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We investigate the critical behavior of pion superfluidity in the framework of the functional
renormalization group (FRG). By solving the flow equations in the SU(2) linear sigma model at finite
temperature and isospin density, and making comparison with the fixed point analysis of a general OðNÞ
system with continuous dimension, we find that the pion superfluidity is a second order phase transition
subject to an Oð2Þ universality class with a dimension crossover from dc ¼ 4 to dc ¼ 3. This phenomenon
provides a concrete example of dimension reduction in thermal field theory. The large-N expansion gives a
temperature independent critical exponent β and agrees with the FRG result only at zero temperature.
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I. INTRODUCTION

The study of quantum chromodynamics (QCD) phase
transitions at finite temperature and density provides a deep
insight into the strong interacting matters created in high
energy nuclear collisions and compact stars. The QCD
symmetry breaking and restoration patterns lead to a very
rich phase structure. The extension of the phase diagram
from finite temperature and baryon density to finite isospin
density is motivated by the investigation of isospin imbal-
ance in the interior of neutron stars [1,2]. The thermody-
namic equilibrium systems with finite isospin chemical
potential have been widely investigated through lattice
simulations [3–7], random matrix theory [8,9], and effec-
tive models like the Nambu–Jona-lasinio (NJL) model [10],
quark-meson model [11], and linear sigma model [12,13].
It is found that the spontaneous breaking and restoration of
the symmetry between charged pions π� are connected by a
second order phase transition at both zero and finite
temperature.
As a nonperturbative method, the functional renormal-

ization group (FRG) [14,15] is applied to Yang-Mills
theory [16] and QCD [17]. By solving the flow equations
which connect physics at different momentum scales, the
FRG shows a great power in describing the critical behavior
of the phase transitions which is controlled by quantum and
thermodynamic fluctuations. In the framework of FRG,
thermal and quantum fluctuations from ultraviolet to infra-
red limits are encoded through coarse graining and scale
transformation, giving reliable predictions on the properties
of both continuous and first order phase transitions [14].
Critical exponents and universality class play an extremely
important role in the study of QCD phase transitions.
Different systems with the same symmetry and dimension
should share identical critical exponents and belong to the
same universality class, indicating that the collective
properties near a continuous phase transition are indepen-
dent of the dynamical details of the system.

The macroscopic behavior of a thermal equilibrium
system is controlled by the low momentum modes and
thermodynamical parameters such as temperature and
chemical potential. For a system coupled to an external
heat bath, the change in the degrees of freedom may lead to
a change in the intrinsic symmetry. For instance, the
elemental constituents of a QCD system undergo a change
from hadrons at low temperature to quarks and gluons at
high temperature; this change leads to the deconfinement
phase transition. Such thermal effects also lead to a change
in the space-time dimension when analyzing the univer-
sality class. In thermal field theory, a compactification is
performed in the time direction with a periodic or anti-
periodic boundary condition. This procedure generates
equidistant Kaluza-Klein modes, namely the Matsubara
frequencies in thermal field theory. The dimension reduc-
tion goes along with the compactification. When the size of
a system goes from infinity to 0 along a fixed direction, the
fields lose their original dependence on the dimension
corresponding to this direction, and this specific dimension
is continuously reduced; see the initial research [18] and
recent progress [19]. For a system defined in a space-time
dimension d, the change in the thermodynamics of the
system is equivalent to the change in the dimension from d
to d − 1 [20,21].
Dimension is crucial for the critical behavior of a

continuous phase transition, since it is an essential element
in the classification of universality classes. The Ginzburg
criterion gives the idea of an upper critical dimension [22].
For a theory with dimension greater than 4, the mean field
approach is already good enough to describe the critical
phenomena. However, when the dimension is less than 4,
fluctuations need to be taken into account. In fact, the exact
solution to the Gaussian model with spatial dimension 4
gives indeed the same result as the mean field method,
despite the difference in understanding the underlying
physics. This motivates the expansion in 4 − ϵ [23,24],
under the assumption that the critical exponents and
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physical parameters are continuous with the change in
dimension. In the framework of FRG, the scale invariance
and self-similarity near the critical point are described by
the scale invariant fixed point of the flow equations. The
critical surface and properties of the flow around the
nontrivial fixed point provide a far-reaching description
concerning critical exponents and universality class.
Considering the fact that the baryon density suppresses

the pion superfluidity, we investigate in this paper the
critical behavior of the strongest pion superfluidity in the
limit of vanishing baryon density. In this limit we can take
the linear sigma model with only mesons. We organize the
paper as follows. The large-N and FRG approaches to the
SU(2) linear sigma model are separately discussed in
Secs. II and III, the numerical solutions, especially the
critical exponents of the pion superfluidity, are shown in
Sec. IV, and the comparison with a OðNÞ model in
continuous dimension is given in Sec. V. We summarize
in Sec. VI.

II. LARGE-N APPROACH TO PION
SUPERFLUIDITY

As an effective low-energy model, the linear sigma
model exhibits many of the global symmetries of QCD
at meson level and is widely used to demonstrate the
spontaneous chiral symmetry breaking in vacuum and its
restoration at finite temperature [25–28]. At finite isospin
chemical potential μI , the SU(2) linear sigma model is
defined through the Lagrangian density

L ¼ 1

2
∂μϕ∂μϕþ iμIðπ1∂tπ2 − π2∂tπ1Þ þ UðϕÞ;

UðϕÞ ¼ m2

2
ϕ2 þ λ

4
ϕ4 −

μ2I
2
ðπ21 þ π22Þ − cσ; ð1Þ

where ϕ ¼ ðσ;πÞ is defined as a four-component field
constructed by the isoscalar σ and isovector
π ¼ ðπ1; π2; π3Þ. In vacuum at μI ¼ 0, the Oð4Þ symmetry
in chiral limit is explicitly broken to a rotational symmetry
Oð3Þ among the three pions in real case with c ≠ 0.
Turning on the isospin chemical potential splits the three
pions, and the Oð3Þ symmetry is explicitly broken to Oð2Þ
symmetry. When μI exceeds the pion mass mπ in vacuum,
the symmetry is further spontaneously broken fromOð2Þ to
Zð2Þ and the system enters the pion superfluidity phase.
The spontaneous chiral symmetry breaking and isospin

symmetry breaking are described respectively by the chiral
condensate hσi and charged pion condensate hπþi ¼ hπ−i.
Considering the relations π� ¼ ðπ1 � iπ2Þ=

ffiffiffi
2

p
, one can

take alternatively the condensate hπ1i as the order param-
eter of pion superfluidity. Separating the quantum fluctua-
tions from the classical mean fields by making a shift ϕ¼
ðσ;π1;π2;π3Þ→ hϕiþϕ¼ ðhσi;hπ1i;0;0Þþ ðσ;π1;π2;π3Þ,
the Lagrangian density becomes

L ¼ Lmf þ Lint;

Lmf ¼
1

2
∂μϕ∂μϕþ iμIðπ1∂tπ2 − π2∂tπ1Þ þ

1

2
m2

iϕ
2
i

þ UðhϕiÞ; ð2Þ

where UðhϕiÞ is the classical potential, the meson mass m2
i

generated by the condensates can be expressed as the
second order derivative of UðϕÞ with respect to the meson
field at ϕ ¼ hϕi, m2

i ¼ ð∂2UðϕÞ=∂ϕ2
i Þjϕ¼hϕi, and the inter-

action part Lint contains three-meson and four-meson
interactions with couplings in terms of the third and fourth
order derivatives of UðϕÞ.
The physical condensates hσi and hπ1i are determined by

the minimum potential

∂UðhϕiÞ
∂hσi ¼ hσiðm2 þ λðhσi2 þ hπ1i2ÞÞ − c ¼ 0;

∂UðhϕiÞ
∂hπ1i ¼ hπ1iðm2 þ λðhσi2 þ hπ1i2Þ − μ2I Þ ¼ 0; ð3Þ

which guarantees the disappearance of the linear terms in σ
and π in the interaction Lagrangian Lint.
The three model parameters, namely the mass parameter

m2, the four-meson coupling constant λ, and the chiral
breaking parameter c, are fixed by fitting the meson masses
m2

π ¼ m2
π1 ¼ m2

π2 ¼ m2
π3 ¼ m2 þ λhσi2 ¼ 135 MeV and

m2
σ ¼ m2 þ 3λhσi2 ¼ 400 MeV and the pion decay con-

stant fπ ¼ hσi ¼ 93 MeV in vacuum. To guarantee the
Lorentz invariance and parity conservation, the pion con-
densate should vanish in vacuum, hπ1i ¼ 0. At finite
isospin chemical potential, the solution of the two coupled
gap equations is hσi ¼ fπ; hπ1i ¼ 0 in the normal phase at
μI < mπ and hσi ¼ c=μ2I ; hπ1i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2I −m2Þ=λ − c2=μ4I

p
in the pion superfluidity phase at μI > mπ .
The inclusion of thermal excitations in the linear sigma

model should be treated carefully. The Hartree-Fock
approach is straightforward, but its disadvantage is the
lack of the Goldstone mode in the symmetry breaking
phase [29] at finite temperature and density. Here we
introduce the thermal excitations through the large-N
expansion [30] and focus on the phase diagram of pion
superfluidity. Considering theOð3Þ symmetry of the model
in vacuum, we adopt the large-N expansion method in the
OðNÞ model with isospin chemical potential. With the
same method and techniques given by Harber and Weldon
[31], the condensates hσi and hπ1i and the related mass
parameter M2 are controlled by the coupled gap equations

hπ1iðM2 − μ2I Þ ¼ 0;

hσiM2 − c ¼ 0;

M2 ¼ λðhπi2 − f2π þ 2J0ðT; μI;M2ÞÞ þ c
fπ

; ð4Þ
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where the thermal excitations are included in the function
J0ðT; μI;M2Þ,

J0 ¼ 1

2

Z
d3p
ð2πÞ3

1

E
ð2fðEÞ þ fðE − μIÞ þ fðEþ μIÞÞ ð5Þ

with the quasiparticle energy E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
and Bose-

Einstein distribution fðxÞ ¼ 1=ðex=T − 1Þ.

III. FRG APPLICATION TO PION
SUPERFLUIDITY

We now apply the functional renormalization group to
the SU(2) linear sigma model. The core quantity in the
framework of FRG is the averaged effective action Γk at the
RG scale k in Euclidean space, its scale dependence is
described by the flow equation [14]

∂kΓk½ϕ� ¼
1

2
Trð∂kRkGk½ϕ�Þ; ð6Þ

where the trace is performed in field space and momentum
space, and Gk½ϕ� is the RG-modified propagator in field
space,

Gk½ϕ� ¼ ðΓð2Þ
k þ RkÞ−1; Γð2Þ

k ¼ δ2Γk=δϕ2: ð7Þ

The evolution of the flow from ultraviolet limit k ¼ Λ to
infrared limit k ¼ 0 encodes, in principle, all the quantum
and thermal fluctuations in the action. To suppress the
fluctuations with momentum smaller than the scale k
during the evolution, an infrared regulator Rk is introduced
in the flow equation. At finite temperature and density
where the Lorentz symmetry is broken, we employ the
optimized regulator function Rkðq2Þ¼ðk2−q2ÞΘðk2−q2Þ,
which is the three-dimensional analogue of the often used
four-momentum regulator [32]. In order to solve the RG
flow, a truncation is usually introduced and this, in
principle, violates the regulator independence of the IR
physics [33–36]. Under the truncation of local potential
approximation (LPA), the optimized regulator is
stable [37].
We take LPA to solve the flow equation (6) for the linear

sigma model at finite isospin chemical potential, by
truncating the effective action up to the order of ϕ4,

Γk ¼
Z

d4x

�
1

2
ð∂μϕÞ2 þ iμIðπ1∂tπ2 − π2∂tπ1Þ þ UkðϕÞ

�
:

ð8Þ

Assuming uniform field configuration, the integral over-
space and imaginary time is trivial, and the effective action
Γk ¼ βVUk is fully controlled by Uk, where V and β ¼
1=T are the space and time region of the system. Since the
Oð4Þ symmetry is broken by chiral and isospin symmetry

breaking, the combination ϕ2 ¼ σ2 þ π2 is no longer an
invariant, instead, the effective potential has separate
dependence on two invariants ρσ ¼ ðσ2 þ π20Þ=2 and
ρπ ¼ ðπ21 þ π22Þ=2. With the explicit symmetry breaking,
we have

Uk ¼ m2
kðρσ þ ρπÞ þ λkðρσ þ ρπÞ2 − μ2Iρπ − cσ: ð9Þ

A nonvanishing expectation κσ of ρσ signals chiral sym-
metry breaking and a nonvanishing expectation κπ of ρπ
signals isospin symmetry breaking. They are determined by
the stationary condition of the effective potential
∂σU ¼ ∂π1U ¼ 0, which gives

m2
kð2κσÞ1=2 þ λkð2κσÞ3=2 − c ¼ 0; κπ ¼ 0 ð10Þ

in the normal phase without pion condensation and

κσ ¼
c2

2μ4I
; κπ ¼

μ2I −m2
k

2λk
−

c2

2μ4I
ð11Þ

in the pion superfluidity phase. These vacuum expectation
values further serve as an expansion point when solving the
flow equation for the effective potential.
The inverse propagator G−1

k ½ϕ� in field space defined by
(7) has the following form,

G−1
k ½ϕ� ¼

0
BBBBB@

Kσ m2
σπ1 0 0

m2
σπ1 Kπ1 2μIωn 0

0 −2μIωn Kπ2 0

0 0 0 Kπ0

1
CCCCCA

ð12Þ

with

Kσ ¼ ω2
n þ q2

R þm2
σ;

Kπ0 ¼ ω2
n þ q2

R þm2
π0 ;

Kπ1 ¼ ω2
n þ q2

R þm2
π1 − μ2I ;

Kπ2 ¼ ω2
n þ q2

R þm2
π2 − μ2I ;

m2
σ ¼ Uð1;0Þ

k þ 2ρσU
ð2;0Þ
k ;

m2
π0 ¼ Uð1;0Þ

k ;

m2
π1 ¼ Uð0;1Þ

k þ 2ρπU
ð0;2Þ
k ;

m2
π2 ¼ Uð0;1Þ

k ;

m2
σπ1 ¼ 2

ffiffiffiffiffiffiffiffiffi
ρσρπ

p
Uð1;1Þ

k ; ð13Þ

where q2
R ¼ q2 þ Rkðq2Þ is the RG-modified momentum,

ωn ¼ 2nπT with n ¼ 0;�1;�2; � � � are the Matsubara
frequencies of bosons, and Um;n

k are the derivatives of
the potential with respect to ρσ and ρπ,
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Uðm;nÞ
k ¼ δðmþnÞ

δρmσ δρ
n
π
Uk: ð14Þ

In the normal phase with κπ ¼ 0, there is no mixture
between σ and π1; the propagator is simplified as

Gk½ϕ� ¼

0
BBB@

Gσ 0 0 0

0 Gπ1 −Gπ1π2 0

0 Gπ1π2 Gπ2 0

0 0 0 Gπ0

1
CCCA ð15Þ

with

Gσ ¼ 1=Kσ;

Gπ0 ¼ 1=Kπ0 ;

Gπ1 ¼ Kπ2=J;

Gπ2 ¼ Kπ1=J;

Gπ1π2 ¼ 2μIωn=J;

J ¼ 4μ2Iω
2
n þ Kπ1Kπ2 : ð16Þ

In the pion superfluid phase, there is a mixture in
σ − π1 − π2 subspace; the propagator becomes

Gk½ϕ� ¼

0
BBB@

Gσ −Gσπ1 Gσπ2 0

−Gσπ1 Gπ1 −Gπ1π2 0

−Gσπ2 Gπ1π2 Gπ2 0

0 0 0 Gπ0

1
CCCA ð17Þ

with

Gσ ¼ ð4μ2Iω2
n þ Kπ1Kπ2Þ=J;

Gπ0 ¼ 1=Kπ0 ;

Gπ1 ¼ KσKπ2=J;

Gπ2 ¼ ðKσKπ1 −m4
σπ1Þ=J;

Gσπ1 ¼ m2
σπ1Kπ2=J;

Gσπ2 ¼ 2μIωnm2
σπ1=J;

Gπ1π2 ¼ 2μIωnKσðqÞ=J;
J ¼ KσðKπ1Kπ2 þ 4μ2Iω

2
nÞ −m4

σπ1Kπ2 :

By putting these propagators into the flow equation (6),
taking the momentum integration with optimized regulator
function Rk, and performing the Matsubara frequency
summation, we obtain the flow equation for the effective
potential

∂kUk ¼
1

2
Iσð0Þ þ

1

2
Iπ0ð0Þ þ

1

2

X
�
Iπ�ð�μIÞ ð18Þ

in the normal phase and

∂kUk ¼
1

2
Iπ0ð0Þ þ

1

2

X
j∈fΣ;Π1;Π2g

RjIjð0Þ ð19Þ

in the superfluidity phase, where

IiðμÞ ¼
k4

3π2
1þ 2nBðEi þ μÞ

2Ei
ð20Þ

is the loop function for quasiparticles with energy Ei and
occupation number

nBðEÞ ¼
1

eE=T − 1
: ð21Þ

Note that, due to the spontaneous isospin symmetry
breaking in the superfluidity phase, σ; π1, and π2 are no
longer the eigenstates of the Hamiltonian of the system.
The new eigenmodes Σ;Π1;Π2 are linear combinations of
σ; π1; π2 and their masses mj with j ∈ fΣ;Π1;Π2g are
determined by the three poles of the meson propagator (17).
The coefficients Rj in (19) are the corresponding residues at
the three poles.
With two condensates in field space, there are several

evaluation methods to solve the flow equation: one- and
two-dimensional Taylor expansion with running minimum
[38,39], Taylor expansion about a fixed background [40]
and a grid of field [41]. Similar to the method in [39], we
adopt here a two-dimensional Taylor expansion by expand-
ing Ukðρσ; ρπÞ at the running minimum ðκσ; κπÞ to the
second order. Considering that the main physics is sponta-
neous chiral symmetry breaking in the normal phase and
spontaneous isospin symmetry breaking in the pion super-
fluidity phase, we neglect the fluctuations in the pion
condensate in the normal phase and fluctuations in the
chiral condensate in the pion superfluidity phase. This
approximation reduces the dimension of the expansion
from 2 to 1 and and largely simplifies the structure of the
flow equations. Under this approximation, in the normal
phase with ρπ ¼ 0, the effective potential becomes a
function of Oð4Þ invariant ρ ¼ ρσ. The running minimum
kσ is the solution to the stationary condition (10). Taking
into account the stationary condition m2

k ¼ −2λkκσ þ
c=

ffiffiffiffiffiffiffi
2κσ

p
and its scale derivative ∂km2

k ¼ −2κσ∂kλk−
ð2λk þ c=ð2κσÞ3=2Þ∂kκσ, the flow equation in the normal
phase can be rewritten as

∂kUk ¼
c

ð2κσÞ3=2
∂kκσðρ − κσÞ þ ∂kλkðρ − κσÞ2: ð22Þ

There should be a constant term in the expansion that is the
potential at the running minimumUðκσÞ and only related to
the thermal properties of the system. Since we focus on the
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critical properties of the system, we have dropped this
constant part.
In the superfluid phase, the minimum κσ is scale

independent and can be treated as a background field.
Under the approximation of neglecting fluctuations in ρσ,
we expand the effective potential at the running minimum
κ ¼ κσ þ κπ . With the stationary condition in the superfluid
phase, the scale derivative of the effective potential can be
reparametrized in the superfluid phase,

∂kUk ¼
�
∂km2

k þ
μ2I −m2

k

λk
∂kλk

�
ðρ − κÞ þ ∂tλkðρ − κÞ2:

ð23Þ

In both phases, the flow equations for the parameters m2
k

and λk are obtained by expanding the right-hand side of
(18) or (19) to the second order at the corresponding
running minimum (10) or (11) and then comparing the
coefficients with (22) or (23).

IV. NUMERICAL RESULTS

In this section we numerically solve the two coupled
flow equations and show our results for the phase diagram
of pion superfluidity and the corresponding critical expo-
nents at finite temperature and isospin chemical potential.
With the help of the explicit solutions (10) and (11) for the
condensates, the initial condition for the two flow equations
at fixed temperature and chemical potential is the values of
the mass and coupling parameters m2

ΛðT; μIÞ and λΛðT; μIÞ
at the ultraviolet momentum Λ and the k-independent
parameter c controlling the degree of explicit chiral
symmetry breaking. In principle, the initial condition of
the flow in low-energy effective models should be obtained
by integrating the QCD flow equation down to the scale Λ.
Considering the fact that the system at extremely high
momentum should be dominated by the dynamics and not
affected remarkably by the external parameters like temper-
ature and chemical potential, we take, as a first order
approximation, temperature and chemical potential inde-
pendent initial values m2

ΛðT; μIÞ ¼ m2
Λð0; 0Þ and

λΛðT; μIÞ ¼ λΛð0; 0Þ in the following numerical calcula-
tion. Their values are so chosen to fit the meson masses and
pion decay constant in vacuum at the infrared limit. Their
values are listed in Table I.

How to choose the value of the ultraviolet scale Λ should
be carefully discussed in effective models. In models with
hadrons as elementary constituents, the momentum scale
cannot go beyond the scale of the model itself where the
hadrons are well defined. This means that the momentum
scale should be restricted in a reasonable region. In the
following calculation we take Λ ¼ 800 MeV for the start-
ing point of the evolution of the renormalization param-
eters. We have checked that the physical results at k ¼ 0 are
not sensitive to the further increased Λ. With the given
initial condition, the two flow equations are solved
by the fourth order Runge-Kutta method with step
length dk ¼ 10−4 MeV. We reach the infrared scale
kmin < 10−3 MeV.
In vacuum, the evolution of the mass and coupling

parameters m2
k and λk and the chiral condensate hσik with

RG scale k is shown in Fig. 1. They all drop down rapidly
in the beginning and become saturated at k → 0, guaran-
teeing the stability of the flow equations in the infra-
red limit.
The increasing condensate with scale in meson models,

as shown in Fig. 1 and [42] and [43], looks suspicious, as in
one-flavor QCD [44] and quark-meson models [45] the
chiral condensate drops down with increasing scale and
approaches 0 when the UV scale is high enough. This
difference may come from the sign� on the right-hand side
of the flow equations ∂kΓk ¼ þð1=2ÞTrð∂kRkGkÞ for
bosons and ∂kΓk ¼ −Trð∂kRkGkÞ for fermions. Since
∂kRkGk is positively definite, the sign � leads to an
increasing potential for mesons and decreasing potential
for quarks. For systems with both quark and meson degrees
of freedom, the UV limit is controlled by quarks. Note that,
while the evolution process of the flow from ultraviolet
limit to infrared limit is different for meson and quark
systems, both can reach the correct infrared limit by
choosing suitable initial conditions.
The chiral and pion condensations at finite temperature

and isospin chemical potential are displayed and compared

FIG. 1. The evolution of the scaled mass parameter m2
k=m

2
Λ,

coupling constant λk=λΛ, and chiral condensate hσik=hσiΛ with
RG scale k in vacuum.

TABLE I. The initial parameters m2
Λ and λΛ at the UV limit and

c by fitting the meson masses and pion decay constant in vacuum
at the infrared limit. The cutoff is set to be Λ ¼ 800 MeV andmπ ,
mσ , and fπ are given in MeV.

m2
Λ=Λ

2 λΛ c=Λ3 fπ mπ mσ

−0.4453 16.93 0.0033 93.02 134.98 400.43
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with the large-N expansion in Fig. 2. The system is in
normal phase at low isospin chemical potential and enters
the pion superfluidity phase at the critical isospin chemical
potential μcI ¼ mπ. Because of the explicit chiral symmetry
breaking (c ≠ 0), the chiral condensate does not disappear
in the superfluidity phase. While there is almost no
difference between the FRG and large-N expansion for
the chiral condensate, the difference is remarkable for the
pion condensate. Especially, the critical isospin chemical
potentials in the two approaches do not coincide at high
temperature.
At mean field level, the critical isospin chemical poten-

tial μcI ¼ mπ can be analytically obtained by combining the
gap equation (11) and the pion mass in vacuum
m2

π ¼ m2 þ λσ2. When the fluctuations are included, it is
not trivial to keep this critical value in the FRG framework.
In quark-meson model [11], it is largely violated when
taking the pion screening mass as the physical mass. The
violation can be cured by properly feeding the momentum
dependent propagators back into the flow equation for the
effective potential [11,41]. In boson models the violation
becomes much weaker even at LPA level [46]. In our
treatment the critical value μcI ¼ mπ comes from the one-
dimensional Taylor expansions (22) for normal matter and
(23) for pion superfluidity. Since the Oð4Þ symmetry is
broken by chiral condensation and nonzero isospin chemi-
cal potential, the combination ρ ¼ ρσ þ ρπ is no longer an
invariant, the effective potential depends separately on ρσ
and ρπ , and its expansion should be two dimensional. In our
treatment, however, we have neglected the fluctuations in
ρπ in normal phase and in ρσ in pion superfluidity. Under
this approximation, the expansions (22) and (23) become
one dimensional, which keeps the condition μcI ¼ mπ . The
result here is similar to the conclusion in Ref. [39] with one-
dimensional expansion. While the fluctuations in ρσ (ρπ)
are the dominant fluctuations in normal matter (pion
superfluidity), a two-dimensional expansion in ρσ and ρπ
is expected to violate the condition μcI ¼ mπ .
The difference between the large-N and FRG approaches

in the pion superfluidity can also be seen in Fig. 3. Again,

the temperature and chemical potential behavior of the pion
superfluidity, especially the location of the critical temper-
ature, depends on the used approaches. Note that, while the
difference in the critical temperature and chemical potential
is small, it may significantly change the critical exponents;
see the following discussion.
For a continuous phase transition, while the temperature

and chemical potential dependence of the order parameter
and the location of the phase transition line are related to
the detailed dynamics of the used model, the critical
behavior of the phase transition is controlled only by the
symmetry and the space-time dimension of the system. In
the vicinity of a continuous phase transition, fluctuations
become dominant and the correlation length approaches
infinity. In this case, the difference between the FRG that
focuses on quantum and thermal fluctuations and the large-
N expansion can be clearly understood from the perspec-
tive of critical exponents. From the scaling laws,
γ¼βðδ−1Þ, αþ2βþγ¼2, dν ¼ 2 − α and γ ¼ νð2 − ηÞ,
only two among the six critical exponents are independent.
Since we have taken local potential approximation, the
anomalous dimension disappears, η ¼ 0, and we have only
one independent critical exponent.
For the phase transition of pion superfluidity, the critical

exponent β describing the behavior of the order parameter
hπ1i is defined as

hπ1i ∼
�
Tc − T
Tc

�
β

: ð24Þ

In Tables II and III we show the critical isospin chemical
potential μcI and critical exponent β at temperature T in the

FIG. 2. The chiral and pion condensates hσi and hπ1i as
functions of isospin chemical potential at different temperatures
in the FRG and large-N expansion approaches.

FIG. 3. The pion condensate hπ1i as a function of temperature
at different isospin chemical potential in the FRG and large-N
expansion approaches.

TABLE II. The critical isospin chemical potential μcI and
critical exponent β at temperature T, calculated in the FRG
approach.

TðMeVÞ 0 10 50 100 150 200 250
μcI ðMeVÞ 135.0 135.2 138.0 146.3 164.5 199.4 248.9
β 0.5 0.445 0.380 0.347 0.328 0.318 0.314
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FRG and large-N expansion approaches. From the com-
parison of the two methods, the big difference lies in the
critical exponent β which is controlled by fluctuations.
With the large-N expansion, β is temperature independent
and keeps its mean field value 0.5. In the framework of
FRG, however, β decreases continuously from 0.5 to 0.313
with increasing temperature. In the beginning it drops down
rapidly and then becomes saturated when the temperature is
high enough.
The calculation of the critical exponents does not depend

on the path approaching the phase transition point in the
T − μI plane, since the correlation length goes to infinity in
any direction moving to the transition point. In the above
calculation of β, μI is kept as a constant and the path
is parallel to the T axis. We checked the calculation with
the path parallel to the μI axis, namely, taking hπ1i∼
ððμI − μcI Þ=μcI Þβ, the result is the same as with (24).

V. A COMPAISON: OðNÞ MODEL IN
CONTINUOUS DIMENSION

The critical properties of a continuous phase transition at
finite temperature and density can alternatively be
described by space-time dimension reduction in vacuum.
In finite temperature field theory [47,48], the imaginary
time corresponds to the inverse temperature of the system
T−1. The two length scales of the system defined in the
Euclidean space S1 × Rd−1 can be the circumference T−1 of
S1 and the inverse RG scale k−1 for Rd−1. The space-time
integration at finite temperature becomes

Z
∞

0

ddx →
Z

T−1

0

dt
Z

∞

0

dd−1x: ð25Þ

In low temperature limit T → 0, the integration over time is
from 0 to ∞, and the space-time dimension is d. In high
temperature limit T → ∞, however, the time integration
vanishes; the dimension of the system drops from d of S1 ×
Rd−1 to d − 1 of Rd−1. Between the low and high temper-
ature limits, the effective dimension of the system deff
changes continuously from d to d − 1.
To show the fact that the critical exponents calculated

above are independent of the details of the pion super-
fluidity in the linear sigma model but controlled only by the
symmetry and the space-time dimension of the system, we
recalculate in this section the critical exponents in a simpler
model with intrinsic symmetry OðNÞ and continuous

dimension 3 < d < 4 in vacuum. With different N, the
OðNÞ model is able to capture the symmetry of different
systems [49], and with varying dimension d, the model can
provide a deep insight into the critical phenomenon of low
dimension systems with d < 3 [50] and of high dimen-
sional systems with d > 4 [49,51,52]. The critical expo-
nents are discussed in the OðNÞ model at fixed dimension
d ¼ 3 [35]. What we focus on here is their dimension
dependence and dimension reduction.
The Euclidean Lagrangian density of the model involves

a set of N real scalar fields ϕi; ði ¼ 1;…; NÞ,

LN ¼ 1

2
∂μϕi∂μϕi þUðϕ2Þ ð26Þ

with the effective potential

Uðϕ2Þ ¼ 1

2
aϕiϕi þ

1

4
bðϕiϕiÞ2; ð27Þ

where a and b are respectively the mass parameter and
coupling constant. Suppose one of the N components is
with finite vacuum expectation value hϕji; the Goldstone
theorem guarantees N − 1 massless particles. Defining the
invariant of the system ρ ¼ ϕ2

j=2 and making a shift
ϕj → hϕji þ ϕj, we obtain the flow equation for the
effective potential,

∂kUk ¼ Sdkdþ1

�
1

k2 þ U0
k þ 2ρU00

k

þ N − 1

k2 þ U0
k

�
; ð28Þ

whereUkðϕ2Þ isUðϕ2Þ but with k-dependent parameters ak
and bk,U0

k þ 2ρU00
k is the squared curvature mass of ϕj with

U0
k ¼ ∂Uk=∂ρ andU00

k ¼ ∂2Uk=∂ρ2. Note that the massU0
k

of N − 1 Goldstone particles is guaranteed to be 0 by the
gap equation.
By expanding the flow equation around the classical

fields, comparing the linear and quadratic terms on the both
sides, and taking into account the gap equation
∂Uk=∂hϕji ¼ 0 that leads to only two independent param-
eters ak and bk, the flow equation for Uk is converted into
two coupled flow equations for ak and bk. Then we
introduce the dimensionless parameters,

āk ¼ k−2ak; b̄k ¼ kd−4bk; ð29Þ

the flow equations for āk and b̄k can be explicitly
expressed as

∂tāt ¼ −2āt − 2Sdb̄t

×

��
3

E4
1

þ N − 1

E4
2

�
− 2āt

�
9

E6
1

þ N − 1

E6
2

��
;

∂tb̄t ¼ ðd − 4Þb̄t þ 4Sdb̄2t

�
9

E6
1

þ N − 1

E6
2

�
ð30Þ

TABLE III. The critical isospin chemical potential μcI and
critical exponent β at temperature T, calculated in the large-N
expansion approach.

TðMeVÞ 0 10 50 100 150 200 250
μcI ðMeVÞ 135.0 135.2 137.8 146.0 163.5 195.9 242.5
β 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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with the RG time t ¼ lnðk=ΛÞ, the phase space factor
Sd ¼ 1=ðd2d−1πd=2Γðd=2ÞÞ, and the dimensionless ener-
gies E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2āk

p
for the massive particle ϕj and E2 ¼ 1

for the N − 1 Goldstone particles ϕi. Giving an arbitrary
initial condition ā0 and b̄0 at t ¼ 0, we can solve the flow
equations and obtain an evolution curve in the parameter
plane ðāt; b̄tÞ, and the collection of all the curves forms the
flow diagram. From the definition, the fixed points of the
flow are characterized by the equations

0 ¼ 2āt þ 2Sdb̄t

×

��
3

E4
1

þ N − 1

E4
2

�
− 2āt

�
9

E6
1

þ N − 1

E6
2

��
;

0 ¼ ðd − 4Þb̄t þ 4Sdb̄2t

�
9

E6
1

þ N − 1

E6
2

�
: ð31Þ

Figure 4 shows the flow diagrams of the Oð2Þ model in
the dimensionless parameter plane ðāt; b̄tÞ at different
dimensions d ¼ 3; 3 1

3
; 3 2

3
, and 4 from top to bottom.

When the dimension d increases from 3 to 4, there exist
both the Wilson-Fisher fixed point and Gaussian fixed
point, and the critical behavior of the phase transition at
finite temperature is governed by the Wilson-Fisher fixed
point. With increasing dimension, the Gaussian fixed point
is always located at ðāt; b̄tÞ ¼ ð0; 0Þ, and the Wilson-Fisher
fixed point approaches it continuously and finally merges
with it at d ¼ 4. At d ¼ 4, the Gaussian fixed point
becomes a mixed one with flows going in and out and
governs the critical behavior of the system.
With the standard procedure of renormalization group

[23], by linearizing the flow equations (30) in the vicinity of
the Wilson-Fisher fixed point (Gaussian fixed point at
d ¼ 4) and calculating the eigenvalues of the Jacobian, we
can accordingly obtain the critical exponent ν describing
the singularity in the correlation length. Using the scaling
law β ¼ ðd − 2Þ=2ν we can further find the critical expo-
nent β. The result for OðNÞ models with different N in
continuous dimension between 3 and 4 is listed in Table IV.
At d ¼ 4, the critical exponents are characterized by the

Gaussian fixed point of a free boson system, and the
fluctuations could be neglected in the vicinity of the critical
point. When the dimension is slightly less than 4, the
Wilson-Fisher fixed point is very close to the Gaussian
fixed point, the system is in a weakly coupled state, and the
perturbation expansion is self-consistent in this region.
From the expansion in terms of 4 − ϵ, the critical exponent
ν can be simplified as ν−1 ¼ 2 − ðN þ 2Þ=ðN þ 8Þϵ for
small ϵ. When ϵ is not small enough, the Wilson-Fisher
point is far from the Gaussian fixed point, the system
around the phase transition is in a strongly coupled state,
and nonperturbative approaches are required to deal with
the dominant fluctuations.

We now compare the critical exponents calculated from
the fixed point analysis in theOðNÞmodel with continuous
dimension and from linearly fitting the pion condensates in
FRG and large-N expansion approaches. As shown in

FIG. 4. The flow diagrams of the Oð2Þ model in the dimen-
sionless parameter plane ðāt; b̄tÞ at dimension d ¼ 3; 3 1

3
; 3 2

3
, and

4 from top to bottom.

TABLE IV. The critical exponent β calculated in OðNÞ models
with continuous dimension 3 ≤ d ≤ 4.

d

N 3 3.1 3.2 3.4 3.6 3.8 3.9 4

Oð2Þ 0.311 0.328 0.349 0.394 0.434 0.469 0.485 0.5
Oð3Þ 0.365 0.368 0.378 0.409 0.442 0.472 0.486 0.5
Oð4Þ 0.398 0.397 0.401 0.421 0.448 0.474 0.487 0.5
Oð∞Þ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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Fig. 5, solid and dashed lines are theOð∞Þ andOð2Þmodel
calculations. Since the critical exponents are controlled by
the symmetry and space-time dimension of the system only
and not sensitive to the detailed dynamics, namely, the
superfluidity or the general Oð2Þ-type dynamics, there
should be the relation between the calculations at finite
temperature and continuous dimension,

βðTcÞ ¼ βðdcÞ: ð32Þ

The dot and diamonds in Fig. 5 are the values of β
calculated with dynamics of pion superfluidity in large-
N expansion and FRG approaches shown in Sec. IV. From
the relation (32) we can extract the critical dimension
corresponding to the critical temperature dcðTcÞ that is
demonstrated in Fig. 6. The critical dimension decreases
continuously from 4 to 3 with increasing critical temper-
ature from 0 to the maximum value ∼300 MeV.
Including baryon chemical potential μB in the calculation

of pion superfluidity in QCD and effective models like NJL
and quark-meson models, the pion condensate is reduced
by the imbalance between the Fermi surfaces of u and d̄
quarks, and the critical temperature becomes lower than the
one shown in Table II. In this case, the line TcðdcÞ at a
nonzero μB, extracted from the relation βðTc; μBÞ ¼ βðdcÞ,

starts at a lower temperature in comparison with the one
shown in Fig. 6 at μB ¼ 0.
The Taylor expansion around the running minimum is a

usually used way to solve FRG flow equations, with which
one can explicitly see the evolution of the coupling
parameters under the scale transformation. However, the
speed of convergence of the expansion depends on the
model used. For OðNÞ models with N ≤ 4, a good
convergence of the critical exponents needs the expansion
to at least the third order, as discussed in [35]. When N is
large enough, the convergence is already good enough with
the expansion to the second order. In our treatment for the
pion superfluidity in the linear sigma model, we expanded
the flow equation only to the second order. It is expected
that including the higher order contribution to the flow
equation may change the values of the critical exponents.
However, since the expansions in both the linear sigma
model and Oð2Þ model are at the same order, the relation
between the critical temperature and dimension extracted
from the comparison of the two models may not be so
sensitive to the higher order correction. As for the large-N
approach, there is already a big difference from the FRG
approach, shown in Tables II and III for the critical
exponent; the higher order contribution does not qualita-
tively modify the difference.

VI. SUMMARY

We studied the critical behavior of pion superfluidity at
finite temperature and isospin chemical potential and its
relation to the dimension crossover at zero temperature. In
the framework of functional renormalization group, we
calculated the critical exponents of the pion superfluidity in
the SU(2) linear sigma model at finite temperature and
isospin density and compared them with a general OðNÞ
model at zero temperature and density. The pion super-
fluidity is a second order phase transition driven by isospin
density. At zero temperature, the critical exponents β ¼ 0.5
for the order parameter correspond to the four-dimensional
Oð2Þ universality class. When temperature is turned on, the
critical exponent β changes with temperature, and the phase
transition corresponds to a Oð2Þ universality class with a
dimension crossover from d ¼ 4 to d ¼ 3. In the limit of
high temperature, the critical exponent is saturated at
β ¼ 0.31, corresponding to the three-dimensional Oð2Þ
universality class.
We also compared the FRGwith large-N expansion in the

linearsigmamodel.Thetwoapproachesgivethesamecritical
behavior only at zero temperaturewhere thermal fluctuations
are negligible in the vicinity of the phase transition. This
agreement is predicted by the Ginzburg criterion [22] that
d ¼ 4 is the upper critical dimension of the mean field
approach. From the perspective of FRG, the critical phe-
nomenon at d ¼ 4 is governed by the Gaussian fixed point,
aroundwhich the system is reduced to aweakly coupled one,
justifying the self-consistency of mean field treatment and

FIG. 5. The critical exponent β as a function of continuous
dimension d. The solid and dashed lines are the calculations in
Oð∞Þ andOð2Þmodels, and the dot and diamonds are the results
of pion superfluidity in large-N expansion and FRG approaches.

FIG. 6. The relation between critical temperature and critical
dimension, from the comparison between pion superfluidity at
finite temperature and Oð2Þ model with continuous dimension.
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4 − ϵ expansion. Turning on the temperature, the difference
between the two approaches becomes obvious. For dimen-
sion much less than 4, fluctuations in the critical region play
the dominant role. The large-N expansion and perturbation
treatment are no longer self-consistent; nonperturbative
treatments of fluctuations are required.
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