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We propose a formalism for the analysis of direct-detection dark-matter searches that covers all coherent
responses for scalar and vector interactions and incorporates QCD constraints imposed by chiral symmetry,
including all one- and two-body WIMP-nucleon interactions up to third order in chiral effective field
theory. One of the free parameters in the WIMP-nucleus cross section corresponds to standard
spin-independent searches, but in general different combinations of new-physics couplings are probed.
We identify the interference with the isovector counterpart of the standard spin-independent response and
two-body currents as the dominant corrections to the leading spin-independent structure factor, and discuss

the general consequences for the interpretation of direct-detection experiments, including minimal
extensions of the standard spin-independent analysis. Fits for all structure factors required for the
scattering off xenon targets are provided based on state-of-the-art nuclear shell-model calculations.
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I. INTRODUCTION

Direct searches for the nuclear recoil produced by weakly
interacting massive particles (WIMPs) on target nuclei in
large-scale detectors provide a prime avenue to unravel the
nature of dark matter, complementary to indirect searches for
annihilation remnants in astrophysical observations and the
production of dark-matter particles in collider experiments
[1]. However, for the interpretation of current experimental
limits, e.g. [2-10], it is crucial that the nuclear aspects of
direct-detection experiments be adequately addressed. This
is especially important given the impressive experimental
efforts that include future liquid-noble-gas ton-scale experi-
ments already in commissioning such as XENONIT [11],
DEAP-3600 [12], and ArDM [13], or in planning phase, LZ
[14], XENONnT[15],XMASS [16], DarkSide-20k [17],and
DARWIN [18]; but also smaller-scale experiments such as
SuperCDMS SNOLAB [19], DAMIC100 [20], or CRESST
[21] that focus on light WIMPs with masses below 10 GeV.

Standard analyses of WIMP-nucleus scattering are formu-
lated in terms of spin-independent (SI) and spin-dependent
(SD) searches [22], named after the nature of the WIMP-
nucleon interactions at low energies. At the same time, ST and
SD scattering are characterized by a very different scaling of the
corresponding structure factors: while for SI scattering the
response is proportional to the total number of nucleons A2,
the scale of SD scattering is set by the spin expectation value of
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the unpaired nucleon. Due to the coherent enhancement
of SI interactions, the corresponding limits on the WIMP-
nucleon couplings set by direct-detection experiments are
orders of magnitude more stringent than for SD searches, but
each type of interaction is sensitive to different operators
for the coupling of WIMPs with Standard-Model fields. For
instance, while quark-WIMP scalar-scalar and vector-vector
terms contribute to the SI response, the SD interaction is
generated by axial-vector—axial-vector operators. Additional
information on the WIMP nature can be extracted from
inelastic scattering off the target nuclei [23,24].

Corrections to standard SI and SD responses are con-
veniently studied in terms of effective field theories (EFTs).
In this context, the calculation of nuclear structure factors
has been organized in two different ways: first, non-
relativistic EFT (NREFT) for nucleon and WIMP fields
[25-28] allows a study of the nuclear responses as a
function of the effective couplings in the EFT, and to
extract limits on the coefficients of the NREFT operators
[29]. Second, in order to translate the NREFT limits to the
parameter space of a given new-physics model, the QCD
dynamics integrated out in the NREFT approach needs to
be included. Particularly important are the consequences of
the spontaneous breaking of the chiral symmetry of QCD,
which can be explored within the framework of chiral EFT
(ChEFT), see Refs. [30-33] for recent reviews. The
analysis within ChEFT establishes relations between differ-
ent NREFT operators, and provides a counting scheme that
indicates at which order contributions beyond the single-
nucleon level [34—37] need to be included. Recent work in
this direction includes ChEFT-based structure factors for
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the SD response [36,38], aspects of SI scattering
[35,39,40], inelastic scattering [23], as well as a general
ChEFT analysis of one- and two-body currents [37].

In the present work we provide a generalization of SI
scattering that includes all coherent contributions up to
third order in ChEFT [37]. This involves considering two-
body currents, but also momentum corrections to the
nucleon form factors predicted at the same ChEFT order.
We provide a detailed discussion of the structure factor
associated with the scalar two-body current studied before
in the literature, and extend the analysis to include the two-
body current generated by the coupling of the trace
anomaly of the QCD energy-momentum tensor to the pion
in flight, which becomes important if the WIMP couples
(significantly) via gluonic interactions. In addition, an
analysis of the NREFT operators reveals that in general
there are six relevant nuclear operators, denoted by M, ¥/,

' A, @, and ®" [26,28], where M corresponds to the
standard ST scattering, while a combination of ¥’ and X"
yields the operator relevant for the SD case. Given that
apart from M also ®” can be coherently enhanced (which is
especially the case in heavy nuclei) and that M and ¢
interfere, a generalization of the traditional SI analysis
should also take the effects from ®” into account [26].

We note that for general SI scattering, new combinations
of Wilson coefficients are probed by the two-body currents
coupling to the exchanged pion in flight, and also by the
corrections to the nucleon form factors and the contribu-
tions associated with the ®” operator. This is in contrast to
the SD case, where the dominant two-body currents can be
absorbed into a redefinition of the one-body structure
factors, i.e., the two-body correction is sensitive to the
same physics beyond the Standard Model (BSM) as the
standard SD interaction [36,38]. In a similar way to the SI
analysis presented here, a more general SD analysis should
include the effects of all relevant nuclear operators and two-
body currents.

This work is organized as follows. We start with an
overview of the main results in Sec. II, where we propose
an analysis strategy for direct-detection experiments that
generalizes the standard SI case. The general formalism is
detailed in Sec. III, where we lay out the decomposition of
the WIMP-nucleus scattering rate, collect the relevant
nucleon matrix elements, and introduce the Wilson coef-
ficients that parametrize the WIMP-quark and WIMP-
gluon interactions. We then formulate a set of generalized
structure factors that includes effects from two-body
currents, corrections to the nucleon form factors, and the
nuclear ®” operator. In Sec. IV we present state-of-the-art
nuclear shell-model calculations for the structure factors
corresponding to one-body currents in all relevant xenon
isotopes, before developing a generalization for the two-
body currents in Sec. V. In Sec. VI we discuss the size of
the nucleon form-factor corrections as well as the number
of independent parameters in generalized SI scattering, and
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work out in detail the size of the corrections to standard SI
scattering for two simple models. We conclude with a short
summary in Sec. VII. While our analysis strategy is
general, the numerical results presented here are focused
on WIMPs scattering off xenon nuclei, leaving the nuclear
structure calculations for other targets to future work.

II. OVERVIEW OF MAIN RESULTS AND
ANALYSIS STRATEGIES

Standard analyses of dark-matter direct-detection experi-
ments distinguish between SI and SD scattering based on
the nature of the WIMP-nucleon interaction. At the same
time, these two cases generate very different nuclear
responses, as SI scattering is enhanced by the coherent
contribution of all nucleons in the nucleus, whereas the
scale of SD scattering is set by a single-nucleon matrix
element.

When subleading contributions in EFTs are considered,
the classification of the different terms according to the
nature of the WIMP-nucleon interaction becomes less
useful, given that the coherent enhancement associated
with the combined contribution of a significant number of
nucleons is also common to NREFT operators that may
involve a WIMP or even a nucleon spin operator. Such
responses are closer in their experimental signature to the
traditional SI interactions in the sense that the associated
structure factors are enhanced compared to the single-
nucleon case.

Therefore we propose to define generalized SI scattering
not by the form of the NREFT operator, but based on
whether a coherent enhancement is possible. In this spirit, a
general decomposition of the WIMP-nucleus cross section
ajj\/ should include the coherently enhanced corrections

generated by

(1) the standard SI isoscalar WIMP-nucleon interaction,

(2) its isovector counterpart,

(3) the interaction of the WIMP with two nucleons via
two-body (meson-exchange) currents,

(4) momentum-dependent corrections to the nucleon
form factors,

(5) the quasicoherent response associated with the
®"” operator (related to the nucleon spin-orbit
operator).

The proposed generalization amounts to the decompo-

sition of the WIMP-nucleus cross section
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FIG. 1. Comparison of the leading structure factors associated with the coherent and quasicoherent one-body F* and F®" nuclear
responses, the two-body nuclear responses F, (solid lines) and F9 (dashed lines), and the radius corrections (¢) to the structure factors.
The individual contributions are ordered in the legend according to their size at |q| = 0 (from top to bottom): the standard SI response
FM corresponding to the isoscalar one-body O, operator (black), its interference with an O, isovector contribution (blue) and with the
two-body responses F, and F (orange), the purely isovector contribution 7 (green) and the structure factor generated solely by the
two-body currents (violet), the momentum-dependent radius correction to O, (black dashed), and the interference of the standard SI
response with the quasicoherent one-body F®" structure factor (red). The results, representative for all stable xenon isotopes, are shown

for the most abundant 132Xe.

where q is the momentum transfer, v the WIMP velocity,
and, generically, the nuclear responses are denoted by F
and the free parameters that include BSM physics by c.
This cross section includes all coherent contributions
mentioned above and all terms up to third order in
ChEFT [37]. First, the standard SI nuclear F™ response,
associated with the NREFT operator O, [see Eq. (35) for
definitions of the NREFT O; operators], can be sensitive to
protons and neutrons in the same way (isoscalar, +), as
considered in standard SI analyses, but also in the opposite
way (isovector, —). Given that the heavy nuclei typically
used for direct-detection experiments have a substantial
neutron excess, the resulting isovector structure factor is
coherently enhanced as well. Next, the power counting of
ChEFT predicts to this order two-body interactions (para-
metrized by the nuclear 7, and F? responses for the
coupling to the pion via a scalar current and via the trace
anomaly of the QCD energy-momentum tensor &, respec-
tively) and momentum-dependent corrections to O (rep-
resented by ¢), both of which are coherent. Finally,
contributions from subleading NREFT operators can also
be significantly coherent, the most relevant being Os,
which is related to the nucleon spin-orbit operator and
gives rise to the nuclear F®" response. Here the coherence
is also found in both isoscalar and isovector cases.
Equation (1) reflects the different particle, hadronic, and
nuclear scales involved in WIMP-nucleus scattering.
Within a given new-physics model, WIMPs interact with
quark and gluon degrees of freedom, which are then to be
embedded into the nucleon sector. In an EFT approach the
BSM interaction is encoded in the Wilson coefficients of
effective operators, while the nucleon matrix elements are

decomposed into nucleon form factors. As a result, the free
coefficients ¢, c,, %, ¢¥, and ¢?" correspond to a
convolution of Wilson coefficients and nucleon matrix
elements. In a final step, the nuclear responses F¥, F,
F9, and F®' take into account that the scattering occurs in
the nucleus, a strongly interacting many-nucleon system. In
this work, the relation between the free parameters cf s Crs

c?, M, ¢ and the BSM Wilson coefficients is worked out
in Sec. III for the case of a spin-1/2 WIMP, see also
Egs. (59)-(62) for the explicit relations. The nuclear
responses FY, F., F¢ and F® are calculated in the
framework of the nuclear shell model, with fit functions
given for all stable xenon isotopes in Sec. IV for one-body
currents and in Sec. V for two-body currents.

The size of the individual terms in Eq. (1) depends on a
given new-physics model, which, together with the nucleon
matrix elements, fixes the coefficients c. Nevertheless the
nuclear responses F already imply a strong hierarchy by
themselves. This is illustrated in Fig. 1, where the different
structure factors including interference terms are compared
under the assumption that all coefficients are the same. As
expected, the dominant correction originates from the
interference of isoscalar and isovector F% responses.
Next in the hierarchy is the interference with the two-body
responses F, and F¢. The additional corrections included
in Fig. 1 (apart from the pure isovector F_ and pure two-
body contributions) vanish at |q| = 0, and are therefore
suppressed at small q compared to O; and the two-body
structure factors. We have also considered further higher-
order NREFT one-body operators, but their contribution is
even more suppressed, see Secs. IIID and IV. Let us
emphasize again that the hierarchy of the structure factors
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in Fig. 1 assumes a common value for the ¢ coefficients, but
these are not in general independent and relative suppres-
sions or enhancements may occur. In Sec. VIC we study
the relative size of the isovector and two-body contributions
in two simple models, which for instance suggests that the
large F? structure factor tends to be compensated by a large
single-nucleon matrix element, leading to a relative two-
body effect similar to that of the F, contribution.
Despite the potential impact of the ¢ coefficients on the
measured rate, the hierarchy of the nuclear structure factors
observed in Fig. 1 is sufficiently pronounced to motivate a
minimal extension of the standard SI scattering of the form

dajfl\/’ 1 M TM (2 M TM (2
2
+ cxFR(Q?) + EF A7) (2)

with only four independent parameters.

Since the nuclear responses can be obtained from
nuclear-structure calculations, direct-detection experiments
provide constraints on the ¢ parameters. Although as
discussed above, the limits on the direct-detection rate
constrain additional combinations of Wilson coefficients
and nucleon matrix elements, so far standard SI analyses
have only considered the coefficient ¢/, which is then
related to the WIMP-nucleon cross section by
ooy = Hy|c|*/x, with reduced mass uy. Ideally, to go
beyond this approximation a global correlated analysis of
direct-detection experiments based on either Eq. (1) or
Eq. (2) should be performed in order to determine limits on
all parameters at once, which, however, would require the
consideration of more than one target nucleus in the
analysis.

Barring such a global analysis, one would need to
consider slices through the BSM parameter space, e.g.,
in terms of scans over the Wilson coefficients as in
Ref. [39]. Such slices through the parameter space could
also be organized in a straightforward extension of present
analyses by considering one nuclear response at a time (this
is, setting all but one ¢ to zero), for instance based on
Eq. (2), with four ¢ parameters [which map onto seven
(four) Wilson coefficients for a Dirac (Majorana) WIMP].
This would allow one to set limits on different combina-
tions of Wilson coefficients. In particular, due to the role of
the two-body responses this kind of analysis would extend
the sensitivity of direct-detection experiments to more new-
physics couplings than the standard SI single-nucleon cross
section studied so far. Depending on the sensitivity of the
experiment to the q>-dependence, the number of relevant
structure factors may be reduced, and limits could also be
obtained for combinations of the coefficients associated
with responses with similar q*-tail, e.g., F, and F. In that
case the one-response-at-a-time analysis could also be
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performed based on Eq. (1), which originally depends
on eight nonindependent ¢ coefficients.

In conclusion, we provide a parametrization of the
WIMP-nucleus cross section for general SI scattering,
which could be applied to generalize the extraction of
limits from SI scattering beyond the standard o), cross
section (corresponding to c¢¥), e.g., by similar exclusion
plots for the additional coefficients in the minimal four-
parameter extension in Eq. (2), or by more sophisticated
scans through the BSM parameter space. For a xenon
target, all necessary structure factors are provided in
Secs. IV and V.

III. FORMALISM

We consider a WIMP y scattering off a target nucleus N
with momenta assigned as

N(p) +x(k) = N(p') +x(K), (3)

and momentum transfer

g=K-k=p-p. ¢=1 (4)

as well as

P=p+7p, K=k+k. (5)
The rate for the detection of a dark-matter particle y
scattering elastically off a nucleus with mass number A,
differential in the three-momentum transfer q, is then
given by

dR pM Vese dUN
S d SO 6
= [ e G ©

Vmin

where M denotes the (fiducial) mass of the experiment, m,
and m, the masses of target nucleus and WIMP, respec-
tively, o, the WIMP-nucleus cross section in the lab
frame, f(|v|) the normalized velocity distribution of the
WIMP, p the WIMP density, v, = 54475 kms™! [41] the
escape velocity of our galaxy, and

2
VAmy — 14\ /4m2 —t

2

min = 1 N \/‘K%_—; _,
= % +0(q),
mym
Ha = ﬁ, (7)
with t = —q* up to relativistic corrections. The value for

the local WIMP density canonically used in the interpretation
of direct-detection experiments is p = 0.3 GeV/cm’,
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although halo-independent methods have been developed
that allow one to eliminate the astrophysical uncertainties
in the comparison of different experiments, see, e.g.,
Refs. [42,43]. Alternatively, the detection rate Eq. (6) is
often formulated differential in the recoil energy

E = (8)

The WIMP-nucleus cross section itself combines physics
from particle, hadronic, and nuclear scales. To separate the
nuclear contributions, oyN can be expressed in terms of
structure factors [22]

doy  8Gh
dg>  v?(2J +1)

[Ss(q?) + Sa(a?)]. )

where J refers to the spin of the target nucleus, G5 denotes
the Fermi constant, and Sg¢ and S, are the structure factors
for SI and SD scattering, respectively. These structure
factors are normalized according to

$5(0) =22 g + e (z - W)
SA(O)ZQHL):SJH)

x |(ao + ar)(S,) + (ap — a)(S,)

2 (10)

with proton and neutron numbers Z and N (A = Z + N)
and proton/neutron spin expectation values (S,/,). The
constants ¢;, a; contain the information about particle and
hadronic physics, a relation to be made more precise below.
Assuming c¢; = 0, the cross section for SI scattering is often
represented in the standard form [44]

do®! ol mym
N _IN 2 Ny,
F , = 11
dq? 4V2,u%, si(a) Hn my +m, (11)

with nucleon mass my, and single-nucleon cross section
o,y- The nuclear-physics quantity Fgi(q®) is the only
remnant of the structure factor, and is frequently approxi-
mated by [45]

fHelm( ) A3j1(|q|r;1) e_%qzsz’
lalr,

7
r: = c? +§7272Clz — 552,

s =1 fm,
c= (1.23A1/3 —0.60) fm
a =0.52 fm, (12)

whose square is known as Helm form factor.
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In the following, we revisit this formalism starting from
an effective Lagrangian for the interaction of the WIMP
with Standard-Model fields presented in Sec. III A. In
Secs. IIIB and MIC we discuss the relevant nucleon
couplings and finally in Sec. III D we derive a generalized
decomposition for SI scattering that includes two-body
currents and the nuclear ®” response.

A. Lagrangian and Wilson coefficients

We consider the following dimension-6 and -7 effective
Lagrangian for the interaction of a spin-1/2 WIMP with
quark and gluon fields

c,=c+c,

)( AZZ

)( A’i Zcq )(quqq + = Az Cg I){asGayGZD

8 -~ _
= Z (Cgs + 5 qus>)()(mqqq

87[ 1 -
—?FCIS }{9”, (13)

Var'nar.a + Corxr'vsxdy rsq),

where y is assumed to be a Standard-Model singlet, the
quark masses m, have been included to make the scalar
operator renormalization-group invariant, and the Wilson
coefficients C; parametrize the BSM physics associated
with the scale A. The effective Lagrangian is defined at the
hadronic scale, with the quark sum extending over ¢ = u,
d, s, after the heavy quarks have been integrated out and
their effect has been absorbed into a redefinition of the
gluon coefficient C3, see Eq. (16). In the second formu-
lation of the dimension-7 Lagrangian the gluon term has
been replaced in favor of the trace of the QCD energy-
momentum tensor ¢,. Equation (13) includes the leading
operators relevant for coherent WIMP-nucleus scattering,
vector and scalar channels, but also retains the axial-vector
operator to facilitate the comparison to the SD case. The
WIMP could either be a Dirac or Majorana particle, with
Cy" = 0 in the latter case. At dimension 8, there are spin-2
operators that can become relevant for the SI scattering of
heavy WIMPs [46], but their inclusion will be left for future
work. Similarly, the operator basis changes for different
quantum numbers of the WIMP [46,47].

Throughout this work we follow the chiral counting
formulated in Refs. [35,37] to organize the calculation. In
particular, this implies that momentum corrections to the
one-body matrix elements occurring in Eq. (13) enter at the
same order as the leading two-body contributions, at third
order in ChEFT [37]. The nucleon matrix elements of the
operators listed in Eq. (13) involve a combination of Wilson
coefficients and nucleon couplings. In the next sections, we
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spell out these combinations, closely following the notation
introduced in Ref. [37].

B. Scalar couplings

For the scalar channel in Eq. (13) we need the following
coupling to the nucleon (N = n or p):

m
) =22 (3 ey - anjocy ). ay
q=u.d,s
where the nucleon scalar form factors are defined as
myfy (1) = (N(p)Im,qq|N(p)). (15)

The form factors for the heavy quarks fg(t) appear
together with the modified gluon Wilson coefficient

1
1S _ S _ SS
C=Cl- 152 Q;C ) [CQ (16)

after integrating out their effect by means of the trace

anomaly of the energy-momentum tensor 6, [48], which
also produces

2 (oY
a0 =5 (5= 5 10)

00 (1) = (N(P")I0uIN(p)). (17)

It should be noted that this procedure is accurate at
O(ay), which may not be sufficient for the ¢ quark, see
Refs. [46,49,50] for a study of higher orders in «,.

We begin with the discussion of Eq. (14) at vanishing
momentum transfer, in which case the form factors simply
reduce to the scalar couplings of the nucleon. Based on
SU(2) chiral perturbation theory (ChPT), it can be shown
that the couplings to u# and d quarks only depend on the
value of the pion-nucleon o-term o,y, while isospin-
breaking corrections are fully determined by the same
low-energy constant that governs the strong contribution to
the proton-neutron mass difference [51]. Combining dis-
persive techniques [52] with precision data for the pion-
nucleon scattering lengths extracted from pionic atoms
[53,54] leads to the phenomenological values [55] for the
light-quark couplings quoted in the first line of Table I.

TABLE I.  Scalar u and d couplings of the nucleon, in units of
1073

fh N i " References
20.8(1.5) 18.9(1.4) 41.1(2.8)  45.1(2.7) [55]
13.9(1.8)  11.6(1.7)  25.3(3.7)  30.2(3.8) [56]
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TABLE II.  Scalar s coupling of the nucleon, in units of 1073,
A 113(60)  34(7)  4409)  37(13)  43(11)
References [56] [57] [58] [59] [61]

More recently, lattice calculations at physical quark masses
have produced significantly lower values for o,y [56-59],
which translates to the 3¢ tension in the scalar couplings
shown in Table I. This tension between phenomenology
and lattice [60] currently constitutes the largest uncertainty
in the u# and d couplings.

In contrast to the u and d quarks, a determination of the
scalar coupling to the s quark from phenomenology
requires the use of SU(3) relations, whose convergence
properties make reliable uncertainty estimates difficult. For
this reason, in Table II we only quote the values obtained by
recent lattice calculations, together with the average from
Ref. [61] of previous lattice results. In particular, we
assume isospin symmetry f§ = f2 for g =s, ¢, b, t.
Finally, Ref. [58] also provides a value for the ¢ coupling,
J¥ =0.085(22), to be compared with f = 0.068(1) as
extracted from the same reference based on Eq. (17) [with
0 (0) = my]. Within uncertainties, the direct determina-
tion from lattice QCD thus agrees with the result extracted
by means of the trace anomaly at O(«a).

Next, we turn to the finite-momentum-transfer correc-
tions to fy(0) = fy.' To the order we are working in
ChEFT, it is generally sufficient to keep the radius
corrections, i.e., the first order in the expansion around
t = 0. However, the strong zz rescattering in the isospin-0
zr S-wave makes the leading-loop ChPT prediction for the
slope of the scalar form factor of the nucleon at t = 0 [62],

503M

&|ChPT :W:017 GeV_l, (18)

underestimate the true result by nearly a factor of 2
[ga = 1.2723(23) and F, = 92.2(2) MeV are taken from
Ref. [63]]. For this reason, we make use of the updated
dispersive analysis from Refs. [64,65] and use

&=027(1) GeV~!. (19)

Retaining the leading isospin-breaking effect, this correc-
tion amounts to the replacement

1-¢£. my —m,
ORI M + S fzm;’ﬁ:om(s),
1+¢

fa(6) = i+ ot (20)

2mN ’

where we have used m,/m,; = 0.46(3) [66].

'Here and below, couplings without argument are understood
to be evaluated at r = 0.
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In analogy to Eq. (18), there is a parameter-free
prediction from leading-loop SU(3) ChPT for the slope
of the strangeness radius [35]

) 595 1 1( 4 [1-4a)\2
= i (pp )l T
Oslcaer 256751:,%( L) ”)3{3M,7( ﬁ)
_|._

+MLK{3(1—2a)2+( \/?,205 2]}
=0.24 GeV~!, (21)

—_

where a = F/(D + F) parametrizes the leading SU(3)
couplings. Numerically, we use F/D = 0.57 as extracted
from semileptonic hyperon decays [67,68], which together
with the SU(2) constraint D + F = g, implies

D=081, F=046, a=036. (22)

However, such SU(3) leading-loop low-energy theorems
are known to be sensitive to higher-order corrections
[69,70]. Therefore, we also considered the coupled-channel
dispersive analysis [64], which in principle provides not
only a prediction for ¢ but also for &,. Unfortunately,
convergence of the dispersive integrals is much slower for
the slope of the strangeness form factor, although the
resulting values are not too far from the chiral prediction.
All in all, the spread observed in both methods would be
covered by a range

o, =0.3(2) GeV~!, (23)
leading to
O
@) =+t (24)
mpy

In view of the substantial uncertainties already encountered
in the strangeness form factor, we do not make an attempt
to quantify radius corrections for the heavy quarks. The
leading chiral result, however, can be reconstructed by
means of Eq. (17) and

13giM,,

T sgr2 't o). (25)

0y (1) = my

Taking everything together, we arrive at the following
decomposition of the combination of Wilson coefficients
and nucleon form factors relevant for the scalar channel
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fn(t) = fy+ify+O(3),

m

f= (3 epry - ey,
q=u.d,s

. 1 1- 1

Ju =15 (cﬁs e e - P cszyS). (26)

For the scalar two-body matrix element we also need the
couplings to the pion

M, 87
Fa=35 20 (cfﬁ + gc’f)fg,

q=ud
0 _ _%89_”(:57 (27)
with
LT 1(1 - &) =032(2).
m,+my 2
fzzﬁzéu 16 =068(2). (28

In Eq. (27) we introduced a factor M, in analogy to the
scalar coupling to the nucleon, Eq. (14). The necessity of
defining two pion couplings, f, and f¢ in Eq. (27), traces
back to the fact that the couplings of the scalar current
m,qq and the trace anomaly of the energy-momentum
tensor ¢, to the pion differ qualitatively: while the former is
constant up to higher-order corrections, the latter becomes
momentum dependent and therefore produces a different
nuclear structure factor.

C. Vector and axial-vector couplings

In the vector channel there are two sets of couplings to
the nucleon

=15 3N, 29)

q=u,d,s

with i =1, 2 related to the Dirac and Pauli terms,
respectively, in the decomposition of the nucleon form
factors of the electromagnetic current. A decomposition
analogous to Eq. (26) is given by

TN = Y+ Y+ o),
(1) =+ 0). (30)

Since the matrix element of the Pauli form factor vanishes
at zero momentum transfer, the leading term in f3 " () is
sufficient. Assuming isospin symmetry (for corrections see
Ref. [71]), these couplings expressed in terms of nucleon
radii and anomalous magnetic moments become [37]
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TABLE III. Nucleon radii and anomalous magnetic moments.
The values of k,, k,, and (rg)" are taken from Ref. [63], (r%)”
from Ref. [72], and &3, as well as (r. )" from a global analysis of
parity-violating asymmetry data [73]. Note that the latter two are
strongly correlated, with a correlation coefficient 0.87.

K, Ky, Ky
1.792847356(23) —-1.91304272(45) -0.26(26)
(rg)” (rg)" (rgs)"
0.7071(7) fm? -0.1161(22) fm? —0.06(4) fm?
1
[P = 1z ear+ ),

1
V,
2" = QY+ C )k, + (G + 263 )k,
+(CrY +CYY + YV )ky ],
2

. 1 (re)? K
Vip _ 20V + CVV E/__ 7P
1 A2 |:( w t+ d )( 6 4m%>

2\n
v vy (B K
+(u + d)( 6 4m%

CVV L CVV L VY () xy 31
+(u+d+s)T_4mlzvﬂ()

and u <> d for the neutron couplings. Numerical values for
the nucleon radii and anomalous magnetic moments are
collected in Table III

For completeness, we also quote the analogous decom-
position for the axial-vector channel appearing in Eq. (13).
In this case, one needs the combinations ¢ (¢) and g ()
with

g
gy =4z |£5 (€ -l
3F-D
+— (CAA 4 44 — 2004
AXN
+- (G G+ C?A)] :
1
N — 4 IA (caA _ caa ’
gA Az( u d )MA
_Amy T 9aaa AA 1
gg(t)__ A2 i?(cu _Cd )[_szr
3F-D 1

+ (Car 4 Cit —2044)

2
t— M2

, 32

: e
where the upper/lower sign refers to proton/neutron and the
small # contribution of the last line above is generally
neglected in SD analyses. Theserelations involve the nucleon

spin matrix elements Ag" = (N[qy,rsq|N)/(N|y,rsIN),
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for which we have assumed isospin symmetry and already
used the combinations

gs = AuP — AdP = Ad" — Au",
3F — D = Au" + AdV — 2AsV,
AZN = AuN + AdV + AsV. (33)

Due to the axial anomaly, the singlet combination ATN
cannot be analyzed in SU(3) ChPT, as effects related to the 1/
will play a role. However, it can be extracted from the spin
structure function of the nucleon, which, at Q% = 5 GeV?
and to order O(a?), produces AXN = 0.330(39) [74].
Further, the dominant radius correction occurring in the
isovector contribution in Eq. (32) has been included by a
dipole ansatz with mass parameter M 4 around 1 GeV [75,76],
while the pseudoscalar poles in gy (¢) prevent a Taylor
expansion in t.

D. Structure factors

For the definition of the nuclear structure factors we first
consider the matching of the one-body operators obtained
in ChEFT above onto the NREFT basis of Refs. [26,28].
This produces the matrix elements

Mf_SNR = O, fn(2),
t
MVV =0 < V’N(l)—l——fV'N(t)>
I.NR 1\ J1 am3, 2
1
+m—NO3f¥’N(I),

1
Mg = —40,49) (1) + m—z(’)ﬁgg(t), (34)
N

where we have dropped the nucleon and WIMP spinors.2
The NREFT operators O; are defined by

O, =1,
O3 =iSy - (g x v*),

0, =S, Sy,

Op = S, qSy - q, (35)

with spins S = ¢/2 and velocity

K P
S . (36)

B 2m, 2my

*For details see Ref. [37]. This matching is performed at tree
level and hence does not include effects from operator evolution,
which could be generated when running the ChEFT operators
down to nuclear scales.
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EQ

(b) (c)

FIG. 2. Diagrams for WIMP-nucleon interactions in ChEFT.
Solid (dashed) lines denote nucleons (pions) and crosses the
coupling to the WIMP current. Diagram (a) represents a leading
one-body term, (b) a radius correction, and (c) a two-body
current.

The combination of the different operators in Eq. (34)
demonstrates how QCD constraints impose relations
between the NREFT operators: for the axial-vector channel
it is a fixed combination of O, and Oy that contributes,
while the same coefficient £} (¢) that multiplies O5 also
appears as a momentum-dependent correction to 0.

In Eq. (34) we only retained those channels that generate
coherent or quasicoherent nuclear responses, compared to
the full list studied in Ref. [37]. These coherent and
quasicoherent responses are denoted as M and ®” in
Refs. [26,28], and are only a subset of the six different
nuclear responses generated by the NREFT operators,

which also include the ¥/, ¥, A, and @’ responses. For
example, M governs standard SI scattering, and it is a
combination of X' and X" that enters in SD scattering.

Beyond the single-nucleon sector, NREFT operators
that involve v* can be decomposed into two parts
[26,28]. First, there are terms proportional to the relative
WIMP velocity with respect to the center of mass of the
nucleus

K 1< P
V=Y L (37)

where P; = p; +p; is the sum of the initial and final
nucleon momenta. These terms are effectively suppressed
by the WIMP velocity with respect to the target |v#| ~ 1073
and will thus be neglected in the following. Second, v* also
produces contributions involving the velocity operator of

the nucleon, which are part of the A, @', and " responses
and come with a milder suppression factor |q|/my. This is
the case for the 5 contribution kept in Eq. (34), which
generates a ®” response. In the end, for coherent SI
scattering only scalar and vector interactions remain, and
the fact that the ®” response is due only to the vector
operator could serve as a tool to discriminate between these
two channels.

Apart from the one-body operators and the momentum
corrections as summarized in Secs. III B and III C, there are
two-body currents at the same order in ChEFT, see Fig. 2.
The corresponding NR amplitudes take the form

PHYSICAL REVIEW D 94, 063505 (2016)

2
MLZ%IV\IR: _(gA> fﬂMﬂ

7] 7201 (107 - Q2

2F, (af + M3)(q3 + M3)’
4M721 -2q; - ‘lzfg
Mg.NR = M2 f_Mg,SNRv (38)

where f, and f9 are defined in Eq. (27), 6, and 7; denote
the spin and isospin Pauli matrices of nucleon i, respec-
tively, and q; = p} — p;. Diagrammatically, these ampli-
tudes represent the coupling of the WIMP to the pion in
flight via a scalar current and by means of the QCD trace
anomaly @),. The other two-body currents identified in
Ref. [37] in general involve isospin operators [z; X 7,]? as
well as spin structures that, after summing over spins, make
the diagrams vanish. The only remaining contribution is the
exchange diagram from the axial-vector—vector channel,
whose isospin structure becomes 73 — 73, only allowing
for an isovector coherent enhancement suppressed by
(N —Z)/A with respect to the scalar two-body current.
In addition, this two-body current is linear in S, and does
not interfere with O; [26]. Other contributions such as the
vector-vector two-body current also show isovector coher-
ent enhancement only, and are further suppressed in the
ChEFT expansion [37]. For these reasons, we restrict our
analysis to the contributions given by Eq. (38). It is the
presence of the q; - q, term in the relation between quark-
mass and trace-anomaly couplings that necessitates the
definition of two structure factors: for a constant term, the
@, contribution could be absorbed into a redefinition of f,
similarly to fy in the case of the nucleon coupling [see
Egs. (14) and (17)].

In this context, several comments on the role of two-
body operators are in order. First, the hierarchy of diagrams
shown in Fig. 2 assumes the ChEFT counting originally
proposed by Weinberg [77,78]. In this counting, the
coupling of the scalar current to (N"N)? contact operators
is suppressed by two orders in the chiral expansion. Due to
the limitations of Weinberg counting, this suppression
might be less pronounced in practice, as indicated, e.g.,
by Kaplan-Savage-Wise (KSW) counting [79,80] or by
general arguments related to the short-range behavior of
nucleon-nucleon wave functions [81]. The role of such
contact operators at heavy pion masses has been studied in
Ref. [82] using lattice QCD, and calculations at or close to
the physical pion mass would allow for a check of the
ChEFT counting employed here.

Second, while diagram (a) corresponds directly to an
NREFT operator from Refs. [26,28], the mapping of
diagrams (b) and (c) would proceed in an indirect way.
The radius corrections (b) are represented by q-dependent
prefactors of the O;, see Eq. (34). The two-body contri-
butions (c) could be modeled as effective one-body
operators, if summed over the second nucleon with respect
to a given reference state, symbolically written as
(NTN)NTN, so that the effective one-body operator would
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become density and state dependent. Such a normal-
ordering approximation with respect to a Fermi gas was
used in the context of SD scattering [36,38]. However, in
this work we perform a full calculation in harmonic-
oscillator basis states, see Sec. V. It is the explicit
calculation of all diagrams (a)—(c) within ChEFT, instead
of a parametrization in terms of effective one-body oper-
ators, which allows one to relate the coefficients of the
nuclear structure factors to nucleon form factors and
new-physics parameters.

For the construction of suitable nuclear structure factors
for generalized SI scattering, we first turn to the SD case.
Here the result in Eq. (32) shows that once the 7
contribution to ¢¥(7) is neglected, only two independent
combinations of Wilson coefficients remain, which can be
conveniently identified with the coefficients introduced in
Eq. (10):

X [(CA4 + Ca) (A + AdY) + 2034 AsN]
— Wgﬂ\z [(3F — D)(C44 4 CA4 —2044)
+2AZ(CAM 4 CA M),
ap = foi}FAz (Gt = Ca)(Aul — AdP)
B #QGAFA2 (O — oMy, (39)

where { = 1(2) for a Dirac (Majorana) spin-1/2 WIMP.
The structure factor can therefore be decomposed as

Sa(a?) = agSoo(a?) + apa;So1(q*) + atSy1(q?). (40)

or, in terms of so-called proton-only and neutron-only
structure factors,

SH(Q*) = Soo(a?) + Soi(q*) + S11(a?),
SA(q?) = Soo(a?) = So1(q®) + S11(q?). (41)

Since both the momentum corrections in Eq. (32) and the
leading two-body currents [38] also depend on a, and a;
only, this implies that the definition of the structure factors
Eq. (40) remains applicable even once such corrections
are included. In fact, in a normal-ordering approximation
the effect from two-body currents amounts to a shift
a; — a;(1 + Aay), with Aa, predicted from ChEFT.
The connection between experimental limits for the
direct-detection rate and the Wilson coefficients therefore
still proceeds by means of Eq. (39).

Our aim is to find a similar decomposition for SI
scattering. More precisely, we wish to formulate a set of
structure factors that captures the leading corrections,

PHYSICAL REVIEW D 94, 063505 (2016)

taking into account both the ChEFT expansion and coher-
ence effects in the nucleus, in particular including both one-
and two-body operators.

As a first step towards the construction of generalized SI
structure factors, we again identify the couplings at
vanishing momentum transfer. In this limit we obtain

c + a7+,

0= 4\/_GF (fp f f f] )
S L s CONN )

42G
Indeed, for £, = f, = fy. f17 = f1" = )" the single-
nucleon cross section at threshold becomes
&

=AY (43)

leading to the simplification anticipated in Eq. (11). Limits

for 0;(N should therefore be interpreted as limits on the

combination of Wilson coefficients given by fy + fiN A
under the assumption that proton and neutron couplings are
identical.

Based on the previous discussion we propose the
following decomposition for the WIMP-nucleus differ-
ential cross section:

SI
do){ N 4’2
dq?

= I FE(Q?) + Y (q*) FY (q?)

(]2 (I>” F.(I,//
2 N[ ( )

+ f2Fx

+ 1Y FY(¢?)]

(@) + f2F0q) [ (44)

where

1 . .
]:::/I(qZ) :z[fpifn_qz(fpifn)

T
—%< b ).
Y= (fzv TS, (45)
The nuclear M responses in Eq. (44) are normalized to

FMO0)=4,  FM0)=Z-N, (46)
so that ¥ (q?) coincides with the standard SI response
Fsi(q?) in Eq. (11), and at vanishing momentum transfer is
given by the combination of couplings that determines the
single-nucleon cross section, see Eq. (43). In addition,

FM(q?) provides the corresponding isovector piece,
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F¥(q?) is generated by the 05 operator in the vector
channel, and F ,(q?) and F?(q?) represent the two-body-
current contributions. It is this decomposition in Eq. (44)
that underlies the analysis strategy discussed in Sec. II. The
nuclear response functions 7% (q?), F2'(q?), F(q?), and
F2(q?) are the subject of Secs. IV and V, where simple
parametrizations are provided.

In Eq. (44) we used the interference pattern for the one-
body pieces found in Refs. [26,28] for L = 0 multipoles,
and extended it to include the two-body part. We assume
this additional interference because the two-body terms
come from a scalar operator with the same symmetry
properties under parity and time reversal as O, and 05, and
because these terms are independent of the WIMP spin S,
(interference terms vanish if they are linear in S, [26]).
Therefore, Eq. (44) neglects higher multipoles L = 2.
These are only nonvanishing for *'Xe (with a J = 3/2
ground state), but even in this case they are very small and
not coherent, as shown in Ref. [40]. An expression similar
to Eq. (44), only replacing the nuclear response functions
Fy, Fp FY associated with L =0 multipoles by the

corresponding nuclear responses F 45 j:,,, .7-"f, for L =2
can be added to the differential WIMP-nucleus cross
section above.

In order to justify Eq. (44) we can consider the more
general differential cross section which accommodates the
contributions from all the NREFT operators that give rise to
coherent or quasicoherent nuclear responses. This involves
the additional operators
OS = lS){ 08 S V

'(qxvl)’ Oll:iS;('qv

(47)

which generate a nuclear M response [26,28]. In this case,
the generalized cross section reads

dO'SI 2
quZ\/ 45.‘,2 < [golf?l (qz)]ﬂ[w(qz)
=+
+ 0. /(@) FY (¢2)]
2
+ Euf 2 Fo(Q?) + EfOF0(q?)
2
SIS o O F N (@) ) (48)
1=58,11 1=+

The separation into kinematics £y, nucleon form factors

f i", and nuclear responses F(q?) is chosen in such a way
that the form factors coincide with fy and f Y'N as defined
in Secs. III B and III C. The form of the £y, which set the
scale for the Os, Og, and O, contributions, originates in
the NR expansion of the effective operator to which they
first contribute: the vector-vector, axial-vector—vector, and
pseudoscalar-scalar channels, respectively [37]

PHYSICAL REVIEW D 94, 063505 (2016)

py 1
O O b
MiKe(03) = F{¥ (0100
MXR(05) = 2N (1)Os.
1
MPXR(On) = =fn(1)— O, (49)
my
together with the operator multipole decomposition
[26,28]. Altogether this leads to
lo, =& =8 =1,
2
|
S0, = 2m%’
o _malvt]
Os 2m,my
So, = vz,
lal
o, = —%, (50)
with the corresponding form factors
o
f21(@?) = (e,
O 7
2 Q) = I
1 n
D= s =S R,
Oll
=5 pr £ fal, (51)

where for the operators in Eq. (47) only the leading term
has been listed. The form factors for the Os g ;; terms can
be expressed in terms of the previously defined quantities
fnand f Y'N , since they first appear in the NR expansion of
the effective operators in Eq. (13) with scalar and vector
nucleon interactions, in a similar way as O; and Os.

We note that Eq. (48) shows that the Os g 1, operators do
not interfere with O; or Oz [26,28]. This is because
contrary to O; and Os, the operators Os, Og, and Oy
are linear in the WIMP spin S,, and the corresponding
interference terms vanish after averaging over WIMP spin
projections. In addition, the kinematical factors imply that
the contributions of Os g |, are suppressed by |vy| or 1/ m,
These two properties are crucial for the O3 operator bemg
the main one-body correction to the standard SI analyses,
as anticipated in Eq. (44). In Sec. IV we show this explicitly
by studying the one-body structure factors for xenon
isotopes.

IV. ONE-BODY CURRENTS

We calculate the structure factors as in our previous work
[36,38,40], by performing large-scale shell-model calcu-
lations of all stable xenon isotopes in a valence space
comprising the 0g;/5, 1ds/», 1d3)5, 2512, and Ohyy /5 (nlj)
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TABLE 1V. Spin/parity JU of the nuclear ground states, harmonic-oscillator length b, and fit coefficients for the nuclear response

functions ]-"i” and .7-"1’”.

The fit functions are FY(u) = e

5 oM+
i=0 Ci

u' (with ¢

=A and ¢y =

Z — N, respectively) and

Fy o (u) =e™3 Zl -0 ¥ *ul, with u = q*>bh?/2. These forms correspond to the analytical solution in the harmonic-oscillator basis
[91,92]. For the L = 2 multipoles in '3!Xe, see Table V.

Isotope 1286 12956 130%e 131xe 13276 13430 136

JU 0t 1/2% 0* 3/2% 0" 0" 0t

b [fm] 2.2847 2.2873 2.2899 2.2925 2.2950 2.3001 2.3051
e —126.455 —128.09 —129.753 —131.26 —132.835 —135.861 —138.787
e 35.82 36.4367 37.2381 37.8232 38.4665 39.6872 40.9048
et -3.66991 -3.75317 —3.89291 -3.97171 —4.069 99 —4.24713 —4.419 84
e 0.125 062 0.129 553 0.139778 0.142 995 0.149 636 0.159 053 0.165388
Mt 563731 x 107* —6.558 16 x 10™* —9.30032 x 10 —9.12955 x 10~* —0.00111463 —0.00125724 —0.00109211
M- 29.0588 30.6854 32.2019 33.7021 35.253 38.2701 41.2081
M= —11.7104 —12.3687 —13.1152 —13.7433 —14.4437 —15.773 —17.0848
M= 1.684 47 1.779 28 1.907 75 2.00031 2.11305 2.32061 2.526 35
M- —0.082004 4 —0.0868754 —0.094 8184 —0.099 1364 —0.105 689 -0.116557 —0.126 86
c¥- 6.65781 x 107*  7.39474 x 107* 847975 x 107* 8.60686 x 10™* 9.61344 x 10™* 0.001 06693 0.001 109 65
Cg>”+ —25.211 —26.1264 —27.7106 —28.0443 —28.7972 —29.5095 —29.8571
C‘IP”+ 17.592 18.4401 19.7108 20.0888 20.7751 21.5578 22.0402
cg’” —3.464 66 —3.646 69 —3.85805 —3.94934 —4.0995 —4.27308 -4.37033
cg’” 0.224722 0.239 379 0.252 667 0.260 624 0.272 865 0.287393 0.296 134
cj’”+ —0.003 53316 —0.003 99779 —0.004 442 09 —0.00468846  —0.00507527 —-0.00555437 —0.005968 4
- 3.896 29 5.47022 6.28519 6.90542 7.93145 9.3351 10.1433
- —4.73163 —5.969 63 —6.63842 -7.17962 —8.01086 -9.20279 -9.96123
cd'- 1.484 89 1.7533 1.854 06 1.972 17 2.128 17 2.354 89 2.487 84
- —0.140203 —0.160 094 —-0.166079 —0.175248 —0.186 148 -0.202364  —-0.212062
= 0.003 447 65 0.003 879 83 0.004 134 53 0.004376 13 0.004 698 87  0.00519463 0.005 596 88
orbitals for both neutrons and protons, with n the radial  natural diagnostics to estimate nuclear-structure

quantum number, [/ the orbital angular momentum in
spectroscopic notation, and j the total angular momentum.
Our calculations therefore assume an isospin symmetric
100Sn core. For 132Xe, 13*Xe, and '3°Xe exact diagonaliza-
tions are obtained in this valence space, while for the
remaining isotopes some truncations, which should not
significantly affect the nuclear ground states, are needed to
keep the matrix dimensions tractable, as discussed in
Refs. [36,40]. We wuse the shell-model interaction
GCN5082 [83,84], which has also been used in neutrino-
less double-beta decay calculations of '3Xe [83,84]. The
low-energy excitation spectra of all isotopes are very well
reproduced [36,40]. The nuclear-structure calculations
have been performed with the shell-model code
ANTOINE [85,86].

The phenomenological nature of the shell-model inter-
action used makes it difficult to estimate the theoretical
uncertainties associated with the nuclear-structure calcula-
tions. Similarly, the systematic uncertainty due to the
truncations needed for some isotopes is challenging to
evaluate. It will be possible to address these aspects with
calculations based on ChEFT interactions, which provide

uncertainties [87-90]. In the meantime, one measure for
thereliability of the calculation can be obtained by comparing
the predicted excitation spectra with the experimental results.

With the calculated xenon ground states we obtain all
one-body nuclear responses needed in Eq. (44). The results,
summarized in Tables IV and V, are presented in terms
of the dimensionless parameter u = q>b”>/2, where
b= +/h/myw is the harmonic-oscillator length and
ho = (45A7'/3 —25A72/3) MeV. The nuclear response
functions leading to the structure factors are fit to the form

*625 CM

with m = 5 for FM, m = 4 for }" 2" and fixed coefficients

=Aandcy=27- N for M and FM, respectively. The
form of the fit function follows the analytic solution of the
transition operators evaluated in the harmonic-oscillator
basis [91,92].

The isoscalar nuclear M operator has been known to lead
to a coherent contribution from all nucleons for a long time
(at zero momentum transfer) [22]. This justifies that the
nuclear response FY associated with the O, operator is the

(52)
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TABLE V. Fit coefficients for the L = 2 multipoles in '*'Xe, parametrized by F¥ (u) = e Y23, ¢ul, F2 (u) = e 34 ¢

Notation and oscillator length are as in Table IV.

Response ¢ ¢y C3 Cy Cs

j:ﬂ‘f 2.17516 —1.25386 0.214 567 —0.0110964 7.99074 x 1073

FM —0.344 057 0.208 632 —0.048 112 0.003 515 88 —8.14509 x 1073
Co ¢y ¢y C3 Cy4

j:f” 0.498 456 —0.0289149 —0.0160376 —7.71842 x 107> 4.59007 x 10~

F —0.751 871 1.068 26 —0.227403 0.009 636 27 —-4.14555 x 107

only one considered in most SI dark-matter direct-detection
analyses [2—-10].

In turn, the nuclear ®” operator, at zero momentum
transfer, is proportional to the sum over all nucleons of the
single-nucleon spin-orbit (1-s) operator [26,28]. This
implies that nucleons in an orbital with spin parallel to
the angular momentum, j = [ + 1/2, contribute coherently.
Similarly, the nucleons in the spin-orbit partner j = [ — 1/2
also contribute coherently, in such a way that when both
spin-orbit partners are filled their contributions exactly
cancel. However, in heavy nuclei the spin-orbit splitting is
important, with j = [+ 1/2 orbitals having significantly
lower energies than their spin-orbit partners. In the case of
xenon isotopes this implies that the proton Ogg/, and the
neutron Ok, orbitals are mostly filled (the latter espe-
cially for the more neutron-rich isotopes), with the spin-
orbit partners, proton Og;/, and neutron Ohgj, orbitals,

Os

10000 £ f —or ]
E 132X e — 0,-05]

— 03 3

100 | —on 4
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1
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FIG. 3. Comparison of the isoscalar structure factors associated
with the coherent and quasicoherent nuclear M and ®” responses.
The individual contributions corresponding to the Oy, O3, Oy,
Oy, and Os operators, £, F /%" (¢2)[2, and the absolute value of
the O;-0; interference term, [2&p Ep, FY(q*)F *(q?)], are
shown. For the evaluation of the structure factors associated
with O}, Og, and Os we take the relative WIMP velocity |vs| =
1073 and WIMP mass m, =2 GeV, roughly the minimal mass
probed in xenon direct-detection experiments. The results,
representative for all stable xenon isotopes, are shown for the
most abundant '32Xe.

mostly empty. Therefore the nuclear ®” response, F®',
shows a quasicoherent behavior [26,28], with the contribu-
tions of about 20 nucleons adding coherently in the isoscalar
case. The total response is dominated by neutrons because
the [ =5, Ohyy, orbital accommodates 12 nucleons, com-
pared to ten nucleons for the [ =4, Ogy,, orbital (the
expectation value of the single-particle spin-orbit operator
is proportional to / for j = [+ 1/2 orbitals). The nuclear
response functions are larger for the most neutron-rich
isotopes with more neutrons in the Oy, orbital.

The quasicoherent nuclear response F®" is generated by
the O; operator. In addition, in the total structure factor
there is an interference term between this contribution and
the M term from the dominant O, operator, as indicated
by Eq. (44) [26,28]. This interference is important because,
as discussed in Sec. III D, there is no other interference term
coming from one-body operators. Altogether, the nuclear
response F*" generates the leading one-body-operator
corrections to the structure factors usually considered in
SI analyses.

This is illustrated in Figs. 3 and 4, which compare for the
isoscalar and isovector cases, respectively, the structure
factors associated with the coherent and quasicoherent
nuclear M and ®” responses generated by the operators
Oy, Os, Oy, Og, and Os. In this comparison the values of
the associated nucleon couplings and form factors are not
included, so some caution needs to be taken in the
interpretation of the figures due to differences in the
combination of the Wilson coefficients for the different
contributions. However, the results are shown on a loga-
rithmic scale, and the main features in Figs. 3 and 4 should
still be valid once all corresponding couplings and form
factors are included.

Figure 3 shows that the standard SI structure factor
proportional to A%, originating from the O, operator,
receives the leading one-body correction from the inter-
ference with the F® response due to Q5. This correction is
only of the order of 1 per mil because F*" comes with a
kinematical factor &p, = q?/2m3. Consequently, the inter-
ference term vanishes at |q| = 0.

The next contribution in this hierarchy comes from the
nuclear M response originating from the O;; operator. Due
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FIG. 4. Same as Fig. 3 but for the isovector case. The isovector
individual structure factors |, FM/ *"(q?)|?, and the absolute

value of the O,-0Os interference term [2&¢, &0, F¥ (q2)F" (¢2)
are shown.

to the associated kinematical factor &p = |q|/m,, this
contribution also vanishes at |q| = 0, and becomes less
important for heavier WIMPs. Figure 3 shows the results
for m, = 2 GeV, roughly the smallest WIMP mass probed
by xenon direct-detection experiments. For heavier WIMPs
the structure factor associated with the O, operator is
reduced, and for m, ~ 50 GeV this structure factor is
comparable to the one corresponding to the 5 operator,
originating solely from the nuclear F®" response. The latter
structure factor is suppressed by 3 additional orders of
magnitude compared to the leading correction to the
standard SI structure factor, the O;-0; interference term.

Finally, the structure factors coming from the nuclear M
responses associated with the Og and O5 operators are even
smaller, because they are suppressed by the very small
WIMP velocity |v#| ~ 1073 in their kinematical factors, see
Eq. (50). Note that, as emphasized in Refs. [26,28], the O
operator, similarly to Og and Os, involves the velocity
operator v, but for O the associated nuclear operator does
not depend on the WIMP velocity with respect to the center
of mass, v, but on the nucleon’s velocity operator, which
is part of the ®” operator and generates a milder suppres-
sion factor |q|/my.

The isovector results shown in Fig. 4 are very similar to
the isoscalar case. The only difference is that all structure
factors are smaller because in this case the contributions of
protons and neutrons partially cancel.

Similarly to this generalized SI analysis, the standard SD
structure factor will receive additional contributions
beyond the O, and Oy operators. In particular, the Os,
05, Oy, and O, operators contribute to ¥’ or £, and Os,
Oy to the additional A response. In addition there will be
0,~05 and Og—0O, X'-A interference terms [26]. All these
additional contributions vanish at |q| = 0, except for the O,
response which is suppressed by the WIMP velocity
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|v#| ~ 1073, Note also that only Ojs interferes with the
dominant SD response, but this operator only appears at

higher (fourth) order in ChEFT [37]. Likewise, the &’
response receives contributions from higher ChEFT orders
only. Therefore these corrections to SD scattering are
expected to be small. We defer a detailed analysis of
generalized SD scattering to future work.

V. TWO-BODY CURRENTS

As discussed in Sec. IV the shell-model calculations are
based on a core, while the many-body problem is explicitly
solved for nucleons close to the Fermi level in the valence
space. This generally leads to very good agreement to
experiment for spectroscopy [86], including the isotopes
relevant for dark-matter direct detection [38,40].

However, for the standard SI scattering (nuclear M
response) all nucleons contribute coherently, so that the
bulk of the nuclear response is in fact generated by the inert
core. A similar argument can be made for the quasicoherent
®" response in xenon, where the core protons in the Ogq/,
orbital are responsible for about half of the total response.
The relatively small sensitivity of these nuclear responses
to the nuclear structure was discussed in Ref. [40], and
justifies the use of the simple Helm form factor [see
Eq. (12)] in the standard SI analysis.

In addition, the nuclear response can be calculated in a
noninteracting shell-model picture, where only the lowest-
lying orbitals are filled with particles. Figure 5 shows
the F¥(q?) response for 'Xe, using a noninteracting
shell model and single-particle orbitals with and without j-
coupling (but with occupation numbers from the interacting
shell model, see Table VI). The agreement with the full
shell-model calculation is very good, showing that the
dependence on correlations among the valence nucleons as

\ ‘ \ ‘ \ ‘
100 | —- non-interacting, nlj basis-
F — non-interacting, nl basis
L - interacting shell model ]
10 ¢ 3
T ]
5 E E
01F E
b ! ‘ ! ‘ ! ‘ ! ‘ ! 1
0 0.05 0.1 0.15 0.2 0.25 0.3
lq| [GeV]

FIG. 5. F¥(q*) for '?Xe obtained from three different
approximations: shell-model calculation from [40] (black dots),
noninteracting shell model with j-coupling (red solid line), and in
nl basis (blue dashed line).
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TABLE VI.  Relative occupation numbers 7}, for the nl orbitals
in '?Xe and maximum occupation including spin degeneracy.
For orbitals in the valence space, the results of the shell-model
diagonalization are used.

n l Maximum occupation n?, ny
0 0 2 1 1

0 1 6 1 1

0 2 10 1 1

1 0 2 1 1

0 3 14 1 1

1 1 6 1 1

0 4 18 0.68 0.99
1 2 10 0.16 0.79
2 0 2 0.06 0.58
0 5 22 0.01 0.37

well as j-coupling effects are small for this response.
Likewise, the effect of using naive or shell-model-based
occupation numbers would be hardly visible in the figure.

In view of these findings, we evaluate the two-body
matrix elements of Eq. (38) by

1 1
Folq?) = §;<N1N2|(1 - P12)|f_ﬂM§§\IR‘N1N2>’
|N1N2> = |”111m10'171"212m20'272>v (53)

and analogously for F?%(q?), where the sum runs over
occupied states (e.g., for '*Xe according to Table VI) and
Py, = PP P, is the exchange operator with
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and P, exchanges the momenta. Summing over spins o;
and evaluating the matrix element in Eq. (53) in the
harmonic-oscillator basis, we obtain

M,[ d3p d3p d3 d3p/
Fila) = (L) Y 3 [Enene e

nilinply 1172

X Ry, (IPTDR nzb(lpzl)Rnlzl(lpnI)anzz(lpzl)
L@+ DEL+

P, (B - P1)P, (D5 - B2)

1672
x (27)36%) (py + po — P —PH — Q)
qelzx . qu
X3—-7,-7 ,
G~ m) (g T M) (a5 ) + 0
(55)
with
q* = p5 - pi. q5* = p} — P2 q=-q" - q5",
(56)
and radial wave functions
! T(n+1+3/2)
(57)

The expression for F%(q?) is analogous. The sum over m;,
m, has been performed using the addition theorem for the
spherical harmonics, assuming an equal filling of all
orbitals with different m projections. Apart from the
momentum integrals, which can be performed numerically

1 1 for given {n,l,n,1,}, only the isospin part of Eq. (55) needs
P,==(1+4+06, 0 P.==-(1+17 -7 54 & 147k 5, Only pinp q-
’ 2( 1-02), 2( o) (34) to be evaluated. This leads to

TABLE VII.  Spin/parity J' of the nuclear ground states harmonic oscillator length b, and fit coefficients for the nuclear response
functions 7, and F9, with fit functions F,(u) = €72 > 3 cfu', Fo(u) = €2y 7 o c?ul, and u = ¢*b*/2.
Isotope 12856 1295 1306 131xe 1326 1346 136
J 0" 1/2* 0" 3/2F ot 0" 0*
b [fm] 2.2847 2.2873 2.2899 2.2925 2.2950 2.3001 2.3051
ferd —2.42605 —2.44233 —2.45715 —2.47546 —2.49308 —2.52965 —2.56752
ct 2.01883 2.03693 2.063 2.08643 2.11087 2.15556 2.196 45
I —0.576294 —0.579809 —0.594377 —-0.602812 —-0.612728 —0.62789 —0.642445
4 0.077 613 0.0775201 0.0810307 0.082407 2 0.084 4652 0.086328 8 0.088341 1
ck —0.00519097  —0.00512894 —0.0055788 —0.00570646  —0.00597987  —0.00602651  —0.00611004
c? 1.39081 x 107™* 1.35327 x 107 1.59249 x 10™* 1.65335 x 107* 1.82198 x 10™* 1.78002 x 10™* 1.75076 x 10™*
ot —24.8768 —25.039 —25.2034 —25.3895 —25.5691 —25.9446 —26.3396
f 18.5427 18.8087 18.9813 19.2032 19.4359 19.8659 20.248
l -4.81514 —4.90161 —4.96798 —-5.03573 —5.11592 —5.2492 —5.38323
e 0.631787 0.644 029 0.650297 0.658 108 0.670 645 0.683 946 0.707 54
oA -0.047776 1 —0.048 8906 —0.0483377 —0.048 7362 —-0.050024 3 —0.049 659 —0.0522969
c? 0.001 714 69 0.0017729 0.001 658 85 0.001 673 17 0.001 74703 0.001 63541 0.001 781
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nylinyly

where the n}, denote the relative occupation numbers of a
given orbital. In Table VI we list these occupation numbers
for the case of '??Xe used in the calculation of F, and F?
as well as the nl-basis calculation shown in Fig. 5. For
orbitals in the valence space of the shell-model calcula-
tions, the result of the full diagonalization is used, even
though the sensitivity to this is minor.

The results for 7, and F% can be fit with the same
functional form as given in Eq. (52) for the one-body case,
see Table VII for the corresponding coefficients. Keeping
terms up to m = 5 provides the best description also for the
two-body terms. This form can be expected based on
normal-ordering arguments: after the summation over the
second nucleon, the result only depends on p;, p}, and o,
so that the corresponding operators depend on q, v+, and
Sy, and can be written in terms of O, Os, as well as other
operators subleading in our analysis. Then the summation
over spins performed before Eq. (55) eliminates the
dependence on (5 (as well as higher multipoles).
Therefore, apart from suppressed contributions, we expect
the normal ordering to reduce the two-body matrix element
to a one-body matrix element of O}, with corresponding fit
function as given in Eq. (52) with m = 5.

We note that the equal-filling approximation picks out
the L =0 part of the response, as required for the
decomposition of the SI structure factor given in
Eq. (44). The L = 2 multipole contribution, only relevant
for 131 Xe, would only appear as a correction to the strongly
suppressed one-body L = 2 structure factor, which itself
enters below the Oy, curve in Fig. 3. Therefore it can be
safely neglected.

The F,(0) contribution has been considered before in
Refs. [34,35,39], based on results for closed-shell nuclei
and represented in terms of a fit linear in A. In our
conventions, the results for A =132 are F,(0)=
-2.4(0.8) [34], F,(0) =-1.4 [35], and F,(0) =-1.9
[39], in reasonable agreement with our value. The remain-
ing differences can be traced back to our improved nuclear
structure calculation and additional corrections from mod-
eling nuclear short-range correlations [93] included in
Refs. [34,35,39]. The latter are not dictated by ChEFT
in this form, and thus not present in our calculation. This
strategy is in agreement with findings for nuclear matrix
elements of neutrinoless double-beta decay [94,95], where
the effects of short-range correlations are small after the
momentum dependence of the one-body currents is
included.

The consequences for the structure factors are illustrated
in Fig. 6, an extension of Fig. 3 that includes the effect of
F,(q?) and F¢(q?) as well as the interference terms with
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132){e — 01-03
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2b interference]
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FIG. 6. Same as Fig. 3, but including the two-body-current
contribution |7 F\? (q?)2 as well as the interference terms
260,67 7Y (@) 7 (a?) | and 20,67 FY (q°) F(a?)]. Solid
(dashed) lines refer to F, (F?). The green line indicates the
interference [2£,£97,(q?)F%(q?)| of the two-body terms. The

responses associated with O3, Os, Og, and O have been omitted
for clarity.

the isoscalar one-body operators. Figure 6 shows that the
two-body contributions constitute the leading correction to
the O, structure factor. In particular, F2(0) surpasses
F.(0) by an order of magnitude, to end up at a similar
level as the isovector one-body contribution. Equation (38)
illustrates the reason for this enhancement: the factor 4
from the momentum-independent term and the fact that the
integral over —q - q,/M?2 adds an additional factor about 3
combine to the final factor of 10. It is also important to note
that, in contrast to the structure factor associated with O;
(including its interference with ;) the two-body structure
factors do not vanish at |q| = 0.

Even though the main hierarchy suggested by Fig. 6
should be relatively general, we stress that this comparison
assumes that the nucleon form factors are all of roughly the
same size, and that additional relative suppressions and
enhancements may occur, as for instance indicated by the
simple models explored in Sec. VIC, where the relative
size of both two-body terms is seen to be similar due to the
large single-nucleon matrix element that compensates for
the larger F2(0).

Also, when comparing the hierarchy of isoscalar and
isovector responses, one should keep in mind that for
theories with an approximate isospin symmetry, there could
be an additional suppression hidden, e.g., in f, — f,. In
either case, the dominant contribution will actually be
generated by the interference term |25 (q?)F¥(q?)| with
the isoscalar response. In addition to the hierarchies studied
in Figs. 3, 4, and 6, there are also q>-dependent corrections
to the one-body form factors, which we address in the
following section.
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FIG. 7. Same as Fig. 6, but including the generic size of radius
corrections (black dashed line), as discussed in the text. Note that
the O3-2b interference terms have been dropped.

VI. PARAMETERS IN GENERAL
SPIN-INDEPENDENT SCATTERING

The hierarchy of the one- and two-body contributions
discussed in Secs. IV and V, combined with the general
expression for the structure factor in Eq. (44), determines the
number of independent parameters in our analysis of general
SI scattering. First, however, we need to quantify the
momentum-dependent corrections to the one-body form
factors reviewed in Secs. III B and III C, including the scalar
radii, anomalous magnetic moments, as well as strangeness
radii and moments. We refer generically to all these
contributions as radius corrections. They are evaluated in
Sec. VIA. In Sec. VIB we then discuss the number of
independent parameters appearing in the analysis of general
SIscattering, and as examples, in Sec. VI C we focus on two
simple cases: the case of scalar interactions with « and d
quarks only, and purely gluonic couplings.

A. Radius corrections

The chiral counting that underlies the decomposition in
Egs. (44) and (45) implies that radius corrections are
expected to contribute at a similar level as the leading
two-body currents. Moreover, since only the coefficients of
FM(q?) are affected, these corrections concern the
response of the (O; operator, being coherently enhanced.
By definition, radius corrections vanish for vanishing
momentum transfer, but they could become relevant for
larger q” values. The exact shape depends on the under-
lying BSM physics as well as on their relative size
compared to the leading nucleon form factor, e.g., as seen
in Eq. (31), in the case of CVV the leading contribution
vanishes and radius corrections generate all sensitivity to
this Wilson coefficient.

In order to estimate the generic size of radius corrections
in a simple way, we factor out the nucleon mass as a
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representative hadronic scale, leading to a typical q*/m3,
suppression in the associated structure factor. This is
illustrated in Fig. 7 by means of the interference term of
radius corrections with O; (again assuming that the
remaining coefficients are both equal to 1). As expected,
the correction is irrelevant at |q| = 0, but it is one of the
largest contributions for finite |q|, only second to the O;—
two-body interference and |F?|? (and thus also below the
interference with the isovector O; operator not shown in
Fig. 7). In particular Fig. 7 shows that the radius corrections
are expected to be more important than the interference of
the standard SI response with the new NREFT operator Oj.
This estimate supports the expectation from ChEFT that
radius corrections need to be included on the same footing
as higher-order momentum-dependent operators.

B. Independent parameters

Within the formalism put forward in Sec. III, the
decomposition of the WIMP-nucleus cross section in
Eq. (44) therefore involves eight parameters that can be
extracted from the dependence on Z, N, and |q], i.e., from
direct-detection measurement on different nuclear targets.
These are

(1) two (isoscalar and isovector) leading coefficients of

the M response

=Sk Lt TR (59)

(2) two coefficients of the two-body responses

Cr =Cfr Cg = gfﬁv (60)

(3) two (isoscalar and isovector) radius corrections to

the M response

{my
2

! :
g U372 117 (61)

Mo
cL =

[f,, L

(3) two (isoscalar and isovector) coefficients of the ®”
response

& =SV . (62)

These eight parameters are not all independent, since they
map onto the seven Wilson coefficients C3°, C;, and CyV
(with ¢ = u, d, s) for a Dirac WIMP, which reduces to four
in the Majorana case where the Cy" vanish. Indeed, if
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higher orders in the momentum expansion or y-exchange
currents were considered, the number of parameters in the
decomposition of the nucleon form factors and two-body
currents would be even larger, so that in general a correlated
analysis is called for.

The discussion of hierarchies in terms of Figs. 3, 4, 6,
and 7 also shows that if the minimal extension of the
standard ST response is sought, the analysis should include
M, c,, and c?, extending the standard formalism by the
leading isovector and two-body responses. These findings
provide the basis for the discussion of the general SI
analysis strategy for direct-detection experiments formu-
lated in Sec. II.

C. Examples: Scalar interactions with u and d quarks
and purely gluonic couplings

Further simplifications can occur if specific assumptions
are made about the Wilson coefficients. As an example, we
first consider the case of purely scalar interactions,
CyV'=0, with u and d quarks only, ie, with
C3¥ = Cp =0. In this case, the nonvanishing hadronic
coefficients in Eq. (45) become related according to

f +fn _ OgN _
pT =L fr=043(3)f,.
fp=In _ 2Bcs(mg—m,) 5 7
p = 77 fz=0.020(5)f,
Ph
J% = = 1726 (63)

T

Therefore, there are only two linearly independent param-
eters, namely the isoscalar and the isovector coupling to the
nucleon (f, + f, or equivalently f, and f,,); the other
parameters, the coupling to the pion and the nucleon radius
corrections are then fully determined. To calculate the
coefficients in the above equations, we have used
oy =59.1(3.5) MeV from Ref. [55], 6 and & as given
in Sec. B, and Bcs(my;—m,) = —0.51(8) MeV as
extracted from the electromagnetic proton-neutron
mass difference (m, —m, )™ = 0.76(30) MeV via the
Cottingham formula [96-98] (and consistent with lattice
determinations [99]). The new hadronic coefficient (in
addition to the standard SI analysis) is then given by

~ M

Fo = SH(CE - CEF), (64
thus differing by the relative sign from f, [see Eq. (27)].
According to Eq. (63), the isoscalar hadronic form factor
and its radius correction are of the same size as the two-
body coefficient f, up to a factor of 2, while the isovector
contribution is further suppressed by an order of magnitude
(the size of such isospin-violating effects has been studied
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in the context of simplified models in Ref. [100]), unless

this suppression in the hadronic input is balanced by ]‘,, /[
At |gq| = 0, the dominant correction to the standard SI

response is thus generated by the two-body current, a

reduction of the WIMP-nucleus cross section by about®

2fx  F(0)
fp +fn A

= —9%, (65)

followed by the isovector contribution, which affects the
rate by

fp_fnZ_N }7[
2 —=-2%=. 66
fp+fn A fr (66)

As a second example, it is also instructive to consider the
case of purely gluonic interactions, i.e., all Wilson coef-
ficients equal to zero apart from Cg . In this case the relative
size of two-body contributions becomes

5 27 (0) + f2F4(0)

InA
M, 2 ‘7:7'[(0) _]:Z(O)
my 27f% A

=-2

=—6%, (67)

where the large numerical value of F%(0) balances the
large coupling of the nucleon to the gluon operator to
produce an effect of similar magnitude as in Eq. (65).

These examples demonstrate that the hierarchy implied
by the nuclear structure factors themselves can be upset if
enhancements or suppressions in the coefficients, either the
nucleon matrix elements or the Wilson coefficients, are
present: in a similar way as F¢ appears enhanced compared
to the scalar two-body response F ,, but is compensated by
a large nucleon matrix element, the impact of the isovector
one-body response is suppressed by small isospin-breaking
effects in the nucleon couplings, see Eq. (63).

While the size of two-body corrections can be enhanced
by fine-tuning the one-body coefficients (the one-response-
at-a-time strategy put forward in Sec. II corresponds to the
case where the cancellation is complete), the special cases
in Egs. (65)—(67) indicate the size of effects to be expected
in regions of parameter space where no such cancellations
of the leading contributions occur.

We stress that in the general case no interrelations such as
Egs. (65) or (67) between the different form factors exist,
except for those dictated by QCD, e.g. f;/ N contributing both

The very large effects of up to 60% quoted in Ref. [34] rely on
a specific parameter choice r ~ 1. For the example considered
here, this implies 2f,./(f, 4+ f,) & M,/ (m, + m,) ~ 17, in con-
tradiction to Eq. (63). For realistic values of the hadronic
couplings the two-body corrections are of the expected size of
5%—10%, while enhancements are possible if cancellations in the
leading contribution occur.
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to 72" and to the radius correction to . Even in the very
special case of scalar interactions considered in Eq. (63) the
dependence on the Wilson coefficients fully factorizes only if

fz=fr 1s assumed, or if the isovector contribution is
neglected. In these extreme cases the limits on the scattering
rate immediately translate to alimit on the single parameter f
and thereby a fixed combination of C55 and C5°.

In general, direct-detection experiments are sensitive to
several independent combinations of Wilson coefficients,
whose determination therefore requires a correlated analy-
sis of different targets. Otherwise, simplified strategies such
as constraining one response at a time amount to consid-
ering slices through the parameter space of Wilson coef-
ficients at the hadronic scale. This information can then be
transferred to a given new-physics model, keeping in mind
the operator running and mixing to be applied when
translating the limits to BSM scales [46,101-104]. In the
interpretation of such limits one also needs to take into
account that not all coefficients are necessarily indepen-
dent, e.g., for the spin-1/2 case considered in this paper
eight parameters map onto only seven (four) Wilson
coefficients in the Dirac (Majorana) case.

VII. SUMMARY

We have presented a strategy for the analysis of general
SI WIMP scattering off nuclei, keeping all terms that lead
to a coherent contribution of nucleons in nuclei and appear
up to third order in the power counting of the WIMP-
nucleon interaction according to ChEFT. Up to dimension 7
in an effective Lagrangian for WIMP and Standard-Model
fields, scalar and vector interactions on the nucleon side can
give rise to coherent enhancements. Our analysis shows
that the leading corrections to the standard SI response are
the isovector counterpart and the coherent contribution of
WIMPs interacting with two nucleons (two-body currents).
For a more detailed analysis, the next corrections to be
included are momentum-dependent corrections to the
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nucleon form factors as well as the quasicoherent response
associated with the nucleon spin-orbit operator. The latter
only contributes in the case of vector interactions.
Therefore, it could potentially be used as a tool to
experimentally discriminate between the scalar and vector
channels.

Overall, we have found that a generalized SI scattering
cross section including the dominant coherent corrections
depends on eight parameters (four in a minimal extension),
which in principle can be fixed by experiments performed
with different nuclear targets, and we have discussed how
to constrain these parameters in direct-detection experi-
ments. For the case of WIMPs scattering off xenon
isotopes, we have provided parametrizations of all relevant
one- and two-body nuclear responses based on state-of-the-
art nuclear shell-model calculations. These can be directly
used for a general SI analysis of direct-detection experi-
ments, considering, e.g., one response function at a time. In
particular, our results show that direct-detection experi-
ments are sensitive to additional BSM physics than the one
coupling constrained in present standard SI analyses, and
thus impose additional restrictions on the parameter space
of a given new-physics model.
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