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The Λð1405Þ baryon is difficult to detect in experiment, absent in many quark model calculations, and
supposedly manifested through a two-pole structure. Its uncommon properties make it the subject of
numerous experimental and theoretical studies, including those by the Adelaide group who report lattice-
QCD eigenvalues for different quark masses. We compare these eigenvalues to predictions of a model
based on Unitary Chiral Perturbation Theory. The UχPT calculation predicts the quark mass dependence
remarkably well. It also predicts the overlap pattern with different meson-baryon components, mainly πΣ
and K̄N, at different quark masses, which might help in the construction of meson-baryon operators for
improved level detection on the lattice. More accurate lattice QCD data are required to draw definite
conclusions on the nature of the Λð1405Þ.
DOI: 10.1103/PhysRevD.94.056010

I. INTRODUCTION

The Λð1405Þ has been a controversial state for many
years. In the quark model, it is classified as a q3 state
belonging to the 70-dimensional representation with
excitation of one of the quarks to the p state [1]. A
pentaquark structure q4q̄ has also been proposed [2].
Nevertheless, the mass of the Λð1405Þ, that is lighter
than the Nð1535Þ, and the large spin-orbit splitting
between the Λð1405Þ and Λð1520Þ were difficult to
understand in the quark model picture. The Λð1405Þ has
been considered as a quasibound molecular state of the
K̄N system for many years [3,4]. In fact, there is
experimental evidence that the Λð1405Þ resonance,
which has been observed in the πΣ invariant mass
distribution, is mostly a K̄N and/or πΣ composite
[5–9]. The reason is that the Λð1405Þ lies just
25 MeV below the K̄N threshold and has a strong
influence on the low-energy K̄N data [5,6,8,9]. It should
be stressed, however, that the partial-wave content, and
in particular the S-wave, is difficult to determine close
to threshold as demonstrated recently by the ANL/Osaka
[10,11] and Kent State groups [12]. See also a recent
reanalysis of the KSU partial waves to extract the
resonance content [13]. Better kaon-induced reaction
data are needed [14–16].
The Λð1405Þ also played an important role in the so-

called kaonic hydrogen puzzle [5–7,17–24], which was
resolved through accurate measurements of the 1S level
shift of the kaonic hydrogen atom from atomic x rays
[25,26]. From these measurements, the K−p scattering

length can be extracted (through the Deser formula [27]).
A precise determination of the K−p scattering length
requires us to include isospin breaking corrections [28].
The accurate kaonic hydrogen measurements by

DEAR and SIDDHARTA [29,30], together with total
cross-section data and threshold branching ratios, are
successfully described in the framework of chiral SU(3)
coupled-channel dynamics with input based on the NLO
meson-baryon effective Lagrangian [31–38]. Dispersion
relations can be used to perform the necessary resum-
mation of the chiral perturbation theory amplitudes at
any order [39]. In particular, the kaonic hydrogen data
are used to constrain the meson-baryon coupled-channel
amplitudes, giving rise to a more precise determination
of the location of the two poles. Off-shell effects in the
NLO chiral expansion of the effective Lagrangian lead
to only small changes of the pole positions [35].
Implications of the new data for K̄d scattering are
discussed in Refs. [40,41]. See Ref. [38] for a recent
comparison of approaches.
Since the Λð1405Þ mass lies between the πΣ and K̄N

thresholds, a coupled-channel description is mandatory.
In fact, all the unitary frameworks based on chiral
Lagrangians for the study of the S-wave meson-baryon
interaction lead to the generation of this resonance
[31,35,39,42–48]. Within the UχPT framework, two
poles close to the Λð1405Þ resonance mass appear
[39,47]. This was also the case in the cloudy bag
model of Ref. [24]. The coupled-channel formalism
takes into account all possible (JP ¼ 1

2
−; I ¼ 0) pseudo-

scalar meson-octet baryon channels (except for η0Λ
whose coupling is supposed to be negligible): K̄N,
πΣ, ηΛ and KΞ [45,48,49]. For example, in
Ref. [49], the two states are found in the complex
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plane of scattering energy at
ffiffiffi
s

p ¼ ð1390–66iÞ MeV and
ð1426–16iÞ MeV. Both states lie on the same Riemann
sheet, with the real parts of their pole positions above
the πΣ and below the K̄N threshold. In most
approaches, the lower state is wider and couples
stronger to the πΣ channel, while the upper state close
to the K̄N threshold is narrower and couples more to
K̄N. The position and width of the lighter state is less
well determined than for the heavier state [35,50].
Evidence of the proposed two-pole structure [39,47]

has been accumulated through the study of different
reactions. For instance, in Ref. [51], the theoretical
study of the pp → pKþΛð1405Þ reaction shows differ-
ent line shapes from the K, π and ρ-exchange contri-
butions due to the two-pole structure, and its sum is
consistent with experimental data. Indeed, the two poles
associated with the Λð1405Þ can also be studied by
means of different production reactions which favor one
or the other pole. In Ref. [52], it is shown that the
K−p → π0π0Σ0 reaction is sensitive to the second pole
of the Λð1405Þ resonance. In this process, the π0 is
emitted prior to the K−p → π0Σ0 reaction, which gives
more weight to the second state. The model of Ref. [52]
reproduces both the invariant mass distributions and
integrated cross sections observed in the experiment
by the Crystal Ball Collaboration [53]. Other reactions
to unravel the two-pole structure of the Λð1405Þ have
been proposed in Ref. [54]. The π0Σ0 decay mode of the
Λð1405Þ is, in general, clean because there is no con-
tamination from the Σð1385Þ. In contrast to the reaction
K−p → π0π0Σ0, the reaction π−p → K0πΣ studied in
Ref. [55] shows a different shape of the resonance
and is dominated by the πΣ → πΣ amplitude, hence,
favoring the lower and wider state. Further evidence for
two Λð1405Þ states is found in Refs. [56,57]. The
composite nature of the Λð1405Þ as K̄N bound state
has been investigated in Refs. [58,59]. Regge trajecto-
ries of the two poles of the Λð1405Þ have been studied
in Ref. [60].
Recently, the spin and parity of Λð1405Þ were deduced

based on γp → KþΛð1405Þ reaction data [61] measured at
CLAS and confirmed to be 1=2− [62]. The line shape of the
Λð1405Þ differs in the πþΣ− and π−Σþ decay channels as a
result of the isospin interference between different πΣ
channels. In Refs. [63–65], the impact of the new photo-
production data [61] on the pole structure of the Λð1405Þ
has been quantified.
The finite-volume spectrum of the Λð1405Þ was pre-

dicted in Ref. [66] based on a dynamical coupled-channel
model and a chiral unitary approach. The coupled-channel
K̄N, πΣ scattering lengths in the finite volume were
discussed in Ref. [67]. The problem of multiple thresholds
and resonances in finite-volume baryon spectroscopy was
discussed for the example of the Nð1535Þ, Nð1650Þ in
Ref. [68]. After this manuscript appeared in the e-print

archive, the Λð1405Þ finite-volume spectrum was analyzed
in Ref. [69].
Recently, the spectrum of excited hyperons became

accessible in ab initio simulations of QCD on the lattice
[70–76]. The determination of meson-baryon phase shifts
has been pioneered for S ¼ 0, JP ¼ 1

2
− in Ref. [77].

The aim of the present study is to test the two-pole
hypothesis of the Λð1405Þ in light of the new lattice
QCD data from Ref. [78]. This work is indeed the first
comparison between lattice data and a prediction from
UχPT. For this, we determine the M2

π evolution of the
eigenvalues with I ¼ 0, S ¼ −1 and JP ¼ 1=2−, using
the lowest-order chiral interaction in the finite volume,
for several sets of ground state masses, in particular, the
physical set, and the sets of pion masses used in
Ref. [78] which are between 170 MeV and 620 MeV.
We will study the properties of the first two states, pole
positions, distances to the K̄N and πΣ thresholds, and
couplings to the meson-baryon components, and com-
pare to the lattice data.
The article is organized as follows. In Sec. II, we

describe the coupled-channel formalism using the UχPT
lowest-order potential, to dynamically generate the
Λð1405Þ. In Sec. III, we explain how to calculate the
bound states in the box using the coupled-channel formal-
ism. Finally, in Secs. IV and V, we present results and
conclusions.

II. THE Λð1405Þ IN THE INFINITE VOLUME

In the chiral unitary approach, the Λð1405Þ resonance
is dynamically generated in s-wave meson-baryon
scattering from the coupled channels with isospin I ¼ 0,
and strangeness S ¼ −1, K̄N, πΣ, ηΛ and KΞ. The
scattering equation used to study the meson-baryon system
is [39]

T ¼ ð1 − VGDRÞ−1V; ð1Þ
where the matrix V is the interaction kernel of the scattering
equation, in s-wave given by the lowest order of chiral
perturbation theory (the Weinberg-Tomozawa interaction),

VijðWÞ ¼ −Cij
1

4fifj
ð2W −Mi −MjÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi þ Ei

2Mi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj þ Ej

2Mj

s
ð2Þ

with the channel indices i, j, the baryon masses M, the
meson decay constants f, the baryon on-shell energy E and
the center of mass energy W in the meson-baryon system.
The coefficients Cij are the couplings strengths to the
pseudoscalars (P) and baryons (B) of each reaction PiBi →
PjBj (i; j ¼ 1;…; 4), determined by the lowest-order chiral
Lagrangian in isospin I ¼ 0,
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: ð3Þ

All calculations are performed in the isospin limit. The
precision analysis of experimental data requires us to take
isospin breaking into account, especially for kaonic hydro-
gen [28]. However, the lattice data of Ref. [78], with which
we will compare our data, neglect isospin breaking as well.
The diagonal matrix GDR

i in Eq. (1) is the meson baryon
loop function, evaluated using dimensional regularization
as [39]

GDR
i ðWÞ ¼ i

Z
d4q
ð2πÞ4

2Mi

q2 −M2
i þ iϵ

1

ðP − qÞ2 −m2
i þ iϵ

¼ 2Mi

16π2

�
aiðμÞ þ ln

M2
i

μ2
þm2

i −M2
i þW2

2W2
ln
m2

i

M2
i

þ qcm
W

½lnðW2 − ðM2
i −m2

i Þ þ 2qcmWÞ
þ lnðW2 þ ðM2

i −m2
i Þ þ 2qcmWÞ

− lnð−W2 þ ðM2
i −m2

i Þ þ 2qcmWÞ

− lnð−W2 − ðM2
i −m2

i Þ þ 2qcmWÞ�
�
; ð4Þ

wherem are the meson masses, qcm is the three-momentum
of the meson or baryon in the center-of-mass frame and μ is
the scale of dimensional regularization chosen as μ ¼
630 MeV in Ref. [45]. The remaining finite constants
denoted by aiðμÞ are determined phenomenologically by
a fit in order to reproduce the threshold branching ratios of
K−p to πΛ and πΣ observed by stopped K− mesons in
hydrogen [79,80]. The ai constants were determined in
Ref. [43] using the same averaged decay constant for all the
pseudoscalar mesons involved, f ¼ 1.123fπ . The latter
relation changes for unphysical pion masses. Thus, it is
more appropriate to use different decay constants fi, fj in
Eq. (2) depending on which mesons are in the external legs
of the pseudoscalar-baryon interaction, PiBi → PjBj. The
decay constants fπ, fK , gη are obtained for unphysical
masses using the SU(3) chiral unitary extrapolation of
Ref. [81] as discussed in the Appendix. That extrapolation
was obtained in a fit to decay constants on the lattice at
different pion masses. The subtraction constants found here
are aK̄N ¼ −2.2, aπΣ ¼ −1.6, aηΛ ¼ −2.5, aKΞ ¼ −2.9.
These values are chosen to produce almost identical
amplitudes as in Ref. [43] for physical pion masses. In
addition, these values are close to a natural value equivalent
to the three-momentum cutoff of 630 MeV [39]. The
former produce the same description of scattering cross

sections and threshold branching ratios as in the original
Ramos and Oset paper [45]. The reader is referred to that
study for pictures of cross sections and their description by
the model.
It should be stressed that the present model allows for an

exploratory and qualitative study of lattice QCD eigenval-
ues. The lattice data discussed later are sparse and have
large uncertainties compared to the experimental uncer-
tainties. However, as discussed in the Introduction, new
experimental data have been produced that are contained in
the most recent analyses [31,35–38]. An update of the
present results, using one of these more quantitative
studies, would allow us to study the impact of experimental
data on the finite-volume predictions performed here and
also to improve the chiral extrapolation as most of the
newer models contain next-to-leading-order contributions.
For this to provide new insights, the precision of the lattice
data should also improve.
The amplitudes Tij can be analytically continued along

the right-hand cut into the lower W plane (Im W < 0) by
substituting (index DR omitted)

GII
i ðWÞ ¼

�
GiðWÞ þ i 2Miqcm

4πW ; for ReW > mi þMi

GiðWÞ; else

in Eq. (1) to ensure that we search for the resonance poles
closest to the physical axis. The residua aij−1 of the poles
factorize channel-wise, aij−1 ¼ gigj, defining the coupling
strengths gi of the resonance to the meson-baryon channels.
The scattering amplitude for the channels i and j close to
the resonance pole at W ¼ W0 can be approximated as
Tij ≃ gigj=ðW −W0Þ. As in Refs. [39,46,47], the ampli-
tude in the present study exhibits two poles at W0 ¼
ð1379–71iÞ and ð1412–20iÞ MeV. Both poles are situated
on the same Riemann sheet. As the size of the couplings in
Table I shows, the lighter state couples predominantly to
the πΣ channel, while the heavier state couples stronger to
the K̄N channel. If the transitions between these channels
are set to zero, the lighter state is still present as a resonance
in the πΣ channel, while the heavier state becomes a bound
state in the K̄N channel. This demonstrates that each pole
can be understood as dynamically generated from the
respective channel. The pole position of the Λð1670Þ is
obtained here at W0 ¼ ð1672 − 18iÞ MeV. It appears as a
quasibound KΞ state as the large coupling in Table I
indicates.

A. Compositeness and elementariness

The magnitudes of these couplings provides an idea of
the strength of the coupling between the bound state and the
meson-baryon channel. However, it is known that a
coupling gi to a channel i, that opens far above the state,
might be large although that channel is irrelevant for the
wave function of the state. It is therefore more realistic to
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consider the relative weight Pl of a channel in the wave

function of a state, Pl ¼ −ðg2l ∂GII
l∂W ÞW¼W0

, which fulfills the

identity [82–92],

1 ¼ −
�X

l
g2l

∂GII
l

∂W þ
X

k;l
gkGII

k
∂Vkl

∂W GII
l gl

�
W¼W0

: ð5Þ

The above equation can be regarded as the generalized
version of the Weinberg compositeness condition for the
coupled-channel case. Usually, the first term on the right
hand side is identified with compositeness X ≡ 1 − Z ¼P

lPl and Z ¼ −ðPk;lgkG
II
k

∂Vkl∂W GII
l glÞW¼W0

is referred to

as elementariness. These quantities are complex numbers
in general. In the special case of bound states,X andZ take
real values. For bound states, 0 ≤ X ≤ 1, can be interpreted
as the probability of the state to be in any of the considered
channels and Pl gives the probability of a particular
channel l to be in the wave function of the state
[58,86,89,90]. In contrast, Z, which can be directly related
to the derivative of the potential with respect to the energy,
gives the probability that the state overlaps with a channel
not explicitly contained in the amplitude [58,86,89,90].
When these quantities take complex values (as for reso-
nances), it is not possible to interpret them as probabilities
but these magnitudes are rather extrapolations of proba-
bility in the complex plane of the energy [90]. The first term

on the right hand side of Eq. (5), ð−Plg
2
l
∂GII

l∂W ÞW¼W0
, equalsR

d3ph~pjΨi2, not R d3pjh~pjΨij2 [90]. Therefore, one can
still interpret Pl as a magnitude that provides the relevance
of a given channel in the wave function of the state.
The quantities Pl, 1 − Z and Z are given in Table I for

the three states obtained in the four-coupled-channel
calculation discussed here. The πΣ and K̄N channels are
relevant in the case of the two poles associated to the
Λð1405Þ, while the ηΛ and KΞ channels have more
strength in the square of the wave function related to the

pole of the Λð1670Þ. These results are in line with previous
calculations [86,90,93].
However, how to interpret the elementariness and

compositeness for resonances is still controversial.
Because the imaginary parts cancel in Eq. (5), the
authors of Refs. [90,93], reinterpret 1 − Z≡ Reð1 − ZÞ
(¼Re

R
d3ph~pjΨi2 [90]), as the compositeness of reso-

nances (and the same for Z≡ ReZ, which is called the
elementariness). In this interpretation, the lower pole
of the Λð1405Þ has a high elementariness, while the
second pole is interpreted as mainly K̄N composite.
Nevertheless, in Ref. [92] a new interpretation of these
magnitudes is proposed, i. e., the compositeness is reinter-
preted as X ≡P

ljglj2j ∂GlðWÞ
∂W jW¼W0

. Within the criterion of

Ref. [92] both poles of the Λð1405Þ would be πΣ − K̄N
composites. Other attempts to define the concepts of
elementariness and compositeness in terms of real quan-
tities that can be associated to probabilities have been done
in Ref. [94]. In any case, the two poles of the Λð1405Þ and
also the Λð1670Þ emerge from the unitarization of the
lowest-order, longest-range interaction. In that sense,
these states can be interpreted as loosely quasibound
meson-baryon molecules.

III. FORMALISM IN FINITE VOLUME

The loop functionG in Eqs. (1), (4) can also be evaluated
with a cutoff [95]. For channel i,

GiðWÞ ¼ 2Mi

ð2πÞ3
Z

qmax

0

d3qIiðW; ~qÞ; ð6Þ

with

IiðW; ~qÞ ¼ ωðiÞ
1 ð~qÞ þ ωðiÞ

2 ð~qÞ
2ωðiÞ

1 ð~qÞωðiÞ
2 ð~qÞ

1

W2 − ðωðiÞ
1 ð~qÞ þ ωðiÞ

2 ð~qÞÞ2
;

ð7Þ

TABLE I. Coupling constants jgij to the meson-baryon channels obtained as the residua of the scattering amplitude at the pole position
W0, and the quantities Pl, 1 − Z and Z, discussed following Eq. (5).

K̄N πΣ ηΛ KΞ 1 − Z Z

W0 ¼ 1379 − 71i
giðjgljÞ −0.9þ2.0i (2.2) 2.4 − 1.9i (3.1) 0.06þ 0.8i (0.8) 0.3 − 0.4i (0.5)
PlðjPljÞ −0.23 − 0.05i (0.23) 0.52þ 0.53i (0.74) −0.014þ 0.005i

(0.014)
−0.002 − 0.004i

(0.005)
0.28þ 0.47i 0.72 − 0.47i

W0 ¼ 1412 − 20i
glðjgljÞ 3.0þ 0.7i (3.1) −0.9 − 1.5i (1.7) 1.5þ 0.08i (1.5) −0.2 − 0.3i (0.3)
PlðjPljÞ 0.92 − 0.0098i

(0.92)
−0.15 − 0.15i (0.21) 0.05þ 0.002i (0.05) −0.0005þ 0.002i

(0.002)
0.82 − 0.16i 0.18þ 0.16i

W0 ¼ 1672 − 18i
glðjgljÞ 0.4 − 0.7i (0.8) 0.03þ 0.3i (0.3) −1.1þ 0.05i (1.1) 3.3 − 0.16i (3.4)
PlðjPljÞ 0.026þ 0.0037i

(0.026)
0.0012 − 0.0028i

(0.0031)
−0.12þ 0.16i (0.20) 0.46 − 0.089i

(0.47)
0.37þ 0.073i 0.63 − 0.073i
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where ωðiÞ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðiÞ2 þ j~qj2

q
and ωðiÞ

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðiÞ2 þ j~qj2

q
are

the meson and baryon energies. A formalism of the
UχPT description in finite volume was introduced in
Ref. [96]. Here, we follow the same procedure replacing
the infinite-volume amplitude T by the amplitude ~T in
a cubic box of size L. The finite-volume equivalent of
Eq. (6) reads

~GiðWÞ ¼ 2Mi

L3

X
~ql

IiðW; ~qÞ; ð8Þ

which is quantized according to

~q ¼ 2π

L
~n; ð9Þ

corresponding to the periodic boundary conditions. Here, ~n
denotes the three-dimensional vector of all integers
(~n ∈ Z3). This form produces a degeneracy for the set
of three integers which have the same modulus, q2 ¼ 4π2

L2 m
(here q≡ j~qj and m stands for the natural numbers). The
degeneracy can be exploited to reduce Eq. (8) to a one-
dimensional summation using the theta-series of a cubic
lattice at rest [66]. The sum over the momenta is limited by
qmax, such that mmax ¼ qmaxL

2π . As in the infinite volume, the
formalism should be made independent of qmax and be
related to aðμÞ, the parameter of the dimensional regulari-
zation function loop, GDR. This is done in Ref. [97],
obtaining

~Gi ¼ GDR
i þ 2Mi

× lim
qmax→∞

�
1

L3

X
q<qmax

IiðW; ~qÞ −
Z
q<qmax

d3q
ð2π3Þ IiðW; ~qÞ

�

≡GDR
i þ lim

qmax→∞
δGi; ð10Þ

where the quantity between parentheses, δG, is finite as
qmax → ∞. The Bethe-Salpeter equation in the finite
volume can be written as,

~T ¼ ðI − V ~GÞ−1V ð11Þ

and the energy levels in the box in the presence of the
interaction V correspond to the condition

detð1 − V ~GÞ ¼ 0: ð12Þ

In a single channel, Eq. (12) leads to poles in the ~T
amplitude when V−1 ¼ ~G. As a consequence, an infinite
number of poles is predicted for a particular box size. For
one channel, the amplitude T in the infinite volume for the
energy levels ðWjÞ can be written as

T ¼ ð ~GðWjÞ −GðWjÞÞ−1: ð13Þ

which is equivalent to the Lüscher formalism up to
exponentially suppressed corrections [96].
In the future, lattice simulations will use meson-baryon

operators to extract the eigenvalues in the πΣ, K̄N system,
and a maximal overlap of these operators with the wave
function of the state is needed. It is desirable to develop a
criterion specifying the relevance of a given channel for a
finite-volume eigenvalue.
In the finite volume, the couplings ~gi can be formally

computed from the real-valued residua of the amplitude in
the pole position (since ~Tkl ≃ ~gk ~gl=ðW −W0Þ), close to a
pole). Also, an identity similar to the generalization of the
Weinberg compositeness condition for coupled channels
discussed in the previous section, Eq. (5), can be easily
obtained by just replacing the meson-baryon function loop,
G, and scattering amplitude, T, by their respective func-
tions in the finite volume, ~G and ~T, which are given by
Eqs. (10) and (11), in Eq. (5),

1 ¼ −
�X

l
~g2l
∂ ~Gl

∂W þ
X

k;l
~gk ~Gk

∂Vkl

∂W ~Gl ~gl

�
W¼W0

: ð14Þ

In the next section, we evaluate ~Pl ¼ −ð~g2i ∂ ~G
∂WÞW¼W0

, and
~Z ¼ −ðPk;l ~gk ~Gk

∂Vkl∂W ~Gl ~glÞW¼W0
. In the infinite volume, the

Pl specify the relative weight of finding the channel l in the
wave function [89,90]. Here, we make a conjecture, i.e.,
that the ~Pl carry this meaning over to the poles of the finite-
volume amplitude ~T of Eq. (13), which specify the finite-
volume eigenvalues. Indeed, Eq. (5) has the same form for
the poles of ~T. In particular, we interpret the quantity ~Pl ¼
−ð~g2i ∂ ~G

∂WÞW¼W0
as evidence of channel l for a given finite-

volume eigenvalue. This information could be used in
future lattice simulations to select suitable meson-baryon
operators or to extract the lattice eigenvalues. Operators of
the meson-baryon type are not used in Ref. [78]. In the next
section, such operators are discussed.

IV. RESULTS

A. Spectrum

The energy levels in a box are evaluated by means of
Eq. (12). Meson and baryon masses are taken from the
lattice simulation of Ref. [78] while the quark mass
dependence of fπ , fK and fη (not provided in Ref. [78])
are evaluated through the SUð3Þ chiral extrapolation of [81]
discussed in the Appendix. The resulting decay constants
are shown in Table II.
Results are shown in Fig. 1 for the first five energy levels

predicted from UχPT (solid lines). The lattice data of [78]
are shown as black dots. They correspond to a size of the
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box of around L≃ 3 fm (see Table II). For the physical
point in this figure, we also take L ¼ 3 fm. There is good
agreement between the UχPT prediction of the second
energy level and the lattice data for masses below 400MeV.
For larger masses, there are discrepancies which are
discussed later on in this section. However, for the two
lowest lattice pion masses, UχPT predicts an additional
level below the πΣ threshold, associated with an attractive
πΣ scattering length. The level is not only present in
common UχPT calculations that all predict an attractive πΣ
scattering length, it is also found in the finite-volume
version of the dynamical coupled-channel model of
Ref. [66]. In Ref. [66], which represents the first finite-
volume implementation of dynamical coupled-channel
models, the attractive πΣ interaction arises from explicit
t- and u- channel diagrams. This lowest level is absent in
the lattice simulation of Ref. [78] as Fig. 1 shows. If that
finding is confirmed, it represents a serious challenge for all
discussed hadronic models. However, as the lowest state is
a scattering state, maybe it has simply not been detected

in Ref. [78], which relies on quark operators to extract
the finite-volume spectrum. Level extraction using
meson-baryon operators instead of quark operators could
help detecting this scattering state. Meson-baryon channels
that have large overlap with the various eigenstates are
identified later in this section.
In the chiral extrapolation, we include the quark mass

dependences of the decay constants fπ , fK , fη but cannot
specify the quark mass dependence of the subtraction
constants αi. To estimate the uncertainties from this source,
we vary each subtraction constant α gradually for increas-
ing pion masses by 5%, 10%, 15%, 20% and 25%
corresponding to sets 1 through 5 in Table II, respectively.
Also, to account for uncertainties in the chiral extrapolation
of the decay constants fπ, fK and fη, we vary them by 5%
for all sets (since we considered here pion mass depend-
ence). Figure 1 shows that even with these rather large
changes the predicted levels are still less uncertain that
the values from the lattice simulation. However, the
discrepancy for pion masses larger than 400 MeV persists.
We could attribute this to different sources like the missing
NLO in our model, or to the fact that the chiral extrapo-
lation breaks down at high pion masses due to a genuine
component, or that the discrepancies come from other
sources intrinsic to the lattice computation like under-
estimated errors.

B. Channel dynamics of levels and poles

In order to understand the role of the meson-baryon
channels in the extracted energy levels, we evaluate the

couplings ~gi and the magnitudes ~Pi ¼ −ð~g2i ∂ ~Gi∂WÞW¼W0
,

1 − ~Z, and ~Z, of Eq. (14) at the pole position. These
quantities are shown in Table III for the physical mass
(L ¼ 3 fm) and sets 1 to 3 of quark masses shown in
Table II (at higher masses the chiral prediction becomes
very uncertain and no values are quoted). The part which is
related to the energy dependence of the potential is
generally small, ~Z≃ 0 − 0.3, and the weights of the
channels ~Pi’s are between 0 and 1, like in the infinite
volume for bound states. The ~Pi’s are diagrammatically
represented in Fig. 2. Here, the left column of the bar
diagrams in blue represents the weights ~Pi of the lowest
energy level, while the following columns represent the

FIG. 1. Comparison between the UχPT prediction for the first
five energy levels (solid lines) and the lattice data of Ref. [78], for
the physical set (L ¼ 3 fm) and sets 1 through 5, as shown in
Table II. The errors of our results are obtained by varying
subtraction constants and meson decay constants as described
in Sec. IV. Here, the dashed, dot-dashed lines represent πΣ and
K̄N noninteracting levels, respectively, (the first two levels are
depicted), while the thick-dotted and dotted lines, show the first
ηΛ and KΞ noninteracting levels, respectively.

TABLE II. Pseudoscalar meson decay constants obtained from SU(3) chiral extrapolation with the masses from [78]. Units
are MeV.

Set LðfmÞ mπ mK mη MN MΛ MΣ MΞ fπ fK fη

1 2.99 170.29 495.78 563.97 962.2 1135.8 1181.5 1323.6 94.5 113.2 122.1
2 3.04 282.84 523.26 581.72 1058.7 1173.4 1235.5 1332.8 102.5 116.1 122.3
3 3.08 387.81 559.46 605.97 1150.1 1261.0 1292.4 1377.4 109.5 118.5 122.6
4 3.23 515.56 609.75 638.07 1274.5 1333.4 1353.5 1401.8 116.3 120.6 122.4
5 3.27 623.14 670.08 685.01 1420.3 1434.2 1449.8 1472.4 120.1 121.9 122.6
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TABLE III. Pole positions, W0, couplings, ~gi, ~Pl’s, 1 − ~Z and ~Z in Eq. (14), for the five energy levels predicted from UχPT in Fig. 1.
From top to bottom, it refers to the physical set, sets 1 to 3 in Table II. Pole positions are given in units of MeV. The errors are obtained by
varying subtraction and meson decay constants as described in Sec. IVA.

K̄N πΣ ηΛ KΞ 1 − ~Z ~Z

W0 ¼ 1302ð1Þ
~gi −0.69ð5Þ 0.80(3) −0.15ð2Þ 0.080(2)
~Pl 0.020(3) 0.77(1) 0.0004(1) 0.000090(5) 0.79(1) 0.21(1)

W0 ¼ 1394ð4Þ
~gi 1.9(1) −0.388ð5Þ 0.94(5) −0.061ð6Þ
~Pl 0.76(2) 0.046(6) 0.021(2) 0.00007(1) 0.83(2) 0.17(2)

W0 ¼ 1507ð4Þ
~gi 2.34(2) −0.92ð7Þ 1.10(3) −0.39ð2Þ
~Pl 0.68(2) 0.10(1) 0.046(3) 0.0036(5) 0.83(1) 0.17(1)

W0 ¼ 1582ð3Þ
~gi 0.64(5) 1.93(3) 0.43(4) 0.45(4)
~Pl 0.09(1) 0.73(1) 0.014(2) 0.006(1) 0.840(3) 0.160(3)

W0 ¼ 1659ð2Þ
~gi 0.09(1) −0.04ð1Þ −0.3ð1Þ 1.3(1)
~Pl 0.069(6) 0.002(1) 0.76(5) 0.077(17) 0.91(4) 0.09(4)

W0 ¼ 1322ð2Þ
~gi −0.65ð5Þ 0.90(4) −0.14ð2Þ 0.105(3)
~Pl 0.017(3) 0.80(1) 0.0003(1) 0.00017(1) 0.82(1) 0.18(1)

W0 ¼ 1416ð4Þ
~gi 1.94(13) −0.43ð1Þ 0.96(5) −0.07ð2Þ
~Pl 0.76(3) 0.047(2) 0.021(2) 0.0001(5) 0.83(3) 0.17(3)

W0 ¼ 1526ð5Þ
~gi 2.20(5) −1.14ð15Þ 1.02(4) −0.5ð1Þ
~Pl 0.64(5) 0.16(5) 0.037(3) 0.004(1) 0.841(6) 0.159(6)

W0 ¼ 1587ð4Þ
~gi 0.94(11) 1.83(7) 0.59(7) 0.41(6)
~Pl 0.15(3) 0.66(4) 0.019(5) 0.005(1) 0.834(7) 0.166(7)

W0 ¼ 1686ð5Þ
~gi 0.07(4) −0.034ð18Þ −0.59ð16Þ 1.8(2)
~Pl 0.079(8) 0.009(5) 0.56(11) 0.16(4) 0.81(6) 0.19(6)

W0 ¼ 1490ð3Þ
~gi −0.85ð19Þ 1.14(9) −0.3ð1Þ 0.29(3)
~Pl 0.05(2) 0.83(4) 0.003(2) 0.0017(3) 0.88(2) 0.12(2)

W0 ¼ 1544ð7Þ
~gi 1.78(18) −0.31ð4Þ 1.0(1) −0.14ð6Þ
~Pl 0.74(8) 0.09(4) 0.03(5) 0.0006(4) 0.86(3) 0.14(3)

W0 ¼ 1633ð8Þ
~gi 1.85(15) −1.0ð2Þ 1.13(11) −0.94ð3Þ
~Pl 0.60(1) 0.14(6) 0.06(1) 0.03(2) 0.83(4) 0.17(4)

W0 ¼ 1693ð6Þ
~gi 1.00(18) 1.72(12) 0.43(14) 0.66(21)
~Pl 0.18(6) 0.63(8) 0.02(1) 0.02(1) 0.85(2) 0.15(2)

W0 ¼ 1739ð9Þ
~gi 0.51(12) −0.3ð2Þ −0.6ð2Þ 1.9(3)
~Pl 0.10(2) 0.05(5) 0.43(18) 0.20(5) 0.78(8) 0.22(8)

W0 ¼ 1646ð8Þ
~gi −1.47ð5Þ 1.26(12) −0.8ð3Þ 0.51(15)
~Pl 0.23(12) 0.59(20) 0.02(2) 0.007(5) 0.85(7) 0.15(7)

W0 ¼ 1674ð5Þ
~gi 1.24(23) 0.28(23) 0.76(15) −1.1ð1Þ
~Pl 0.56(22) 0.34(22) 0.021(7) 0.0004(5) 0.92(4) 0.08(4)

W0 ¼ 1759ð11Þ
~gi 1.74(27) −0.86ð27Þ 1.17(34) −1.1ð7Þ
~Pl 0.56(11) 0.12(5) 0.08(3) 0.06(4) 0.82(5) 0.18(5)

W0 ¼ 1815ð11Þ
~gi 1.2(3) 1.0(4) −0.29ð16Þ 1.9(3)
~Pl 0.24(1) 0.33(16) 0.01(1) 0.18(5) 0.76(9) 0.24(9)

W0 ¼ 1836ð8Þ
~gi 0.42(13) −0.8ð4Þ −0.65ð16Þ 1.8(3)
~Pl 0.06(4) 0.4(2) 0.17(11) 0.19(8) 0.82(4) 0.18(4)
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levels 2 through 5 with the same color coding as in Fig. 1.
Every level is depicted for pion masses in the range 170–
388 MeV from top to bottom corresponding to sets 1 to 3 in
Table II. The πΣ channel dominates the lowest level. The
relative weights ~Pl for the ηΛ and KΞ are almost zero for
the lowest state and for low pion masses (set 1). This
confirms the discussed property of the ~Pl suppressing
effectively the irrelevant channels that open at much higher
energies (compare with the corresponding values for the ~gi
in Table III). Also, it is quite natural that the lowest state has
a dominant πΣ content, as it is a threshold level below the
πΣ threshold associated with an attractive πΣ interaction.
For larger quark masses, this trend is inverted and the K̄N
strength becomes larger. On the other hand, the second
energy level (second column in Fig. 2) shows a significant
dominance of the K̄N component, with ~gK̄N and ~PK̄N both
larger, if the pion mass is not very high. Although we
cannot identify finite-volume energy eigenstates with
resonances, the K̄N dominance of the second eigenstate
is in line with the second Λð1405Þ pole being predomi-
nantly generated from the K̄N channel (cf. Table I).
From Fig. 1, it is clear that the first two lattice data points

correspond to the second energy level, for which the K̄N
component clearly dominates, while the third lattice data
point could belong to either the first or second energy level
predicted from UχPT. For the third energy level, both ~gi
and ~Pi are larger for the K̄N component, while the πΣ
channel dominates the fourth energy level.
In the fifth energy level, these two channels become

irrelevant, and the coupling strengths to ηΛ and KΞ
dominate. At the physical point, this level is very close
to the real part of the pole position of the Λð1670Þ
(cf. Table I). In the infinite volume, that resonance appears
as a quasibound KΞ state with relatively small K̄N and πΣ
branching ratios as Table I shows. The overlap with the ηΛ
channel is not small although the branching ratio to this
channel is only moderate due to reduced phase space. In the
finite volume, the situation is different because the weight

of the KΞ channel in the wave function, ~Pl, is reduced as
Table III shows. At higher pion masses, the fifth eigenstate
stays close to the noninteracting ηΛ threshold (Fig. 1),
while the pole of the Λð1670Þ moves considerably away
from the ηΛ threshold (Fig. 3). It is, thus, not possible to
associate the fifth finite-volume eigenstate with the infinite-
volume Λð1670Þ resonance.
We can compare these results with the calculation in the

infinite volume using the formalism described in Sec. II
together with the SU(3) chiral extrapolation explained
before. The results are shown in Fig. 3. Here, the pole
positions in the infinite volume as a function of the pion
mass are depicted. The four lines represent the πΣ, K̄N, ηΛ
and KΞ thresholds. For masses close to the physical point,
the lowest state is a resonance above the πΣ threshold.
When the mass of the pion increases, the lower state
becomes a cusp, i.e., the pole is close to threshold, but on a
sheet that is not directly accessible from the physical axis.
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FIG. 2. Weights of the different channels, ~Pi’s (first term on the right hand side of Eq. (14) for the first five energy levels (from left to
right) and pion masses from 170 to 388 MeV (sets 1 through 3 in Table II, from top to bottom).

FIG. 3. Behavior of the real part of the pole positions, ReW0,
found in the T matrix in the infinite volume with the M2

π , for the
physical, and sets 1 through 5. The numbers in parentheses
indicate the pole positions including the imaginary parts. The
lines show the πΣ, K̄N, ηΛ and KΞ thresholds.
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When the pion mass increases further, it becomes a bound
state. The second pole of the Λð1405Þ is always below and
close to the K̄N threshold for all pion masses considered.
A third state appears at higher energies. This state couples
more to the channels ηΛ and KΞ, with larger coupling
strength to KΞ. This state is identified with the Λð1670Þ
[43,66]. In Table IV, we show the comparison between the
two lowest pole positions and coupling constants in the
infinite and finite volume. For the physical pion mass, we
have taken here larger boxes, L ¼ 4 fm. In this table, bK̄N
and bπΣ denote the distances to the K̄N and πΣ thresholds,
where the negative sign means that the state is above
threshold. For masses below 400 MeV, we observe that the
second state in the finite volume has a dominant K̄N

component, and is between the πΣ and K̄N thresholds. It
shares these properties with the higher-lying pole of the
Λð1405Þ in the infinite volume. We can understand the
proximity of finite- and infinite-volume states as follows:
the second Λð1405Þ pole is a quasi- bound K̄N state with
little influence from the πΣ channel. In the finite volume,
the eigenstate appears therefore almost as a bound state. In
the limit of zero πΣ coupling, the position of finite- and
infinite-volume poles would differ only by exponentially
suppressed corrections scaling with the binding momen-
tum. On the contrary, the lower state shows very different
properties in the infinite volume limit and in the box. As
discussed, for low pion masses, the finite-volume state
below the πΣ threshold is related to the lower Λð1405Þ pole
only insofar, that it indicates the attractive πΣ interaction
leading to the generation of the pole in the infinite
volume (at a very different position). For high pion
masses, the lower Λð1405Þ pole in the infinite volume
limit becomes a bound state, and then the couplings to
all the channels become very similar to the ones in the
box as one can see from Table IV. However, in this case
the masses of the poles are very far away from the
lattice data of Ref. [78] which can be due to different
reasons as discussed before.

C. Meson-baryon scattering amplitudes for different
pion masses in the infinite volume limit

Finally, we provide the infinite-volume scattering ampli-
tudes for strangeness ¼ −1 in Fig. 4. Every row shows
the real (solid lines) and imaginary part (dashed lines)
of the scattering amplitude, TK̄N→K̄N , TK̄N→πΣ and TπΣ→πΣ.
The first row shows the amplitude for the physical pion
mass, while the second to fourth rows correspond to pion
masses of 170, 282 and 388 MeV (first three sets in
Table II). For the physical set, these amplitudes are very
similar to the ones obtained in the work of Ref. [43], where
we observe the presence of two resonances related to the
two poles near the energy of the Λð1405Þ. For higher pion
masses the lighter pole of the Λð1405Þ first becomes a cusp
(third row) and then a bound state (fourth row). The heavier
pole of the Λð1405Þ couples predominantly to the K̄N
channel as the figure in the upper left corner shows. As the
pion mass increases, the pole remains close to the K̄N
threshold as a quasibound state.
The fact that the second pole of the Λð1405Þ always

appears close to the K̄N threshold may be due to the fact
that the kaon mass, which controls the strength of the
K̄N → K̄N Weinberg-Tomozawa term, does not change
much, so that the properties of the bound state also do not
experience much variations. In contrast, the πΣ → πΣ
Weinberg-Tomozawa interaction becomes significantly
stronger with increasing pion mass, changing drastically
the nature of the lower state from resonance to bound
state.

TABLE IV. Pole positions and couplings of the states jgij in the
infinite (top, A) and finite (bottom, B) volume for all sets. Note
that for the physical set in the finite volume (“Physical”) we have
taken larger volumes (L ¼ 4 fm) for the values that are shown in
this table. For the other sets of pion masses of Ref. [78], L≃ 3 fm
is used. It should be stressed that finite- and infinite-volume poles
cannot be directly identified with each other.

Infinite volume

Channel
Pole jgij bK̄N bπΣ

Set (MeV) K̄N πΣ ηΛ KΞ (MeV) (MeV)

Physical 1379-i 71 2.20 3.1 0.8 0.5 56 −48
1412-i 19 3.1 1.7 1.5 0.3 23 −81

1 1369-i 64 1.9 2.9 0.6 0.5 89 −17
1443-i 17 2.6 1.35 1.32 0.3 15 −91

2 Cusp at 1518.34 64 0
1565-i 19 2.5 1.5 1.4 0.5 17 −47

3 1671 2.0 1.3 1.1 0.6 39 9
1700-i 22 2.0 1.6 1.3 0.7 10 −20

4 1836 1.9 1.2 1.7 1.8 48 33
1875-i 28 1.3 1.8 1.6 1.7 9 −6

5 1998 0.9 0.8 1.9 2.9 92 75
2077-i 0.5 2.1 0.4 0.3 1.1 13 −4

Finite volume

Channel
Pole j~gij bK̄N bπΣ

Set (MeV) K̄N πΣ ηΛ KΞ (MeV) (MeV)

Physical 1322 0.5 0.6 0.1 0.07 113 9
1401 2.2 1.0 1.0 0.2 34 −70

1 1322 0.6 0.9 0.1 0.1 136 30
1417 1.9 0.4 0.9 0.06 41 −65

2 1489 0.9 1.2 0.3 0.3 93 29
1541 1.9 0.3 1.0 0.2 41 −23

3 1649 1.4 1.3 0.7 0.5 61 31
1676 1.5 0.1 0.9 0.06 34 4

4 1829 1.8 1.2 1.5 1.5 55 40
1859 0.9 0.5 0.6 0.09 25 10

5 1997 1.0 0.9 1.9 2.9 93 76
2062 0.9 0.7 0.2 0.9 28 11
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V. CONCLUSIONS

The quark mass dependence of the energy levels in a
box for the coupled channels with JP ¼ 1

2
−, I ¼ 0, S ¼ −1

has been studied, using the Weinberg-Tomozawa term
from the lowest-order χPT interaction. This dependence
has been compared to the lattice data of Ref. [78] and
extrapolated to the infinite volume. UχPT predicts a two-
pole structure for the Λð1405Þ. In the finite volume, two
energy levels close to the πΣ and K̄N thresholds are found.
The second energy level agrees well with the lattice data
of Ref. [78] for pion masses below 400 MeV, in the

estimated limit of applicability of the present approach.
This energy level shows a large coupling and overlap with
the K̄N channel and has similar properties as the higher
pole of the Λð1405Þ. The state remains quasi-bound in the
K̄N channel and close to its threshold, as the pion mass
increases. Thus, the lattice data of Ref. [78] are not in
contradiction with the two-pole hypothesis for the
Λð1405Þ. Yet, these data, by no means, proove that
hypothesis. For this, a few remaining obstacles need to
be addressed: The first problem is the absence of the πΣ
threshold level in the lattice calculation of Ref. [78],

FIG. 4. Real (solid lines) and imaginary parts (dashed lines) of the meson-baryon scattering amplitude of the four coupled
channels K̄N, πΣ, ηΛ andKΞ. From top to bottom, the figures correspond to physical pion mass and sets 1 through 3 of Table II. The left
column corresponds to the TK̄N→K̄N amplitude, the central column corresponds to the transition TK̄N→πΣ and the right column
to TπΣ→πΣ.
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which appears here below the πΣ threshold, indicating an
attractive πΣ interaction. In the infinite volume, this
attraction leads to the generation of a second (lighter)
pole of the Λð1405Þ. This behavior is universal in UχPT
calculations and also present in some dynamical coupled-
channel approaches. Here, we have assumed that this
absence is due to the absence of meson-baryon operators
in the operator base used in Ref. [78]. To propose
suitable meson-baryon operators for the detection of the
threshold level, we have considered the finite-volume
analog of ~Pl that specify the relative weight of a channel in
a state’s wave function. It turns out that an operator of the
πΣ type is most suited to detect the level in future lattice
simulations. Indeed, the precise location of that level
would specify the size of attraction in the πΣ channel at
threshold and help to pin down the location of the lighter
Λð1405Þ pole that is notoriously difficult to determine.
Also, a precise determination of the pole positions
from lattice data requires us to populate the region
between the πΣ and K̄N thresholds with more lattice
eigenvalues, using, e.g., moving frames and asymmetric
boxes [98]. Also, higher-order UχPT calculations along
the lines of Refs. [31,35,36] will be needed to assess
theoretical uncertainties in direct fits to future lattice data.
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APPENDIX: SU(3) CHIRAL EXTRAPOLATION

Chiral symmetry is explicitly broken and gives rise to
masses of the quarks u, d, s different from zero. Then the
Goldstone bosons acquire masses which, at leading order,
are related to the chiral condensate and are denoted here
as M0π , M0K and M0η. To one loop, the masses of the
Goldstone bosons carry corrections, and the physical
masses can be expressed as a function of the leading order
masses (M0), LEC’s (Lr) and pseudoscalar decay constants
(f). The following formulas for the pseudoscalar masses,
derived from the SU(3) chiral extrapolation, are taken from
Ref. [81], which is based on chiral perturbation theory [99],

M2
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0π
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μη
3
þ 16M2

0K

f20
ð2Lr

6 − Lr
4Þ
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μP ¼ M2
0P

32π2f20
log

M2
0P

μ2
; P ¼ π; K; η: ðA4Þ

In the above equations, f0 is the pion decay constant in the
chiral limit, 4πf0 ≃ 1.2 GeV, μ is the regularization scale,
commonly fixed at μ ¼ Mρ, and Lr

i ’s, with i ¼ 1, 8,
are the low-energy constants which multiply the tree- level
diagrams of Oðp4Þ present in the next-to-leading-order
t4ðsÞ term in the χPT expansion of the amplitude
for meson-meson scattering (tðsÞ ¼ t2ðsÞ þ t4ðsÞ þ…,
t2k ¼ Oðp2kÞ).
On the other hand, the decay constants evaluated to one

loop SU(3) χPT are expressed in terms of the masses at
leading order as

fπ ¼ f0

�
1 − 2μπ − μK þ 4M2

0π

f20
ðLr

4 þ Lr
5Þ þ

8M2
0K

f20
Lr
4

�
;

ðA5Þ

fK ¼ f0

�
1 −

3μπ
4

−
3μK
2

−
3μη
4

þ 4M2
0π

f20
Lr
4

þ 4M2
0K

f20
ð2Lr

4 þ Lr
5Þ
�
; ðA6Þ

fη ¼ f0

�
1 − 3μK þ 4Lr

4

f20
ðM2

0π þ 2M2
0KÞ þ

4M2
0η

f20
Lr
5

�
:

ðA7Þ

The Lr
i ’s values used here are taken from Fit I of

Ref. [81] to experiment and lattice data (shown in
Table 1 of Ref. [81]).
In order to evaluate the meson decay constants for the

different sets of Table II, first Eqs. (A1), (A2), (A5) and
(A6) are evaluated at the physical point (Table II), obtaining
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the values of the four variables, M0π , M0K M0η and f0. In
these sets of equations, the LEC Lr

7 does not appear.
Once these constants are known, Lr

7 is fixed to obtain the
mass of the η at the physical point, given by Eq. (A3).
This gives, as a result, Lr

7 ¼ −0.423 × 10−3, very close to

the one obtained in [81] (−0.43 × 10−3). For f0, a value of
79.2 is obtained, and using the formulas of Eqs. (A1)–(A7),
we evaluate theM0’s and f’s for π, K and η for every set of
masses in Table II. The decay constants obtained are shown
in Table II of the Results section.
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