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In standard cosmology, the growth of structure becomes significant following matter-radiation equality.
In nonthermal histories, where an effectively matter-dominated phase occurs due to scalar oscillations prior
to big bang nucleosynthesis, a new scale at smaller wavelengths appears in the matter power spectrum.
Density perturbations that enter the horizon during the early matter-dominated era (EMDE) grow linearly
with the scale factor prior to the onset of radiation domination, which leads to enhanced inhomogeneity on
small scales if dark matter (DM) thermally and kinetically decouples during the EMDE. The microhalos
that form from these enhanced perturbations significantly boost the self-annihilation rate for dark matter.
This has important implications for indirect detection experiments: the larger annihilation rate may result in
observable signals from dark matter candidates that are usually deemed untestable. As a proof of principle,
we consider binos in heavy supersymmetry with an intermediate extended Higgs sector and all other
superpartners decoupled. We find that these isolated binos, which lie under the neutrino floor, can account
for the dark matter relic density and decouple from the standard model early enough to preserve the
enhanced small-scale inhomogeneity generated during the EMDE. If early forming microhalos survive as
subhalos within larger microhalos, the resulting boost to the annihilation rate for bino dark matter near the
pseudoscalar resonance exceeds the upper limit established by Fermi-LAT’s observations of dwarf
spheroidal galaxies. These DM candidates motivate the N-body simulations required to eliminate
uncertainties in the microhalos’ internal structure by exemplifying how an EMDE can enable Fermi-
LAT to probe isolated dark matter.
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I. INTRODUCTION

One missing piece in our reconstruction of the history of
the Universe is the period between inflation and the onset of
big bang nucleosynthesis (BBN). When computing the
dark matter (DM) abundance predicted by a particular
extension of the standard model (SM), it is customary to
assume that the Universe was radiation dominated long
before BBN. However, deviations from radiation domina-
tion in the early Universe are required in order to generate
the primordial perturbations necessary to seed the growth
of large-scale structure, with cosmic inflation providing a
compelling explanation. This raises the following question:
when did the Universe become radiation dominated? Both
prolonged inflationary reheating and the existence of
gravitationally coupled scalars (moduli) provide indepen-
dent motivation that the Universe could have been matter
dominated until the time of BBN. In both situations,
oscillating scalar fields dominate the energy density of
the Universe, leading to an early matter-dominated era
(EMDE) prior to BBN [1]. If DM thermally decouples
during an EMDE, the relationship between its annihilation
cross section and its current abundance radically changes,
and particle physics models that predict too much DM in
standard thermal histories become viable [2,3].

The impact of an EMDE on the evolution of small-scale
structure provides hope of constraining these scenarios
[4–6]. The key point is that while matter perturbations only
grow logarithmically with the scale factor during radiation
domination, they grow linearly during an EMDE.
Consequently, perturbations that enter the horizon during
the EMDE experience an early stage of linear growth. If
DM decouples both thermally and kinetically prior to the
onset of radiation domination, this enhancement of the
small-scale matter power spectrum leads to the formation of
sub-Earth-mass microhalos that contain most of the DM at
high redshift. These microhalos are then the building
blocks of subsequent structure formation, and their pres-
ence in present-day halos enhances the DM annihilation
rate by several orders of magnitude. Depending on the
outcome of microhalo mergers, this boost to the annihila-
tion rate can be large enough to make these models
accessible to gamma-ray observations in spite of the
particles’ small annihilation cross sections [6].
Demanding that the dark matter thermally and kineti-

cally decouples prior during the EMDE and that its relic
abundance matches observations constrains both its anni-
hilation cross section and the strength of its interactions
with SM particles. The masses and annihilation cross
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sections of DM candidates that can generate observable
signals are even more restricted: if the DM particle
thermally decouples too long before the Universe becomes
radiation dominated, its annihilation rate is too small to be
observable even after applying the most optimistic esti-
mates of the boost factor generated by an enhanced
population of microhalos. Reference [6] established a list
of requirements that a hypothetical DM particle must
satisfy to generate both the observed DM density and a
detectable annihilation signal. In this paper, we identify
DM candidates in the context of supersymmetry that meet
these criteria and demonstrate that the boost to the
annihilation rate from an EMDE can bring these hitherto
untestable DM candidates squarely within the realm of
observation if at least some early forming microhalos
survive their accretion into larger microhalos. The existence
of these candidates motivates the computationally chal-
lenging N-body simulations that are required to conclu-
sively determine the microhalo boost factor and realize
these potential constraints on supersymmetric DM.
We focus on supersymmetric bino DM with mass mχ ∼

Oð100–500Þ GeV and with sfermions, gauginos, and
Higgsinos decoupled. To obtain boosted annihilation rates
that are within the realm of observation by Fermi-LAT, we
consider models with an intermediate extended Higgs
sector. The pseudoscalar Higgs boson A has mass
mA ∼OðmχÞ—Oð1200Þ GeV, and the bino DM annihi-
lates mainly through the s-channel. Spectra with heavy
supersymmetry and an intermediate Higgs sector have been
studied recently [7]. Apart from the usual reasons to study
split supersymmetry, these scenarios are increasingly moti-
vated by bounds on gluinos and charginos coming from
the LHC.
These binos exemplify how an EMDE can widen the

scope of viable and testable DM models. They have
annihilation cross sections that are suppressed by
Oð10−3–10−6Þ compared to the canonical cross section
for thermal weakly interacting massive particles and
scattering cross sections with atomic nuclei that are
typically under the neutrino floor. In standard thermal
cosmology, an isolated DM candidate like this overcloses
the Universe and its annihilation rate is too small to be
constrained by astronomical observations. In the nonther-
mal cosmology described above, however, such a candidate
can generate the observed DM density if its number density
is diluted by entropy production during the EMDE.
Moreover, its feeble scattering cross section with nuclei
ensures that the DM kinetically decouples early enough to
preserve the EMDE’s enhancement of small-scale inho-
mogeneity. If the microhalos that form at redshifts greater
than ∼100 survive within later-forming microhalos, the
resulting boost to the annihilation rate brings these isolated
DM models within the reach of current observations.
We begin in Sec. II by reviewing how an EMDE affects

the relic abundance and kinetic decoupling of dark matter.

In Sec. III, we describe the properties of the binos that
satisfy the criteria on the kinetic decoupling temperature
and the annihilation cross section required to generate the
observed DM density during an EMDE and a potentially
detectable annihilation signal. We present the results of our
scans of this parameter space in Sec. IV and identify DM
candidates that generate detectable annihilation signals
for different values of the microhalo boost factor. We
summarize our findings and discuss the outlook for
detecting isolated DM in Sec. V. We use natural units
(ℏ ¼ c ¼ kB ¼ 1) in all our expressions.

II. DARK MATTER DURING AN EMDE

During the EMDE, we assume that the energy density of
the Universe is dominated by an oscillating scalar field that
decays into relativistic particles. The scalar’s decay rate Γϕ

determines the reheat temperature TRH, which is the
temperature of the radiation bath when the Universe
became radiation dominated (e.g., [2][]),

Γϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3g�ðTRHÞ

90

r
T2
RH

mPl
; ð1Þ

wheremPl ¼
ffiffiffiffiffiffiffiffiffi
1=G

p
is the Planck mass, and g�ðTÞ≡ρrðTÞ=

½ðπ2=30ÞT4� is the number of relativistic degrees of free-
dom. It is important to note that TRH is not the maximum
temperature of the relativistic plasma. On the contrary, the
continual decay of the scalar field during the EMDE
generates a thermal bath that cools as T ∝ a−3=8, where
a is the scale factor [2]. When the Universe becomes
radiation dominated, the plasma begins to cool as T ∝ a−1,
but the temperature remains a monotonically decreasing
function of time.
Since T > TRH during the EMDE, it is possible to

thermally produce DM even if mχ ≫ TRH. This is the
scenario we are interested in: we assume that DM thermally
decouples (freezes out) during the EMDE and that there is
negligible production of DM from scalar decays. The
former assumption requires that the annihilation cross
section is large enough to bring DM into thermal equilib-
rium, failing which it “freezes in,” an option we do not
consider further because the relevant annihilation cross
sections are too small to generate observable signatures [6].
The latter assumption depends on details of the inflaton or
modulus sector, and can be realized if the field couples
weakly to R-odd particles.
After DM thermally decouples at a temperature Tf, the

comoving number density of DM particles remains con-
stant. In contrast, relativistic particles are continuously
created by inflaton/moduli decays during the EMDE, so the
DM-to-photon ratio is diluted, and the current DM density
is suppressed. If DM freezes out after reheating, hσvi≃
3 × 10−26 cm3 s−1 results in the observed DM density
(Ωχh2 ¼ 0.12, where Ωχ is ρχ divided by the critical
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density with H0 ¼ 100h km=s=Mpc [8]), but if Tf > TRH

then the resulting DM density is [2,6]

Ωχh2 ≃ 1.6 × 10−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTRHÞ

p
g�ðTfÞ

�
mχ=Tf

15

�
4
�

150

mχ=TRH

�
3

×

�
3 × 10−26 cm3 s−1

hσvi
�
: ð2Þ

Therefore, hσvi ≪ 3 × 10−26 cm3 s−1 is required to gen-
erate the observed DM relic density during an EMDE, and
models that would otherwise overclose the Universe
become viable.
After DM thermally decouples, DM is still kept in local

kinetic equilibrium by scattering processes with SM par-
ticles. At temperatures greater than the kinetic decoupling
temperature Tkd, which is approximately defined as the
temperature at which the momentum transfer rate falls
below the Hubble expansion rate, DM particles are tightly
coupled to the thermal bath, which alters the evolution of
the DM density perturbations. Furthermore, the kinetic
energy of the DM particles when they decouple determines
their comoving free-streaming horizon [9,10]. The average
velocity of a dark matter particle at decoupling is
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tkd=mχ

p
. The velocity of a fully decoupled nonrelativ-

istic particle is proportional to a−1, so the comoving free-
streaming horizon is

λfs ¼
Z

t0

tkd

v
a
dt≃

ffiffiffiffiffiffiffi
Tkd

mχ

s
aðTkdÞ

Z
1

aðTkdÞ

da
a3HðaÞ : ð3Þ

Perturbations with wavelengths smaller than λfs are erased,
which prevents the formation of microhalos if Tkd ≲ TRH.
We are interested in kinetic decoupling temperatures that

are higher than the reheat temperature so that DM kineti-
cally decouples during the EMDE. Since the expansion rate
at a given temperature is faster during the EMDE than
during radiation domination, DM decouples at a higher
temperature (Tkd) than it would have in a purely radiation-
dominated era (Tkd;RD). If the velocity-averaged elastic
scattering cross section of DM (hσelvi) is proportional to
T2, the expansion rate during the EMDE implies that DM
decouples when Tkd ∼ T2

kd;RD=TRH [10]; the exact depend-
ence is given by [6],

Tkd ¼
�

g�ðTkdÞ2
g�ðTkd;RDÞg�ðTRHÞ

�
1=4

ffiffiffi
5

2

r
T2
kd;RD

TRH
: ð4Þ

This relationship between Tkd and Tkd;RD assumes that no
new scattering channels open up at temperatures higher
than Tkd;RD and lower than Tkd so that hσelvi ∝ T2 between
these temperatures. It makes no other assumptions regard-
ing the precise definition of the momentum transfer rate and
can accommodate any definition that is proportional to

hσelvinlðT=mχÞ, where nl ∝ T3 is the number density of
relativistic particles that elastically scatter DM.

III. ISOLATED BINOS

Since our primary example is bino DM in supersym-
metric models, we give some details about its interactions
with SM fermions, which determine its scattering cross
section and decoupling temperature. The scattering cross
section of bino DM with SM particles has been studied in
detail by [11] and implemented in DarkSUSY [12]. The
scattering cross section between neutralinos and SM
fermions is mediated by the exchange of sfermions in
the s- and u-channels, and Z bosons as well as light and
heavy scalar Higgs exchanges in the t-channel. We study
each contribution in turn, starting with the s- and u-
channels.
The coupling of binos to sfermions ( ~f) and SM fermions

(f) can be written as

L ¼ −
ffiffiffi
2

p
gf̄fα ~fLPR − β ~fRPLgχ þ H:c: ð5Þ

where α ¼ Yf

2
tan θW and β ¼ Qf tan θW , with g; Yf, and

Qf being the electroweak coupling constant, weak
hypercharge, and the electric charge of the fermion,
respectively. We consider fermion energies ω in the
regime of low momentum transfer, with ω ≪ mχ , t → 0,
and s → m2

χ þ 2mχωþm2
l, where s and t are the usual

Mandelstam variables. Note that the approximation v ∼ 1
for the Moeller velocity is very good in this case. The
elastic scattering rate for χ þ l → χ þ l, Γel ¼P

lhvσelðωlÞiðTÞnlðTÞ is then given by

Γel ¼
288

π

X
L

ðα4 þ β4Þ
�

GFM2
W

m2
~l
−m2

χ

�
2

T2nl; ð6Þ

where nl denotes the number density of leptons l, m ~l
denotes the slepton mass, and the sum is over SM leptons.
The momentum transfer rate can be determined from the
number of scatterings required to change the momentum of
a DM particle significantly: Γmt ≃

ffiffiffiffiffiffiffiffi
3=2

p ðT=mχÞΓel [11].
The kinetic decoupling temperature is defined by requiring
Γmt ≃H. For sleptons in the 10–100 TeV mass range, one
can obtain Tkd;RD values as high as Oð1–5Þ GeV.
The t-channel scattering diagrams are facilitated by the

bino-Higgsino mixture of the DM candidate χ. This
mixture is usually parametrized as

χ ¼ N11
~Bþ N12

~W þ N13
~Hd þ N14

~Hu ð7Þ

where N11, N12, N13, and N14 denote projections of χ along
the bino ( ~B), wino ( ~W), and Higgsino ( ~Hd and ~Hu)
directions, respectively. Since the DM is primarily bino,
one has N11 ∼ 1, while
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N13

N11

∼
mZ sin θW

μ
sin β

N14

N11

∼
mZ sin θW

μ
cos β: ð8Þ

In the above, μ denotes the Higgsino mass parameter while
tan β denotes the ratio of the Higgs vacuum expectation
values, and is taken to be Oð10Þ. The Weinberg angle is
denoted by θW. We have displayed simplified expressions
in the limit of μ ≫ mχ .
In the limit of relativistic SM fermions, we keep

contributions to the scattering amplitude that are leading
order in ðml=ωÞ, where ml is the mass of a SM fermion
and ω its energy. Moreover, we keep contributions that
are leading order in ðω=mχÞ. The scattering amplitude from
t-channel exchange can then be obtained as [11]

M2
t ∼ 8

�
ω

mχ

�
2
�
mχ

mZ

�
4

g2Zχχ;Lðg2Zll;L þ g2Zll;RÞ; ð9Þ

where gZχχ and gZll denote the coupling of Z to DM and a
SM fermion l, respectively. The subscripts L and R denote
left- and right-handed projections, respectively. In terms of
the bino-Higgsino content of the DM χ, the coupling gZχχ is
given by [13,14]

gZχχ ¼ 21=4G1=2
F MW

1

cos θW
ðN2

13 þ N2
14Þ

∼ 21=4G1=2
F MW

sin2θW
cos θW

�
mZ

μ

�
2

: ð10Þ

We note that terms coming from the exchange of light and
heavy Higgs bosons come at the next order in ðml=ωÞ
in M2

t .
The scattering amplitude can be used to obtain the elastic

scattering following a calculation that is very similar to the
s-channel case. One obtains

Γel ∼
�
GFM2

W

μ2

�
2

T2nl: ð11Þ

Similar to the s-channel case, the Higgsino mass parameter
μ should also be kept in the 10–100 TeV range to obtain
Tkd;RD in the range of Oð1–5Þ GeV.
We note that the computations in this section are meant

to clarify the general features of the spectrum; for actual
numerical calculations, the exact expressions are used.
Additionally, we use DarkSUSY to compute the kinetic
decoupling temperature in a radiation-dominated Universe.
DarkSUSY defines Tkd;RD as the instantaneous decoupling
temperature that predicts the asymptotic late-time evolution
of the DM temperature [15]. This definition of Tkd;RD

differs from the momentum-rate definition by a factor of
order unity [16]. As mentioned earlier, however, Eq. (4) for

the kinetic decoupling temperature during an EMDE
applies to any definition of Tkd;RD if hσelvi ∝ T2.
In summary, for heavy s-channel mediators (heavy

sleptons) or suppressed coupling of DM to t-channel
mediators [caused by large μ or heavy Higgsinos, and
consequently small Higgsino component in the DM can-
didate, following Eq. (8)], one has small scattering rates of
the DM, and hence relatively large kinetic decoupling
temperatures. Moreover, the same features of the spectrum
lead to a reduced annihilation rate (which necessitates the
EMDE to obtain the observed relic density), as well as
reduced scattering rates off of nuclei, and hence reduced
signal rates at direct detection experiments. It is in the
above senses that these DM candidates are isolated.

IV. RESULTS

Obtaining observable enhancement of the DM annihi-
lation rate hinges on two requirements: (i) the EMDE
sufficiently enhances small-scale perturbations (the halo is
clumpy enough) to greatly boost the DM annihilation rate,
and (ii) the annihilation cross section is large enough that
the boosted rate falls within the observable range of current
and future experiments. To quantify these two require-
ments, we define the quantities kkd and kRH, which are the
wave numbers of the modes that enter the horizon at
T ¼ Tkd and T ¼ TRH, respectively, as well as kfs ¼ λ−1fs
and kcut ¼ minðkkd; kfsÞ. We assume that perturbations are
exponentially suppressed for k > kcut. However, we note
that while such a suppression occurs when dark matter
kinetically decouples during radiation domination [9], it
has not been proven that this behavior extends to decou-
pling during an EMDE. In particular, since perturbations in
the radiation density grow during an EMDE [4,5], momen-
tum exchange between the dark matter particles and
relativistic leptons does not generate dark acoustic oscil-
lations and may not completely prevent the growth of
matter perturbations with k > kkd.
The Press-Schechter formalism [17] requires that the rms

density perturbation exceed a critical value for the for-
mation of microhalos. Therefore, the microhalo population
depends strongly on the ratio kcut=kRH, which determines
the masses of the smallest microhalos and the timing of
their formation. By studying the dependence of the Press-
Schechter differential bound fraction on kcut=kRH, Ref. [6]
found that the EMDE dramatically increases the microhalo
population if kcut=kRH ≥ 10, which translates to

Tkd;RD=TRH ≥ 2 ð12Þ

for values of TRH and mχ in the range we are interested in.
This is the first requirement on our supersymmetric
parameter space, and can be recast in several other ways.
From the relationship between Tkd;RD and Tkd, this trans-
lates approximately to Tkd=TRH > 2

ffiffiffiffiffi
10

p
, which, since we
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require that DM freezes out prior to kinetic decoupling,
implies that Tf=TRH > 2

ffiffiffiffiffi
10

p
. Since the freeze-out temper-

ature is approximately given as Tf ∼mχ=10, it turns out
that one typically needs mχ=TRH > 100 for Eq. (12) to
hold. Given this range of mχ=TRH, using Eq. (2), one
obtains that the annihilation cross section is bounded from
above. This upper bound is most conveniently expressed as
hσvi
m2

χ
≲ 10−16 GeV−4, as can be checked by the exact

numerical calculations. Consequently, we are most inter-
ested in particles with

10−20 GeV−4 ≲ hσvi
m2

χ
≲ 10−16 GeV−4∶ ð13Þ

the upper bound ensures that the EMDE enhances the
abundance of microhalos, while the lower bound is
required to bring the final boosted annihilation rate within
the realm of current observations for at least some estimates
of the boost factor.
We scan the parameter space of bino DM in the minimal

supersymmetric standard model, keeping the constraints of
Eqs. (12) and (13) in mind. For each value of hσvi and mχ ,
the reheat temperature TRH is chosen such that the relic
density constraint Ωχh2 ¼ 0.12 is satisfied from Eq. (2). In
order to satisfy Eq. (12), all sfermions are kept at
∼Oð60Þ TeV, and charged and neutral Higgsinos at
Oð100Þ TeV. The winos and the gluino are kept at a
few TeV and we choose tan β ¼ 8. The results of the scan
are displayed in Fig. 1.
For each set of parameters, we numerically determined

the present-day dark matter density to confirm that all
models in the scan satisfy the relic density constraint. We

note that Eq. (2) for the relic density depends on the reheat
temperature as Ωχh2 ∝ ðTRH=mχÞ3. Consequently, larger
values of mχ require higher reheat temperatures to keep
Ωχh2 ¼ 0.12. The relic density is also proportional to
hσvi−1, which implies that the enhancement of hσvi when
mA ≃ 2mχ suppresses the relic density, and a larger value of
TRH=mχ is required to compensate. Both of these features
are visible in the left panel of Fig. 1. For the range of DM
masses we consider, TRH is required to be in the range of 1
to a few GeV. This range of reheat temperatures is in fact
naturally obtained in explicit models of the modulus sector
that are responsible for the EMDE [18,19].
After obtaining Tkd;RD from DarkSUSY, we calculate Tkd

and λfs, which enables us to find kcut=kRH. The corridor
along which the pseudoscalar resonance is most effective
corresponds to the highest TRH and lowest kcut=kRH values,
as expected. The left panel shows that most models in the
scan satisfy mχ=TRH > 100.
We now turn to the boost-factor calculation, which offers

hope of constraining these models in spite of their small
annihilation cross sections. Using the Press-Schechter
formalism to predict the microhalo abundance, Ref. [6]
estimated the resulting boost to the annihilation rate by
assuming that all microhalos present at a certain redshift
have Navarro-Frenk-White (NFW) profiles and that the
central regions of these microhalos survive to the present
day.1 All the microhalos were assumed to have the same

FIG. 1. The distribution of reheat temperatures (left panel) and kcut=kRH (right panel) on the ðmχ ; mAÞ plane. Here kcut ¼ minðkkd; kfsÞ.
All points satisfy the relic density constraint. Fixed values of sfermion masses m ~f ¼ 60 TeV, Higgsinos μ ¼ 150 TeV, and tan β ¼ 8

are assumed. Masses on the horizontal and vertical axes are in GeV.

1While phase-density conservation and DM annihilations are
expected to generate deviations from the NFW profile, the
resulting constant-density cores are too small to significantly
alter the annihilation rate within the microhalos [6].
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concentration, c ¼ 2, which is the lowest concentration
seen in simulations of microhalo formation [20,21]. This
assumption effectively implies that all the microhalos are
newly formed at the redshift zf at which the microhalo
population is evaluated and therefore provides a
conservative estimate of the boost factor. The calculated
boost factors are highly sensitive to the choice of zf. The
boost factor is proportional the fraction of dark matter that
is bound in EMDE-enhanced microhalos at zf. It is also
proportional to the matter density at that redshift because
earlier-forming microhalos have denser central regions.2

The fraction of matter that is contained in microhalos is
largely insensitive to the reheat temperature but highly
sensitive to the ratio kcut=kRH, which determines the red-
shift at which the first microhalos form [6]. If
kcut=kRH ¼ 10, 30% of the dark matter is bound into
microhalos at a redshift of 50 and 5% is bound at a
redshift of 100. This is a significant enhancement of the
microhalo abundance; in the absence of an EMDE, less
than 4% of the dark matter is contained in halos at a redshift
of 50. The effect of the EMDE is even larger for larger
values of kcut=kRH. If kcut=kRH ¼ 20, then 5% of the dark
matter is bound into microhalos at a redshift of 400, and the
bound fraction increases to 75% at a redshift of 50. If
kcut=kRH ¼ 40, then 60% of the dark matter is bound into
microhalos at a redshift of 400, and this bound fraction
increases to 90% at a redshift of 50.
The right panel of Fig. 1 indicates that the isolated binos

we consider can have even larger values of kcut=kRH, so we
have extended the Ref. [6] analysis to kcut=kRH ¼ 60 and
kcut=kRH ¼ 80. For these values of kcut=kRH, microhalos are
prevalent at even higher redshifts, with bound fractions of
75% and 86%, respectively, at a redshift of 600 and above
94% at a redshift of 50. Microhalos are also common at
redshifts greater than 600 in these scenarios, but our
calculations assume that the Universe is matter dominated
and should not be extended beyond z≃ 600.
This abundance of microhalos at redshifts greater than

100 stands in sharp contrast to standard expectations: in the
absence of an EMDE, the Press-Schechter formalism
predicts that 0.02% of the dark matter is bound into halos
with masses greater than 10−20M⊙ at z ¼ 100. Therefore,
the formation time of the first microhalos is rather insensi-
tive to the minimum halo mass, as even the smallest
microhalos are very rare before z ¼ 100. All halos form
at roughly the same time in these cosmologies because the
dimensionless matter power spectrum depends only loga-
rithmically on k on small scales. In contrast, an EMDE

makes the dimensionless matter power spectrum propor-
tional to kðnsþ3Þ for k > kRH, where ns ≃ 1 is the scalar
spectral index, which allows smaller halos to form long
before larger halos. Therefore, increasing kcut=kRH signifi-
cantly increases the redshift at which microhalos are
common in EMDE scenarios and dramatically increases
the boost factor if these dense early forming microhalos
survive.
The appropriate choice of zf when calculating the boost

factor depends on the outcome of microhalo-microhalo
mergers: do the microhalos present at z≳ 400 survive as
subhalos of the microhalos that contain most of the dark
matter at z≃ 50? If they survive, then we should use zf ¼
400 to estimate the boost factor B, and for the nearest dwarf
spheroidals (dSphs), 1þ B≃ 20; 000 for kcut=kRH ≃ 20,
200,000 for kcut=kRH ≃ 40, and 300,000 for 60≲
kcut=kRH ≲ 80 [6]. If the microhalos present at z ¼ 600
also survive as subhalos, then it is possible to obtain boost
factors larger than 800,000 for kcut=kRH ≳ 60.
However, if the dense central regions of the first

microhalos do not survive as subhalos of later-forming
microhalos, then we should take zf ¼ 50, as the EMDE-
enhanced microhalo abundance peaks at this redshift.3 As
mentioned earlier, our assumption that all microhalos have
a concentration of 2 at zf implies that the boost factor is
proportional to the matter density at zf. Therefore, if the
bound fraction is Oð1Þ at zf ¼ 400, as is the case for
kcut=kRH ≳ 40, setting zf ¼ 50 instead of zf ¼ 400 reduces
the boost factor by roughly a factor of ð51=401Þ3 ¼ 0.002,
with some adjustment due to variation in the bound fraction
between the two redshifts. As a result, taking zf ¼ 50

reduces the dSph boost factors to between 200 and 700 for
10≲ kcut=kRH ≲ 80 [6]. These boost factors are surely
underestimated, however, because their derivation assumes
that the microhalos present at a redshift of 50 have no
substructure and neglects the fact many of these microhalos
formed at much higher redshifts and therefore have con-
centrations greater than 2.
Clearly, numerical simulations of microhalo formation in

EMDE scenarios are required to determine the fate of the
first generation of microhalos and to robustly compute the
boost factor generated by an EMDE. In the absence of such
simulations, we are forced to adopt a wide range of possible
boost factors for different values of kcut=kRH, as shown in
Table I. We consider boost factors calculated using three
values of zf. In the most pessimistic scenario, we assume
that all early forming microhalos are destroyed and we take
zf ¼ 50. In the most optimistic scenario, we choose zf so
that the boost factor is maximized, i.e., the largest redshift

2The dependence of the boost factor on the matter density
implies that choosing a higher concentration for the microhalos
has the same effect on the boost factor as increasing zf . For
example, choosing c ¼ 5 instead of c ¼ 2 has the same effect
increasing (1þ zf) by a factor of 1.44: in both cases, the boost
factor increases by a factor of 3 [6].

3For all values of kcut=kRH, the abundance of EMDE-enhanced
microhalos decreases at redshifts below 25 as they are absorbed
into larger halos. However, the dense cores of the EMDE-
enhanced microhalos are expected to survive within these
much-later forming halos [6].
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with a significant bound fraction. We note that even this
model may underestimate the boost factor, however,
because it neglects all structure formation at redshifts
lower than zf. Finally, we consider a model that assumes
that the earliest microhalos are destroyed, but those that
form at z≲ 200 survive. In addition to providing an
intermediate case, this model exemplifies the smallest
boost factors that generate detectable annihilation rates
within dSphs.
As previously mentioned, the precise relationship

between the decoupling temperature and the cutoff scale
may differ from the relation established in Refs. [9,15]

when dark matter decouples during an EMDE. To mitigate
the effects of this uncertainty, we use the same boost factor
for a range of kcut=kRH values. For each interval listed in
Table I, the given boost factor was computed assuming the
smallest value of kcut=kRH within that range. We also note
that once the bound fraction of dark matter approaches
unity at zf, further increases in kcut=kRH do not significantly
change the boost factor. Consequently, the boost factor is
rather insensitive to changes in kcut if kcut=kRH > 40 in the
intermediate case and kcut=kRH > 60 in the maximum case.
The right panel of Fig. 1 shows that only a very narrow
region of parameter space along the pseudoscalar resonance
has kcut=kRH ≲ 40, so we expect that our results would not
be significantly altered by the changes in the definition of
kcut that could result from an improved understanding of
kinetic decoupling during an EMDE.
Unfortunately, it is difficult to directly compare the

boosted annihilation rate to constraints from Fermi-
LAT’s observations of dSphs [22]. Although these con-
straints are dominated by the contribution from the nearest
dSphs, they are enhanced by limits on DM annihilation
within more massive dSphs, which would have even larger
boost factors [6]. Furthermore, these constraints are derived
under the assumption the DM annihilation rate is propor-
tional to the square of the DM density within the dSph,
which implies that any potential DM signal originates from
the dSph’s central region. In EMDE scenarios, however,
annihilations within microhalos overshadow the contribu-
tion from the smooth density profile of the dSph. Instead,
the signal profile tracks the number density of microhalos,
which is expected to follow the average DM density outside

TABLE I. Fiducial values of the EMDE boost factor for the
nearest dSphs. The minimum values were based on the microhalo
population at a redshift of 50 with no substructure and a universal
halo concentration of 2. The maximum values were based on the
microhalo population at a redshift that maximizes the boost
factor, up to z ¼ 400 for kcut=kRH < 60 and z ¼ 600 for
kcut=kRH ≥ 60. Finally, the intermediate values are based on
the microhalo population at an intermediate redshift: z ¼ 50 for
kcut=kRH < 20, z ¼ 100 for 20 ≤ kcut=kRH < 40, and z ¼ 200 for
kcut=kRH ≥ 40.

Minimum Intermediate Maximum

kcut=kRH < 10 1 1 1
10 ≤ kcut=kRH < 20 200 200 300
20 ≤ kcut=kRH < 40 500 3000 20,000
40 ≤ kcut=kRH < 60 600 30 000 200 000
60 ≤ kcut=kRH < 80 650 40 000 800 000
80 < kcut=kRH 700 40 000 1 000 000

FIG. 2. Models constrained by six-year Pass 8 Fermi-LAT dwarf galaxy data (left panel) and the corresponding scattering cross
sections off nuclei in units of 10−13 pb (right panel). Left panel: The red (light blue) region is being probed by current observations using
intermediate (maximum) estimates of the EMDE boost factor (see Table I). Right panel: Regions that are not red are mostly under the
neutrino floor. The solid (dashed) black line shows the region corresponding to the red (light blue) of the left panel. Masses on the
horizontal and vertical axes are in GeV.
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of the dSph’s innermost 40 pc, where microhalos are most
likely destroyed by tidal forces [6]. Fermi-LAT’s observa-
tion window is large enough to include most of the mass in
the nearest dSphs (and therefore most of their microhalos),
but it is uncertain how changing the expected DM emission
profile would alter their constraints on the DM annihilation
rate. However, in light of the extreme uncertainty present in
the boost factor, we ignore these issues and consider a
particle accessible to Fermi-LAT if ð1þ BÞhσvi exceeds
the Fermi-LAT collaboration’s six-year Pass 8 limits on
the DM annihilation cross section from observations of
dSphs [22].
The left panel of Fig. 2 shows the regions of the

parameter space that are accessible to Fermi-LAT for the
different boost-factor models given in Table I. The models
marked in red (light blue) indicate those constrained by six-
year Pass 8 Fermi-LAT dwarf galaxy observations [22]
after imposing intermediate (maximum) boost factors from
Table I. We note that annihilation cross sections in the zero
velocity limit (present Universe) were taken when applying
the boost factors and imposing constraints. Although the
s-channel exchange of the pseudoscalar Higgs boson leads
to a velocity-independent annihilation cross section, veloc-
ity dependence nevertheless comes from the well-known
effect of resonance broadening [23]. The location of the
pseudoscalar resonance region is velocity dependent and
thus shifts in the current Universe, compared to the freeze-
out era.
The pseudoscalar resonance width depends on tan β, and

in the low tan β ∼ 3 and high tan β ∼ 50 regions, the width
is quite large, Γ ∼ 0.05mA [24]. This allows one to
constrain a relatively broad region of parameter space
away from the line mA ¼ 2mχ , as shown in the left panel
of Fig. 2. Beyond the light blue region where the maximum
boost factors are applied, the annihilation cross section is
too feeble to be constrained by Fermi-LAT, even after
incorporating the maximal boost factors.
The right panel shows the corresponding spin-

independent scattering cross sections relevant for direct
detection; regions that are not red are under the neutrino
floor. The solid (dashed) black line shows the region
corresponding to the red (light blue) of the left panel.
As discussed previously, the isolated nature of the DM
renders scattering cross sections, and hence signal rates at
direct detection experiments, exceedingly small.

V. SUMMARY AND OUTLOOK

The results of this paper are of interest from the
perspective of astrophysics as well as particle physics.
We have identified realistic examples where the physics of
microhalo formation during an EMDE plays a decisive role
in the detectability of DM candidates. The conditions that a
DM candidate has to satisfy are encapsulated in Eqs. (12)
and (13). We have shown that even the most garden variety

DM candidate, the bino of supersymmetry, can satisfy these
conditions in certain classes of supersymmetric spectra.
Even broader lessons can be taken away on the particle

physics side. In standard thermal cosmologies, DM can-
didates that interact extremely feebly with SM particles
neither satisfy the relic density nor hold out any hope of
direct or indirect detection. For example, candidates that
satisfy Eq. (12) have scattering rates with SM particles that
are feeble, leading to a large kinetic decoupling temperature
and small detection rates at direct detection experiments
(typically below the neutrino background). Moreover, the
same feeble interactions lead to Eq. (13), a suppressed
annihilation cross section compared with the canonical
value.
We have shown that these DM candidates are not ruled

out by their relic abundance, nor are they necessarily
undetectable. An EMDE can dilute the DM relic density
so that even candidates satisfying Eq. (13) can generate the
observed relic density. The relatively high kinetic decou-
pling temperature, following from Eq. (12), can lead to the
formation of microhalos that boost the feeble annihilation
rate and may bring some parts of the parameter space
within the range of detection by Fermi-LAT. The bino
model we consider can be thought of as an example of this
broader field of DM candidates.
The existence of these DM candidates motivates further

study of the effect an EMDE has on the DM annihilation
rate within galactic halos. An EMDE enhances small-scale
structure: the Press-Schechter formalism predicts that most
of the dark matter is bound into microhalos at high redshift
(z≳ 100). These microhalos merge to form larger micro-
halos at z≃ 50 that then act as the building blocks of
subsequent structure formation. Analytical estimates of the
resulting boost to the annihilation rate of these particles
within nearby dSphs range from a factor of 100 to a factor
of 106, depending on the fate of the early generations of
microhalos. We have shown that a boost factor ≳104 is
required to exceed the bounds on the DM annihilation rate
established by Fermi-LAT observations. This boost factor
can be obtained if the microhalos present at z≃ 100
survive as subhalos within later-forming microhalos.
N-body simulations of microhalo formation in EMDE
cosmologies are required to determine if this boost factor
is realized, which would allow Fermi-LAT to rule out these
otherwise undetectable binos as DM candidates. On the
particle physics side, it would be interesting to explore, in
greater detail, supersymmetric spectra with an intermediate
extended Higgs sector in light of these potential observa-
tional constraints.
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Note added.—Recently, the referee raised an interesting
question: does the formation of primordial black holes
(PBHs) place restrictions on the EMDE? Indeed, it is the
enhanced growth of density perturbations during the
EMDE that leads to the interesting dark matter phenom-
enology discussed in this paper, and it is reasonable to
suspect that this increased inhomogeneity could also
generate PBHs. The question of PBH constraints was
examined by one of the authors and his collaborators in
Ref. [25]. There it was found that the strongest constraints
arise from limits on the abundance of PBHs with masses
around 1015 grams: for these PBHs, Hawking radiation
produces gamma rays that would be observable by Fermi-
LAT and would leave an imprint on the cosmic microwave

background. In Ref. [25] it was shown that these bounds on
the abundance of PBHs can only be violated if the
primordial power spectrum generated during inflation
has a blue tilt. Moreover, an EMDE actually weakens
the PBH constraints on the scalar spectral index ns because
the formation of PBHs from increasing inhomogeneity
during the EMDE does not compensate for the fact that the
relative contribution of PBHs to the total density of the
Universe remains constant during the EMDE instead of
increasing as it does during radiation domination. Whereas
PBHs rule out ns ≳ 1.1 in the absence of an EMDE, ns can
be as large as 1.4 if there was an EMDE that ended just
before BBN. Therefore, the detection of an extremely blue
primordial spectrum on small scales would place an upper
bound on the reheat temperature. However, in this paper we
have assumed a red primordial power spectrum (ns ¼ 0.96
with no running), and the results of Ref. [25] imply that
PBHs provide no constraint on the EMDE in this case.
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