(a) [47]:

PHYSICAL REVIEW D 94, 063513 (2016)

$(a) — o 3Qqe [@+/nll +W¢ g(x)
=% / dx, ()

3HGM 3 Qqc[1 = wy(a)lg(a)
16z ’

V(a) = (8)

where €. is the dark energy density parameter today, H,,
the Hubble constant and ¢ the value of the scalar field at
a = 1. Finally, g(a) represents the time evolution of the
dark energy component

g(a) = exp (—3 % avadx). 9)

X

Assuming a flat geometry, the Hubble parameter is given
by

H = Ho(0) = o 28+ Qua(@)] . (10

with Q, the matter density parameter today.
For a constant equation of state w, integral (7) can be
evaluated as

b=o_ 2 [l )
M 3wy 81

Q 3wy Q
x [sinh‘1 (1 /Q—dea‘ 24> —sinh™"y /Q—de}, (11)

and its inverse gives an expression for the scale factor in
terms of the scalar field

(2 —3$¢, ) 3 8nr ¢ — o
o= (gz) "l vyt ()
+ sinh™!, /g—‘:ﬂ_ﬁ. (12)

With these relations in hand, we can deduce the full
expression for the potential V(¢):

pl

3HEM? Q1 s

Qull =) (0,5
1671' Qde
y [sinh <¢ §W¢ 8nm <¢ - ¢0>
2(l+w¢,)
Q w,
+sinh-l,/g—de>] " (13)

Since ¢ just shifts the potential in the ¢ direction, we
can make the choice

Vig) =
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=+—M ——  Pgnht, ==, 14
Po 3w, Py 87 Q. (14)

that simplifies the form of the potential

l+w¢

| 3HEMpQqe(1 = wy) O\
N 167 Qe

3wy 8nrm ¢ ]

2(1 1wy )
sinh "¢

V()

X —t —, 15
T\ 301w My, (15)

in agreement with [34,48]. An analytic solution of (7) can
be found also when dark matter has a constant equation-of-
state parameter w,, # 0, as shown in [49].

While it is possible to find exact solutions for the
potential of quintessence models with a constant equation
of state, this is not the case when w,, is a function of time or
for more general scalar field models, such k-essence
models. Moreover, the expressions for the potential at
early and late times are not very useful from an observa-
tional point of view, since they assume one of the
component to be dominant and are not relevant for
modeling late-time observations. It is, therefore, worth-
while to find approximate solutions valid for a = 1 that can
be probed with data. To do this, we expand in series % for
a =~ 1, but a priori it is not clear where to truncate the
series. We have checked that a first-order expansion is a
very good approximation, leading to a scalar field evolving
quadratically with respect to the scale factor.

The differential equation describing the approximate
evolution of the scalar field for a ~ 1 is

@:i 37’](1+W¢)M§lgde
da 8

{1_%(2+3Qmw4>)(a—1>}’

(16)

which implies the following approximate evolution for the
scalar field:

» — b
M

3’7(1 + W{/))Qde
87

==
pl

« {a 1 —%(2 4 3Quwy)(a - 1)2} (17)

By inverting this, we can find a relation between the scale
factor and the scalar field
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2

=14+ —
300w,

8nz P —dho

X< 1=
3Qde[1+w¢] M

pl
(18)

which leads to the following functional form for the
approximate potential:

D
V(¢):AH5M51<1— B+C¢A;—€f°>, (19)
p

where the coefficients A, B, C and D are dimensionless
constants depending on the cosmological parameters char-
acterizing the model. For minimally coupled models with
constant wy, the four coefficients assume the following
values:

A N 3Qde(1 - W¢) <4 + 3QmW¢> _3(l+w</1)

167 2 +3Q,wy
- 4
(44 3Quw,)?
2+3Q, 8
C=Fx4 - ¢ 7 1 )
(4 + 3QmW¢) 3Qde(1 + W(/,)

(19) is an interesting result, showing that for constant
equations of state, the potential can be represented by a
very simple form.

The four parameters in (20) depend on two quantities,
Q4. and wy; therefore, we can express two of them
(A and C) in terms of B and D:

_ (D+6)[VB(D+1)-2]
 162vB(D -3)(1 - /B)P’

B 8n7v/B(3 — D) B
C=7F 2\/D[\/E(D+1)—2]\/E(l VB). (21)

To see how good our approximation is for a = 1, we
compare the approximate expression for the potential to the
exact solution for different values of the equation-of-state
parameter w,, in the top left panel of Fig. 1. We assumed the
following cosmological parameters: Q, = 0.3, Q4. = 0.7
and Hy =70 kms™' Mpc~!. The value of ¢ at a =1
ranges from ¢/Mp = 0.02 for wy = —0.99 to ¢/M, ~
0.2 for wy, = —0.7. The approximate solution agrees very
well with the analytic one over a range of values centred on
a =1 (by construction) and it deviates from it at both low

063513-3



RICHARD A. BATTYE and FRANCESCO PACE

V(9)pe

" 0.01 0.1 1
¢/Mpl

PHYSICAL REVIEW D 94, 063513 (2016)
-0.86 T T T T T T

ae
-0.87 | a i
-0.88 A, i
‘\

£ 20.89 [r- g -
0.9
091 frereerm e g, A
-0.92 1 1 1 1 1 ‘I“

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

¢/Mpl

-0.02

FIG. 1.

Top left panel: Comparison between the exact solution for a constant equation of state for the potential (solid line) and its

approximate expression (dashed line), for a ~ 1. Different colors refer to different values of w,,. From top to bottom: the black, red, blue,
yellow and violet lines correspond to wy = —0.7, —0.8, —0.9, —0.95 and —0.99, respectively. Top right panel: Equation of state for the
approximated potential of (19) for w, = —0.9. The subscripts a and e represent the approximated (blue dashed line) and the exact (black
solid line) solutions, respectively. Black horizontal dashed lines show differences of 1% with respect to the exact value. Bottom panel:
Comparison between the exact solution for the scalar field with a constant equation of state w,, = —0.9 (solid line) and the approximate

expression (dashed line), for a ~ 1.

and high values of the scale factor (corresponding to low
and high values of the scalar field, respectively). In
particular, by inspecting the top right panel of Fig. 1 we
find an excellent agreement for 0.7 < a < 1.2. We also note
that a better agreement occurs when the equation-of-state
parameter is not substantially different from w, = —1: this
is due to the fact that for the cosmological constant the
scalar field and the potential are constant in time. If we
require a tolerance of 1% in the equation of state derived
from the approximate potential, then the confidence inter-
valis 0.5 <a < 1.5.

In the bottom panel of Fig. | we show the evolution of the
scalar field with respect to the scale factor for w, = —0.9.
We show the time evolution of the scalar field rather than that
of the potential because by construction, the latter evolves as
a=30+) Note how the two expressions for the scalar field
agree remarkably well over a range 0.5 <a < 1.7. For
values outside this range the approximate solution under-
estimates the exact one and it becomes negative for a < 0.2.
This range is largely in agreement with what we found for
the reconstructed equation-of-state parameter.

III. K-ESSENCE WITH CONSTANT w,

A straightforward extension of minimally coupled scalar
fields is given by models with a noncanonical kinetic term.
These models are described by a Lagrangian of the form
L = L(¢,x) [12], where y = —1 g, V¥¢§V* ¢ is the canoni-
cal kinetic energy term. These models have been exten-
sively used to describe dark energy scenario [12,13,50-53]
and several works studied their dynamics and stability
[54-58]. These models are dubbed “k-essence” models
because the kinetic term y can be responsible for the cosmic
acceleration. A wide variety of models have been proposed
and studied in different contests, such as low-energy
effective string theory [59], tachyon models [52,60], ghost
condensates [55,61-63], and Dirac-Born-Infeld theories
[64-66].

The density and pressure are given by p = 2y L, — L and
P = L, respectively, where £, = % and we will also use

L, = ?)27'? and L, = E)?;—{)ib The sound speed for subhorizon
modes is
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P 2L, \ !
a=-X— <1+%) : (22)

Py ¥

Using Py = wy(a)p,, we can deduce that

qu(“)

%L, = L. (23)

From (23) we see that k-essence models can achieve w, ~
—1 without y = 0. This means that such models need not be
in the slow-roll regime to act as a dark energy component.

The energy-momentum tensor of k-essence is that of a
perfect fluid

Tﬂy = ‘C;(quﬁquﬁ + Eg;w = (p + P)MMMV + Pg/“’ (24)

and velocity u, = V,¢/+/2y. The equation of motion for
the scalar field is

F(L, +2L,) + /2520 Lyy — L) + 6HyL, =0,
(25)

and by rearranging the terms in (25), the equation of motion
reads [18]

H’“’V”V,,d) + 2)(£)(¢ - ‘C(/’
— H"V N, — L,y gV, pV,p— L, =0, (26)

where
H"Y = £XXV”¢V”¢ - ﬁ)(g’“’. (27)

By inspecting (26), we notice that the equation of motion
can be written in a very compact form as V,J¢ = =L,
with J# = L, VFp.

Many of the k-essence models proposed in the literature

fall into one of the following types:
(A) Models of type A are given by [13,67-69]

L=MF@)-V() (28)

where M has dimensions of mass and F is a dimen-
sionless function. In the following, it is helpful to
consider F(y) to be a power law F(y) = (%)", for n
constant. Setting n = 1 implies £ = y — V(¢) which
corresponds to the quintessence case discussed
in Sec. II.

(B) Models of type B are given by [11,12,62,70]

L=Gk)V(9), (29)

where G is a dimensionless function.
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Common Lagrangians proposed in the literature,
which are mainly for purely kinetic k-essence model
li.e. V(¢) = M* =const], are [53,71-76]

(1) Glx)
() G(x)
3) G(x) = —[1 + ()",
@ Glx)
(5) G(x)
©6) Glx)

where n, a, f, A; and A, are constant and n = +1.
Typically it is not possible to transform between
n =41 and n = —1 via a simple redefinition of the
scalar field.

An interesting Lagrangian to consider is the ghost
condensate model [62]
e
L=K(px+ L(fﬁ)wv (30)
where K(¢) < 0 and L(¢) are dimensionless poten-
tials and M, again, has dimensions of mass. If one

defines the scalar field y by

dy\? L
) I 1
(@) - o
and writes X = —% 9 V*wV¥y, then
X Xx?
L=V -7atas) (32)

where V(¢) = [K(¢)]*/L(¢) if K < 0. Hence, this
can be considered as a model of type B
with G(y) = —y/M* + y*/M?.

(C) Models of type C are given by [63]

L=—x=-N)V(p). (33)

where N = ()" is a dimensionless function. The
model represents a generalization of the dilatonic
ghost condensate model and it is a special case of

(30), where K(¢) = —1, L(¢) = %2 and N(y) = »2.

A. Type A models with constant w,

For models of type A, with F(y) being a power law, we

xF,

F
Y2 —pn  and F=n— 1 and  therefore
X

F
a = (2n—1)7", constant. For a general w,(a) we have

have
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BHEMQqc[1 — (2n = 1wy (a)]g(a)

vig) = 167zn ’

(34)

b _ M (3’“'3”’51%)* {01+ wylalg(a)}é

da " Hy\ 16aznM* aE(a)
(35)
b=t _ 5 M (BHIMQu\
Mpl HoM 16JTI’lM4
1
[l g

It is, therefore, possible in principle to find ¢(a), at
least numerically. Note that n # 0; otherwise the
potential and the scalar field diverge. Our general
results are consistent with [77] if we set M* = 1 and
F(y) = y* and with [78].

If wy is constant, we can recover analogous results to the
quintessence case. In this case, (36) becomes

b—do_
Mpl 3W¢H0MP1QIIH/2

Lo 3wy,
X | = dxsinh ™ Xx.
S

Qe inh~! /5

2V2M? 3HIM2 Qe (1+wy)\
16znM*

(37)

It is not possible to compute this integral analytically
for general wy and n, but it at least illustrates that a
solution exists and the solution can be computed
numerically. It is also important to notice that for a
given equation-of-state parameter, the scalar field and
its potential are not uniquely determined since for a
given wy, these two quantities depend also on n. Note
also that Egs. (34), (36) and (37) reduce to the
quintessence case for n = 1. At early and late times,

2n (14w, )
the potential is given by Vg(¢) xx¢p " ”W] and
Vi(p) < ¢~ =) , respectively, which are in agreement
with [78].

Since analytical solutions are not possible, we find it
useful to derive approximated expressions also fora = 1. In
this case, (35) is approximated by

d¢ \/—Mz 3H(2)Mglgde(1 +W¢) i
da 16znM*
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which leads to

¢—¢o_ﬁ M? [BHIMZQq(1+w,) %
My T HoMy 16znM*
—343(Quen—1
o P |

(39)

By inverting this expression to find a(¢), the potential
can be written with the same functional form as (19),
with the following coefficients:

- (2n = 1)w,]
167zn
34 n—3(Qen — 1wy 3(1+w)
Srsan)
4n?
T BFn=3(Quen— Dwy?’
HoMy 3 —n—3(Qq4n—1)w,
€=-2vam=0t B+ n—3(Qqon — 1)W¢]
16znM* 7
{3H%M§19de(l + w¢)}
D ==3(1+w,). (40)

| 3Q[1

’

When n = 1, this reverts to the coefficients presented
in (20).

In the top left panel of Fig. 2 we make a comparison
between exact numerically generated solutions and the
approximation around a =~ 1. As in the case of quintessence
there is a good agreement between the two. We also show in
the right panel that the potential for n > 2 quickly
asymptotes to the n — oo solution. This should be expected
from the form of (37). In the lower panels we show the
range of validity of the approximated scalar field (left) and
potential (right) for the approximated expression found and
described by the four coefficients listed above. As for
quintessence models, the approximate potential recovers
the exact one only for a limited range in the scale factor,
hence also the reconstructed equation of state will be
limited to the range of validity of the approximate potential.

We found that the behavior of the reconstructed equation
of state is very similar to the quintessence case. More
quantitatively, we match the true w, with Aw, = 0.01 for
0.6 <a < 1.5, a range that is largely in agreement with
quintessence.

B. Type B models with constant w,

Type B models behave quite differently from type A
models and it is not possible to make a direct comparison
with quintessence or phantom models. These models are
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FIG. 2. Top left panel: Comparison between the full solution, generated numerically, and the approximation for a ~ 1 for the scalar
field potential for type A model with n = 2. Solid lines represent the full solution, dashed lines the approximate solution. Different
colors show different equations of state, labeled as in Fig. 1. Top right panel: Scalar field potential for wy, = —0.9 for different values of
n. From top to bottom we show n = 1, 2, 3, 4. We see that as n increases, the shape of the potential quickly asymptotes to that of n — co.
Bottom left (right) panel: Scalar field (potential) for the approximated solution compared with the exact expression [Eq. (34) together

with Eq. (36)] for wy = —0.9.

commonly studied in the literature because the kinetic term
is completely factorized from the potential term, making
the calculations relatively easy.

The evolution of the potential, the kinetic term and the
sound speed are given, respectively, by

_ 3H%M21Qdew¢(a)g(a)
V(a) = pg,[(;()() : (41)
G 2wyla) (42)
G\ ™!

One approach would be to solve for G(y) from (42).
When w,, is constant it is given by

]+w¢
X \ 7

However, if we do this, then we find that a = Wy
which would mean that perturbations would be

(44)

unstable if wy < 0. This is, therefore, not the correct
approach for deducing a potential from constant w.

The alternative is to specify G(y) and consider (42) as a
constraint on y which will be constant. Let  be the constant
value which solves (42) for a specific choice of G(y), and
then

d 1 2% 1/2
_¢ —_ Xa _3 ’ (45)
dCl HO Qm + Qdea We
whose solution is
b=dy_ 2 VG <9d>—
Mpl 3Wern/2 HOMpl Qm
3w
sinh™! (\ /e 24)) vy
X / o dxsinh "» x.  (46)
sinh™! 4 /g—‘::

Again this at least proves the existence of an ¢(a), and
hence a V(¢), which gives rise to constant w,,
although there is no analytic solution for general
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wy. Note that this expression is equivalent to (37) in which is what should be expected from the general
the limit n — oo and with /7 = M?. We are able to discussion about the generalized ghost condensate
find useful approximations at early and late times. In model. Note that in type B models with constant

wy, the sound speed becomes a function the of
equation of state & = a(w,); such models have been
also studied in [79] where the authors used shear and
Let us now consider the specific case of cosmic microwave background lensing data to con-
strain dark energy perturbations.

particular we find Vg(¢) o ¢p20+%0) at early times
and V| (¢) « ¢~2 at late times, respectively.

2
X X
Glr) = M + M’ (47) For a = 1, the differential equation governing the evo-

lution of the scalar field ¢ as a function of the scale factor

Hence, we ais

. > 1-w,
X — ¢
from which we can deduce that W By’

Note that 0 <a <1 dp 2y
da B HO

- 1-24 1+w,
find that a=—2 =2
1—6-L. 5-3wy
oy

1
|:1 + _(1 + 3QdeW¢)(Cl - 1):| ) (50)
implies that —1 < wy < 1. From (30), one finds that 2

which leads to

)(L(d)) ) -1 (48)
4 1 _ ’ =
WKL) 1= 3wy $=do_ VA |, 1100w @-1p).
. . My,  HoMy 4 o
p p
and the corresponding sound speed is (51)
1
1+2£2
a= - IL( M W , (49) The relation between the scale factor and the scalar
1+6£4L  5-3w :
KM ¢ field is then
0.1 : —
10 | 3 ﬁe
3! - :
>
0.0 0.02 ~ '1

¢/Mpl

V(9)/pe

/My,

FIG. 3. Left panel: Approximation of the scalar field potential for a ~ 1 for different constant equation-of-state parameters w,. Solid
lines represent the exact numerical solution, while the dashed line show the approximated solution. Colors are as in Fig. 1. Middle (right)

panel: Scalar field (potential) for the approximated solution compared with the exact expression (41) together with (46) for w, = —0.9.
In all the panels we assume G(y) = — 5 + i%
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2
:1—7
“ 1+3Qdew¢
x {1 14 (143Q )Ho(qs bo)
- Wy) —== (@ — .
de ¢ /—2)? 0

(52)

Hence, also for type B models we will have an
approximate potential of the form of (19) with
dimensionless coefficients

A 3Quewy (3Qdew¢ - 1) =3(14wy)
87G(7) \3Quewy + | ’
p—__ +
(1- 3Qdew¢)2 '
g LT3y HoMy
(1=3Quewy)* V27~
D = =3(1 +wy). (53)

In the left panel of Fig. 3 we show the validity of the
approximation for the scalar field potential for a ~ 1 for
different constant equation-of-state parameters, as
described in the caption, for a model with G(y) =
- &+ 1)\(4_28 We obtain a similar level of agreement as for
quintessence and type A models. The accuracy increases
with the decrease of w and is limited to an epoch centered
on a = 1. In the right and middle panels of Fig. 3 we
compare the approximated expression for the potential and
the corresponding scalar field evolution with the exact

PHYSICAL REVIEW D 94, 063513 (2016)

solution. Note that since (46) is a limiting case of (37), the
range of agreement of the equation of state for type B
models is similar to that found for type A models.

In the general discussion of type B models, we showed
that @ = a(w,) and 7 = 7(w,); each model will have,
therefore, its own particular functional form and a range of
values for the parameters ensuring their stability. In Table I
we show the specific functional form of } and a for
several forms of G(y) proposed in the literature and
determine when their perturbations are stable (a > 0)
and subluminal (o < 1).

C. Type C models with constant w

Type C models resemble phantom models discussed in
Sec. II. They reduce to phantom models when the function
N(y) is constant, that is, n = 0 for the power-law choice of
N(y). Despite the apparent complexity, type C models, in
contrast to type A and B models, have a general analytical
solution when N(y) is a power law. Key equations for
general n > 0 and wy(a) are

_ [1 = w(a)]M* n
V(a) = M- (2n— 1)w¢(a)]"(

5 3HGMQqe9(a)\ ™"
167 ’

_ l)n—l

(54)

dg _ {3M§19de[1 —(2n- 1)W¢(a)Jg(a)}z’ (55)

da 8x(n — l)fziEfv(d)a)

:2n+1—(2n—1)w¢,’

a

(56)

TABLE L. Dependence of 7 and a on the constant equation-of-state parameter w, and stability conditions for the model.
G(y) i a(w,) Stability
14wy
(&)™ Wy Wy 20
2 1—-w, 14w,
—Et = g —1<w; <1
n 1-wy - 1+w,
~ i+ ) (i)™ BT Tlswp<lforn>0
- ]+21’]# —7]% —W¢ -1 SW¢SO
Wk
2(&)" — 1] (Hrayn — 5wy 1—-2n <w, <0 forn>}
0<wy<l-2nforn<j
W, 1
—[1 + 25 ()" (= reyn —5lowy 1-2n<wy <0forn>1
OSW¢$1—2nf0rn<%
P 1+w,
i i TP = “lswy sl
1+w, Pwy
_(]_2#)/3 Wgﬁ)w] m wy <=l orwy>0forp<0orp>1
-1<w,<0for0<p <1
2 I+wy

A= A

B = Qa— 1wy}

S -1<w; L2a-1fora>0

20—1<wy <-1fora<0
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for the evolution of the potential, of the scalar field and 3H %M%lﬁde(l -wy)

of the sound speed, respectively. Note in particular that = 167(1—n)

for n = 0 we recover results for the phantom models. o)

The evolution of the scalar field as a function of the 3H(2)M§19de[1 -(2n- 1)w¢] QT .

scale factor is [ 167(n—1)M* ] <Q—de ’
(59)

d—do 2 Bll+(1-2n)w,)
My 3w, 8m(n—1)

Q. W, Q
X [Sinh‘1 ( ja‘32¢> —sinh™! < ﬂ)
\/ Q, Qy

pl when we choose as we did in the quintessence case

: o 2 B+ —2n)w¢]sinh_l< Qde>

(57) My 3w, 8z(n—1) Q.
(60)
and the corresponding potential is
2n=1)(14wg) These expressions are as expected similar to those for
v(¢) — ksinh "¢ quintessence models.
3wy 8r(n—1) ¢ 53 Given the general form of the potential for type C
o 3[1+ (1—2n)w,) M_p1 . (58) models, we can expect a similar behavior to quintessence
models for a << 1, a = 1 and a > 1. In particular, at early
2(1—11)(1+w¢)
with the constant k: times Vg(¢) x¢ "¢  and at late times we recover the
0.001 [ 12— :
1k
0.8
g‘f - 06
= =
= > o4
0.2
0.0001
0
ook L
oM 0.1 1

0.00045

0.0004

0.00035

V(@)Vpe

0.0003

0.00025

0.0002 e
0.1

¢/Mpl

FIG. 4. Top left panel: Comparison between the exact solution for constant equation of state for the absolute value of the potential
(solid line) and its approximate expression, for a ~ 1 (dashed line) for type C models. Line styles and colors are as in Fig. 1. Top right
(middle) panel: Scalar field (absolute value of the potential) for the approximated solution compared with the exact expression in (57)
[(58)] for a model with wy = —0.9. The subscripts a and e represent the approximated (blue dashed line) and the exact (black solid line)
solutions, respectively.
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usual exponential behavior Vi (¢)  exp (¢/My;) typical
of the minimally coupled models.
For a ~ 1, the scalar field is

b—o _ \/mde[l — (21— )w,]
M 8z(n—1)

pl
1

X |:(1—1—1(2+3QmW¢)((1—1)2:|, (61)

and the corresponding potential can be once again

written in the general approximated form of (19), with
coefficients:

3941 - wy) [3H3M§19de[1 +(1- 2n>wqﬁ1] B

167(1 —n) 167(n — 1)M*
<4 + 3Qmw¢> =3(1=n)(1+w,)
X - - . bl
- 4
(44 3Quwy)?

2+3Q,wy 8a(n—1)
(4 + 3QmW¢)2 3Qde[l + (1 - 2I’l)W¢]7
D = =3(1=n)(1+wy).

C=-

(62)

As with quintessence, type A and B models, we show a
comparison between the approximation and the exact
solutions in Fig. 4. The picture is similar to the previous
ones but the range of scale factor where the approximation
is good is more restricted, 0.8 < a < 1.2. This is due to the
fact that for type C models, the potential has a stronger
dependence on the scale factor with respect to the other
models, given by the 1 — n power of g(a) in (54).

-0.2 T : . : ;
R approx w, constant

03 f Y N i
H —

041 SR
(!

0.5 i
2R
1%

£ 06| .

FIG. 5.
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IV. POTENTIAL FOR NONCONSTANT w,,

In the previous sections we have shown that a potential
of the form (19) is a good approximation to that for scalar
field models with constant w,—for both minimal and
nonminimal kinetic terms—for some choice of the param-
eters A, B, C and D over a range of the scale factors
around a =~ 1.

In Fig. 5 we have varied the parameters around their
values for a specific constant wy = —0.9 model with a
minimal kinetic term. We do this by keeping three of the
parameters fixed and vary the fourth one by +30% while
requiring that ¢, coincides with the exact solution. We see
that a wide range of behavior of the actual w(a) can
be achieved in these models suggesting that this
parametrization of the potential could be used as a proxy
for a significant range of models, albeit with some
restrictions.

We can attempt to generalize the set of coefficients of
(19) to models with a nonconstant equation of state. It is not
possible to adapt the exact method used for constant wy
because usually there is not a general expression for g(a).
However, we have been able to make some progress by
realizing that (1 + ax)? ~ 1 + afx for x < 1 and perform-
ing an expansion around ¢ = ¢, in our set up. Expanding
(19) to first order and matching the coefficients with a
similar expansion derived from V(a) and ¢(a), we can
determine a new set of parameters A—D. As before, they
will depend on the background cosmological parameters,
Q. Wy and in this case, also on its derivative with respect
to the scale factor, w:/), evaluated at @ = 1. In the Appendix
we report the explicit expression for the four coefficients
for minimally coupled, type A and type C models,
respectively. To understand them note that the relation
between the scale factor and the scalar field is now, for
quintessence models,

02 . , : ,
approx w, constant
0.3 é ------- i
041 G
-0.5 o i
1
= -06F i

Effect of the variations of the parameters A, B, C and D on the equation of state w,. In each panel, three of the coefficients are

held constant at their exact value for wy = —0.9 while the fourth one is varied by +30%—left negative and right positive. The black
curve shows the equation of state using the exact values of the coefficients as represented in Fig. 1. Effects of variations of A, B, C and D
are shown with the red dashed, blue short dashed, brown dotted and green dot-dashed curve, respectively.
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-0.8 T T T T T T -0.8 -
oy, Wa=0.02 —
-0.82 I Wi=0.15 — -0.82
-0.84 -0.84 -
-0.86 -0.86 ™,
0.88 -t -0.88 -
< 09f- < 09p-
2 H
-0.92 -0.92
-0.94 -0.94
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FIG. 6. Left (right) panel: Equation of state for the approximated potential of (19) for a quintessence (type A) model described by a
CPL equation of state. The red (blue) curve represents a model with w,(a) = —0.9 +0.02(1 — a) [w,(a) = =0.9 + 0.15(1 — a)].
Dotted lines represent a 1% difference from the true equation of state. Solid (dashed) lines show the true (approximated) equation

of state.

2
a=1+ 1-

wy(1)

Also note that for wj(1) = 0, we recover the result in (18)
for quintessence models. Similar expressions hold for type
A and type C models.

To see how well this new parametrization performs we
use the Chevallier-Polarski-Linder (CPL) parametrization
[14,15]:

wy(a) = wo +w,(1 = a), (64)
where w, and w, are constants. In Fig. 6 we show the
comparison between the true and the approximated
equation of state evaluated from the potential in (19)
with the set of coefficients given in the Appendix for
minimally coupled models and type A k-essence
models. We use two different sets of coefficients
(wp, w,): one with a very gentle slope, w,(a) =
—0.9 4+ 0.02(1 — a), and one with a more pronounced
variation, wy(a) = —0.940.15(1 —a). At early
times we find a better agreement for models not
differing too much from a constant equation of state,
while at late times, the agreement is better for models
with w, = 0.15. As it can be seen in Fig. 6, this is due
to the fact that ¢ shows fluctuations around the true
value. Note that if we limit ourselves to a subpercent
agreement between the true and the reconstructed
equation of state, then the agreement is much more
limited with respect to the case of constant w. This is
because we poorly approximate the function g(a); for
a CPL model, it consists of two elements: a power law
and an exponential and we only include the power law.
When the exponential behavior dominates, our pro-
posed potential is a less good fit to the true behavior.

1= [2430Q,w,(1)

_ () } 8nz_ b —do
1+W¢(1) 3Qde[1+w¢(1)] Mpl

(63)

Note also that the range of agreement is similar for
both quintessence and type A models. Deviations in
type A models are suppressed with respect to quintes-
sence models thanks to a higher value of n (2 in the
example). From a quantitative point of view, for w, =
0.02 (w, = 0.15), for quintessence models we reach a
1% agreement for 0.5 <Sa <14 (05<a<1.7),
while for type A models we have 0.5 <a < 1.4 and
0.7 < a £ 1.7, respectively. This is similar to what
found before for a model with constant w; = —0.9.
One caveat to our approach is that the only knowledge
of the evolution of the equation of state is given by its
value and its time derivative, both evaluated at a = 1.
Therefore nothing is known about its general time
evolution and as a consequence, nothing is known
about the functional form of g(a). This implies that
our approach would work well for models with a
monotonic equation of state [and hence a monotonic
g(a)], but we expect it to fail and not be a good
representation for the true potential for oscillating dark
energy models (see e.g. [80] for a recent study of their
properties and comparison with observations).

V. CONCLUSIONS

Scalar fields are an important field of research in
cosmology and are one of the most studied candidates
used to explain and describe the accelerated expansion of
the Universe. In this work, we consider two main classes of
models: minimally coupled models (both quintessence and
phantom) and k-essence models. For this second class, we
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specialize the Lagrangian to assume three particular func-
tional forms, dubbed type A, type B and type C models. In
each case, we have shown that specifying the scalar field
potential V(¢), one can determine the evolution of the
scalar field and the corresponding equation of state w,,(a).

This is true generally but in order to make it clear, we
have assumed the equation of state to be known and we
calculated explicitly the time evolution of the scalar field
and of the potential in some cases. We showed that it is
possible to obtain an exact analytic solution for minimally
coupled and the type C models with a constant equation of
state. This is not possible for more general k-essence
models or for models with a time-varying w,(a), but we
have solutions for ¢(a) as definite integrals and these can
be used to establish the potentials, V(¢) numerically.

We have also derived useful approximate forms of the
potential which are valid in different epochs, corresponding
to the domination of one cosmic fluid. In particular we
deduce the form of the potential at early times (a < 1,
corresponding to the matter-dominated epoch) and at late
times (a > 1, corresponding to the scalar-field-dominated
regime), showing that in general the potential is often very
well approximated by a power law.

From an observational point of view, the most important
regime to understand the potential is around a=1.
Assuming initially a constant equation of state wg, we
showed that the scalar field potential can be approximated
by the expression given in (19). This expression depends
only on four parameters and with the appropriate choice of
coefficients can cover all the classes of models studied in
this work. In Sec. IV we discussed how this expression
might be applied to dynamical dark energy models, by
appropriately choosing a new set of parameters which
reduces to the correct expression in the limit of constant w,.
Note that this cannot be done for type B models, since our
formalism only works for constant equations of state.

PHYSICAL REVIEW D 94, 063513 (2016)

approximate potential, for a &~ 1 (¢p & ¢g) can be expanded
in powers of ¢ — ¢, leading to the same form of the
potential proposed by [35]. In contrast to that work, our
proposed potential has well-motivated coefficients and in
the regime of interest it would be possible to map the V;
coefficients of (1) in terms of our four parameters. For
example, at zeroth order, we can write V, in (1)

as Vo = A(1 — VB)HFM3.
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APPENDIX: COEFFICIENTS FOR DYNAMICAL
DARK ENERGY MODELS

In this section we write explicitly the generalization of
the set of coefficients A—D for nonconstant equations of
state using the approach discussed in the text. For mini-
mally coupled models we find

o 3%l = wy (1)

167z
(1) —{—w;’m +3[14w (1)]}
44 30wy(D) - | U
X
w, (1) ’
24+ 3Quwy(1) - o
B_ 4
- w (1) 12°
wh (1)
- w, (1) 72 ’
4+ 3Quwy(1) = |V 3%elt (L]

/
In some respect our approach is similar to the work of _ W(/;(l)
[35]. To derive our expression in (19), we performed a b= 1 —wy(1) 3wyl (A1)
Taylor expansion of the scalar field evolution, so the same
critique could be applied: where to stop the series? Our For models of type A we find
|
w, (1) _{—(Zn—l)w;/)(l) +3[1+w¢(1)]}
430t = @n = Dwy()] 3+ 71— 3(Qqen = Dwy(1) — by | VY
B 16 wp(1) ’
n 3—n—3(Qden—l)w¢(l)—l+i—¢(l)
4n?
B — W;ﬁ(l) P
wy (1)
Co 2\/§n 3—n—3(§2den—1)w{/,(1)—l+;’v—d)(l) HOMpl |: 1677:71M4 ﬁ
- W 2 2112 ’
3+ n=3(Quen — Dwy(1) = el M BHGMpQuc(1+wy)
(2n = Dwy(1)
D=- 3|1 D] ¢. A2
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For models of type C we find

PHYSICAL REVIEW D 94, 063513 (2016)

[l+2n+(]—2n)w¢(l)]w/ (1

, (1)
(1=2n)wy, (1) _<1_n){[l+(l—Z_n)wd)(]—)][l—w;(l)]+3[1+w¢(1)]}

4 391 —wy) {3H§M§lﬂde[1 +(1- 2n)w¢]] A 32—
162(1 — 162(n— )M* U=2nvy (1) |
(1 —n) w(n—1) 2+ 3Q0Wy ~ 1)
. 4
= (1=2n)w (1) 7127
[4 + 3wy, — Wn%m}
(1=2n)w/, (1)
2+ 3QuWy ~ Tz
C=-4 (1—2n)w;7(1) 2°
[4 +3Quw, — W}
[1 420+ (1 = 2n)w, (1)]w)(1)
b= #3014 wg(] . )
[T+ (1 =2n)wy (1)][1 = wy(1)] ’
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