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The magnetic dipole radiation model is currently the best approach we have to explain pulsar radiation.
However, a most characteristic parameter of the observed radiation, the braking index nobs, shows
deviations for all the eight best studied isolated pulsars, from the simple model prediction ndip ¼ 3. The
index depends upon the rotational frequency and its first and second time derivatives but also on the
assumption that the magnetic dipole moment and inclination angle and the moment of inertia of the pulsar
are constant in time. In a recent paper [Phys. Rev. D 91, 063007 (2015)], we showed conclusively that
changes in the moment of inertia with frequency alone cannot explain the observed braking indices.
Possible observational evidence for the magnetic dipole moment migrating away from the rotational axis at
a rate _α ∼ 0.6° per 100 years over the lifetime of the Crab pulsar has been recently suggested by Lyne et al.
In this paper, we explore the magnetic dipole radiation model with constant moment of inertia and magnetic
dipole moment but variable inclination angle α. We first discuss the effect of the variation of α on the
observed braking indices and show they all can be understood. However, no explanation for the origin of
the change in α is provided. After discussion of the possible source(s) of magnetism in pulsars, we propose
a simple mechanism for the change in α based on a toy model in which the magnetic structure in pulsars
consists of two interacting dipoles. We show that such a system can explain the Crab observation and the
measured braking indices.
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I. INTRODUCTION

There have been many attempts to explain the braking
index extracted from observations of pulsar spin-down
rates. To date, no accepted description exists for the rather
wide ranging values (see Table I) found for the eight pulsars
for which this parameter is reasonably well known. Most
discussion starts with acknowledgement that there are three
possible competing processes, mass emission (pulsar
wind), magnetic dipole driven radiation, and quadrupole
radiation, which, taken individually, would lead to braking
indices n of 1, 3, and 5, respectively [1]. It is generally
agreed that the quadrupole radiation (n ¼ 5) may be
neglected (all values of in Table I are between 1 and 3).
However, combination of the other two mechanisms has
been suggested [2].
Since the dominant feature of pulsar behavior is the

magnetic dipole emission mechanism, it is logical to seek
an alternative explanation of the observed braking indices
based on the magnetic dipole description. The standard
expression for the loss of energy due to magnetic dipole

radiation is given in terms of the strength M of the dipole
moment, the angle α between the pulsar rotational axis and
the dipole axis, and the rotational frequency of the pulsar

_E ¼ −
2

3
M2sin2αΩ4: ð1Þ

Inserting rotational energy, we have

d
dt

�
1

2
IΩ2

�
¼ −

2

3
M2sin2αΩ4; ð2Þ

and if moment of inertia (MoI) is assumed to be constant,
we get the standard expression for the time rate of change of
frequency _Ω,

_Ω ¼ −
2

3

M2sin2α
I

Ω3: ð3Þ

Using Eq. (2), we obtain a general expression for
nobs ¼ Ω̈Ω= _Ω2,

nobs ¼ ndip þ
2Ω
_Ω

�
_α

tanðαÞ þ
_M
M

�
ð4Þ

with ndip ¼ 3.
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In a previous paper [11], some of us have explored the
possibility that changes in the ellipticity of the pulsar
caused by centrifugal stretching and consequent changes in
the MoI could contribute substantially. We found that,
given the relatively slow rotational frequencies and the
estimated properties of neutron star matter, such changes
can produce no appreciable deviation from the magnetic
dipole radiation (MDR) value ndip ¼ 3 for the known
pulsars given in Table I.
Current understanding of pulsar magnetic fields does not

allow for sound speculation as to a change in the strength of
magnetic moment M. We are left with time variation of the
inclination angle α. Recent detailed analysis by Lyne et al.
[3,12] (LEA in the future text) of the best and longest
observation of any pulsar (the Crab) has revealed that the
angle α for this star may be changing, albeit slowly, toward
orthogonality, although LEA note that this is a model
dependent interpretation of the observed data. Several
authors (e.g., Refs. [4,13–15]) remarked on a possibility
that a low braking index can be caused by an increasing of
the dipolar magnetic field or the change in the inclination
angle. Very recently, Yi and Zhang [16] showed that, in a
model of the braking mechanism, the time evolution of α
could be of importance.
This paper is organized as follows. In Sec. II, we explore

implications of the MDR model with variable α. Magnetic
properties of pulsars are briefly summarized in Sec. III, and
the two-dipole toy model is introduced in Sec. IV, followed
by a discussion in Sec. V.

II. BRAKING INDEX OF A PULSAR WITH
CHANGING INCLINATION ANGLE α

In this section, we explore the consequences of the _α
dependent term in Eq. (4) before considering a possible
mechanism. Table I contains the relevant measured param-
eters nobs, the frequency Ω, and its time derivative _Ω.
Rewriting Eq. (4) in the form

_α

tanðαÞ ¼
_Ω
Ω

�
nobs − ndip

2

�
ð5Þ

yields values of the ratio _α= tanðαÞ, taking ndip ¼ 3. Only
for the Crab pulsar, we have a value of the time variation
of α. Deducing nobs from observation, LEA obtained
_α¼ð0.566�0.002Þ°=100years taking α ¼ ð45� 0.18Þ°.
This value is compatible with estimates of α being
between 45° and 70° obtained from modeling the shape
of the Crab beam ([12] and references therein).
Neither the value of α nor that of _α is necessarily valid for

other pulsars. However, to explore the possible range of
these parameters, in Table I we give the values of α found if
all pulsars are taken to have the same _α as the Crab and,
alternatively, the values of _α resulting from setting α to the
Crab value.
The results show that all observed braking indices can be

explained in terms of values of α and its time variation
which are not very distant from those of the Crab, as
illustrated in Fig. 1. We show the relation between _α and α

TABLE I. Observational data and calculated values of _α= tanðαÞ and α for eight best measured pulsars [3]. The values of α required to
fit the observed braking index taking _α ¼ 0.56°=100 years for all pulsars are given in column 6. The values of _α= tanðαÞ and α have the
same percentage error as the quoted braking index. Ω and _Ω from Refs. [4–10].

nobs Ω _Ω _α= tanðαÞ α

Pulsar s−1 10−10 s−2 per 100 years deg

PSR B0531þ 21 (Crab) 2.51� 0.01 30.22543701 −3.862283 0.566� 0.002 45� 0.18
PSR B0540 − 69 2.14� 0.01 19.8344965 −1.88383 0.738� 0.003 37� 0.18
PSR B0833 − 45 (Vela) 1.4� 0.2 11.2 −0.157 0.20� 0.03 70� 10
PSR B1509 − 58 2.839� 0.001 6.633598804 −0.675801754 0.1482� 0.0001 75.32� 0.03
PSR J1846 − 0258 2.16� 0.13 3.0621185502 −0.6664350 1.6� 0.1 19� 1
PSR J1833 − 1034 1.857� 0.001 16.159357 −0.5275017 0.3371� 0.0002 59.21� 0.03
PSR J1119 − 6127 2.684� 0.001 2.4512027814 0.2415507 0.2814� 0.0002 63.56� 0.05
PSR J1734 − 3333 0.9� 0.2 0.855182765 −0.0166702 0.37� 0.08 57� 12
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FIG. 1. Relation between the time rate of change in the
inclination angle α and its magnitude, calculated using the
measured braking index for the eight isolated pulsars in Table I.
For more explanation, see the text.
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as calculated for eight well-measured pulsars (including the
Crab), taking data from Table I. The horizontal line shows
the intersection of each curve with the measured value of _α
from the Crab. It can be seen that for _α close to the Crab
value, all pulsars should have magnetic dipole oriented
within 18 < α < 80° of the axis of rotation. However,
Fig. 1 shows only the case when α, measured from the
rotation axis to the north pole of the radiating dipole, lies in
the first quadrant between 0° and 90° where tanðαÞ is
positive.
In the discussion of Eq. (5) and the values obtained in

Table I, we note that _Ω is always negative and thus the sign
of _α= tanðαÞ is determined by the sign of (nobs-ndip). For all
eight pulsars in Table I, this sign is negative, and thus the
sign of _α= tanðαÞ is positive. However, this does not
determine the sign of either _α or tanðαÞ.
If α is taken as lying in either the first or third quadrant,

(0°–90° or 180°–270°) for which tanðαÞ is positive, then _α is
in turn positive. For α in either of these quadrants, positive
_α means that the radiating dipole is rotating away from the
pulsar rotation axis. However, if α lies in either of the
second or forth quadrant (90°–180° or 270°–360°), tanðαÞ is
negative, and thus _α is also negative. In this case, the
radiating dipole is moving toward the rotation axis. If a
pulsar were found with (nobs > 3), the sequence of possible
tan(α) and _α signs would be inverted. We summarize all
possibilities in Table II. Note that the dipole emission
power depends on sin2ðαÞ and is up/down symmetric, and
hence observations cannot reveal the orientation of the
dipole. Examination of Table I shows that braking indices
of all eight pulsars can be explained by MDR alone,
provided the values of α are allowed to vary within 18° <
α < 80° and _α is taken as a constant in the time of
observation.
Many authors correctly note that the existence of a

corotating magnetospheric plasma should contribute to the
overall energy loss of pulsars [17–19]. This additional
energy radiation is a relativistic effect due to the motion of
charged particles in the magnetosphere, the particle wind.
Acting alone, as would be the case for pulsars with the
magnetic dipole aligned with the axis of rotation (α ¼ 0),
leads to n ¼ 1.
If both the wind and pure magnetic dipole radiation

contribute to the energy loss, a modified braking index

between 1 and 3 can be calculated and could account for the
observed braking indices [2]. Our results show that the
braking index over the entire range of observation,
0.9 < nobs < 2.8, can be explained by MDR in vacuum
alone. This result may suggest that the effect of the particle
wind is not significant to the first approximation, especially
for values of α above about 20°.

III. MECHANISMS OF PULSAR MAGNETISM

The origins and distributions of the magnetic fields of
pulsars, and their misalignment with respect to the axis of
rotation, are not well understood. There is extensive
literature on this subject, documenting the complexity of
the problem (see, e.g., Refs. [20–22]).
Observational evidence for the intensity of magnetic

fields in pulsars is also very limited. The only direct
information comes from pulsars accreting material from
a binary partner [23] which have shown signals interpreted
as cyclotron resonance involving electrons orbiting the field
lines. The resonance frequencies correspond to fields B ∼
1.4 × 1012 G [24]. In isolated pulsars, the field is usually
derived from the relation between the period of rotation P
and its time rate of change _P, assuming magnetic dipole
radiation, using the formalism detailed in Ref. [11], which
gives rise to Eq. (2). The values obtained are also of the
order of 1012 G. The existence of objects with extremely
strong surface magnetic fields, up to 1015–16 G, based on
observation of high energy x rays and gamma rays, known
as magnetars, seems to be generally accepted [25].
The two principal potential sources of magnetic field in

pulsars that are currently discussed are the dynamo effect
and constituent magnetization arising from the formation of
ferromagnetically ordered matter. The dynamo theory
describes the process through which a rotating, convecting,
and electrically conducting fluid acts to maintain a mag-
netic field. It requires kinetic energy, which is provided by
the pulsar rotation and an internal energy source to drive
convective motions within the fluid [26]. A dipole pro-
duced by this mechanism, essentially linked to the rotation
of the pulsar, may be expected to be coaxial and centered
within the star. Existence of a stable, ferromagnetically
ordered region inside the liquid interior of the pulsar has
been discussed by many authors in the past (see, e.g.,

TABLE II. Sign of _α= tanðαÞ and tanðαÞ combinations leading to the increase or decrease of _α. The rotation axis is taken as α ¼ 0. Q
stands for quadrant: [Q1] spans 0°–90°, [Q2] spans 90°–180°, [Q3] spans 180°–270°, and [Q4] spans 270°–360° moving the north pole of
the dipole clockwise from the rotational axis. A combined positive (negative) sign means an increase (decrease) in _α and a consequent
movement away (toward) the axis of rotation. The left (right) part of the table is calculated using (nobs-3) negative (positive).

_α= tanðαÞ tanðαÞ Quadrant _α _α= tanðαÞ tanðαÞ Quadrant _α

þ þ Q1 Increase − þ Q1 Decrease
þ þ Q3 Increase − þ Q3 Decrease
þ − Q2 Decrease − − Q2 Increase
þ − Q4 Decrease − − Q4 Increase
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Ref. [27] and references therein) and revived recently
[28,29]. With pulsar radii R of order 106 cm, the associated
magnetic dipole moments (of order BR3) are 1030 ergs=G
for ordinary pulsars and 1033 ergs=G for magnetars. Such a
huge magnetization could arise from the constituent nucle-
ons, which number ∼1057 in a typical pulsar of mass
1.5 M⊙. Each has a moment of order 10−24 ergs=G, giving
a potential total moment in broad agreement with the
magnetar estimates [25]. However, the ordered material,
mainly located in the core, may have a domain structure
which could lead to reduced, local dipoles, neither coaxial
nor concentric with the rotation of the star.
Although the magnetic fields may have complicated

intrinsic configurations including poloidal and toroidal
components [21], they are likely dominated by a dipolar
term to first approximation. The assumption of a dipole
explains the observed pulse, and the estimated power
radiated due to rotation is correct in order of magnitude.
However, there is the possibility that the observed dipole
radiation is the resultant of more than one dipole. For
example, the coexistence of a dipole field due to the
dynamo effect and a field created by the spin alignment
of particles leading to formation of ordered domains could
be a possible representation of such a configuration. Other
sources of dipoles, such as the motion of charged particles
in the magnetosphere [30], cannot be excluded, but given
the much lower density of the magnetosphere, the resulting
moments and fields are likely to be small compared to those
in the star. In this paper, we consider possible situations
involving two dipoles in the pulsar, generated by different
mechanisms.

IV. TOY MODEL OF TWO
INTERACTING DIPOLES

In Sec. II, we showed that the MDR model allows for the
increase or decrease of α in dependence of the sign of
tanðαÞ. However, the model does not offer any mechanism
causing these changes. Here, we present a toy model which
makes a crude first order attempt to understand the possible
physics behind the change in α over time, as seen by LEA,
which, in turn, can account for the braking index of the
Crab pulsar and the other observed pulsars in Table I.
The model consists of two dipoles with magnetic

moments ~M1 and ~M2, separated in space by distance r
with constant magnitude. While the more familiar result of
dipole-dipole interactions is an attractive (à la Van der
Waals) or repulsive force (depending on their relative
orientation) in the present context, we focus on the potential
effect of the turning moment, or couple, they exert on each
other. We hold their separation constant, thus neglecting the
effect of the linear force between the dipoles, and assume

that one dipole ( ~M1) is fixed at the center of the star and
aligned with the rotation axis, consistent with the dynamo
mechanism. The line joining the centers of the two dipoles

(the dipole-dipole axis) makes an angle θ1 with the rotation

axis. We further assume that ~M2 is initially coplanar with
~M1, thus eliminating all azimuthal angles ϕ from the

problem. The second dipole ~M2 is free to rotate about
its center with angle θ2 measured from the dipole-dipole

axis to ~M2.
The magnetic field generated by dipole ~M1 at position

r is

~B1 ¼
μ0
4π

1

r3
½3ð ~M1 · r̂Þr̂ − ~M1�; ð6Þ

where μ0 is the magnetic permeability of free space and r̂ is

a unit vector along r. The potential energy of a dipole ~M2 in

the magnetic field ~B1 is given by

U21 ¼ − ~M2 · ~B1; ð7Þ

that is

U ¼ −
μ0
4π

1

r3
½3ð ~M1 · r̂Þð ~M2 · r̂Þ − ~M1 · ~M2�: ð8Þ

With the limitation mentioned above, the potential
reduces to

Uðθ1; θ2Þ ¼
μ0M1M2

4πr3
ðsin θ1 sin θ2 − 2 cos θ1 cos θ2Þ ð9Þ

with r held constant. In the following sections, we examine
the variation of Uðθ1; θ2Þ for different initial values of θ1
and θ2 to explore the possible motion of ~M2, followed by a

calculation of the couple acting on ~M2 and possible
dynamics of the resulting motion.
In Figs. 2(a)–2(c), three different initial alignments of the

two dipoles are taken to illustrate possible examples of the
variation ofUðθ1; θ2Þ with θ2 for different θ1. The variation
of Uðθ1; θ2Þ as a function of θ2 is shown in Fig. 3 for each
example. All have the same sinusoidal oscillatory behavior
with a single, stable, minimum energy value of θ2. Clearly,

for an arbitrary starting point, ~M2 will rotate toward this
minimum state. For small initial displacements from the
minimum, the motion is simple harmonic, but it is more
complex, although oscillatory, for other starting points. The
direction of rotation depends upon the initial value of the
difference between θ1 and θ2.
In Fig. 4, we show the general arrangement of ~M1 and

~M2 in a pulsar with ~M1 along the axis of rotation of the star
and the dipole-dipole axis at angle θ1 to the axis of rotation.
~M2 is set at angle θ2 to the dipole-dipole axis, so that, with
the angle α as defined in the pulsar literature, we have
α ¼ θ1–θ2 and _α ¼ −_θ2.
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The actual motion of ~M2 will depend upon the magni-
tude of the couple acting, the MoI of the rotating
region, and the resistance to motion. An expression for
the couple C,

C ¼ −
∂U
∂θ2 ¼

μ0M1M2

4πr3
ðsin θ1 cos θ2

þ 2 cos θ1 sin θ2Þ ¼ I2θ̈2; ð10Þ

is a somewhat complicated, but generally nonzero, function
of θ1 and θ2. We briefly present two alternative versions of
the toy model which may exist, given the limitations of our
understanding of neutron star interiors, including the
possibility of superfluidity. The first version omits friction,
hence allowing accelerated rotation. The kinetic energy

acquired by the region of the star supporting ~M2 is then

1

2
I2 _θ

2
2 ¼ ΔU ¼ Ui −Uf; ð11Þ

where i and f denote the initial and final values of θ2,
respectively.
Using (9) with rearrangement and expressing the results

in cgs units, setting μ0=4π equal to 1, we can write

_θ22 ¼
2M1M2

I2r3
FðΘÞ; ð12Þ

where
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FIG. 2. (a–c) Examples of configurations of two coplanar
dipoles with fixed magnitude and distance between their origin
in free space (a–c). The positive (negative) angles θ1 and θ2
are measured from the dipole-dipole axis counterclockwise
(clockwise).
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FðΘÞ ¼ ðsin θ1i sin θ2i − 2 cos θ1i cos θ2iÞ
− ðsin θ1f sin θ2f − 2 cos θ1f cos θ2fÞ ð13Þ

is a general function, introduced for convenience, with Θ
standing for all angles appearing in (9) and I2 is the
moment of inertia of the rotating material.
To estimate expected values of ~M1 requires, as input, the

value of θ1ið¼ θ1fÞ and the initial and final values of θ2. We
use the only example for which we have data, the Crab
pulsar. Since the total change in θ2 turns out to be small, we
can assume approximately constant angular acceleration
so the average angular velocity is half its final (current)
value which is ∼0.6°=100 years. Thus, over the full life-
time of the Crab pulsar, θ2 will have changed by approx-
imately 3° from θ2i to its current value θ2f. If we choose
θ1i ¼ 45°, then θ2i ¼ 3° and θ2f ¼ 0° (aligned with the
dipole-dipole axis).
These θ values give an estimated value of

FðΘÞ ∼ 0.0389. Taking B ∼ 1012 G, R ∼ 106 cm, and
r=R at a mid-value ∼0.5, we can estimate the magnitude
of the relevant parameter, M1=I2, to be ∼10−35 G−1 s−2
[see Eq. (12)]. The MoI of a slowly rotating neutron star is
of order 1046 g cm2 [11]. Even taking I2 as large as
1044 g cm2 (1% of the total MoI) would give, for the

magnitude of ~M1, the relatively small value ∼109 erg=G.
In this analysis, we have assumed that, for the Crab

pulsar, the radiating dipole ~M2 is still in the initial phase of
its motion and has not passed its minimum energy position.
We cannot make the same assumption for the other pulsars,
as their ages are unknown. Furthermore, we cannot make
any assumption about the total motion of θ2 over the
unknown lifetime of any pulsar other than the Crab and
therefore limit our order of magnitude calculations to the
perceived motion on the order of time of the braking index
measurements (i.e., 100 years) as an estimate of FðΘÞ.
Taking the _α values from Table I as indicating their

present motion, and assuming these values to be relatively
constant over 100 years, we can estimate the range of

values of ~M1 for α ¼ 45° and differing values of r=R. These
values span from roughly ð108–1012Þ erg=G for the
remaining pulsars. All values have considerable uncertainty
resulting from the order of magnitude assumptions made
but are similar in magnitude to the estimation of the Crab
pulsar. In comparison with the maximum known pulsar
magnetization, ∼1033 erg=G, all results for the magnitude

of ~M1 are very small. The magnitude of ~M1, for any single
pulsar, cannot be made more than 2 orders larger by
variation of r and is still many orders smaller than the

value of ~M2 taken to be the source of the observed
radiation.
It may be difficult to accept the idea of such a small

driving couple, but recall that the model neglects friction
and that the angular velocity, even in so massive a body as

the pulsar, is only∼0.6° per century, which corresponds to a
rotational period of∼60; 000 years. We therefore introduce
a second version of the model in which we consider the
motion to be friction limited. The action of friction, as it
affects motion, can be represented in many ways. For
example, the convention in damped simple harmonic
motion of considering a resistance proportional to system
velocity where, as for a block on an inclined plane, static
friction proportional to the normal reaction may, or may
not, be sufficient to prevent all motion.
To make this point clear, we take, as an example, a

constant frictional force. Conservation of energy from the
start of the motion of ~M2 then gives

1

2
I2 _θ

2
2 þ Kðθ2i − θ2fÞ ¼ Ui − Uf ¼ ΔU; ð14Þ

whereK is the energy loss per unit turn angle. The equation
for _θ22 becomes

_θ22 ¼
2

I2

�
M1M2

r3
FðΘÞ − KΔθ2

�
; ð15Þ

and for the acceleration θ̈22

θ̈2 ¼
1

I2

�
M1M2

r3
∂FðΘÞ
∂θ2 − K

�
ð16Þ

so that in this scenario, it is clear that the acceleration is
reduced and becomes zero when K ¼ ∂Uf=∂θ2. Since
∂Uf=∂θ2 is a function of θ2, the motion will reach an

asymptotic steady velocity. If we assume that ~M2 in the
Crab pulsar has reached a friction limited angular velocity
after only ∼1000 years, we may believe the same is true of
other pulsars and that all their angular velocities are in
the same range as that observed for the Crab pulsar—about
1° per century. In this version of the model, the magnitude

of ~M1 is

M1 ¼
�
1

2
I2 _θ

2
2 þ KΔθ2

�
r3

M2FðΘÞ
: ð17Þ

We know of no way to estimate K in such an unknown
medium as pulsar material, but it is clear that, in this
scenario, the motion would be slower, and its initiation

would require larger values ~M1. There are many other
possible scenarios including those in which the motion
does not start, or may start and subsequently come to rest.
However, the friction limited model allows for constant _α as
observed over the ∼40 years of observation. The MDR
model is then able to account for all of the reliably known
braking indices, as discussed in Sec. II.
As a further comment, noting again that ~M2 for pulsars is

only a fraction (of order of 10−3) of the magnetization of

O. HAMIL, N. J. STONE, and J. R. STONE PHYSICAL REVIEW D 94, 063012 (2016)

063012-6



magnetars, our concept is that ~M2 is a result of the possible
domain structure in the star core and does not include the
effect of the crust. The rotating (small volume) magnetized
medium may be superfluid neutron pairs. Once again, we
are not aware of any mechanism to estimate rotational
friction in such a system.

V. DISCUSSION

The origins of magnetism in stars and planets in general,
and of pulsars in particular, is a widely discussed topic.
While the orders of magnitude of estimated magnetar and
pulsar moments can be understood as reasonable compared
with the potential moments produced by ordered alignment
of the stellar constituents, possibly augmented by the
dynamo effect of circulating conducting charged material,
no detailed understanding has yet emerged. LEA recently
reported that available data on the pulse structure of the
Crab pulsar suggests the angle of inclination between the
dipole moment and rotational axis of the star is increasing.
In the light of this finding, we propose that the mechanism
of magnetism in pulsars involves two interacting dipoles,
and their interaction produces the observed rotation shown
by LEA. The physics of their production may be either or
both of the dynamo effect and ordering of the intrinsic
magnetic moments of the constituents of the star. An
attractive possibility is to associate one dipole with the
dynamo effect which is corotating with the star and located
at its center, with a second dipole, caused by intrinsic
alignment and being the source of emitted radiation from
the star, at a noncentral, off-axis position. A simple toy
model is presented in two versions, both with the center
dipole pinned to the axis, one in which the second, of-
center, dipole can rotate without friction and the second in
which the motion is friction limited. It is shown that this
single mechanism can explain the braking index of all eight
well-observed pulsars if a relatively slow variation of the
angle α between the axis of the radiating dipole and the
rotational axis of the star is accepted. Basing our estimates
on the LEA interpretation of observations of the Crab
pulsar, we have shown, using the toy model with approx-
imations, that the change in the angle α can be reproduced.
We have shown further that, if friction is neglected (as
might follow in a superfluid scenario), the central dipole
required to produce the observed variation of α has a very
small value as compared with, for example, full alignment

of the constituents of the star. Making the variation of α
friction limited will lead to an increased central moment
requirement, but without knowledge of the friction mecha-
nism, we cannot estimate how large this would become. If
the motion were without friction, it should be periodic
about some equilibrium orientation of the two dipoles.
Friction changes this picture. It may take centuries of
observation to establish a complete picture, which may
differ between pulsars. While many details are missing, we
consider the possible two-dipole mechanism suggested
here as offering a significant outline explanation of the
more salient facts concerning pulsar magnetism.
We note that the toymodel is, strictly speaking, applicable

for an isolated pulsar in vacuum. The effect of corotating
plasma filling themagnetosphere on the spin-downof pulsars
has been studied since the late 1960s (see, e.g., Ref. [31] and
more recently Refs. [17–19]). The main consequence of this
effect is that it causes additional dissipation of energy from
pulsars even when the magnetic axis is aligned with the
rotation axis, and thus emission of magnetic dipole radiation
does not occur. However, as stated [17], the exact theory of
this phenomenon is not yet available, and only empirical
approximations were explored.
In a system of two dipoles, there may be a small

quadrupole contribution. The result of such an arrangement
is a small change in the dominant dipole direction but little
change in its magnitude, combined with a small quadrupole
moment set perpendicular to the resultant dipole axis. The
power radiated by such a quadrupole, being composed of
two opposing dipoles, must be negligible compared with
with the dominant dipole radiation and as such would not
affect our results.
We have shown that the toy model allows, in principle,

both increasing and decreasing α, from and toward the
rotation axis over time, and can explain braking indices
both lower and higher than the canonical value of 3 yielded
by the static MDRmodel. This feature may be interesting to
follow in light of recent observation of the braking index of
PSRJ16404631 nobs ¼ 3.15� 0.03 reported by Archibald
et al. [32] if it is confirmed.
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