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We propose a formalism for the analysis of direct-detection dark-matter searches that covers all coherent
responses for scalar and vector interactions and incorporates QCD constraints imposed by chiral symmetry,
including all one- and two-body WIMP-nucleon interactions up to third order in chiral effective field
theory. One of the free parameters in the WIMP-nucleus cross section corresponds to standard
spin-independent searches, but in general different combinations of new-physics couplings are probed.
We identify the interference with the isovector counterpart of the standard spin-independent response and
two-body currents as the dominant corrections to the leading spin-independent structure factor, and discuss
the general consequences for the interpretation of direct-detection experiments, including minimal
extensions of the standard spin-independent analysis. Fits for all structure factors required for the
scattering off xenon targets are provided based on state-of-the-art nuclear shell-model calculations.
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I. INTRODUCTION

Direct searches for the nuclear recoil produced by weakly
interacting massive particles (WIMPs) on target nuclei in
large-scale detectors provide a prime avenue to unravel the
nature of darkmatter, complementary to indirect searches for
annihilation remnants in astrophysical observations and the
production of dark-matter particles in collider experiments
[1]. However, for the interpretation of current experimental
limits, e.g. [2–10], it is crucial that the nuclear aspects of
direct-detection experiments be adequately addressed. This
is especially important given the impressive experimental
efforts that include future liquid-noble-gas ton-scale experi-
ments already in commissioning such as XENON1T [11],
DEAP-3600 [12], and ArDM [13], or in planning phase, LZ
[14],XENONnT[15],XMASS[16],DarkSide-20k[17],and
DARWIN [18]; but also smaller-scale experiments such as
SuperCDMS SNOLAB [19], DAMIC100 [20], or CRESST
[21] that focus on light WIMPs with masses below 10 GeV.
Standard analyses of WIMP-nucleus scattering are formu-

lated in terms of spin-independent (SI) and spin-dependent
(SD) searches [22], named after the nature of the WIMP-
nucleon interactions at low energies. At the same time, SI and
SDscatteringarecharacterizedbyaverydifferentscalingofthe
corresponding structure factors: while for SI scattering the
response is proportional to the total number of nucleons A2,
the scaleofSDscattering is set by the spin expectationvalueof

the unpaired nucleon. Due to the coherent enhancement
of SI interactions, the corresponding limits on the WIMP-
nucleon couplings set by direct-detection experiments are
orders of magnitude more stringent than for SD searches, but
each type of interaction is sensitive to different operators
for the coupling of WIMPs with Standard-Model fields. For
instance, while quark-WIMP scalar-scalar and vector-vector
terms contribute to the SI response, the SD interaction is
generated by axial-vector–axial-vector operators. Additional
information on the WIMP nature can be extracted from
inelastic scattering off the target nuclei [23,24].
Corrections to standard SI and SD responses are con-

veniently studied in terms of effective field theories (EFTs).
In this context, the calculation of nuclear structure factors
has been organized in two different ways: first, non-
relativistic EFT (NREFT) for nucleon and WIMP fields
[25–28] allows a study of the nuclear responses as a
function of the effective couplings in the EFT, and to
extract limits on the coefficients of the NREFT operators
[29]. Second, in order to translate the NREFT limits to the
parameter space of a given new-physics model, the QCD
dynamics integrated out in the NREFT approach needs to
be included. Particularly important are the consequences of
the spontaneous breaking of the chiral symmetry of QCD,
which can be explored within the framework of chiral EFT
(ChEFT), see Refs. [30–33] for recent reviews. The
analysis within ChEFT establishes relations between differ-
ent NREFT operators, and provides a counting scheme that
indicates at which order contributions beyond the single-
nucleon level [34–37] need to be included. Recent work in
this direction includes ChEFT-based structure factors for
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the SD response [36,38], aspects of SI scattering
[35,39,40], inelastic scattering [23], as well as a general
ChEFT analysis of one- and two-body currents [37].
In the present work we provide a generalization of SI

scattering that includes all coherent contributions up to
third order in ChEFT [37]. This involves considering two-
body currents, but also momentum corrections to the
nucleon form factors predicted at the same ChEFT order.
We provide a detailed discussion of the structure factor
associated with the scalar two-body current studied before
in the literature, and extend the analysis to include the two-
body current generated by the coupling of the trace
anomaly of the QCD energy-momentum tensor to the pion
in flight, which becomes important if the WIMP couples
(significantly) via gluonic interactions. In addition, an
analysis of the NREFT operators reveals that in general
there are six relevant nuclear operators, denoted by M, Σ0,
Σ00, Δ, ~Φ0, and Φ00 [26,28], where M corresponds to the
standard SI scattering, while a combination of Σ0 and Σ00
yields the operator relevant for the SD case. Given that
apart fromM also Φ00 can be coherently enhanced (which is
especially the case in heavy nuclei) and that M and Φ00
interfere, a generalization of the traditional SI analysis
should also take the effects from Φ00 into account [26].
We note that for general SI scattering, new combinations

of Wilson coefficients are probed by the two-body currents
coupling to the exchanged pion in flight, and also by the
corrections to the nucleon form factors and the contribu-
tions associated with the Φ00 operator. This is in contrast to
the SD case, where the dominant two-body currents can be
absorbed into a redefinition of the one-body structure
factors, i.e., the two-body correction is sensitive to the
same physics beyond the Standard Model (BSM) as the
standard SD interaction [36,38]. In a similar way to the SI
analysis presented here, a more general SD analysis should
include the effects of all relevant nuclear operators and two-
body currents.
This work is organized as follows. We start with an

overview of the main results in Sec. II, where we propose
an analysis strategy for direct-detection experiments that
generalizes the standard SI case. The general formalism is
detailed in Sec. III, where we lay out the decomposition of
the WIMP-nucleus scattering rate, collect the relevant
nucleon matrix elements, and introduce the Wilson coef-
ficients that parametrize the WIMP-quark and WIMP-
gluon interactions. We then formulate a set of generalized
structure factors that includes effects from two-body
currents, corrections to the nucleon form factors, and the
nuclear Φ00 operator. In Sec. IV we present state-of-the-art
nuclear shell-model calculations for the structure factors
corresponding to one-body currents in all relevant xenon
isotopes, before developing a generalization for the two-
body currents in Sec. V. In Sec. VI we discuss the size of
the nucleon form-factor corrections as well as the number
of independent parameters in generalized SI scattering, and

work out in detail the size of the corrections to standard SI
scattering for two simple models. We conclude with a short
summary in Sec. VII. While our analysis strategy is
general, the numerical results presented here are focused
on WIMPs scattering off xenon nuclei, leaving the nuclear
structure calculations for other targets to future work.

II. OVERVIEW OF MAIN RESULTS AND
ANALYSIS STRATEGIES

Standard analyses of dark-matter direct-detection experi-
ments distinguish between SI and SD scattering based on
the nature of the WIMP-nucleon interaction. At the same
time, these two cases generate very different nuclear
responses, as SI scattering is enhanced by the coherent
contribution of all nucleons in the nucleus, whereas the
scale of SD scattering is set by a single-nucleon matrix
element.
When subleading contributions in EFTs are considered,

the classification of the different terms according to the
nature of the WIMP-nucleon interaction becomes less
useful, given that the coherent enhancement associated
with the combined contribution of a significant number of
nucleons is also common to NREFT operators that may
involve a WIMP or even a nucleon spin operator. Such
responses are closer in their experimental signature to the
traditional SI interactions in the sense that the associated
structure factors are enhanced compared to the single-
nucleon case.
Therefore we propose to define generalized SI scattering

not by the form of the NREFT operator, but based on
whether a coherent enhancement is possible. In this spirit, a
general decomposition of the WIMP-nucleus cross section
σSIχN should include the coherently enhanced corrections
generated by
(1) the standard SI isoscalar WIMP-nucleon interaction,
(2) its isovector counterpart,
(3) the interaction of the WIMP with two nucleons via

two-body (meson-exchange) currents,
(4) momentum-dependent corrections to the nucleon

form factors,
(5) the quasicoherent response associated with the

Φ00 operator (related to the nucleon spin-orbit
operator).

The proposed generalization amounts to the decompo-
sition of the WIMP-nucleus cross section

dσSIχN
dq2

¼ 1

4πv2

����
�
cMþ −

q2

m2
N
_cMþ

�
FMþ ðq2Þ þ cπF πðq2Þ

þ cθπF θ
πðq2Þ þ

�
cM− −

q2

m2
N
_cM−

�
FM

− ðq2Þ

þ q2

2m2
N
½cΦ00

þ FΦ00
þ ðq2Þ þ cΦ

00
− FΦ00

− ðq2Þ�
����2; ð1Þ
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where q is the momentum transfer, v the WIMP velocity,
and, generically, the nuclear responses are denoted by F
and the free parameters that include BSM physics by c.
This cross section includes all coherent contributions
mentioned above and all terms up to third order in
ChEFT [37]. First, the standard SI nuclear FM response,
associated with the NREFT operator O1 [see Eq. (35) for
definitions of the NREFT Oi operators], can be sensitive to
protons and neutrons in the same way (isoscalar, þ), as
considered in standard SI analyses, but also in the opposite
way (isovector, −). Given that the heavy nuclei typically
used for direct-detection experiments have a substantial
neutron excess, the resulting isovector structure factor is
coherently enhanced as well. Next, the power counting of
ChEFT predicts to this order two-body interactions (para-
metrized by the nuclear F π and F θ

π responses for the
coupling to the pion via a scalar current and via the trace
anomaly of the QCD energy-momentum tensor θμμ, respec-
tively) and momentum-dependent corrections to O1 (rep-
resented by _c), both of which are coherent. Finally,
contributions from subleading NREFT operators can also
be significantly coherent, the most relevant being O3,
which is related to the nucleon spin-orbit operator and
gives rise to the nuclear FΦ00

response. Here the coherence
is also found in both isoscalar and isovector cases.
Equation (1) reflects the different particle, hadronic, and

nuclear scales involved in WIMP-nucleus scattering.
Within a given new-physics model, WIMPs interact with
quark and gluon degrees of freedom, which are then to be
embedded into the nucleon sector. In an EFT approach the
BSM interaction is encoded in the Wilson coefficients of
effective operators, while the nucleon matrix elements are

decomposed into nucleon form factors. As a result, the free
coefficients cM� , cπ , cθπ, _cM� , and cΦ

00
� correspond to a

convolution of Wilson coefficients and nucleon matrix
elements. In a final step, the nuclear responses FM

� , F π ,
F θ

π , and FΦ00
� take into account that the scattering occurs in

the nucleus, a strongly interacting many-nucleon system. In
this work, the relation between the free parameters cM� , cπ ,
cθπ , _cM� , c

Φ00
� and the BSMWilson coefficients is worked out

in Sec. III for the case of a spin-1=2 WIMP, see also
Eqs. (59)–(62) for the explicit relations. The nuclear
responses FM

� , F π , F θ
π , and FΦ00

� are calculated in the
framework of the nuclear shell model, with fit functions
given for all stable xenon isotopes in Sec. IV for one-body
currents and in Sec. V for two-body currents.
The size of the individual terms in Eq. (1) depends on a

given new-physics model, which, together with the nucleon
matrix elements, fixes the coefficients c. Nevertheless the
nuclear responses F already imply a strong hierarchy by
themselves. This is illustrated in Fig. 1, where the different
structure factors including interference terms are compared
under the assumption that all coefficients are the same. As
expected, the dominant correction originates from the
interference of isoscalar and isovector FM

� responses.
Next in the hierarchy is the interference with the two-body
responses F π and F θ

π. The additional corrections included
in Fig. 1 (apart from the pure isovector F− and pure two-
body contributions) vanish at jqj ¼ 0, and are therefore
suppressed at small q compared to O1 and the two-body
structure factors. We have also considered further higher-
order NREFT one-body operators, but their contribution is
even more suppressed, see Secs. III D and IV. Let us
emphasize again that the hierarchy of the structure factors

FIG. 1. Comparison of the leading structure factors associated with the coherent and quasicoherent one-body FM and FΦ00
nuclear

responses, the two-body nuclear responses F π (solid lines) and F θ
π (dashed lines), and the radius corrections (_c) to the structure factors.

The individual contributions are ordered in the legend according to their size at jqj ¼ 0 (from top to bottom): the standard SI response
FMþ corresponding to the isoscalar one-body O1 operator (black), its interference with an O1 isovector contribution (blue) and with the
two-body responses F π and F θ

π (orange), the purely isovector contribution FM
− (green) and the structure factor generated solely by the

two-body currents (violet), the momentum-dependent radius correction to O1 (black dashed), and the interference of the standard SI
response with the quasicoherent one-body FΦ00

structure factor (red). The results, representative for all stable xenon isotopes, are shown
for the most abundant 132Xe.
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in Fig. 1 assumes a common value for the c coefficients, but
these are not in general independent and relative suppres-
sions or enhancements may occur. In Sec. VI C we study
the relative size of the isovector and two-body contributions
in two simple models, which for instance suggests that the
largeF θ

π structure factor tends to be compensated by a large
single-nucleon matrix element, leading to a relative two-
body effect similar to that of the F π contribution.
Despite the potential impact of the c coefficients on the

measured rate, the hierarchy of the nuclear structure factors
observed in Fig. 1 is sufficiently pronounced to motivate a
minimal extension of the standard SI scattering of the form

dσSIχN
dq2

¼ 1

4πv2

����cMþFMþ ðq2Þ þ cM−FM
− ðq2Þ

þ cπF πðq2Þ þ cθπF θ
πðq2Þ

����2; ð2Þ

with only four independent parameters.
Since the nuclear responses can be obtained from

nuclear-structure calculations, direct-detection experiments
provide constraints on the c parameters. Although as
discussed above, the limits on the direct-detection rate
constrain additional combinations of Wilson coefficients
and nucleon matrix elements, so far standard SI analyses
have only considered the coefficient cMþ , which is then
related to the WIMP-nucleon cross section by
σSIχN ¼ μ2N jcMþ j2=π, with reduced mass μN . Ideally, to go
beyond this approximation a global correlated analysis of
direct-detection experiments based on either Eq. (1) or
Eq. (2) should be performed in order to determine limits on
all parameters at once, which, however, would require the
consideration of more than one target nucleus in the
analysis.
Barring such a global analysis, one would need to

consider slices through the BSM parameter space, e.g.,
in terms of scans over the Wilson coefficients as in
Ref. [39]. Such slices through the parameter space could
also be organized in a straightforward extension of present
analyses by considering one nuclear response at a time (this
is, setting all but one c to zero), for instance based on
Eq. (2), with four c parameters [which map onto seven
(four) Wilson coefficients for a Dirac (Majorana) WIMP].
This would allow one to set limits on different combina-
tions of Wilson coefficients. In particular, due to the role of
the two-body responses this kind of analysis would extend
the sensitivity of direct-detection experiments to more new-
physics couplings than the standard SI single-nucleon cross
section studied so far. Depending on the sensitivity of the
experiment to the q2-dependence, the number of relevant
structure factors may be reduced, and limits could also be
obtained for combinations of the coefficients associated
with responses with similar q2-tail, e.g., F π and F θ

π . In that
case the one-response-at-a-time analysis could also be

performed based on Eq. (1), which originally depends
on eight nonindependent c coefficients.
In conclusion, we provide a parametrization of the

WIMP-nucleus cross section for general SI scattering,
which could be applied to generalize the extraction of
limits from SI scattering beyond the standard σSIχN cross
section (corresponding to cMþ ), e.g., by similar exclusion
plots for the additional coefficients in the minimal four-
parameter extension in Eq. (2), or by more sophisticated
scans through the BSM parameter space. For a xenon
target, all necessary structure factors are provided in
Secs. IV and V.

III. FORMALISM

We consider a WIMP χ scattering off a target nucleusN
with momenta assigned as

N ðpÞ þ χðkÞ → N ðp0Þ þ χðk0Þ; ð3Þ

and momentum transfer

q ¼ k0 − k ¼ p − p0; q2 ¼ t; ð4Þ

as well as

P ¼ pþ p0; K ¼ kþ k0: ð5Þ

The rate for the detection of a dark-matter particle χ
scattering elastically off a nucleus with mass number A,
differential in the three-momentum transfer q, is then
given by

dR
dq2

¼ ρM
mAmχ

Z
vesc

vmin

d3vjvjfðjvjÞ dσχN
dq2

; ð6Þ

whereM denotes the (fiducial) mass of the experiment, mA
and mχ the masses of target nucleus and WIMP, respec-
tively, σχN the WIMP-nucleus cross section in the lab
frame, fðjvjÞ the normalized velocity distribution of the
WIMP, ρ the WIMP density, vesc ¼ 544þ64

−46 km s−1 [41] the
escape velocity of our galaxy, and

v2min ¼ −t

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

A − t
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

χ − t
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

A − t
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
χ − t

q
− t

3
75
2

¼ q2

4μ2A
þOðq4Þ;

μA ¼ mAmχ

mA þmχ
; ð7Þ

with t ¼ −q2 up to relativistic corrections. The value for
the localWIMPdensitycanonicallyused in the interpretation
of direct-detection experiments is ρ ¼ 0.3 GeV=cm3,
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although halo-independent methods have been developed
that allow one to eliminate the astrophysical uncertainties
in the comparison of different experiments, see, e.g.,
Refs. [42,43]. Alternatively, the detection rate Eq. (6) is
often formulated differential in the recoil energy

Er ¼
q2

2mA
: ð8Þ

TheWIMP-nucleus cross section itself combines physics
from particle, hadronic, and nuclear scales. To separate the
nuclear contributions, σχN can be expressed in terms of
structure factors [22]

dσχN
dq2

¼ 8G2
F

v2ð2J þ 1Þ ½SSðq
2Þ þ SAðq2Þ�; ð9Þ

where J refers to the spin of the target nucleus, GF denotes
the Fermi constant, and SS and SA are the structure factors
for SI and SD scattering, respectively. These structure
factors are normalized according to

SSð0Þ ¼
2J þ 1

4π
jc0Aþ c1ðZ − NÞj2;

SAð0Þ ¼
ð2J þ 1ÞðJ þ 1Þ

4πJ
× jða0 þ a1ÞhSpi þ ða0 − a1ÞhSnij2; ð10Þ

with proton and neutron numbers Z and N (A ¼ Z þ N)
and proton/neutron spin expectation values hSp=ni. The
constants ci, ai contain the information about particle and
hadronic physics, a relation to be made more precise below.
Assuming c1 ¼ 0, the cross section for SI scattering is often
represented in the standard form [44]

dσSIχN
dq2

¼ σSIχN
4v2μ2N

F 2
SIðq2Þ; μN ¼ mNmχ

mN þmχ
; ð11Þ

with nucleon mass mN and single-nucleon cross section
σSIχN . The nuclear-physics quantity F SIðq2Þ is the only
remnant of the structure factor, and is frequently approxi-
mated by [45]

FHelm
SI ðq2Þ ¼ A

3j1ðjqjrnÞ
jqjrn

e−
1
2
q2s2 ;

r2n ¼ c2 þ 7

3
π2a2 − 5s2;

s ¼ 1 fm;

c ¼ ð1.23A1=3 − 0.60Þ fm;

a ¼ 0.52 fm; ð12Þ

whose square is known as Helm form factor.

In the following, we revisit this formalism starting from
an effective Lagrangian for the interaction of the WIMP
with Standard-Model fields presented in Sec. III A. In
Secs. III B and III C we discuss the relevant nucleon
couplings and finally in Sec. III D we derive a generalized
decomposition for SI scattering that includes two-body
currents and the nuclear Φ00 response.

A. Lagrangian and Wilson coefficients

We consider the following dimension-6 and -7 effective
Lagrangian for the interaction of a spin-1=2 WIMP with
quark and gluon fields

Lχ ¼ Lð6Þ
χ þ Lð7Þ

χ ;

Lð6Þ
χ ¼ 1

Λ2

X
q

½CVV
q χγμχqγμqþ CAA

q χγμγ5χqγμγ5q�;

Lð7Þ
χ ¼ 1

Λ3

X
q

CSS
q χχmqqqþ 1

Λ3
C0S
g χχαsGa

μνG
μν
a

¼ 1

Λ3

X
q

�
CSS
q þ 8π

9
C0S
g

�
χχmqqq

−
8π

9

1

Λ3
C0S
g χχθ

μ
μ; ð13Þ

where χ is assumed to be a Standard-Model singlet, the
quark masses mq have been included to make the scalar
operator renormalization-group invariant, and the Wilson
coefficients Ci parametrize the BSM physics associated
with the scale Λ. The effective Lagrangian is defined at the
hadronic scale, with the quark sum extending over q ¼ u,
d, s, after the heavy quarks have been integrated out and
their effect has been absorbed into a redefinition of the
gluon coefficient CS

g , see Eq. (16). In the second formu-
lation of the dimension-7 Lagrangian the gluon term has
been replaced in favor of the trace of the QCD energy-
momentum tensor θμμ. Equation (13) includes the leading
operators relevant for coherent WIMP-nucleus scattering,
vector and scalar channels, but also retains the axial-vector
operator to facilitate the comparison to the SD case. The
WIMP could either be a Dirac or Majorana particle, with
CVV
q ¼ 0 in the latter case. At dimension 8, there are spin-2

operators that can become relevant for the SI scattering of
heavyWIMPs [46], but their inclusion will be left for future
work. Similarly, the operator basis changes for different
quantum numbers of the WIMP [46,47].
Throughout this work we follow the chiral counting

formulated in Refs. [35,37] to organize the calculation. In
particular, this implies that momentum corrections to the
one-body matrix elements occurring in Eq. (13) enter at the
same order as the leading two-body contributions, at third
order in ChEFT [37]. The nucleon matrix elements of the
operators listed in Eq. (13) involve a combination of Wilson
coefficients and nucleon couplings. In the next sections, we
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spell out these combinations, closely following the notation
introduced in Ref. [37].

B. Scalar couplings

For the scalar channel in Eq. (13) we need the following
coupling to the nucleon (N ¼ n or p):

fNðtÞ ¼
mN

Λ3

� X
q¼u;d;s

CSS
q fNq ðtÞ − 12πfNQðtÞC0S

g

�
; ð14Þ

where the nucleon scalar form factors are defined as

mNfNq ðtÞ ¼ hNðp0ÞjmqqqjNðpÞi: ð15Þ

The form factors for the heavy quarks fNQðtÞ appear
together with the modified gluon Wilson coefficient

C0S
g ¼ CS

g −
1

12π

X
Q¼c;b;t

CSS
Q ð16Þ

after integrating out their effect by means of the trace
anomaly of the energy-momentum tensor θμν [48], which
also produces

fNQðtÞ ¼
2

27

�
θN0 ðtÞ
mN

−
X

q¼u;d;s

fNq ðtÞ
�
;

θN0 ðtÞ ¼ hNðp0ÞjθμμjNðpÞi: ð17Þ

It should be noted that this procedure is accurate at
OðαsÞ, which may not be sufficient for the c quark, see
Refs. [46,49,50] for a study of higher orders in αs.
We begin with the discussion of Eq. (14) at vanishing

momentum transfer, in which case the form factors simply
reduce to the scalar couplings of the nucleon. Based on
SUð2Þ chiral perturbation theory (ChPT), it can be shown
that the couplings to u and d quarks only depend on the
value of the pion-nucleon σ-term σπN , while isospin-
breaking corrections are fully determined by the same
low-energy constant that governs the strong contribution to
the proton-neutron mass difference [51]. Combining dis-
persive techniques [52] with precision data for the pion-
nucleon scattering lengths extracted from pionic atoms
[53,54] leads to the phenomenological values [55] for the
light-quark couplings quoted in the first line of Table I.

More recently, lattice calculations at physical quark masses
have produced significantly lower values for σπN [56–59],
which translates to the 3σ tension in the scalar couplings
shown in Table I. This tension between phenomenology
and lattice [60] currently constitutes the largest uncertainty
in the u and d couplings.
In contrast to the u and d quarks, a determination of the

scalar coupling to the s quark from phenomenology
requires the use of SUð3Þ relations, whose convergence
properties make reliable uncertainty estimates difficult. For
this reason, in Table II we only quote the values obtained by
recent lattice calculations, together with the average from
Ref. [61] of previous lattice results. In particular, we
assume isospin symmetry fpq ¼ fnq for q ¼ s, c, b, t.
Finally, Ref. [58] also provides a value for the c coupling,
fNc ¼ 0.085ð22Þ, to be compared with fNQ ¼ 0.068ð1Þ as
extracted from the same reference based on Eq. (17) [with
θN0 ð0Þ ¼ mN]. Within uncertainties, the direct determina-
tion from lattice QCD thus agrees with the result extracted
by means of the trace anomaly at OðαsÞ.
Next, we turn to the finite-momentum-transfer correc-

tions to fNð0Þ≡ fN .
1 To the order we are working in

ChEFT, it is generally sufficient to keep the radius
corrections, i.e., the first order in the expansion around
t ¼ 0. However, the strong ππ rescattering in the isospin-0
ππ S-wave makes the leading-loop ChPT prediction for the
slope of the scalar form factor of the nucleon at t ¼ 0 [62],

_σjChPT ¼ 5g2AMπ

256πF2
π
¼ 0.17 GeV−1; ð18Þ

underestimate the true result by nearly a factor of 2
[gA ¼ 1.2723ð23Þ and Fπ ¼ 92.2ð2Þ MeV are taken from
Ref. [63]]. For this reason, we make use of the updated
dispersive analysis from Refs. [64,65] and use

_σ ¼ 0.27ð1Þ GeV−1: ð19Þ
Retaining the leading isospin-breaking effect, this correc-
tion amounts to the replacement

fNu ðtÞ → fNu þ 1 − ξ

2mN
_σt; ξ ¼ md −mu

md þmu
¼ 0.37ð3Þ;

fNd ðtÞ → fNd þ 1þ ξ

2mN
_σt; ð20Þ

where we have used mu=md ¼ 0.46ð3Þ [66].

TABLE I. Scalar u and d couplings of the nucleon, in units of
10−3.

fpu fnu fpd fnd References

20.8(1.5) 18.9(1.4) 41.1(2.8) 45.1(2.7) [55]
13.9(1.8) 11.6(1.7) 25.3(3.7) 30.2(3.8) [56]

TABLE II. Scalar s coupling of the nucleon, in units of 10−3.

fNs 113(60) 34(7) 44(9) 37(13) 43(11)
References [56] [57] [58] [59] [61]

1Here and below, couplings without argument are understood
to be evaluated at t ¼ 0.
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In analogy to Eq. (18), there is a parameter-free
prediction from leading-loop SUð3Þ ChPT for the slope
of the strangeness radius [35]

_σsjChPT ¼ 5g2A
256πF2

π

�
M2

K −
1

2
M2

π

�
1

3

�
4

3Mη

�
1 − 4αffiffiffi

3
p

�
2

þ 1

MK

�
3ð1 − 2αÞ2 þ

�
1þ 2αffiffiffi

3
p

�
2
�	

¼ 0.24 GeV−1; ð21Þ

where α ¼ F=ðDþ FÞ parametrizes the leading SUð3Þ
couplings. Numerically, we use F=D ¼ 0.57 as extracted
from semileptonic hyperon decays [67,68], which together
with the SUð2Þ constraint Dþ F ¼ gA implies

D ¼ 0.81; F ¼ 0.46; α ¼ 0.36: ð22Þ

However, such SUð3Þ leading-loop low-energy theorems
are known to be sensitive to higher-order corrections
[69,70]. Therefore, we also considered the coupled-channel
dispersive analysis [64], which in principle provides not
only a prediction for _σ but also for _σs. Unfortunately,
convergence of the dispersive integrals is much slower for
the slope of the strangeness form factor, although the
resulting values are not too far from the chiral prediction.
All in all, the spread observed in both methods would be
covered by a range

_σs ¼ 0.3ð2Þ GeV−1; ð23Þ

leading to

fNs ðtÞ → fNs þ _σs
mN

t: ð24Þ

In view of the substantial uncertainties already encountered
in the strangeness form factor, we do not make an attempt
to quantify radius corrections for the heavy quarks. The
leading chiral result, however, can be reconstructed by
means of Eq. (17) and

θN0 ðtÞ ¼ mN −
13g2AMπ

128πF2
π
tþOðt2Þ: ð25Þ

Taking everything together, we arrive at the following
decomposition of the combination of Wilson coefficients
and nucleon form factors relevant for the scalar channel

fNðtÞ ¼ fN þ t _fN þOðt2Þ;

fN ¼ mN

Λ3

� X
q¼u;d;s

CSS
q fNq − 12πfNQC

0S
g

�
;

_fN ¼ 1

Λ3

�
CSS
u
1 − ξ

2
_σ þ CSS

d
1þ ξ

2
_σ þ CSS

s _σs

�
: ð26Þ

For the scalar two-body matrix element we also need the
couplings to the pion

fπ ¼
Mπ

Λ3

X
q¼u;d

�
CSS
q þ 8π

9
C0S
g

�
fπq;

fθπ ¼ −
Mπ

Λ3

8π

9
C0S
g ; ð27Þ

with

fπu ¼
mu

mu þmd
¼ 1

2
ð1 − ξÞ ¼ 0.32ð2Þ;

fπd ¼
md

mu þmd
¼ 1

2
ð1þ ξÞ ¼ 0.68ð2Þ: ð28Þ

In Eq. (27) we introduced a factor Mπ in analogy to the
scalar coupling to the nucleon, Eq. (14). The necessity of
defining two pion couplings, fπ and fθπ in Eq. (27), traces
back to the fact that the couplings of the scalar current
mqqq and the trace anomaly of the energy-momentum
tensor θμμ to the pion differ qualitatively: while the former is
constant up to higher-order corrections, the latter becomes
momentum dependent and therefore produces a different
nuclear structure factor.

C. Vector and axial-vector couplings

In the vector channel there are two sets of couplings to
the nucleon

fV;Ni ðtÞ ¼ 1

Λ2

X
q¼u;d;s

CVV
q Fq;N

i ðtÞ; ð29Þ

with i ¼ 1, 2 related to the Dirac and Pauli terms,
respectively, in the decomposition of the nucleon form
factors of the electromagnetic current. A decomposition
analogous to Eq. (26) is given by

fV;N1 ðtÞ ¼ fV;N1 þ t _fV;N1 þOðt2Þ;
fV;N2 ðtÞ ¼ fV;N2 þOðtÞ: ð30Þ

Since the matrix element of the Pauli form factor vanishes
at zero momentum transfer, the leading term in fV;N2 ðtÞ is
sufficient. Assuming isospin symmetry (for corrections see
Ref. [71]), these couplings expressed in terms of nucleon
radii and anomalous magnetic moments become [37]
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fV;p1 ¼ 1

Λ2
ð2CVV

u þ CVV
d Þ;

fV;p2 ¼ 1

Λ2
½ð2CVV

u þ CVV
d Þκp þ ðCVV

u þ 2CVV
d Þκn

þ ðCVV
u þ CVV

d þ CVV
s ÞκsN �;

_fV;p1 ¼ 1

Λ2

�
ð2CVV

u þ CVV
d Þ

�hr2Eip
6

−
κp
4m2

p

�

þ ðCVV
u þ 2CVV

d Þ
�hr2Ein

6
−

κn
4m2

n

�

þ ðCVV
u þ CVV

d þ CVV
s Þ

�hr2E;siN
6

−
κsN
4m2

N

��
; ð31Þ

and u ↔ d for the neutron couplings. Numerical values for
the nucleon radii and anomalous magnetic moments are
collected in Table III.
For completeness, we also quote the analogous decom-

position for the axial-vector channel appearing in Eq. (13).
In this case, one needs the combinations gNA ðtÞ and gNP ðtÞ
with

gNA ðtÞ ¼ gNA þ t_gNA þOðt2Þ;

gNA ¼ 1

Λ2

�
� gA

2
ðCAA

u − CAA
d Þ

þ 3F −D
6

ðCAA
u þ CAA

d − 2CAA
s Þ

þ ΔΣN

3
ðCAA

u þ CAA
d þ CAA

s Þ
�
;

_gNA ¼ � gA
Λ2

ðCAA
u − CAA

d Þ 1

M2
A
;

gNP ðtÞ ¼ −
4m2

N

Λ2

�
� gA

2
ðCAA

u − CAA
d Þ 1

t −M2
π

þ 3F −D
6

ðCAA
u þ CAA

d − 2CAA
s Þ 1

t −M2
η

�
; ð32Þ

where the upper/lower sign refers to proton/neutron and the
small η contribution of the last line above is generally
neglected inSDanalyses.Theserelations involve thenucleon
spin matrix elements ΔqN ¼ hNjqγμγ5qjNi=hNjγμγ5jNi,

for which we have assumed isospin symmetry and already
used the combinations

gA ¼ Δup − Δdp ¼ Δdn − Δun;

3F −D ¼ ΔuN þ ΔdN − 2ΔsN;

ΔΣN ¼ ΔuN þ ΔdN þ ΔsN: ð33Þ

Due to the axial anomaly, the singlet combination ΔΣN

cannot be analyzed inSUð3ÞChPT, as effects related to the η0
will play a role. However, it can be extracted from the spin
structure function of the nucleon, which, at Q2 ¼ 5 GeV2

and to order Oðα2sÞ, produces ΔΣN ¼ 0.330ð39Þ [74].
Further, the dominant radius correction occurring in the
isovector contribution in Eq. (32) has been included by a
dipoleansatzwithmassparameterMA around1GeV[75,76],
while the pseudoscalar poles in gNP ðtÞ prevent a Taylor
expansion in t.

D. Structure factors

For the definition of the nuclear structure factors we first
consider the matching of the one-body operators obtained
in ChEFT above onto the NREFT basis of Refs. [26,28].
This produces the matrix elements

MSS
1;NR ¼ O1fNðtÞ;

MVV
1;NR ¼ O1

�
fV;N1 ðtÞ þ t

4m2
N
fV;N2 ðtÞ

�

þ 1

mN
O3f

V;N
2 ðtÞ;

MAA
1;NR ¼ −4O4gNA ðtÞ þ

1

m2
N
O6gNP ðtÞ; ð34Þ

where we have dropped the nucleon and WIMP spinors.2

The NREFT operators Oi are defined by

O1 ¼ 1;

O3 ¼ iSN · ðq × v⊥Þ;
O4 ¼ Sχ · SN;

O6 ¼ Sχ · qSN · q; ð35Þ

with spins S ¼ σ=2 and velocity

v⊥ ¼ K
2mχ

−
P

2mN
: ð36Þ

TABLE III. Nucleon radii and anomalous magnetic moments.
The values of κp, κn, and hr2Ein are taken from Ref. [63], hr2Eip
from Ref. [72], and κsN as well as hr2E;siN from a global analysis of
parity-violating asymmetry data [73]. Note that the latter two are
strongly correlated, with a correlation coefficient 0.87.

κp κn κsN

1.792847356(23) −1.91304272ð45Þ −0.26ð26Þ
hr2Eip hr2Ein hr2E;siN
0.7071ð7Þ fm2 −0.1161ð22Þ fm2 −0.06ð4Þ fm2

2For details see Ref. [37]. This matching is performed at tree
level and hence does not include effects from operator evolution,
which could be generated when running the ChEFT operators
down to nuclear scales.
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The combination of the different operators in Eq. (34)
demonstrates how QCD constraints impose relations
between the NREFT operators: for the axial-vector channel
it is a fixed combination of O4 and O6 that contributes,
while the same coefficient fV;N2 ðtÞ that multiplies O3 also
appears as a momentum-dependent correction to O1.
In Eq. (34) we only retained those channels that generate

coherent or quasicoherent nuclear responses, compared to
the full list studied in Ref. [37]. These coherent and
quasicoherent responses are denoted as M and Φ00 in
Refs. [26,28], and are only a subset of the six different
nuclear responses generated by the NREFT operators,
which also include the Σ0, Σ00, Δ, and ~Φ0 responses. For
example, M governs standard SI scattering, and it is a
combination of Σ0 and Σ00 that enters in SD scattering.
Beyond the single-nucleon sector, NREFT operators

that involve v⊥ can be decomposed into two parts
[26,28]. First, there are terms proportional to the relative
WIMP velocity with respect to the center of mass of the
nucleus

v⊥T ¼ K
2mχ

−
1

A

XA
i¼1

Pi

2mN
; ð37Þ

where Pi ¼ pi þ p0
i is the sum of the initial and final

nucleon momenta. These terms are effectively suppressed
by the WIMP velocity with respect to the target jv⊥T j ≈ 10−3

and will thus be neglected in the following. Second, v⊥ also
produces contributions involving the velocity operator of
the nucleon, which are part of the Δ, ~Φ0, and Φ00 responses
and come with a milder suppression factor jqj=mN. This is
the case for the O3 contribution kept in Eq. (34), which
generates a Φ00 response. In the end, for coherent SI
scattering only scalar and vector interactions remain, and
the fact that the Φ00 response is due only to the vector
operator could serve as a tool to discriminate between these
two channels.
Apart from the one-body operators and the momentum

corrections as summarized in Secs. III B and III C, there are
two-body currents at the same order in ChEFT, see Fig. 2.
The corresponding NR amplitudes take the form

MSS
2;NR ¼ −

�
gA
2Fπ

�
2

fπMπ
τ1 · τ2σ1 · q1σ2 · q2

ðq2
1 þM2

πÞðq2
2 þM2

πÞ
;

Mθ
2;NR ¼ 4M2

π − 2q1 · q2

M2
π

fθπ
fπ

MSS
2;NR; ð38Þ

where fπ and fθπ are defined in Eq. (27), σi and τi denote
the spin and isospin Pauli matrices of nucleon i, respec-
tively, and qi ¼ p0

i − pi. Diagrammatically, these ampli-
tudes represent the coupling of the WIMP to the pion in
flight via a scalar current and by means of the QCD trace
anomaly θμμ. The other two-body currents identified in
Ref. [37] in general involve isospin operators ½τ1 × τ2�3 as
well as spin structures that, after summing over spins, make
the diagrams vanish. The only remaining contribution is the
exchange diagram from the axial-vector–vector channel,
whose isospin structure becomes τ31 − τ32, only allowing
for an isovector coherent enhancement suppressed by
ðN − ZÞ=A with respect to the scalar two-body current.
In addition, this two-body current is linear in Sχ and does
not interfere with O1 [26]. Other contributions such as the
vector-vector two-body current also show isovector coher-
ent enhancement only, and are further suppressed in the
ChEFT expansion [37]. For these reasons, we restrict our
analysis to the contributions given by Eq. (38). It is the
presence of the q1 · q2 term in the relation between quark-
mass and trace-anomaly couplings that necessitates the
definition of two structure factors: for a constant term, the
θμμ contribution could be absorbed into a redefinition of fπ ,
similarly to fN in the case of the nucleon coupling [see
Eqs. (14) and (17)].
In this context, several comments on the role of two-

body operators are in order. First, the hierarchy of diagrams
shown in Fig. 2 assumes the ChEFT counting originally
proposed by Weinberg [77,78]. In this counting, the
coupling of the scalar current to ðN†NÞ2 contact operators
is suppressed by two orders in the chiral expansion. Due to
the limitations of Weinberg counting, this suppression
might be less pronounced in practice, as indicated, e.g.,
by Kaplan-Savage-Wise (KSW) counting [79,80] or by
general arguments related to the short-range behavior of
nucleon-nucleon wave functions [81]. The role of such
contact operators at heavy pion masses has been studied in
Ref. [82] using lattice QCD, and calculations at or close to
the physical pion mass would allow for a check of the
ChEFT counting employed here.
Second, while diagram (a) corresponds directly to an

NREFT operator from Refs. [26,28], the mapping of
diagrams (b) and (c) would proceed in an indirect way.
The radius corrections (b) are represented by q-dependent
prefactors of the Oi, see Eq. (34). The two-body contri-
butions (c) could be modeled as effective one-body
operators, if summed over the second nucleon with respect
to a given reference state, symbolically written as
hN†NiN†N, so that the effective one-body operator would

FIG. 2. Diagrams for WIMP-nucleon interactions in ChEFT.
Solid (dashed) lines denote nucleons (pions) and crosses the
coupling to the WIMP current. Diagram (a) represents a leading
one-body term, (b) a radius correction, and (c) a two-body
current.
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become density and state dependent. Such a normal-
ordering approximation with respect to a Fermi gas was
used in the context of SD scattering [36,38]. However, in
this work we perform a full calculation in harmonic-
oscillator basis states, see Sec. V. It is the explicit
calculation of all diagrams (a)–(c) within ChEFT, instead
of a parametrization in terms of effective one-body oper-
ators, which allows one to relate the coefficients of the
nuclear structure factors to nucleon form factors and
new-physics parameters.
For the construction of suitable nuclear structure factors

for generalized SI scattering, we first turn to the SD case.
Here the result in Eq. (32) shows that once the η
contribution to gNP ðtÞ is neglected, only two independent
combinations of Wilson coefficients remain, which can be
conveniently identified with the coefficients introduced in
Eq. (10):

a0 ¼
ζ

2
ffiffiffi
2

p
GFΛ2

× ½ðCAA
u þ CAA

d ÞðΔuN þ ΔdNÞ þ 2CAA
s ΔsN �

¼ ζ

6
ffiffiffi
2

p
GFΛ2

½ð3F −DÞðCAA
u þ CAA

d − 2CAA
s Þ

þ 2ΔΣðCAA
u þ CAA

d þ CAA
s Þ�;

a1 ¼
ζ

2
ffiffiffi
2

p
GFΛ2

ðCAA
u − CAA

d ÞðΔup − ΔdpÞ

¼ ζgA
2

ffiffiffi
2

p
GFΛ2

ðCAA
u − CAA

d Þ; ð39Þ

where ζ ¼ 1ð2Þ for a Dirac (Majorana) spin-1=2 WIMP.
The structure factor can therefore be decomposed as

SAðq2Þ ¼ a20S00ðq2Þ þ a0a1S01ðq2Þ þ a21S11ðq2Þ; ð40Þ

or, in terms of so-called proton-only and neutron-only
structure factors,

SpAðq2Þ ¼ S00ðq2Þ þ S01ðq2Þ þ S11ðq2Þ;
SnAðq2Þ ¼ S00ðq2Þ − S01ðq2Þ þ S11ðq2Þ: ð41Þ

Since both the momentum corrections in Eq. (32) and the
leading two-body currents [38] also depend on a0 and a1
only, this implies that the definition of the structure factors
Eq. (40) remains applicable even once such corrections
are included. In fact, in a normal-ordering approximation
the effect from two-body currents amounts to a shift
a1 → a1ð1þ Δa1Þ, with Δa1 predicted from ChEFT.
The connection between experimental limits for the
direct-detection rate and the Wilson coefficients therefore
still proceeds by means of Eq. (39).
Our aim is to find a similar decomposition for SI

scattering. More precisely, we wish to formulate a set of
structure factors that captures the leading corrections,

taking into account both the ChEFT expansion and coher-
ence effects in the nucleus, in particular including both one-
and two-body operators.
As a first step towards the construction of generalized SI

structure factors, we again identify the couplings at
vanishing momentum transfer. In this limit we obtain

c0 ¼
ζ

4
ffiffiffi
2

p
GF

ðfp þ fn þ fV;p1 þ fV;n1 Þ;

c1 ¼
ζ

4
ffiffiffi
2

p
GF

ðfp − fn þ fV;p1 − fV;n1 Þ: ð42Þ

Indeed, for fp ¼ fn ¼ fN, f
V;p
1 ¼ fV;n1 ¼ fV;N1 the single-

nucleon cross section at threshold becomes

σSIχN ¼ ζ2μ2N
π

����fN þ fV;N1

����2; ð43Þ

leading to the simplification anticipated in Eq. (11). Limits
for σSIχN should therefore be interpreted as limits on the

combination of Wilson coefficients given by fN þ fV;N1 ,
under the assumption that proton and neutron couplings are
identical.
Based on the previous discussion we propose the

following decomposition for the WIMP-nucleus differ-
ential cross section:

dσSIχN
dq2

¼ ζ2

4πv2

���fMþ ðq2ÞFMþ ðq2Þ þ fM− ðq2ÞFM
− ðq2Þ

þ q2

2m2
N
½fΦ00

þ FΦ00
þ ðq2Þ þ fΦ

00
− FΦ00

− ðq2Þ�

þ fπF πðq2Þ þ fθπF θ
πðq2Þ

���2; ð44Þ

where

fM� ðq2Þ ¼ 1

2

�
fp � fn − q2ð _fp � _fnÞ

þ fV;p1 � fV;n1 − q2ð _fV;p1 � _fV;n1 Þ

−
q2

4m2
N
ðfV;p2 � fV;n2 Þ

�
;

fΦ
00

� ¼ 1

2
ðfV;p2 � fV;n2 Þ: ð45Þ

The nuclear M responses in Eq. (44) are normalized to

FMþ ð0Þ ¼ A; FM
− ð0Þ ¼ Z − N; ð46Þ

so that FMþ ðq2Þ coincides with the standard SI response
F SIðq2Þ in Eq. (11), and at vanishing momentum transfer is
given by the combination of couplings that determines the
single-nucleon cross section, see Eq. (43). In addition,
FM

− ðq2Þ provides the corresponding isovector piece,

HOFERICHTER, KLOS, MENÉNDEZ, and SCHWENK PHYSICAL REVIEW D 94, 063505 (2016)

063505-10



FΦ00
� ðq2Þ is generated by the O3 operator in the vector

channel, and F πðq2Þ and F θ
πðq2Þ represent the two-body-

current contributions. It is this decomposition in Eq. (44)
that underlies the analysis strategy discussed in Sec. II. The
nuclear response functions FM

� ðq2Þ, FΦ00
� ðq2Þ, F πðq2Þ, and

F θ
πðq2Þ are the subject of Secs. IV and V, where simple

parametrizations are provided.
In Eq. (44) we used the interference pattern for the one-

body pieces found in Refs. [26,28] for L ¼ 0 multipoles,
and extended it to include the two-body part. We assume
this additional interference because the two-body terms
come from a scalar operator with the same symmetry
properties under parity and time reversal asO1 andO3, and
because these terms are independent of the WIMP spin Sχ

(interference terms vanish if they are linear in Sχ [26]).
Therefore, Eq. (44) neglects higher multipoles L ¼ 2.
These are only nonvanishing for 131Xe (with a J ¼ 3=2
ground state), but even in this case they are very small and
not coherent, as shown in Ref. [40]. An expression similar
to Eq. (44), only replacing the nuclear response functions
F�, F π , F θ

π associated with L ¼ 0 multipoles by the
corresponding nuclear responses ~F�, ~F π , ~F θ

π for L ¼ 2
can be added to the differential WIMP-nucleus cross
section above.
In order to justify Eq. (44) we can consider the more

general differential cross section which accommodates the
contributions from all the NREFToperators that give rise to
coherent or quasicoherent nuclear responses. This involves
the additional operators

O5 ¼ iSχ · ðq × v⊥Þ; O8 ¼ Sχ · v⊥; O11 ¼ iSχ · q;

ð47Þ
which generate a nuclear M response [26,28]. In this case,
the generalized cross section reads

dσSIχN
dq2

¼ ζ2

4πv2

�����X
I¼�

½ξO1
fO1

I ðq2ÞFM
I ðq2Þ

þ ξO3
fO3

I ðq2ÞFΦ00
I ðq2Þ�

þ ξπfπF πðq2Þ þ ξθπfθπF θ
πðq2Þ

����2

þ
X

i¼5;8;11

����X
I¼�

ξOi
fOi
I FM

I ðq2Þ
����2
�
: ð48Þ

The separation into kinematics ξOi
, nucleon form factors

fOi
� , and nuclear responses F ðq2Þ is chosen in such a way

that the form factors coincide with fN and fV;N1 as defined
in Secs. III B and III C. The form of the ξOi

, which set the
scale for the O5, O8, and O11 contributions, originates in
the NR expansion of the effective operator to which they
first contribute: the vector-vector, axial-vector–vector, and
pseudoscalar-scalar channels, respectively [37]

MVV
1;NRðO5Þ ¼ fV;N1 ðtÞ μN

mN

1

mχ
O5;

MAV
1;NRðO8Þ ¼ 2fV;N1 ðtÞO8;

MPS
1;NRðO11Þ ¼ −fNðtÞ

1

mχ
O11; ð49Þ

together with the operator multipole decomposition
[26,28]. Altogether this leads to

ξO1
¼ ξπ ¼ ξθπ ¼ 1;

ξO3
¼ q2

2m2
N
;

ξO5
¼ μN jqjjv⊥T j

2mχmN
;

ξO8
¼ jv⊥T j;

ξO11
¼ −

jqj
2mχ

; ð50Þ

with the corresponding form factors

fO1

� ðq2Þ ¼ fM� ðq2Þ;
fO3

� ðq2Þ ¼ fΦ
00

� ;

fO5

� ¼ fO8

� ¼ 1

2
½fV;p1 � fV;n1 �;

fO11

� ¼ 1

2
½fp � fn�; ð51Þ

where for the operators in Eq. (47) only the leading term
has been listed. The form factors for the O5;8;11 terms can
be expressed in terms of the previously defined quantities
fN and fV;N1 , since they first appear in the NR expansion of
the effective operators in Eq. (13) with scalar and vector
nucleon interactions, in a similar way as O1 and O3.
We note that Eq. (48) shows that the O5;8;11 operators do

not interfere with O1 or O3 [26,28]. This is because
contrary to O1 and O3, the operators O5, O8, and O11

are linear in the WIMP spin Sχ , and the corresponding
interference terms vanish after averaging over WIMP spin
projections. In addition, the kinematical factors imply that
the contributions ofO5;8;11 are suppressed by jv⊥T j or 1=mχ.
These two properties are crucial for the O3 operator being
the main one-body correction to the standard SI analyses,
as anticipated in Eq. (44). In Sec. IV we show this explicitly
by studying the one-body structure factors for xenon
isotopes.

IV. ONE-BODY CURRENTS

We calculate the structure factors as in our previous work
[36,38,40], by performing large-scale shell-model calcu-
lations of all stable xenon isotopes in a valence space
comprising the 0g7=2, 1d5=2, 1d3=2, 2s1=2, and 0h11=2 (nlj)
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orbitals for both neutrons and protons, with n the radial
quantum number, l the orbital angular momentum in
spectroscopic notation, and j the total angular momentum.
Our calculations therefore assume an isospin symmetric
100Sn core. For 132Xe, 134Xe, and 136Xe exact diagonaliza-
tions are obtained in this valence space, while for the
remaining isotopes some truncations, which should not
significantly affect the nuclear ground states, are needed to
keep the matrix dimensions tractable, as discussed in
Refs. [36,40]. We use the shell-model interaction
GCN5082 [83,84], which has also been used in neutrino-
less double-beta decay calculations of 136Xe [83,84]. The
low-energy excitation spectra of all isotopes are very well
reproduced [36,40]. The nuclear-structure calculations
have been performed with the shell-model code
ANTOINE [85,86].
The phenomenological nature of the shell-model inter-

action used makes it difficult to estimate the theoretical
uncertainties associated with the nuclear-structure calcula-
tions. Similarly, the systematic uncertainty due to the
truncations needed for some isotopes is challenging to
evaluate. It will be possible to address these aspects with
calculations based on ChEFT interactions, which provide

natural diagnostics to estimate nuclear-structure
uncertainties [87–90]. In the meantime, one measure for
thereliabilityof thecalculationcanbeobtainedbycomparing
thepredictedexcitationspectrawith theexperimental results.
With the calculated xenon ground states we obtain all

one-body nuclear responses needed in Eq. (44). The results,
summarized in Tables IV and V, are presented in terms
of the dimensionless parameter u ¼ q2b2=2, where
b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mNω
p

is the harmonic-oscillator length and
ℏω ¼ ð45A−1=3 − 25A−2=3Þ MeV. The nuclear response
functions leading to the structure factors are fit to the form

F ðuÞ ¼ e−
u
2

Xm
i¼0

ciui; ð52Þ

with m ¼ 5 for FM
� , m ¼ 4 for FΦ00

� , and fixed coefficients
c0 ¼ A and c0 ¼ Z − N for FMþ and FM

− , respectively. The
form of the fit function follows the analytic solution of the
transition operators evaluated in the harmonic-oscillator
basis [91,92].
The isoscalar nuclearM operator has been known to lead

to a coherent contribution from all nucleons for a long time
(at zero momentum transfer) [22]. This justifies that the
nuclear response FMþ associated with theO1 operator is the

TABLE IV. Spin/parity JΠ of the nuclear ground states, harmonic-oscillator length b, and fit coefficients for the nuclear response
functions FM

� and FΦ00
� . The fit functions are FM

� ðuÞ ¼ e−
u
2

P
5
i¼0 c

M�
i ui (with c0 ¼ A and c0 ¼ Z − N, respectively) and

FΦ00
� ðuÞ ¼ e−

u
2

P
4
i¼0 c

Φ00�
i ui, with u ¼ q2b2=2. These forms correspond to the analytical solution in the harmonic-oscillator basis

[91,92]. For the L ¼ 2 multipoles in 131Xe, see Table V.

Isotope 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe 136Xe
JΠ 0þ 1=2þ 0þ 3=2þ 0þ 0þ 0þ

b [fm] 2.2847 2.2873 2.2899 2.2925 2.2950 2.3001 2.3051

cMþ
1

−126.455 −128.09 −129.753 −131.26 −132.835 −135.861 −138.787
cMþ
2

35.82 36.4367 37.2381 37.8232 38.4665 39.6872 40.9048
cMþ
3

−3.669 91 −3.753 17 −3.892 91 −3.971 71 −4.069 99 −4.24713 −4.419 84
cMþ
4

0.125 062 0.129 553 0.139 778 0.142 995 0.149 636 0.159 053 0.165 388
cMþ
5

−5.637 31 × 10−4 −6.558 16 × 10−4 −9.300 32 × 10−4 −9.129 55 × 10−4 −0.001 114 63 −0.001 257 24 −0.001 092 11

cM−
1

29.0588 30.6854 32.2019 33.7021 35.253 38.2701 41.2081
cM−
2

−11.7104 −12.3687 −13.1152 −13.7433 −14.4437 −15.773 −17.0848
cM−
3

1.684 47 1.779 28 1.907 75 2.000 31 2.113 05 2.320 61 2.526 35
cM−
4

−0.082 004 4 −0.086 875 4 −0.094 818 4 −0.099 136 4 −0.105 689 −0.116 557 −0.126 86
cM−
5 6.657 81 × 10−4 7.394 74 × 10−4 8.479 75 × 10−4 8.606 86 × 10−4 9.613 44 × 10−4 0.001 066 93 0.001 109 65

cΦ
00þ

0
−25.211 −26.1264 −27.7106 −28.0443 −28.7972 −29.5095 −29.8571

cΦ
00þ

1
17.592 18.4401 19.7108 20.0888 20.7751 21.5578 22.0402

cΦ
00þ

2
−3.464 66 −3.646 69 −3.858 05 −3.949 34 −4.0995 −4.273 08 −4.370 33

cΦ
00þ

3
0.224 722 0.239 379 0.252 667 0.260 624 0.272 865 0.287 393 0.296 134

cΦ
00þ

4
−0.003 5331 6 −0.003 997 79 −0.004 442 09 −0.004 688 46 −0.005 075 27 −0.005 554 37 −0.005 968 4

cΦ
00−

0
3.896 29 5.470 22 6.285 19 6.905 42 7.931 45 9.3351 10.1433

cΦ
00−

1
−4.731 63 −5.969 63 −6.638 42 −7.179 62 −8.010 86 −9.202 79 −9.961 23

cΦ
00−

2
1.484 89 1.7533 1.854 06 1.972 17 2.128 17 2.354 89 2.487 84

cΦ
00−

3
−0.140 203 −0.160 094 −0.166 079 −0.175 248 −0.186 148 −0.202 364 −0.212 062

cΦ
00−

4
0.003 447 65 0.003 879 83 0.004 134 53 0.004 376 13 0.004 698 87 0.005 194 63 0.005 596 88
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only one considered in most SI dark-matter direct-detection
analyses [2–10].
In turn, the nuclear Φ00 operator, at zero momentum

transfer, is proportional to the sum over all nucleons of the
single-nucleon spin-orbit (l · s) operator [26,28]. This
implies that nucleons in an orbital with spin parallel to
the angular momentum, j ¼ lþ 1=2, contribute coherently.
Similarly, the nucleons in the spin-orbit partner j ¼ l − 1=2
also contribute coherently, in such a way that when both
spin-orbit partners are filled their contributions exactly
cancel. However, in heavy nuclei the spin-orbit splitting is
important, with j ¼ lþ 1=2 orbitals having significantly
lower energies than their spin-orbit partners. In the case of
xenon isotopes this implies that the proton 0g9=2 and the
neutron 0h11=2 orbitals are mostly filled (the latter espe-
cially for the more neutron-rich isotopes), with the spin-
orbit partners, proton 0g7=2 and neutron 0h9=2 orbitals,

mostly empty. Therefore the nuclear Φ00 response, FΦ00
,

shows a quasicoherent behavior [26,28], with the contribu-
tions of about 20 nucleons adding coherently in the isoscalar
case. The total response is dominated by neutrons because
the l ¼ 5, 0h11=2 orbital accommodates 12 nucleons, com-
pared to ten nucleons for the l ¼ 4, 0g9=2 orbital (the
expectation value of the single-particle spin-orbit operator
is proportional to l for j ¼ lþ 1=2 orbitals). The nuclear
response functions are larger for the most neutron-rich
isotopes with more neutrons in the 0h11=2 orbital.
The quasicoherent nuclear response FΦ00

is generated by
the O3 operator. In addition, in the total structure factor
there is an interference term between this contribution and
the FM term from the dominant O1 operator, as indicated
by Eq. (44) [26,28]. This interference is important because,
as discussed in Sec. III D, there is no other interference term
coming from one-body operators. Altogether, the nuclear
response FΦ00

generates the leading one-body-operator
corrections to the structure factors usually considered in
SI analyses.
This is illustrated in Figs. 3 and 4, which compare for the

isoscalar and isovector cases, respectively, the structure
factors associated with the coherent and quasicoherent
nuclear M and Φ00 responses generated by the operators
O1, O3, O11, O8, and O5. In this comparison the values of
the associated nucleon couplings and form factors are not
included, so some caution needs to be taken in the
interpretation of the figures due to differences in the
combination of the Wilson coefficients for the different
contributions. However, the results are shown on a loga-
rithmic scale, and the main features in Figs. 3 and 4 should
still be valid once all corresponding couplings and form
factors are included.
Figure 3 shows that the standard SI structure factor

proportional to A2, originating from the O1 operator,
receives the leading one-body correction from the inter-
ference with the FΦ00

response due toO3. This correction is
only of the order of 1 per mil because FΦ00

comes with a
kinematical factor ξO3

¼ q2=2m2
N. Consequently, the inter-

ference term vanishes at jqj ¼ 0.
The next contribution in this hierarchy comes from the

nuclearM response originating from the O11 operator. Due

TABLE V. Fit coefficients for the L ¼ 2 multipoles in 131Xe, parametrized by ~FM
� ðuÞ ¼ e−

u
2

P
5
i¼1 ~ciu

i, ~FΦ00
� ðuÞ ¼ e−

u
2

P
4
i¼0 ~ciu

i.
Notation and oscillator length are as in Table IV.

Response ~c1 ~c2 ~c3 ~c4 ~c5

~FM
þ 2.175 16 −1.253 86 0.214 567 −0.011 096 4 7.990 74 × 10−5

~FM
− −0.344 057 0.208 632 −0.048 112 0.003 515 88 −8.145 09 × 10−5

~c0 ~c1 ~c2 ~c3 ~c4

~FΦ00
þ 0.498 456 −0.028 914 9 −0.016 037 6 −7.718 42 × 10−5 4.590 07 × 10−4

~FΦ00
− −0.751 871 1.068 26 −0.227 403 0.009 636 27 −4.145 55 × 10−4

FIG. 3. Comparison of the isoscalar structure factors associated
with the coherent and quasicoherent nuclearM and Φ00 responses.
The individual contributions corresponding to the O1, O3, O11,

O8, andO5 operators, jξOi
FM=Φ00

þ ðq2Þj2, and the absolute value of
the O1–O3 interference term, j2ξO1

ξO3
FMþ ðq2ÞFΦ00

þ ðq2Þj, are
shown. For the evaluation of the structure factors associated
with O11, O8, and O5 we take the relative WIMP velocity jv⊥T j ¼
10−3 and WIMP mass mχ ¼ 2 GeV, roughly the minimal mass
probed in xenon direct-detection experiments. The results,
representative for all stable xenon isotopes, are shown for the
most abundant 132Xe.
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to the associated kinematical factor ξO11
¼ jqj=mχ, this

contribution also vanishes at jqj ¼ 0, and becomes less
important for heavier WIMPs. Figure 3 shows the results
for mχ ¼ 2 GeV, roughly the smallest WIMP mass probed
by xenon direct-detection experiments. For heavier WIMPs
the structure factor associated with the O11 operator is
reduced, and for mχ ≈ 50 GeV this structure factor is
comparable to the one corresponding to the O3 operator,
originating solely from the nuclearFΦ00

response. The latter
structure factor is suppressed by 3 additional orders of
magnitude compared to the leading correction to the
standard SI structure factor, the O1–O3 interference term.
Finally, the structure factors coming from the nuclear M

responses associated with theO8 andO5 operators are even
smaller, because they are suppressed by the very small
WIMP velocity jv⊥T j ≈ 10−3 in their kinematical factors, see
Eq. (50). Note that, as emphasized in Refs. [26,28], the O3

operator, similarly to O8 and O5, involves the velocity
operator v⊥, but forO3 the associated nuclear operator does
not depend on the WIMP velocity with respect to the center
of mass, v⊥T , but on the nucleon’s velocity operator, which
is part of the Φ00 operator and generates a milder suppres-
sion factor jqj=mN.
The isovector results shown in Fig. 4 are very similar to

the isoscalar case. The only difference is that all structure
factors are smaller because in this case the contributions of
protons and neutrons partially cancel.
Similarly to this generalized SI analysis, the standard SD

structure factor will receive additional contributions
beyond the O4 and O6 operators. In particular, the O3,
O7, O9, and O10 operators contribute to Σ0 or Σ00, and O5,
O8 to the additional Δ response. In addition there will be
O4–O5 and O8–O9 Σ0–Δ interference terms [26]. All these
additional contributions vanish at jqj ¼ 0, except for theO7

response which is suppressed by the WIMP velocity

jv⊥T j ≈ 10−3. Note also that only O5 interferes with the
dominant SD response, but this operator only appears at
higher (fourth) order in ChEFT [37]. Likewise, the ~Φ0

response receives contributions from higher ChEFT orders
only. Therefore these corrections to SD scattering are
expected to be small. We defer a detailed analysis of
generalized SD scattering to future work.

V. TWO-BODY CURRENTS

As discussed in Sec. IV the shell-model calculations are
based on a core, while the many-body problem is explicitly
solved for nucleons close to the Fermi level in the valence
space. This generally leads to very good agreement to
experiment for spectroscopy [86], including the isotopes
relevant for dark-matter direct detection [38,40].
However, for the standard SI scattering (nuclear M

response) all nucleons contribute coherently, so that the
bulk of the nuclear response is in fact generated by the inert
core. A similar argument can be made for the quasicoherent
Φ00 response in xenon, where the core protons in the 0g9=2
orbital are responsible for about half of the total response.
The relatively small sensitivity of these nuclear responses
to the nuclear structure was discussed in Ref. [40], and
justifies the use of the simple Helm form factor [see
Eq. (12)] in the standard SI analysis.
In addition, the nuclear response can be calculated in a

noninteracting shell-model picture, where only the lowest-
lying orbitals are filled with particles. Figure 5 shows
the FMþ ðq2Þ response for 129Xe, using a noninteracting
shell model and single-particle orbitals with and without j-
coupling (but with occupation numbers from the interacting
shell model, see Table VI). The agreement with the full
shell-model calculation is very good, showing that the
dependence on correlations among the valence nucleons as

FIG. 4. Same as Fig. 3 but for the isovector case. The isovector
individual structure factors jξOi

FM=Φ00
− ðq2Þj2, and the absolute

value of the O1–O3 interference term j2ξO1
ξO3

FM
− ðq2ÞFΦ00

− ðq2Þj
are shown.

FIG. 5. FMþ ðq2Þ for 129Xe obtained from three different
approximations: shell-model calculation from [40] (black dots),
noninteracting shell model with j-coupling (red solid line), and in
nl basis (blue dashed line).
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well as j-coupling effects are small for this response.
Likewise, the effect of using naive or shell-model-based
occupation numbers would be hardly visible in the figure.
In view of these findings, we evaluate the two-body

matrix elements of Eq. (38) by

F πðq2Þ ¼ 1

2

X
occ

hN1N2jð1 − P12Þj
1

fπ
MSS

2;NRjN1N2i;

jN1N2i ¼ jn1l1m1σ1τ1n2l2m2σ2τ2i; ð53Þ

and analogously for F θ
πðq2Þ, where the sum runs over

occupied states (e.g., for 129Xe according to Table VI) and
P12 ¼ PkPσPτ is the exchange operator with

Pσ ¼
1

2
ð1þ σ1 · σ2Þ; Pτ ¼

1

2
ð1þ τ1 · τ2Þ; ð54Þ

and Pk exchanges the momenta. Summing over spins σi
and evaluating the matrix element in Eq. (53) in the
harmonic-oscillator basis, we obtain

F πðq2Þ ¼ Mπ

2

�
gA
2Fπ

�
2 X
n1l1n2l2

X
τ1τ2

Z
d3p1d3p2d3p0

1d
3p0

2

ð2πÞ6

× Rn1l1ðjp0
1jÞRn2l2ðjp0

2jÞRn1l1ðjp1jÞRn2l2ðjp2jÞ

×
ð2l1 þ 1Þð2l2 þ 1Þ

16π2
Pl1ðp̂0

1 · p̂1ÞPl2ðp̂0
2 · p̂2Þ

× ð2πÞ3δð3Þðp1 þ p2 − p0
1 − p0

2 − qÞ

× ð3 − τ1 · τ2Þ
qex
1 · qex

2

ððqex
1 Þ2 þM2

πÞððqex
2 Þ2 þM2

πÞ
;

ð55Þ

with

qex
1 ¼ p0

2 − p1; qex
2 ¼ p0

1 − p2; q ¼ −qex
1 − qex

2 ;

ð56Þ
and radial wave functions

RnlðkÞ ¼ b3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n!
Γðnþ lþ 3=2Þ

s
ðbkÞle−ðbkÞ2

2 Llþ1=2
n ½ðbkÞ2�:

ð57Þ
The expression for F θ

πðq2Þ is analogous. The sum over m1,
m2 has been performed using the addition theorem for the
spherical harmonics, assuming an equal filling of all
orbitals with different m projections. Apart from the
momentum integrals, which can be performed numerically
for given fn1l1n2l2g, only the isospin part of Eq. (55) needs
to be evaluated. This leads to

TABLE VI. Relative occupation numbers nτnl for the nl orbitals
in 129Xe and maximum occupation including spin degeneracy.
For orbitals in the valence space, the results of the shell-model
diagonalization are used.

n l Maximum occupation npnl nnnl

0 0 2 1 1
0 1 6 1 1
0 2 10 1 1
1 0 2 1 1
0 3 14 1 1
1 1 6 1 1
0 4 18 0.68 0.99
1 2 10 0.16 0.79
2 0 2 0.06 0.58
0 5 22 0.01 0.37

TABLE VII. Spin/parity JΠ of the nuclear ground states, harmonic-oscillator length b, and fit coefficients for the nuclear response
functions F π and F θ

π , with fit functions F πðuÞ ¼ e−
u
2

P
5
i¼0 c

π
i u

i, F θ
πðuÞ ¼ e−

u
2

P
5
i¼0 c

θ
i u

i, and u ¼ q2b2=2.

Isotope 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe 136Xe
JΠ 0þ 1=2þ 0þ 3=2þ 0þ 0þ 0þ

b [fm] 2.2847 2.2873 2.2899 2.2925 2.2950 2.3001 2.3051

cπ0 −2.42605 −2.44233 −2.45715 −2.47546 −2.49308 −2.52965 −2.56752
cπ1 2.018 83 2.036 93 2.063 2.086 43 2.110 87 2.155 56 2.196 45
cπ2 −0.576294 −0.579809 −0.594377 −0.602812 −0.612728 −0.62789 −0.642445
cπ3 0.077 613 0.077 520 1 0.081 030 7 0.082 407 2 0.084 465 2 0.086 328 8 0.088 341 1
cπ4 −0.00519097 −0.00512894 −0.0055788 −0.00570646 −0.00597987 −0.00602651 −0.00611004
cπ5 1.390 81 × 10−4 1.353 27 × 10−4 1.592 49 × 10−4 1.653 35 × 10−4 1.821 98 × 10−4 1.780 02 × 10−4 1.750 76 × 10−4

cθ0 −24.876 8 −25.039 −25.2034 −25.3895 −25.5691 −25.9446 −26.3396
cθ1 18.5427 18.8087 18.9813 19.2032 19.4359 19.8659 20.248
cθ2 −4.815 14 −4.901 61 −4.967 98 −5.035 73 −5.115 92 −5.2492 −5.383 23
cθ3 0.631 787 0.644 029 0.650 297 0.658 108 0.670 645 0.683 946 0.707 54
cθ4 −0.047 776 1 −0.048 890 6 −0.048 337 7 −0.048 736 2 −0.050 024 3 −0.049 659 −0.052 296 9
cθ5 0.001 714 69 0.001 772 9 0.001 658 85 0.001 673 17 0.001 747 03 0.001 635 41 0.001 781
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X
n1l1n2l2

X
τ1τ2

ð3 − τ1 · τ2Þ

¼ 2
X

n1l1n2l2

½npn1l1n
p
n2l2

þ nnn1l1n
n
n2l2

þ 4npn1l1n
n
n2l2

�; ð58Þ

where the nτnl denote the relative occupation numbers of a
given orbital. In Table VI we list these occupation numbers
for the case of 129Xe used in the calculation of F π and F θ

π

as well as the nl-basis calculation shown in Fig. 5. For
orbitals in the valence space of the shell-model calcula-
tions, the result of the full diagonalization is used, even
though the sensitivity to this is minor.
The results for F π and F θ

π can be fit with the same
functional form as given in Eq. (52) for the one-body case,
see Table VII for the corresponding coefficients. Keeping
terms up tom ¼ 5 provides the best description also for the
two-body terms. This form can be expected based on
normal-ordering arguments: after the summation over the
second nucleon, the result only depends on p1, p0

1, and σ1,
so that the corresponding operators depend on q, v⊥, and
SN , and can be written in terms of O1, O3, as well as other
operators subleading in our analysis. Then the summation
over spins performed before Eq. (55) eliminates the
dependence on O3 (as well as higher multipoles).
Therefore, apart from suppressed contributions, we expect
the normal ordering to reduce the two-body matrix element
to a one-body matrix element of O1, with corresponding fit
function as given in Eq. (52) with m ¼ 5.
We note that the equal-filling approximation picks out

the L ¼ 0 part of the response, as required for the
decomposition of the SI structure factor given in
Eq. (44). The L ¼ 2 multipole contribution, only relevant
for 131Xe, would only appear as a correction to the strongly
suppressed one-body L ¼ 2 structure factor, which itself
enters below the O11 curve in Fig. 3. Therefore it can be
safely neglected.
The F πð0Þ contribution has been considered before in

Refs. [34,35,39], based on results for closed-shell nuclei
and represented in terms of a fit linear in A. In our
conventions, the results for A ¼ 132 are F πð0Þ ¼
−2.4ð0.8Þ [34], F πð0Þ ¼ −1.4 [35], and F πð0Þ ¼ −1.9
[39], in reasonable agreement with our value. The remain-
ing differences can be traced back to our improved nuclear
structure calculation and additional corrections from mod-
eling nuclear short-range correlations [93] included in
Refs. [34,35,39]. The latter are not dictated by ChEFT
in this form, and thus not present in our calculation. This
strategy is in agreement with findings for nuclear matrix
elements of neutrinoless double-beta decay [94,95], where
the effects of short-range correlations are small after the
momentum dependence of the one-body currents is
included.
The consequences for the structure factors are illustrated

in Fig. 6, an extension of Fig. 3 that includes the effect of
F πðq2Þ and F θ

πðq2Þ as well as the interference terms with

the isoscalar one-body operators. Figure 6 shows that the
two-body contributions constitute the leading correction to
the O1 structure factor. In particular, F θ

πð0Þ surpasses
F πð0Þ by an order of magnitude, to end up at a similar
level as the isovector one-body contribution. Equation (38)
illustrates the reason for this enhancement: the factor 4
from the momentum-independent term and the fact that the
integral over −q1 · q2=M2

π adds an additional factor about 3
combine to the final factor of 10. It is also important to note
that, in contrast to the structure factor associated with O3

(including its interference with O1) the two-body structure
factors do not vanish at jqj ¼ 0.
Even though the main hierarchy suggested by Fig. 6

should be relatively general, we stress that this comparison
assumes that the nucleon form factors are all of roughly the
same size, and that additional relative suppressions and
enhancements may occur, as for instance indicated by the
simple models explored in Sec. VI C, where the relative
size of both two-body terms is seen to be similar due to the
large single-nucleon matrix element that compensates for
the larger F θ

πð0Þ.
Also, when comparing the hierarchy of isoscalar and

isovector responses, one should keep in mind that for
theories with an approximate isospin symmetry, there could
be an additional suppression hidden, e.g., in fp − fn. In
either case, the dominant contribution will actually be
generated by the interference term j2FMþ ðq2ÞFM

− ðq2Þj with
the isoscalar response. In addition to the hierarchies studied
in Figs. 3, 4, and 6, there are also q2-dependent corrections
to the one-body form factors, which we address in the
following section.

FIG. 6. Same as Fig. 3, but including the two-body-current

contribution jξðθÞπ F ðθÞ
π ðq2Þj2 as well as the interference terms

j2ξO1
ξðθÞπ FMþ ðq2ÞF ðθÞ

π ðq2Þj and j2ξO3
ξðθÞπ FΦ00

þ ðq2ÞF ðθÞ
π ðq2Þj. Solid

(dashed) lines refer to F π (F θ
π). The green line indicates the

interference j2ξπξθπF πðq2ÞF θ
πðq2Þj of the two-body terms. The

responses associated withO3,O5,O8, andO11 have been omitted
for clarity.
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VI. PARAMETERS IN GENERAL
SPIN-INDEPENDENT SCATTERING

The hierarchy of the one- and two-body contributions
discussed in Secs. IV and V, combined with the general
expression for the structure factor in Eq. (44), determines the
number of independent parameters in our analysis of general
SI scattering. First, however, we need to quantify the
momentum-dependent corrections to the one-body form
factors reviewed in Secs. III B and III C, including the scalar
radii, anomalous magnetic moments, as well as strangeness
radii and moments. We refer generically to all these
contributions as radius corrections. They are evaluated in
Sec. VI A. In Sec. VI B we then discuss the number of
independent parameters appearing in the analysis of general
SI scattering, and as examples, in Sec. VI Cwe focus on two
simple cases: the case of scalar interactions with u and d
quarks only, and purely gluonic couplings.

A. Radius corrections

The chiral counting that underlies the decomposition in
Eqs. (44) and (45) implies that radius corrections are
expected to contribute at a similar level as the leading
two-body currents. Moreover, since only the coefficients of
FM

� ðq2Þ are affected, these corrections concern the
response of the O1 operator, being coherently enhanced.
By definition, radius corrections vanish for vanishing
momentum transfer, but they could become relevant for
larger q2 values. The exact shape depends on the under-
lying BSM physics as well as on their relative size
compared to the leading nucleon form factor, e.g., as seen
in Eq. (31), in the case of CVV

s the leading contribution
vanishes and radius corrections generate all sensitivity to
this Wilson coefficient.
In order to estimate the generic size of radius corrections

in a simple way, we factor out the nucleon mass as a

representative hadronic scale, leading to a typical q2=m2
N

suppression in the associated structure factor. This is
illustrated in Fig. 7 by means of the interference term of
radius corrections with O1 (again assuming that the
remaining coefficients are both equal to 1). As expected,
the correction is irrelevant at jqj ¼ 0, but it is one of the
largest contributions for finite jqj, only second to the O1–
two-body interference and jF θ

πj2 (and thus also below the
interference with the isovector O1 operator not shown in
Fig. 7). In particular Fig. 7 shows that the radius corrections
are expected to be more important than the interference of
the standard SI response with the new NREFToperatorO3.
This estimate supports the expectation from ChEFT that
radius corrections need to be included on the same footing
as higher-order momentum-dependent operators.

B. Independent parameters

Within the formalism put forward in Sec. III, the
decomposition of the WIMP-nucleus cross section in
Eq. (44) therefore involves eight parameters that can be
extracted from the dependence on Z, N, and jqj, i.e., from
direct-detection measurement on different nuclear targets.
These are
(1) two (isoscalar and isovector) leading coefficients of

the M response

cM� ¼ ζ

2
½fp � fn þ fV;p1 � fV;n1 �; ð59Þ

(2) two coefficients of the two-body responses

cπ ¼ ζfπ; cθπ ¼ ζfθπ; ð60Þ

(3) two (isoscalar and isovector) radius corrections to
the M response

_cM� ¼ ζm2
N

2

�
_fp � _fn þ _fV;p1 � _fV;n1

þ 1

4m2
N
ðfV;p2 � fV;n2 Þ

�
; ð61Þ

(3) two (isoscalar and isovector) coefficients of the Φ00
response

cΦ
00

� ¼ ζ

2
ðfV;p2 � fV;n2 Þ: ð62Þ

These eight parameters are not all independent, since they
map onto the seven Wilson coefficients CSS

q , C0S
g , and CVV

q

(with q ¼ u, d, s) for a Dirac WIMP, which reduces to four
in the Majorana case where the CVV

q vanish. Indeed, if

FIG. 7. Same as Fig. 6, but including the generic size of radius
corrections (black dashed line), as discussed in the text. Note that
the O3–2b interference terms have been dropped.
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higher orders in the momentum expansion or η-exchange
currents were considered, the number of parameters in the
decomposition of the nucleon form factors and two-body
currents would be even larger, so that in general a correlated
analysis is called for.
The discussion of hierarchies in terms of Figs. 3, 4, 6,

and 7 also shows that if the minimal extension of the
standard SI response is sought, the analysis should include
cM� , cπ , and cθπ, extending the standard formalism by the
leading isovector and two-body responses. These findings
provide the basis for the discussion of the general SI
analysis strategy for direct-detection experiments formu-
lated in Sec. II.

C. Examples: Scalar interactions with u and d quarks
and purely gluonic couplings

Further simplifications can occur if specific assumptions
are made about the Wilson coefficients. As an example, we
first consider the case of purely scalar interactions,
CVV
q ¼ 0, with u and d quarks only, i.e., with

CSS
s ¼ C0S

g ¼ 0. In this case, the nonvanishing hadronic
coefficients in Eq. (45) become related according to

fp þ fn
2

¼ σπN
Mπ

fπ ¼ 0.43ð3Þfπ;
fp − fn

2
¼ −

2Bc5ðmd −muÞ
ξMπ

~fπ ¼ 0.020ð5Þ ~fπ;
_fp þ _fn

2
¼ _σ

Mπ
fπ ¼ 1.72ð6Þm−2

N fπ: ð63Þ

Therefore, there are only two linearly independent param-
eters, namely the isoscalar and the isovector coupling to the
nucleon (fp � fn or equivalently fπ and ~fπ); the other
parameters, the coupling to the pion and the nucleon radius
corrections are then fully determined. To calculate the
coefficients in the above equations, we have used
σπN ¼ 59.1ð3.5Þ MeV from Ref. [55], _σ and ξ as given
in Sec. III B, and Bc5ðmd −muÞ ¼ −0.51ð8Þ MeV as
extracted from the electromagnetic proton-neutron
mass difference ðmp −mnÞem ¼ 0.76ð30Þ MeV via the
Cottingham formula [96–98] (and consistent with lattice
determinations [99]). The new hadronic coefficient (in
addition to the standard SI analysis) is then given by

~fπ ¼
Mπ

Λ3
ðCSS

u fπu − CSS
d fπdÞ; ð64Þ

thus differing by the relative sign from fπ [see Eq. (27)].
According to Eq. (63), the isoscalar hadronic form factor
and its radius correction are of the same size as the two-
body coefficient fπ up to a factor of 2, while the isovector
contribution is further suppressed by an order of magnitude
(the size of such isospin-violating effects has been studied

in the context of simplified models in Ref. [100]), unless
this suppression in the hadronic input is balanced by ~fπ=fπ.
At jqj ¼ 0, the dominant correction to the standard SI

response is thus generated by the two-body current, a
reduction of the WIMP-nucleus cross section by about3

2
2fπ

fp þ fn

F πð0Þ
A

¼ −9%; ð65Þ

followed by the isovector contribution, which affects the
rate by

2
fp − fn
fp þ fn

Z − N
A

¼ −2%
~fπ
fπ

: ð66Þ

As a second example, it is also instructive to consider the
case of purely gluonic interactions, i.e., all Wilson coef-
ficients equal to zero apart from CS

g . In this case the relative
size of two-body contributions becomes

2
fπF πð0Þ þ fθπF θ

πð0Þ
fNA

¼ −2
Mπ

mN

2

27fNQ

F πð0Þ − F θ
πð0Þ

A
¼ −6%; ð67Þ

where the large numerical value of F θ
πð0Þ balances the

large coupling of the nucleon to the gluon operator to
produce an effect of similar magnitude as in Eq. (65).
These examples demonstrate that the hierarchy implied

by the nuclear structure factors themselves can be upset if
enhancements or suppressions in the coefficients, either the
nucleon matrix elements or the Wilson coefficients, are
present: in a similar way asF θ

π appears enhanced compared
to the scalar two-body response F π , but is compensated by
a large nucleon matrix element, the impact of the isovector
one-body response is suppressed by small isospin-breaking
effects in the nucleon couplings, see Eq. (63).
While the size of two-body corrections can be enhanced

by fine-tuning the one-body coefficients (the one-response-
at-a-time strategy put forward in Sec. II corresponds to the
case where the cancellation is complete), the special cases
in Eqs. (65)–(67) indicate the size of effects to be expected
in regions of parameter space where no such cancellations
of the leading contributions occur.
We stress that in the general case no interrelations such as

Eqs. (65) or (67) between the different form factors exist,
except for thosedictatedbyQCD,e.g.fV;N2 contributingboth

3The very large effects of up to 60% quoted in Ref. [34] rely on
a specific parameter choice r ≈ 1. For the example considered
here, this implies 2fπ=ðfp þ fnÞ ≈Mπ=ðmu þmdÞ ≈ 17, in con-
tradiction to Eq. (63). For realistic values of the hadronic
couplings the two-body corrections are of the expected size of
5%–10%, while enhancements are possible if cancellations in the
leading contribution occur.
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to FΦ00
� and to the radius correction to FM

� . Even in the very
special case of scalar interactions considered in Eq. (63) the
dependenceon theWilsoncoefficients fully factorizesonly if
fπ ¼ ~fπ is assumed, or if the isovector contribution is
neglected. In these extreme cases the limits on the scattering
rate immediately translate toa limitonthesingleparameterfπ
and thereby a fixed combination of CSS

u and CSS
d .

In general, direct-detection experiments are sensitive to
several independent combinations of Wilson coefficients,
whose determination therefore requires a correlated analy-
sis of different targets. Otherwise, simplified strategies such
as constraining one response at a time amount to consid-
ering slices through the parameter space of Wilson coef-
ficients at the hadronic scale. This information can then be
transferred to a given new-physics model, keeping in mind
the operator running and mixing to be applied when
translating the limits to BSM scales [46,101–104]. In the
interpretation of such limits one also needs to take into
account that not all coefficients are necessarily indepen-
dent, e.g., for the spin-1=2 case considered in this paper
eight parameters map onto only seven (four) Wilson
coefficients in the Dirac (Majorana) case.

VII. SUMMARY

We have presented a strategy for the analysis of general
SI WIMP scattering off nuclei, keeping all terms that lead
to a coherent contribution of nucleons in nuclei and appear
up to third order in the power counting of the WIMP-
nucleon interaction according to ChEFT. Up to dimension 7
in an effective Lagrangian for WIMP and Standard-Model
fields, scalar and vector interactions on the nucleon side can
give rise to coherent enhancements. Our analysis shows
that the leading corrections to the standard SI response are
the isovector counterpart and the coherent contribution of
WIMPs interacting with two nucleons (two-body currents).
For a more detailed analysis, the next corrections to be
included are momentum-dependent corrections to the

nucleon form factors as well as the quasicoherent response
associated with the nucleon spin-orbit operator. The latter
only contributes in the case of vector interactions.
Therefore, it could potentially be used as a tool to
experimentally discriminate between the scalar and vector
channels.
Overall, we have found that a generalized SI scattering

cross section including the dominant coherent corrections
depends on eight parameters (four in a minimal extension),
which in principle can be fixed by experiments performed
with different nuclear targets, and we have discussed how
to constrain these parameters in direct-detection experi-
ments. For the case of WIMPs scattering off xenon
isotopes, we have provided parametrizations of all relevant
one- and two-body nuclear responses based on state-of-the-
art nuclear shell-model calculations. These can be directly
used for a general SI analysis of direct-detection experi-
ments, considering, e.g., one response function at a time. In
particular, our results show that direct-detection experi-
ments are sensitive to additional BSM physics than the one
coupling constrained in present standard SI analyses, and
thus impose additional restrictions on the parameter space
of a given new-physics model.
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