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The dynamical generation of a fermion mass is studied within (2þ 1)-dimensional QED with N four-
component fermions in the leading and next-to-leading orders of the 1=N expansion. The analysis is carried
out in the Landau gauge, which is supposed to insure the gauge independence of the critical fermion flavor
number, Nc. It is found that the dynamical fermion mass appears for N < Nc, where Nc ¼ 3.29, which is
only about 1% larger than its value at leading order.
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I. INTRODUCTION

Quantum electrodynamics in 2þ 1 dimensions (QED3)
has been extensively studied for more than three decades
now. Originally, the interest in QED3 came from its
similarities to (3þ 1)-dimensional QCD and the fact that
phenomena such as dynamical chiral symmetry breaking
(DχSB) and mass generation may be studied systematically
in such a toy model; see, e.g., Refs. [1–16]. Later, a strong
interest in QED3 arose in connection with planar condensed
matter physics systems having relativisticlike low-energy
excitations, such as some two-dimensional antiferromag-
nets [17] and graphene [18]. The study of a dynamically
generated gap in the fermion spectrum of graphene has now
become an active area of research; see, e.g., the reviews in
Refs. [19,20]. In all cases, the understanding of the phase
structure of QED3 is a crucial prerequisite to understanding
nonperturbative dynamic phenomena in more realistic
particle and condensed matter physics models.
Despite the fact that a large number of investigations

have been carried out to study DχSB in QED3, very
different results have been obtained. Without being exhaus-
tive, let us indeed recall that, in his seminal paper [1],
Pisarski solved the Schwinger-Dyson (SD) gap equation
using a leading order (LO) 1=N expansion and found that a
fermion mass is generated for all values of N, decreasing
exponentially with N and vanishing only in the limit
N → ∞. Later, he confirmed his finding by a renormaliza-
tion group analysis [4]. Support of Pisarski’s result was
given by Pennington and collaborators [3], who adopted a
more general nonperturbative approach to solving the SD
equations. On the other hand, in a more refined analysis of
the gap equation at LO of the 1=N-expansion, Appelquist
et al. [2] showed that the theory exhibits a critical behavior
as the number N of fermion flavors approaches
Nc ¼ 32=π2; that is, a fermion mass is dynamically
generated only forN < Nc. Contrary to all previous results,

an alternative nonperturbative study by Atkinson et al. [5]
suggested that chiral symmetry is unbroken at a sufficiently
large N. The theory has also been simulated on the lattice
[6–8]. Remarkably, the conclusions of Ref. [6] are in
agreement with the existence of a critical N, as predicted
in the analysis of Ref. [2], while a second paper [7] finds
DχSB for all N and a recent third one [8] finds no sign of
DχSB at all. Even in the case where a finite Nc is found, its
value is subject to uncertainty, with estimates ranging from
Nc ¼ 1 to Nc ¼ 4; see Ref. [9] for a review. Moreover,
Ref. [10] found an upper bound, Nc < 3=2, while, more
recently, Ref. [11] found that Nc < 4.4 and Ref. [12] that
Nc < 9=4. Clearly, all these disagreements reflect our poor
understanding of this problem.
The purpose of this work is to include 1=N corrections in

the LO result of Ref. [2]. Because the critical value Nc is
not large, the contribution of such higher orders in the 1=N
expansion can be essential, and their proper study may lead
to a better understanding of the problem. This important
issue has rarely been addressed in the past. To the best of
our knowledge, the main discussions are in Refs. [13,14],
where rather different results were obtained. The well-
known results of Ref. [13] demonstrated a quite strong
stability of the 1=N expansion, while the ones of Ref. [14]
showed that a similar property holds only in the Landau
gauge. The strong gauge dependence found in Ref. [14] is
in agreement with the studies of Ref. [15] in the so-called
rainbow approximation. In the following, we shall refine
the analysis of Ref. [14] and perform an accurate compu-
tation of all 1=N corrections in the Landau gauge, with a
special focus on the most complicated ones, in order to
extract the value of Nc.
The last years witnessed strong progress in the study of

the gauge dependence of DχSB in various models; see
Ref. [21] as well as the references and discussions therein.
The progress is related to the use of the Landau-
Khalatnikov-Fradkin transformation [22]. In the case of
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QED3 in the 1=N-expansion, the application of this trans-
formation [16] has revealed the almost complete lack of
gauge dependence for Nc. This confirms that we can limit
our analysis to the case of the Landau gauge.

II. MODEL AND SCHWINGER-DYSON
EQUATIONS

The Lagrangian of massless QED3 with N flavors of
fermions reads

L ¼ Ψði∂̂ − eÂÞΨ −
1

4
F2
μν; ð1Þ

where Ψ is taken to be a four-component complex spinor.
In the massless case, which we are considering, the model
contains infrared divergences. The latter soften when the
model is analyzed in a 1=N expansion [23,24]. Since the
theory is superrenormalizable, the mass scale is given by
the dimensionful coupling constant, a ¼ Ne2=8, which is
kept fixed as N → ∞. In the four-component case, we can
introduce the matrices γ3 and γ5, which anticommute with
γ0, γ1, and γ2. Then the massless case is invariant under the
transformations:Ψ → expðiα1γ3ÞΨ andΨ → expðiα2γ5ÞΨ.
Together with the identity matrix and ½γ3; γ5�, we have a
Uð2Þ symmetry for each spinor and the full global “chiral”
(or rather flavor) symmetry is Uð2NÞ. A mass term will
break this symmetry to UðNÞ ×UðNÞ. It is the dynamical
generation of such a mass that we shall consider in the
following. It is also possible to include a parity non-
conserving mass (see, for example, Ref. [25]), but we will
not consider that possibility here.
Following Ref. [2], we now study the solution of the SD

equation. The inverse fermion propagator has the form

S−1ðpÞ ¼ ½1þ AðpÞ�ðip̂þ ΣðpÞÞ; ð2Þ
where AðpÞ is the wave-function renormalization and ΣðpÞ
is the dynamically generated parity-conserving mass,
which is taken to be the same for all of the fermions.
Notice that, in our definition of ΣðpÞ, Eq. (2), the choice of
the free vertex corresponds to the so-called central Ball-
Chiu vertex [26] for the “more standard” definition
~ΣðpÞ ¼ ΣðpÞ½1þ AðpÞ�. With these conventions, the SD
equation for the fermion propagator may be decomposed
into scalar and vector components as follows:

~ΣðpÞ ¼ 2a
N

Tr
Z

d3k
ð2πÞ3

γμDμνðp − kÞΣðkÞΓνðp; kÞ
½1þ AðkÞ�ðk2 þ Σ2ðkÞÞ ; ð3aÞ

AðpÞp2 ¼ −
2a
N

Tr
Z

d3k
ð2πÞ3

Dμνðp − kÞp̂γμk̂Γνðp; kÞ
½1þ AðkÞ�ðk2 þ Σ2ðkÞÞ ;

ð3bÞ
where DμνðpÞ is the photon propagator in the Landau
gauge:

DμνðpÞ ¼
gμν − pμpν=p2

p2½1þ ΠðpÞ� ; ð4Þ

ΠðpÞ is the polarization operator and Γνðp; kÞ is the vertex
function. In the following, we shall first consider Eqs. (3a)
and (3b) at the LO approximation and will then study
Eq. (3a) at the next-to-leading order (NLO) level.

III. LEADING ORDER

The LO approximations in the 1=N expansion are
given by

AðpÞ ¼ 0; ΠðpÞ ¼ a=jpj; Γνðp; kÞ ¼ γν; ð5Þ

where the fermion mass has been neglected [27] in the
calculation of ΠðpÞ. A single diagram contributes to the
gap equation (3a) at LO (see Fig. 1), and the latter reads

ΣðpÞ ¼ 16a
N

Z
d3k
ð2πÞ3

ΣðkÞ
ðk2 þ Σ2ðkÞÞ½ðp − kÞ2 þ ajp − kj� :

ð6Þ

Performing the angular integration in Eq. (6) yields

ΣðpÞ ¼ 4a
π2Njpj

Z
∞

0

djkj jkjΣðjkjÞ
k2 þ Σ2ðjkjÞ ln

�jkj þ jpj þ a
jk − pj þ a

�
:

ð7Þ

The study of Eq. (7) in Ref. [2] has revealed the existence of
a critical number of fermion flavors Nc such that, for
N > Nc, ΣðpÞ ¼ 0. As was argued in that reference, QED3

is strongly damped for jpj > a, i.e., all relevant physics
occur at jpj=a < 1. Hence, only the lowest order terms in
jpj=a have to be kept on the rhs of Eq. (7), with a hard
cutoff at jpj ¼ a. Moreover, considering an N close to Nc,
the value of ΣðjkjÞ can be made arbitrarily small. Thus,
k2 þ Σ2ðjkjÞ can be replaced by k2 on the rhs of Eq. (7),
which then further simplifies as

ΣðpÞ ¼ 8

π2N

Z
a

0

djkj ΣðjkjÞ
Maxðjkj; jpjÞ : ð8Þ

Following Ref. [2], the mass function may then be para-
metrized as

FIG. 1. LO diagram for the dynamically generated mass ΣðpÞ.
The crossed line denotes mass insertion.
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ΣðkÞ ¼ Bðk2Þ−α ð9Þ

(with an arbitrary B value), where the index α has to be
self-consistently determined. Substituting (9) into Eq. (8),
the gap equation reads

1 ¼ 2β

L
where β ¼ 1

αð1=2 − αÞ and L≡ π2N: ð10Þ

Solving the gap equation, the following values of α are
obtained:

α� ¼ 1

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

32

L

r �
; ð11Þ

which reproduces the solution given by Appelquist et al. in
Ref. [2]. Their analysis yields a critical number of fermions,
Nc ¼ 32=π2 ≈ 3.24 (i.e., Lc ¼ 32), such that ΣðpÞ ¼ 0 for
N > Nc and

Σð0Þ≃ exp½−2π=ðNc=N − 1Þ1=2� ð12Þ

for N < Nc. Thus, DχSB occurs when α becomes
complex—that is, for N < Nc.
As was shown in Ref. [14], the same result for ΣðpÞ can

be obtained in another way. Taking the limit of a large a, the
linearized version of Eq. (6) has the following form:

ΣðpÞ ¼ 16

N

Z
d3k
ð2πÞ3

ΣðkÞ
k2jp − kj : ð13Þ

Interestingly, the large-N limit of the photon propagator in
QED3 has precisely the same momentum dependence as
the one in the so-called reduced QED; see Refs. [28,29].
The multiloop structure of the latter was recently explored
in Refs. [30,31]. With the help of the ansatz (9), one can
then see that the rhs of Eq. (13) may be calculated with the
help of the standard rules of perturbation theory for
massless Feynman diagrams, as in Ref. [32]; see also
the recent short review in Ref. [33]. Indeed, given these
rules, the computation of Eq. (13) is straightforward and
reads

ΣðLOÞðpÞ ¼ 8B
N

ðp2Þ−α
ð4πÞ3=2

2β

π1=2
: ð14Þ

This immediately yields the gap equation (10) and, hence,
the results of Eq. (11) together with the critical value
Nc ¼ 32=π2, at which the index α becomes complex.
Similarly, such rules allow for a straightforward evalu-

ation of the wave-function renormalization. At LO, Eq. (3b)
simplifies as

AðpÞp2 ¼ −
2a
N

Tr
Z

dDk
ð2πÞD

ðgμν − ðp−kÞμðp−kÞν
ðp−kÞ2 Þp̂γμk̂γν

k2jp − kj ;

ð15Þ

where the integral has been dimensionally regularized with
D ¼ 3 − 2ε. Taking the trace and computing the integral on
the rhs yields

AðpÞ ¼ Γð1þ εÞð4πÞεμ2ε
p2ε C1 ¼

μ2ε

p2ε C1 þ OðεÞ; ð16Þ

where the MS parameter μ has the standard form
μ2 ¼ 4πe−γEμ2, with the Euler constant γE and

C1 ¼ þ 4

3π2N

�
1

ε
þ 7

3
− 2 ln 2

�
: ð17Þ

The corresponding anomalous scaling dimension of the
fermion field then reads η ¼ μ2ðd=dμ2ÞAðpÞ ¼ 4=ð3π2NÞ,
and it coincides with the one found in Ref. [34].

IV. NEXT-TO-LEADING ORDER

The ease with which the standard rules for computing
massless Feynman diagrams allowed us to derive LO
results suggests the possibility of extending these compu-
tations beyond LO. We therefore consider the NLO con-
tributions to the dynamically generated mass and
parametrize them as

ΣðNLOÞðpÞ ¼
�
8

N

�
2

B
ðp2Þ−α
ð4πÞ3 ðΣA þ Σ1 þ 2Σ2 þ Σ3Þ; ð18Þ

where each NLO contribution is represented graphically in
Fig. 2. Because we are dealing with the linearized gap
equation, each contribution contains a single mass inser-
tion. Adding these contributions to the LO result, Eq. (14),
the gap equation has the following general form:

1 ¼ 2β

L
þ π

L2
½ΣA þ Σ1 þ 2Σ2 þ Σ3�: ð19Þ

After very tedious and lengthy calculations, all NLO
contributions could be evaluated exactly using the rules
for computing massless Feynman diagrams. For the most
complicated scalar diagrams [see I1ðαÞ and I2ðαÞ below],
the Gegenbauer-polynomial technique has been used to
follow Ref. [35]. We now summarize our results (details of
the calculations will be published elsewhere).
The contribution ΣA, [see diagram (A) in Fig. 2],

originates from the LO value of AðpÞ and is singular.
Using dimensional regularization, it reads
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ΣA ¼ þ 16

3

μ2ε

p2ε β

�
1

ε
þΨ1 þ

4

3
−
β

4

�
þ OðεÞ; ð20Þ

where Σi ¼ πΣi, ði ¼ 1; 2; 3.AÞ and

Ψ1 ¼ ΨðαÞ þΨð1=2 − αÞ − 2Ψð1Þ þ 3

1=2 − α
− 2 ln 2;

ð21Þ

and Ψ is the digamma function. The contribution of
diagram (1) in Fig. 2 is finite and reads

Σ1 ¼ −4Π̂β; Π̂ ¼ 92

9
− π2; ð22Þ

where [30,36] the contribution of Π̂ arises from the two-
loop polarization operator in dimension D ¼ 3, which may
be graphically represented as

ð23Þ

The contribution of diagram (2) in Fig. 2 is again singular.
Dimensionally regularizing it yields

2Σ2 ¼ −
16

3

μ2ε

p2ε β

�
1

ε
þΨ1 þ

7

3
þ 5β

8

�
− 2Σ̂2 þOðεÞ;

ð24Þ

where

Σ̂2 ¼ ð1 − 4αÞβ½Ψ0ðαÞ −Ψ0ð1=2 − αÞ�
−

π

2α
~I1ðαÞ −

π

2ð1=2 − αÞ
~I1ðαþ 1Þ; ð25Þ

and Ψ0 is the trigamma function. Notice that the singular-
ities in ΣA and Σ2 cancel each other out and their sum is
therefore finite:

ΣA þ 2Σ2 ¼ −
2

3
βð7β þ 8Þ − 2Σ̂2: ð26Þ

This cancellation corresponds to one of the logarithms,
lnðp=αÞ, in Ref. [13]; the importance of such cancellations

was discussed previously, in Ref. [2]. The dimensionless
integral ~I1ðαÞ appearing in Eq. (25) is defined as

I1ðαÞ≡ ðp2Þ−α
ð4πÞ3

~I1ðαÞ

¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

1

jp − k1jk2α1 ðk1 − k2Þ2ðp − k2Þ2jk2j
;

ð27Þ

and it obeys the following relation (it can be obtained by
analogy with the ones in Ref. [32]):

~I1ðαþ 1Þ ¼ ðα − 1=2Þ2
α2

~I1ðαÞ −
1

πα2
½Ψ0ðαÞ −Ψ0ð1=2 − αÞ�:

ð28Þ

Using the results of Ref. [35], the integral ~I1ðαÞ can be
represented in the form of a twofold series,

~I1ðαÞ ¼
X∞
n¼0

X∞
l¼0

Bðl; n; 1; 1=2Þ
ðnþ 1=2ÞΓð1=2Þ

×

�
2

nþ 1=2

�
1

lþ nþ α
þ 1

lþ nþ 3=2 − α

�

þ 1

ðlþ nþ αÞ2 þ
1

ðlþ nþ 3=2 − αÞ2
�
; ð29Þ

where

Bðm; n; α; 1=2Þ ¼ Γðmþ nþ αÞΓðmþ α − 1=2Þ
m!Γðmþ nþ 3=2ÞΓðαÞΓðα − 1=2Þ :

ð30Þ
Finally, the contribution of diagram (3) in Fig. 2 is finite
and reads

Σ3 ¼ Σ̂3 þ 3β2;

Σ̂3 ¼ ð1=2 − αÞπ~I2ð1þ αÞ þ π

2
~I2ðαÞ þ ðα − 2Þπ~I3ðαÞ:

ð31Þ
The dimensionless integrals in Eq. (31) are defined as
~I2ðαÞ ¼ ~Iðγ ¼ 1=2; αÞ and ~I3ðαÞ ¼ ~Iðγ ¼ −1=2; 1þ αÞ,
where

(A)

FIG. 2. NLO diagrams of the dynamically generated mass ΣðpÞ. The shaded blob is defined in Eq. (23).
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Iðγ;αÞ≡ðp2Þ−α−γþ1=2

ð4πÞ3
~Iðγ;αÞ

¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

1

ðp−k1Þ2γk21ðk1−k2Þ2αðp−k2Þ2jk2j
:

ð32Þ

They satisfy the following relations:

~I2ðαÞ ¼ ~I2ð3=2 − αÞ;
~I3ðαÞ ¼

2

4α − 1
ðα~I2ð1þ αÞ − ð1=2 − αÞ~I2ðαÞÞ −

β2

π
;

ð33Þ

and thus only one of them is independent. Using the results
from Ref. [35], the integral ~I2ðαÞ can be represented in the
form of a threefold series:

~I2ðαÞ ¼
X∞
n¼0

X∞
m¼0

Bðm; n; β; 1=2Þ
X∞
l¼0

Bðl; n; 1; 1=2Þ

× Cðn;m; l; αÞ; ð34aÞ

Cðn;m; l; αÞ ¼ 1

ðmþ nþ αÞðlþ nþ αÞ
þ 1

ðmþ nþ αÞðlþmþ nþ 1Þ
þ 1

ðmþ nþ 1=2Þðlþmþ nþ αÞ
þ 1

ðmþ nþ 1=2Þðlþ nþ 3=2 − αÞ
þ 1

ðnþ lþ αÞðlþmþ nþ αÞ
þ 1

ðlþ nþ 3=2 − αÞðlþ nþmþ αÞ :

ð34bÞ

Combining all of the above results, the gap equation (19)
may be written in an explicit form as

1 ¼ 2β

L
þ 1

L2

�
8SðαÞ − 5

3
β2 −

16

3
β − 4Π̂β

�
; ð35Þ

where

SðαÞ ¼ ðΣ̂3ðαÞ − 2Σ̂2ðαÞÞ=8: ð36Þ

At this point, we consider Eq. (35) directly at the critical
point α ¼ 1=4, i.e., at β ¼ 16. This yields

L2
c − 32Lc − 8ðS − 64 − 8Π̂Þ ¼ 0; ð37Þ

where S ¼ Sðα ¼ 1=4Þ. Solving Eq. (37), we have two
standard solutions:

Lc;� ¼ 16�
ffiffiffiffi
D

p
; D ¼ 8ðS − 32 − 8Π̂Þ: ð38Þ

It turns out that the “−” solution is unphysical and has to be
rejected because Lc;− < 0. So, the physical solution is
unique and corresponds to Lc ¼ Lc;þ. In order to provide a
numerical estimate for Nc, we have used the series
representations in order to evaluate the integrals: π~I1ðα ¼
1=4Þ≡ R1 and π~I2ðα ¼ 1=4þ iδÞ≡ R2 − iP2δþOðδ2Þ,
where δ → 0 regulates an artificial singularity in
π~I3ðα ¼ 1=4Þ ¼ R2 þ P2=4. With 10,000 iterations for
each series, we obtain the following numerical estimates:

R1¼ 163.7428; R2¼ 209.175; P2 ¼ 1260.720: ð39Þ

From these results, we may then obtain the numerical value
of S ¼ R1 − R2=8 − 7P2=128, which, combined with the Π̂
one, yields Lc ¼ 32.45, and therefore Nc ¼ 3.29. This
result shows that the inclusion of the 1=N corrections
increases the critical value of Nc by only 1.5% with respect
to its LO value.

V. CONCLUSION

We have included Oð1=N2Þ contributions to the SD
equation exactly and have found that the critical value Nc
increased by 1.5% with respect to the LO result. Our
analysis is in nice agreement with Ref. [13] and therefore
gives further evidence for the solution found by Appelquist
et al. [2]. Our results are in support of the fact that the 1=N
expansion of the kernel of the SD equation describes
reliably the critical behavior of the theory.
In closing, let us briefly compare our study with that of

Nash [13], which, to the best of our knowledge, is the only
popular paper which included NLO contributions in the gap
equation of QED3. Our good agreement with Ref. [13] is
nice but is also rather strange because the two analyses are
done in quite different ways. While we have used the
Landau gauge (in accordance with recent results [16]
showing the gauge invariance of Nc in this gauge when
using the Ball-Chiu vertex), Nash worked with an arbitrary
gauge fixing parameter, ξ. He resummed the most impor-
tant NLO terms (∝ β2, in our definition), which, together
with the LO ones, led to a gauge invariant result for Nc.
This result is larger by a factor of 4=3 than the pure LO one
[2]. The rest of the NLO terms (∝ β) were evaluated
(mostly numerically) in the Feynman gauge, which modi-
fies Nc another time and gives the final result of Nash:
Nc ¼ 3.28. Finally, we also note that Nash obtained two
possible solutions (one was considered unphysical), while
we obtained a unique one. For these reasons, and despite
the surprising closeness of the final results, our analysis
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substantially differs from that of Nash and intermediate
expressions are difficult to compare [37].
We also note that, very recently, NLO corrections were

computed by Gusynin and Pyatkovskiy [38] using a
slightly different approach than ours; they obtained a
gauge-independent value, Nc ¼ 2.85. Their value is
remarkably close to the one recently obtained by Herbut
[39], Nc ¼ 2.89, using a completely different method. In
order to clear up the beautiful agreement we have with
Nash’s results [13] as well as the difference with the results

of Gusynin and Pyatkovskiy [38], we plan to take into
account all ξ-dependent terms in our forthcoming
publication.
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