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The prospects are explored for testing Lorentz- and CPT-violating quantum electrodynamics in
experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electro-
dynamics with operators of mass dimensions up to 6, and we discuss some of its properties. The theory is
used to derive Lorentz- and CPT-violating perturbative shifts of the energy levels of a particle confined to a
Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons.
Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds
on numerous coefficients for Lorentz and CPT violation, using sidereal variations of observables and
comparisons between particles and antiparticles.
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I. INTRODUCTION

A powerful approach to investigating the fundamental
properties of a stable particle is to trap it for an extended
period, which allows probing it in detail. Electromagnetic
traps operate by taking advantage of a charge or magnetic
moment to confine the particle using a suitable field
configuration. For charged particles, the Penning trap is
a standard tool. An idealized Penning trap involves a
uniform magnetic field bounding the particle motion in
the perpendicular plane, together with a quadrupole electro-
static field preventing escape along the axis. Penning traps
can be used to achieve impressive sensitivities to properties
of fundamental particles, as originally demonstrated by
Dehmelt et al. in measurements of the electron g − 2 factor
and in a comparison of the electron and positron g factors to
parts in a trillion [1,2].
The high sensitivity offered by experiments with

Penning traps implies they are well suited to precision
studies of fundamental symmetries. This includes the
foundational Lorentz and CPT invariances of relativity.
Studies of these invariances have undergone a renaissance
in recent years, following the observation that tiny viola-
tions of Lorentz symmetry could emerge in models uni-
fying gravity with quantum physics such as string theory
[3]. The potential opportunity to detect experimentally
a physical effect arising from the Planck scale MP ≃
1019 GeV has stimulated many new high-precision
searches for relativity violations across various subfields
of physics [4]. Here, we advance this active area of research
by investigating the prospects for searches for Lorentz
and CPT violation via spectroscopy of particles in Penning
traps.
One possible approach to studying Lorentz and CPT

violation is to propose a specific model and investigate its
implications. However, given the current absence of com-
pelling experimental evidence for Lorentz and CPT vio-
lation, it is advantageous to work within a general and

realistic framework allowing for all possible types of
violations, thereby offering a comprehensive treatment
for prospective searches.
A general methodology for studying tiny signals arising

as suppressed effects from an inaccessible sector is pro-
vided by effective field theory [5]. For Lorentz violation,
the comprehensive realistic effective field theory can be
constructed from General Relativity and the Standard
Model of particle physics by adding to the action all
Lorentz-violating operators, each contracted with a con-
trolling coefficient that maintains coordinate independence
of the physics [6,7]. In this framework, known as the
Standard-Model Extension (SME), Lorentz-violating oper-
ators of larger mass dimension d can be interpreted as
higher-order effects appearing in the low-energy limit. The
SME also describes generalCPT-violating physics because
the breaking of CPT symmetry in the context of effective
field theory is accompanied by Lorentz violation [6,8].
Restricting attention to operators of renormalizable dimen-
sion d ≤ 4 yields the minimal SME, which in Minkowski
spacetime is power-counting renormalizable. The exper-
imental implications of any desired specific model that is
compatible with effective field theory can be obtained from
the SME framework by matching the model parameters to a
suitable subset of the SME coefficients and adopting the
corresponding experimental constraints [4,9].
The minimal SME reveals that Lorentz and CPT

violation can induce a variety of subtle but measurable
effects in experiments studying the anomalous magnetic
moment or charge-to-mass ratio of a particle confined to a
Penning trap [10,11]. These effects include shifts in the
anomaly and cyclotron frequencies that can differ between
particles and antiparticles and that can vary with sidereal
time. Experimental searches for these SME effects that
have been published to date compare the electron and
positron anomaly frequencies [12], constrain sidereal
signals in the electron anomaly and cyclotron frequencies
[13], and measure the cyclotron frequency of the H− ion
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relative to the antiproton [14,15]. On the theory side,
several treatments have been given of Penning-trap sensi-
tivities to Lorentz and CPT signals both in the minimal
SME and also for certain nonminimal SME terms involving
interactions at d ¼ 5 [10,11,16–18].
In the present work, we further the theoretical basis for

studies of Lorentz and CPT symmetry in Penning traps by
developing the relevant nonminimal sector of the SME,
studying its properties, and determining its predicted
signals for trapped electrons, positrons, protons, and anti-
protons. The recent characterization and enumeration of
effects arising when a Dirac fermion propagates in the
presence of Lorentz-violating operators of arbitrary mass
dimension d [19] provides a partial guide for investigations
of nonminimal effects on particles in a Penning trap.
However, the interactions of the particle with the electro-
magnetic fields in the trap can introduce additional types of
nonminimal Lorentz violations beyond those associated
with propagation, and these additional effects lack a
systematic treatment in the literature to date. One goal
of this work is to address this gap, by presenting and
investigating the explicit Lagrange density for Lorentz-
violating spinor electrodynamics that describes the behav-
ior of a fermion coupled to the electromagnetic field in the
presence of both minimal and nonminimal Lorentz and
CPT violation with d ≤ 6. More generally, investigations
of nonminimal SME effects are of significance to various
aspects of Lorentz and CPT violation, ranging from
phenomenological implications of specific models involv-
ing noncommutative quantum field theory [20,21] or
supersymmetry [22] to more formal issues such as the
stability and causality of Lorentz-violating quantum field
theories [23] or their mathematical foundations in
Riemann-Finsler geometry [24]. The theoretical aspects
discussed here are thus of relevance beyond the immediate
implications for experiments.
Another major goal of this work is to establish specific

observables for both minimal and nonminimal Lorentz and
CPT violation that are relevant to existing or near-future
experiments on particles in Penning traps. We use pertur-
bation theory to determine the dominant Lorentz- and
CPT-violating shifts in the anomaly and cyclotron frequen-
cies of electrons, positrons, protons, and antiprotons.
Armed with this information, we revisit published exper-
imental studies of Lorentz and CPT symmetry with
Penning traps [12,13] and extract some additional con-
straints. The perturbative analysis also reveals bounds on
SME coefficients arising from other data, including mea-
surements of the electron anomaly frequency [25] and of
the proton and antiproton magnetic moments [26–28], and
it permits identification of potential signals in forthcoming
experiments with positrons [29] and antiprotons [30,31].
Here, we extract constraints on SME coefficients from
available data and provide tools for the analysis of future
experiments. The results are complementary to existing and

proposed studies of Lorentz and CPT violation involving
measurements of the muon anomalous magnetic moment
via magnetic confinement in a ring accelerator [32,33], and
more generally to constraints on nonminimal coefficients in
the electron and proton sectors from experiments on
hydrogen, antihydrogen, and related systems [34].
This work is organized as follows. In Sec. II, we present

and investigate some properties of QED with Lorentz-
and CPT-violating operators of dimensions d ≤ 6. The
Lagrange density is given in Sec. II A, along with its
relation to some special models in the literature. The issue
of field redefinitions and physical observables is tackled in
Sec. II B. We consider gauge-covariant invertible fermion
redefinitions in Sec. II B 1, tabulating the effects of each
possibility. In Sec. II B 2, the issue of absorbing a given
fermion coupling to the electromagnetic field into other
terms in the Lagrange density is addressed. The special case
of field redefinitions and observables in the presence of a
constant electromagnetic field, which is of prime importance
in the context of Penning traps, is treated in Sec. II B 3. The
experimental observables are affected by the noninertial
nature of any laboratory frame on the Earth, and the
necessary generic frame changes to convert results to the
canonical Sun-centered frame are described in Sec. II C.
We next turn in Sec. III to applications of the theory to

Penning-trap experiments. Theoretical aspects of this sub-
ject are addressed in Sec. III A in the context of trapped
electrons, positrons, protons, and antiprotons. We begin in
Sec. III A 1 by deriving the dominant Lorentz- and CPT-
violating perturbative shifts of the energy levels of the
trapped fermion and then turn in Sec. III A 2 to a derivation
of the effects on the cyclotron and anomaly frequencies of
trapped particles. The experimental implications of these
results are the subject of Sec. III B. Some conceptual issues
for experimental analyses are considered in Sec. III B 1. In
Sec. III B 2, we investigate existing and prospective signals
for experiments, and we use the results together with
published data to extract bounds on various SME coeffi-
cients, including some that were previously unconstrained.
In Sec. IV, we summarize the work and provide some
outlook. Finally, the Appendix contains some detailed
results for the perturbative Lorentz- and CPT-violating
energy shifts. The notation and conventions in this work
follow those of Ref. [19], except as otherwise indicated. In
particular, we work in natural units with c ¼ ℏ ¼ 1.

II. THEORY

In this section, we present the Lagrange density for the
fermion sector of Lorentz-violating QED, incorporating
operators with d ≤ 6. The procedure for using field
redefinitions to identify physical observables is discussed,
and the effects of a key set of redefinitions are tabulated.
Particular attention is paid to the special case of constant
external field relevant to many experimental configurations,
including those using a Penning trap discussed in this work.

YUNHUA DING and V. ALAN KOSTELECKÝ PHYSICAL REVIEW D 94, 056008 (2016)

056008-2



A. Lagrange density

The Lorentz-violating QED for a single Dirac fermion
field ψ of massmψ and charge q coupled to the photon field
Aμ can be constructed by adding to the action of conven-
tional QED all terms that preserve U(1) gauge invariance
formed from contractions of Lorentz-violating operators
with coefficients for Lorentz violation [6]. The coefficients
can be viewed as background fields that induce coordinate-
independent Lorentz- and CPT-violating effects. For oper-
ators of arbitrary mass dimension d, the fermion sector of
this theory can be specified via a Lagrange density of the
form

Lψ ¼ 1

2
ψ̄ðγμiDμ −mψ þ Q̂Þψ þ H:c:; ð1Þ

where Q̂ is a 4 × 4 spinor matrix depending on the
coefficients for Lorentz violation, the covariant derivative
iDα, and the electromagnetic field strength Fαβ ≡ ∂αAβ −
∂βAα. The covariant derivative acting on the spinor takes

the standard form iDαψ ¼ ði∂α − qAαÞψ . Note that Q̂
satisfies the Hermiticity condition Q̂ ¼ γ0Q̂

†γ0. In the
limit of vanishing photon field Aα, the explicit form of
Q̂ for arbitrary d has been presented and studied in
Ref. [19]. The analogous Lagrange density for the quad-
ratic part of the pure-photon sector at arbitrary d is the
subject of Ref. [35]. Similar treatments exist for the
nonminimal neutrino [36] and gravity sectors [37].
In the present work, our focus is on operators having

mass dimensions d ≤ 6, which are expected to generate the
dominant physical effects beyond the minimal SME. The
Lagrange density (1) can be decomposed as the sum of
the usual Dirac Lagrange density L0 and a series of terms
LðdÞ arising from the expansion of Q̂ in operators of mass
dimension d,

Lψ ¼ L0 þ Lð3Þ þ Lð4Þ þ Lð5Þ þ Lð6Þ þ � � � : ð2Þ

The explicit forms of the terms Lð3Þ and Lð4Þ are given in
the original papers constructing the minimal SME [6] and
are reproduced here for convenience,

Lð3Þ ¼ −aμψ̄γμψ − bμψ̄γ5γμψ −
1

2
Hμνψ̄σμνψ ; ð3Þ

and

Lð4Þ ¼ 1

2
cμαψ̄γμiDαψ þ H:c:þ 1

2
dμαψ̄γ5γμiDαψ þ H:c:

þ 1

2
eαψ̄iDαψ þ H:c:þ 1

2
ifαψ̄γ5iDαψ þ H:c:

þ 1

4
gμναψ̄σμνiDαψ þ H:c: ð4Þ

These terms have been the subject of numerous inves-
tigations, and experimental constraints have been placed on
many of the corresponding coefficients in several sectors of
the SME [4].
At d ¼ 5, two kinds of terms enter the Lagrange density

Lð5Þ, one involving only symmetrized covariant derivatives
Dα and one involving the electromagnetic field strength
Fαβ,

Lð5Þ ¼ Lð5Þ
D þ Lð5Þ

F : ð5Þ

The former is given explicitly by

Lð5Þ
D ¼ −

1

2
mð5Þαβψ̄iDðαiDβÞψ þ H:c:

−
1

2
imð5Þαβ

5 ψ̄γ5iDðαiDβÞψ þ H:c:

−
1

2
að5Þμαβψ̄γμiDðαiDβÞψ þ H:c:

−
1

2
bð5Þμαβψ̄γ5γμiDðαiDβÞψ þ H:c:

−
1

4
Hð5Þμναβψ̄σμνiDðαiDβÞψ þ H:c: ð6Þ

The remaining piece is

Lð5Þ
F ¼ −

1

2
mð5Þαβ

F Fαβψ̄ψ −
1

2
imð5Þαβ

5F Fαβψ̄γ5ψ

−
1

2
að5ÞμαβF Fαβψ̄γμψ −

1

2
bð5ÞμαβF Fαβψ̄γ5γμψ

−
1

4
Hð5Þμναβ

F Fαβψ̄σμνψ : ð7Þ

The two pieces Lð5Þ
D and Lð5Þ

F can be constructed as the
symmetric and antisymmetric combinations involving two
covariant derivatives because the electromagnetic field
strength Fαβ is obtained by commutation of covariant
derivatives,

½iDα; iDβ� ¼ −iqFαβ: ð8Þ

Within each piece Lð5Þ
D and Lð5Þ

F , the convenient separation
of terms displayed in Eqs. (6) and (7) reflects the decom-
position of a 4 × 4 spinor matrix using the standard 16-
component gamma-matrix basis.
For the Lagrange density at d ¼ 6, three types of terms

appear:

Lð6Þ ¼ Lð6Þ
D þ Lð6Þ

F þ Lð6Þ
∂F: ð9Þ

The first involves only totally symmetrized combinations of
three covariant derivatives,
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Lð6Þ
D ¼ 1

2
cð6Þμαβγψ̄γμiDðαiDβiDγÞψ þ H:c:

þ 1

2
dð6Þμαβγψ̄γ5γμiDðαiDβiDγÞψ þ H:c:

þ 1

2
eð6ÞαβγÞψ̄iDðαiDβiDγÞψ þ H:c:

þ 1

2
ifð6Þαβγψ̄γ5iDðαiDβiDγÞψ þ H:c:

þ 1

4
gð6Þμναβγψ̄σμνiDðαiDβiDγÞψ þ H:c: ð10Þ

The second involves the field strength Fαβ,

Lð6Þ
F ¼ 1

4
cð6ÞμαβγF Fβγðψ̄γμiDαψ þ H:c:Þ

þ 1

4
dð6ÞμαβγF Fβγðψ̄γ5γμiDαψ þ H:c:Þ

þ 1

4
eð6ÞαβγF Fβγðψ̄iDαψ þ H:c:Þ

þ 1

4
ifð6ÞαβγF Fβγðψ̄γ5iDαψ þ H:c:Þ

þ 1

8
gð6ÞμναβγF Fβγðψ̄σμνiDαψ þ H:c:Þ: ð11Þ

The remaining contributions involve the derivative ∂αFβγ

of the field strength, and they take the form

Lð6Þ
∂F ¼ −

1

2
mð6Þαβγ

∂F ∂αFβγψ̄ψ −
1

2
imð6Þαβγ

5∂F ∂αFβγψ̄γ5ψ

−
1

2
að6Þμαβγ∂F ∂αFβγψ̄γμψ −

1

2
bð6Þμαβγ∂F ∂αFβγψ̄γ5γμψ

−
1

4
Hð6Þμναβγ

∂F ∂αFβγψ̄σμνψ : ð12Þ

In constructing the above contributions to the Lagrange
density Lψ, all of which are U(1) gauge invariant, the
coefficients for Lorentz violation are assumed to be real and
can be taken as constant in an inertial frame in the vicinity
of the Earth [6,7]. The dimension superscript (d) is sup-
pressed on minimal-SME coefficients. Coefficients with
subscript F or ∂F are associated with interactions directly
involving the electromagnetic field strength or its deriva-
tive, and they can be present even if the particle has zero
charge. The notation is chosen so that the indices μ, ν are
associated with spin properties, while α, β, γ are associated
with covariant momenta including field strengths.
Parentheses on n indices imply symmetrization with a
factor of 1=n!. The index symmetries of the coefficients are
otherwise evident by inspection.
Table I lists some properties of the terms appearing in the

expansion of the Lagrange density (2) for d ≤ 6. The first
column gives the dimension of the Lorentz-violating
operator, while the second lists the corresponding coef-
ficient. The units of each coefficient are GeV4−d. The CPT

parity of the operator is presented in the third column. The
final column displays the number of independent operators.
Note that this counting incorporates the constraints from
the Bianchi identity, which here is equivalent to the usual
homogeneous Maxwell equations ϵαβγδ∂γFαβ ¼ 0.
In the limit of vanishing Aα, the contributions (6) and

(10) are the leading-order nonminimal terms in the general
treatment of Dirac fermions in the presence of Lorentz-
violating operators at arbitrary d, which includes various
special models as limiting cases [19]. Experimental con-
straints on some of the corresponding coefficients in the
electron, proton, and muon sectors have been obtained [4].

The same coefficients control all terms in Lð5Þ
D and Lð6Þ

D ,
even when Aα is nonzero, so the corresponding constraints
hold in any models built from these terms as well.

TABLE I. Properties of terms in LðdÞ for d ≤ 6.

d Coefficient CPT Number

3 aμ Odd 4
bμ Odd 4
Hμν Even 6

4 cμα Even 10
dμα Even 10
eα Odd 4
fα Odd 4
gμνα Odd 24

5 mð5Þαβ Even 10

m5ð5Þαβ Even 10

að5Þμαβ Odd 40

bð5Þμαβ Odd 40

Hð5Þμναβ Even 60

mð5Þαβ
F

Even 6

mð5Þαβ
5F

Even 6

að5ÞμαβF
Odd 24

bð5ÞμαβF
Odd 24

Hð5Þμναβ
F

Even 36

6 cð6Þμαβγ Even 80

dð6Þμαβγ Even 80

eð6Þαβγ Odd 20

fð6Þαβγ Odd 20

gð6Þμναβγ Odd 120

cð6ÞμαβγF
Even 96

dð6ÞμαβγF
Even 96

eð6ÞαβγF
Odd 24

fð6ÞαβγF
Odd 24

gð6ÞμναβγF
Odd 144

mð6Þαβγ
∂F Odd 20

mð6Þαβγ
5∂F Odd 20

að6Þμαβγ∂F Even 80

bð6Þμαβγ∂F Even 80

Hð6Þμναβγ
∂F Odd 120
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In contrast, the literature lacks a systematic treatment of
d ≤ 6 Lorentz-violating spinor couplings to the field
strength Fαβ and its derivative ∂γFαβ. The set of operators

involving these couplings in the above expressions for Lð5Þ
F ,

Lð6Þ
F , and Lð6Þ

∂F provides a complete enumeration for d ≤ 6

and encompasses all possible models of this type. A subset
of these terms appears naturally in noncommutative QED
[21], where the noncommutativity parameter θαβ ≡
−i½xα; xβ� generates coefficients for Lorentz violation at
d ¼ 5 and d ¼ 6 according to

mð5Þαβ
5F → −

1

2
mqθαβ;

cð6ÞμαβγF → −
1

2
qðημαθβγ þ 2ημ½βθγ�αÞ: ð13Þ

The work of Belich et al. [38], which studies the special
Lorentz-violating limits

að5ÞμαβF → gϵμαβγvγ; bð5ÞμαβF → −gaϵμαβγvγ; ð14Þ

spawned numerous followup investigations of models
restricted to specifically chosen Lorentz-violating operators
with spinor couplings to Fαβ [39]. Also, a model containing
all d ¼ 5 operators that cannot be reduced via equations of
motion to ones with d < 5 has been given in Ref. [40],
using a different organization of terms than adopted here.
Actual constraints on physical effects from Lð5Þ

F , Lð6Þ
F ,

and Lð6Þ
∂F have so far been obtained on only a small part of

the available coefficient space displayed in Table I
[17,18,21,41]. For anomalous magnetic moments, which
are the focus of the sections that follow, the sole limits to
date have been reported recently by Araujo et al. [17,18],
who consider in turn several special Lorentz-violating

limits of the coefficient Hð5Þμναβ
F given by

Hð5Þμναβ
F → −2λðKFÞμναβ;

Hð5Þμναβ
F → −λAϵρσμνðKFÞρσαβ;

Hð5Þμναβ
F → −2λ01ðηα½μTν�β − ηβ½μTν�αÞ;

Hð5Þμναβ
F →

3

4
λ3ðημ½αTβ�ν − ην½αTβ�μÞ; ð15Þ

where ðKFÞρσαβ is taken to have the symmetries of the
Riemann tensor.
The above discussions of both the theoretical and

experimental implications of terms with spinor couplings
to Fαβ are further convoluted by the possibility of removing
the corresponding Lorentz-violating operators from the
Lagrange density using field redefinitions. We show in
Sec. II B below that this possibility, which has been
overlooked in the literature to date, implies that only
certain combinations of these terms can produce observable
effects in experiments. Remarkably, it turns out that many
specific spinor couplings to Fαβ at finite d can be removed
from observables in favor of other terms, including in

particular the coefficient Hð5Þμναβ
F .

We emphasize that the Lagrange density (2) also con-
tains all Lorentz-invariant fermion-photon couplings.
These terms arise from components of the SME coefficients
that are proportional to the Minkowski-metric or Levi-
Civitá tensors, both of which are Lorentz invariant. The
only Lorentz-invariant terms arising in the minimal SME
are

Lð4Þ
LI ¼ 1

2
cð4Þψ̄γμiDμψ þ 1

2
dð4Þψ̄γ5γμiDμψ þ H:c: ð16Þ

These terms can be absorbed into the normalizations of the
left- and right-handed components of the spinor field ψ .
Both are typically assumed to vanish in the literature on
Lorentz violation.
The Lorentz-invariant terms of mass dimension d ¼ 5

can be written explicitly as

Lð5Þ
LI ¼ −

1

2
mð5Þψ̄ðiDÞ2ψ þ H:c:

−
1

2
imð5Þ

5 ψ̄γ5ðiDÞ2ψ þ H:c:

−Hð5Þ
F;1F

μνψ̄σμνψ −Hð5Þ
F;2

~Fμνψ̄σμνψ ; ð17Þ

where ~Fμν ¼ ϵμναβFαβ=2. These terms include Lorentz-
invariant contributions to the anomalous magnetic and
electric moments of the spinor field ψ involving the

coefficients Hð5Þ
F;1 and Hð5Þ

F;2. Finally, the Lorentz-invariant
terms with d ¼ 6 are

Lð6Þ
LI ¼ 1

6
cð6Þψ̄γμ½iDμðiDÞ2 þ iDαiDμiDα þ ðiDÞ2iDμ�ψ þ H:c:þ 1

2
cð6ÞF;1F

μνðψ̄γμiDνψ þ H:c:Þ

þ 1

2
cð6ÞF;2

~Fμνðψ̄γμiDνψ þ H:c:Þ þ 1

6
dð6Þψ̄γ5γμ½iDμðiDÞ2 þ iDαiDμiDα þ ðiDÞ2iDμ�ψ þ H:c:

þ 1

2
dð6ÞF;1F

μνðψ̄γ5γμiDνψ þ H:c:Þ þ 1

2
dð6ÞF;2

~Fμνðψ̄γ5γμiDνψ þ H:c:Þ − að6Þ∂F;1∂αFαβψ̄γβψ − að6Þ∂F;2∂α
~Fαβψ̄γβψ

− bð6Þ∂F;1∂αFαβψ̄γ5γβψ − bð6Þ∂F;2∂α
~Fαβψ̄γ5γβψ ; ð18Þ
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where the homogeneous Maxwell equations have been
used.
Note that the possibility of using field redefinitions to

remove some terms in the Lagrange density in favor of
others also applies to the Lorentz-invariant operators in Lð5Þ

LI

and Lð6Þ
LI . One example in the next subsection illustrates this

by absorbing the conventional couplings Hð5Þ
F;1 and H

ð5Þ
F;2 for

the anomalous magnetic and electric moments into other
coefficients.

B. Field redefinitions

The freedom to choose canonical dynamical variables
via suitable field redefinitions often implies that two
seemingly different theories in fact describe the same
physics. For example, in the context of the standard kinetic
term for a Dirac fermion, a chiral rotation of the field ψ can
absorb a possible term −im5ψ̄γ5ψ into the usual mass term
modulo anomaly considerations, leaving mψ as the fer-
mion mass.
In the context of the SME, field redefinitions reveal that

some terms that naively appear to violate Lorentz symmetry
have no measurable implications, while others are observ-
able only in certain specific combinations [6,7,19,42]. The
simplest example involving Lorentz and CPT violation is a
linear phase redefinition of the form ψ ¼ expð−iaμxμÞχ,
which physically redefines the zero of energy and momen-
tum and can be used to eliminate the term aμψ̄γμψ from L
at leading order in Lorentz violation. We remark in passing
that the contribution from aμ is distinct from that due to a
constant 4-potential Aμ because aμ is gauge invariant and so
cannot be removed by a gauge transformation.
In this subsection, we examine the effects of certain

field redefinitions on the terms in Lψ with d ≤ 6. Specific
results are extracted for a constant electromagnetic field,
which is the scenario of relevance for many experimental
applications.

1. Fermion redefinitions

We consider here gauge-covariant field redefinitions
amounting to renormalizations of ψ taking the form

ψ ¼ ð1þ ẐÞψ 0; ð19Þ

where we allow Ẑ to depend on covariant derivatives.
Under this transformation, the physics is invariant provided
the Lorentz-violating terms in L remain perturbative, which
holds if Ẑ itself is perturbative [19]. Note that this implies
both the field strength Fαβ and the coefficients for Lorentz
violation must be small on the scale of the energies and
momenta of interest.
For notational simplicity, it is convenient to work in

momentum space, writing pα ¼ iDα and

½pα; pβ� ¼ −iqFαβ: ð20Þ

The redefinition (19) induces a new operator Q̂0 from the
Lagrange density (2),

ψ†γ0ðγμpμ −mψ þ Q̂Þψ ≈ ψ 0†γ0ðγμpμ −mψ þ Q̂0Þψ 0;

ð21Þ

where

Q̂0 ¼ Q̂þ ðγμpμ −mψÞẐ þ γ0Ẑ
†γ0ðγμpμ −mψ Þ: ð22Þ

For convenience, we can separate Ẑ into a Hermitian piece
X̂ and an anti-Hermitian piece Ŷ given by

Ẑ ¼ X̂ þ iŶ; X̂ ¼ 1

2
ðẐ þ γ0Ẑ

†γ0Þ;

Ŷ ¼ 1

2i
ðẐ − γ0Ẑ

†γ0Þ: ð23Þ

Note that X̂ and Ŷ satisfy the Hermiticity conditions
X̂ ¼ γ0X̂

†γ0, Ŷ ¼ γ0Ŷ
†γ0, in parallel with the Hermiticity

of the Q̂ operator. Using these definitions, the shift δQ̂ ¼
Q̂0 − Q̂ in the modified Dirac operator Q̂ arising from the
field redefinition is found to be

δQ̂ ¼ −2mψ X̂ þ fpμγ
μ; X̂g þ i½pμγ

μ; Ŷ�
¼ −2mψ X̂ þ pμfγμ; X̂g þ ipμ½γμ; Ŷ�
− ½pμ; X̂�γμ þ i½pμ; Ŷ�γμ: ð24Þ

Explicit expressions for the shift δQ̂ can be found via
decomposition of X̂ and Ŷ in terms of the basis of 16 Dirac
matrices and power series in pα. First, we define

X̂ ¼ X̂IΓI

≡ X̂S þ iX̂Pγ5 þ X̂μ
Vγμ þ X̂μ

Aγ5γμ þ
1

2
X̂μν
T σμν;

Ŷ ¼ ŶIΓI

≡ ŶS þ iŶPγ5 þ Ŷμ
Vγμ þ Ŷμ

Aγ5γμ þ
1

2
Ŷμν
T σμν: ð25Þ

Here, the index I takes values S, P, V, A, T and is summed.
Each component in these expressions can then in turn be
expanded in powers of pα,

X̂ς
I ¼ Xς

I þ Xςα
I pα þ Xςαβ

I pαpβ þ Xςαβγ
I pαpβpγ þ � � � ;

Ŷς
I ¼ Yς

I þ Yςα
I pα þ Yςαβ

I pαpβ þ Yςαβγ
I pαpβpγ þ � � � ;

ð26Þ

where the index ς takes values that are null, μ, or μν
according to the Lorentz properties of the corresponding
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spinor matrix. Note that the ordering of the momenta in this
expression is significant because they have nonzero com-
mutators. Via this procedure, all the spin and momentum
dependence is explicitly extracted, and so the components
appearing in the decomposition (26) are merely constants.
In studying the possible shifts δQ̂ induced by field

redefinitions, each of the constant components can be
treated as inducing an independent field redefinition.
Each of these is U(1) gauge covariant by construction. It
suffices for the present purposes to keep terms up to third
order in pα. Since there are two pieces X̂, Ŷ, each of which
has five spin components, each of which has four momen-
tum components, we see that the above decomposition
allows for 40 distinct field redefinitions in this language.
Note that some redefinitions duplicate effects and some
redefinitions induce multiple coefficient shifts. The redefi-
nition XS introduces an irrelevant scaling of the usual Dirac
action, while the redefinition YS has no effect.
As a simple example, consider the field redefinition

associated with Ŷ ⊃ Yα
Spα. The result (24) implies

δQ̂ ¼ −qY ½α
S η

β�μFαβγμ ↔ −
1

2
að5ÞμαβF Fαβγμ; ð27Þ

where the brackets around index pairs indicate antisym-
metrization with a factor of 1=2. The last part of this
expression gives the match to the corresponding term in the

Lagrange density (7). The shift δað5ÞμαβF induced in the

coefficient að5ÞμαβF via this field redefinition is therefore

δað5ÞμαβF ¼ 2qY ½α
S η

β�μ. One consequence of this result is that
the trace of the mixed-symmetry representation in að5ÞμαβF
has no independent physical content and hence cannot be
measured independently in experiments.
As a more involved example, consider the redefinition

associated with X̂ ⊃ Xμα
V pαγμ. We obtain

δQ̂ ¼ −2mψX
μα
V pαγμ þ 2Xμα

V pðμpαÞ

−
1

2
qðXμ½α

V ηβ�ν − Xν½α
V ηβ�μÞFαβσμν: ð28Þ

The correspondence to terms in the Lagrange density (2)
yields

δcμα ¼ −2mψX
μα
V ;

δmð5Þαβ ¼ −2XðαβÞ
V ;

δHð5Þμναβ
F ¼ 2qðXμ½α

V ηβ�ν − Xν½α
V ηβ�μÞ: ð29Þ

The parameter Xμα
V can itself be decomposed into sym-

metric traceless, antisymmetric, and trace pieces, each of
which can also be viewed as an independent redefinition.
The above equations therefore reproduce the known result
that the antisymmetric part of cμα is unphysical [6] and

reveal that the coefficient mð5Þαβ can be removed by

absorption into Xμ½α
V ηβ�ν.

We provide here one final explicit example, based on the
redefinition associated with X̂ ⊃ 1

2
σμνX

μναβ
T pαpβ. Some

calculation yields

δQ̂ ¼ −mψX
μνðαβÞ
T σμνpðαpβÞ þ

1

2
imψqX

μν½αβ�
T Fαβσμν

þ Xρσðαβ
T ϵγÞμρσpðαpβpγÞγ5γμ

þ qðXβμðαγÞ
T − XγμðαβÞ

T ÞFβγpαγμ

−
1

2
iqXρσ½βγ�

T ϵαμρσFβγpαγ5γμ: ð30Þ

This generates coefficient shifts given by

δHð5Þμναβ ¼ 2mψX
μνðαβÞ
T ;

δHð5Þμναβ
F ¼ −2imψqX

μν½αβ�
T ;

δdð6Þμαβγ ¼ Xρσðαβ
T ϵγÞμρσ;

δcð6ÞμαβγF ¼ 2qðXβμðαγÞ
T − XγμðαβÞ

T Þ;
δdð6ÞμαβγF ¼ iqXρσ½βγ�

T ϵμαρσ: ð31Þ

Among the implications of these equations is that the

coefficient Hð5Þμναβ
F , which controls d ¼ 5 spinor couplings

to Fαβ and has been a popular subject of investigation in the

literature, can be absorbed into the coefficient dð6ÞμαβγF . This
point is discussed further in a more general context in the
following subsection.
A related and striking observation is that the standard

Lorentz-invariant terms describing anomalous magnetic
and electric dipole moments can be removed from the
Lagrange density by using a special limit of the redefinition
(31). Suppose a fermion is described by the conventional
Dirac Lagrange density plus the specific coupling in
Eq. (17) involving Hð5Þ

F;1. Choosing

Xμν½αβ�
T ¼ −

i
mψq

Hð5Þ
F;1ðημ½αηβ�ν − ην½αηβ�μÞ ð32Þ

and performing the corresponding redefinition removes the

operator Fμνψ̄σμνψ with coupling Hð5Þ
F;1 in favor of the

operator with coupling dð6ÞF;2 in the Lagrange density (18).

With a similar redefinition, the couplingHð5Þ
F;2 in L

ð5Þ
LI can be

absorbed into the coupling dð6ÞF;1 in Lð6Þ
LI . Explicitly, these

redefinitions implement the transformations

ðHð5Þ
F;1; d

ð6Þ
F;2 ≡ 0Þ → ðHð5Þ

F;1 ≡ 0; dð6ÞF;2 ¼ 2Hð5Þ
F;1=mψÞ;

ðHð5Þ
F;2; d

ð6Þ
F;1 ≡ 0Þ → ðHð5Þ

F;2 ≡ 0; dð6ÞF;1 ¼ −2Hð5Þ
F;2=mψÞ; ð33Þ
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thereby moving the usual d ¼ 5 Lorentz-invariant anoma-
lous magnetic and electric dipole moments to the d ¼ 6
nonminimal Lorentz-invariant sector.
For the general case, the results of each field redefinition

considered in turn are displayed in Table II. The first
column gives the dimension of the operator. The second
column shows the coefficient shift being considered. The
third column indicates the structure of the field redefinition
implementing the coefficient shift. Most coefficients are
shifted by more than one field redefinition, and the different
redefinitions are separated by commas. Notable exceptions
are the coefficients appearing in Lð6Þ

∂F , for which the
corresponding operators play no role in the field redefini-
tions due to the Bianchi identity and which are therefore
omitted from the table. As before, parentheses and brackets
around n indices imply symmetrization and antisymmet-
rization, respectively, with a factor of 1=n! included. A few
terms involve the specific index combination of three
indices that we denote by chevrons,

hαβγi≡ 1

2
ðαβγ þ βγα − γαβÞ: ð34Þ

Following standard convention, vertical bars are used to
denote indices omitted from the symmetrization or
antisymmetrization.

2. Absorption of couplings to Fαβ

As an interesting and potentially useful example of the
application of field redefinitions, we investigate in this
subsection the possibility of absorbing a given spinor
coupling to Fαβ into other terms in the Lagrange density.
The discussion considers operators of any mass dimen-
sion d.
The terms of primary interest for this illustrative calcu-

lation are the gauge-invariant spinor couplings to the field
strength Fαβ, where Fαβ may be nonconstant. For definite-
ness, we focus here on terms involving exactly one power
of Fαβ, rather than those nonlinear in Fαβ or those involving
derivatives of Fαβ. In momentum space, the corresponding

operators can be collected in a quantity Q̂F taking the form

Q̂F ¼
X
d>4

kðdÞςαβα1…αd−5
I Fαβpðα1…pαd−5ÞΓ

I
ς; ð35Þ

where k
ςαβα1…αj
I are F-type coefficients for Lorentz viola-

tion. As before, the index I takes values S, P, V, A, T, while
ς is null or takes values μ or μν. For example, the operators

appearing in the expression (7) for Lð5Þ
F and the expression

(11) for Lð6Þ
F are reproduced by particular terms in the

series (35).
For definiteness, we examine here the term −2mψ X̂ in

the shift (24) of δQ̂ and investigate its implications for
terms in the series (35). The quantity X̂ can be expanded

according to the expression (25), and then each resulting
piece X̂ς

I can itself be expanded in covariant momenta
following the definition (26). A given term in the expansion
(26) of X̂ς

I can be viewed as a sum of irreducible

TABLE II. Effects of field redefinitions for d ≤ 6.

d Shift Field redefinition

3 δaμ 2mψX
μ
V

δbμ 2mψX
μ
A

δHμν 2mψX
μν
T

4 δcμα 2XSη
μα, −2mψX

μα
V

δdμα Xνρ
T ϵμανρ, 2YPη

μα, −iYνρ
T ϵμανρ

δeα −2mψXα
S, 2X

α
V

δfα −2mψXα
P

δgμνα 2Xρ
Aϵρ

μνα, 2mψX
½μν�α
T

−4Y ½μ
V η

ν�α, 2iYρ
Aϵρ

μνα

5 δmð5Þαβ
2mψX

ðαβÞ
S , −2XðαβÞ

V

δmð5Þαβ
5 2mψX

ðαβÞ
P , 2YðαβÞ

A

δað5Þμαβ 2Xðα
S η

βÞμ, 2mψX
μðαβÞ
V , 2YμðαβÞ

T

δbð5Þμαβ 2mψX
μðαβÞ
A , Xνρðα

T ϵβÞμνρ, iY
ðα
P η

βÞμ

δHð5Þμναβ
2mψX

μνðαβÞ
T , 4Y ½μjðα

V ηβÞjν�

δmð5Þαβ
F −2imψqX

½αβ�
S , −2qY ½αβ�

V

δmð5Þαβ
5F −2imψqX

½αβ�
P , −2qX½αβ�

A

δað5ÞμαβF −2iqmψX
μ½αβ�
V , 2qXμ½αβ�

T , 2qY ½α
S η

β�μ

δbð5ÞμαβF −2qX½α
P η

β�μ; −2imψqX
μ½αβ�
A , qYνρ½α

T ϵβ�μνρ
δHð5Þμναβ

F 2qðXμ½α
V ηβ�ν − Xν½α

V ηβ�μÞ, 4Xρ½α
A ϵβ�μνρ

−2imψqX
μν½αβ�
T , −2qYρ½α

A ϵβ�μνρ
6 δcð6Þμαβγ 2Xðαβ

S ηγÞμ, −2mψX
μðαβγÞ
V , YμðαβγÞ

T

δdð6Þμαβγ −2mψX
μðαβγÞ
A , Xνρðαβ

T ϵγÞμνρ, −2iY
ðαβ
P ηγÞμ

δeð6Þαβγ −2mψX
ðαβγÞ
S , 4XðαβγÞ

V

δfð6Þαβγ −2mψX
ðαβγÞ
P , −2Yαβγ

A

δgð6Þμναβγ −2Xρðαβ
A ϵγÞμνρ, −2mψX

μνðαβγÞ
T

−4Y ½μjðαβ
V ηγÞjν�

δcð6ÞμαβγF −2iqX½βγ�
S ηαμ, 4imψqX

μhα½βγ�i
V ,

2qðXβμðαγÞ
T − XγμðαβÞ

T Þ,
−2qðYðαβÞ

S ηγμ − YðαγÞ
S ηβμÞ, −2iqYμα½βγ�

T

δdð6ÞμαβγF 2qðXðαβÞ
P ηγμ − XðαγÞ

P ηβμÞ, 4imψqX
μhα½βγ�i
A ,

−iqXνρ½βγ�
T ϵαμνρ, 2qY

½βγ�
P ηαμ,

−qðYνρðαβÞ
T ϵγμνρ − YνρðαγÞ

T ϵβμνρÞ
δeð6ÞαβγF 4imψqX

hα½βγ�i
S , −4iqXα½βγ�

V ,

2qðYβðαγÞ
V − YγðαβÞ

V Þ
δfð6ÞαβγF 4imψqX

hα½βγ�i
P , 2qðXβðαγÞ

A − XγðαβÞ
A Þ

2iqYα½βγ�
A

δgð6ÞμναβγF −4qðX½μjðαβÞ
V ηγjν� − X½μjðαγÞ

V ηβjν�Þ,
2iqXρ½βγ�

A ϵαμνρ, 4imψqX
μνhα½βγ�i
T ,

4iqYμ½βγ�
V ηαν,

−2qðYρðαβÞ
A ϵγμνρ − YρðαγÞ

A ϵβμνρÞ
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representations obtained by decomposing the product of
momenta. The commutator (20) of any two momenta
produces a factor of Fαβ, so the expansion (26) can be
seen to contain a series of terms involving powers of
Fαβ. Here, the interest lies in terms with a single factor
of Fαβ, corresponding to the representation with all
momenta symmetrized except for a single pair. Denoting
this representation by fαβ…g, the expansion (26)
contains

X̂ς
I ⊃ −

1

2
iqðXςαβ

I Fαβ þ Xςαβγ
I Ffαβpγg

þ Xςαβγδ
I Ffαβpγpδg þ…Þ

¼ −
1

2
iqðXςαβ

I Fαβ þ Xςfαβγg
I Fαβpγ

þ Xςfαβγδg
I FαβpðγpδÞ þ…Þ: ð36Þ

It follows that

X̂ ⊃ −
1

2
iq
X
d>4

Xςfαβα1…αd−5g
I Fαβpðα1…pαd−5ÞΓ

I
ς: ð37Þ

Comparison of this expression with the form (35) of the
operator Q̂F confirms that δQ̂ and Q̂F contain operators
of the same general form. So a choice of X̂ exists at
each d that creates from the conventional Dirac equation
a variety of linear spinor couplings to Fαβ. Equivalently,

the corresponding terms in Q̂F can be absorbed into
other terms in the Lagrange density.
The other terms in Lψ that are associated with the

redefinition (37) include ones involving different spinor
couplings to Fαβ. Notice that no operators involving only
symmetrized covariant momenta can appear, as X̂ is
already linear in Fαβ. Since Ŷ ¼ 0 for the redefinition
(37) and since the commutators (20) imply that the result
of ½pμ; X̂� is second order in Fαβ, the terms involving
different linear spinor couplings to Fαβ arise from the
anticommutator pμfγμ; X̂g with the extra momentum pμ

symmetrized with those in X̂. This reveals that the
resulting shift (24) in Q̂ contains terms at first order
in Fαβ given by

δQ̂ ⊃ imψq
X
d>4

Xςfαβα1…αd−5g
I Fαβ

�
pðα1…pαd−5ÞΓ

I
ς

−
1

2mψ
pðμpα1…pαd−5Þfγμ;ΓI

ςg
�
: ð38Þ

Any given linear spinor coupling to Fαβ at dimension d is
therefore paired with another at dimension dþ 1. This
implies that certain linear Fαβ couplings of mass dimen-
sion d can be absorbed into others of dimension dþ 1.

The results are analogous to those obtained for the
noninteracting case in Sec. II B of Ref. [19].
Note that other choices of X̂ can mix linear spinor

couplings to Fαβ and operators with symmetrized
covariant momenta, via the commutator ½pμ; X̂�γμ and
anticommutator pμfγμ; X̂g terms in Eq. (24). This can be
seen directly from Table II. It implies more than one
type of redefinition can be used to absorb certain linear
spinor couplings to Fαβ, which has potential conse-
quences for the interpretation of models involving these
couplings.
In the applications below to studies of Lorentz and

CPT violation with Penning traps, we keep all
relevant terms rather than simplifying calculations
by absorbing some couplings via field redefinitions.
Although more labor intensive, this reveals directly
the combinations of measurable coefficients and has
the added benefit of permitting an extra check on
calculations by verifying consistency with the redefi-
nitions shown in Table II.

3. Scenario with constant Fαβ

For many experimental applications, including those to
Penning traps discussed in the sections to follow, the
predominant part of the electromagnetic field strength is
constant in magnitude and direction in the laboratory
frame. In this scenario, the Lagrange density Lψ pre-
sented in Sec. II A reduces to a simpler form for
calculational purposes. We remark in passing that a
similar interpretation to what follows can also be envis-
aged for more general scenarios involving nonconstant
Fαβ, whenever Fαβ plays the role of a fixed background
rather than a dynamical field.
The requirement of constant Fαβ,

DγFαβ ≡ ∂γFαβ ¼ 0; ð39Þ

immediately eliminates the contributions Lð6Þ
∂F to Lψ

presented in Eq. (12). Moreover, it also implies that
the linear couplings to Fαβ in the Lagrange densities (7)
and (11) can be reinterpreted in terms of simpler
couplings in the laboratory frame. As an explicit exam-

ple, consider the coefficient að5ÞμαβF appearing in Lð5Þ
F .

This coefficient is contracted with Fαβ, so when Fαβ is

constant, the combination að5ÞμαβF Fαβ effectively behaves
like a contribution to the coefficient aμ in the minimal
Lagrange density (3), involving a coupling of mass
dimension 3 instead of 5.
This line of reasoning shows that most of the Lagrange

densities Lð5Þ
F and Lð6Þ

F can be absorbed into the terms Lð3Þ

and Lð4Þ when applied to scenarios with constant Fαβ, via
the replacements

LORENTZ-VIOLATING SPINOR ELECTRODYNAMICS AND … PHYSICAL REVIEW D 94, 056008 (2016)

056008-9



aμ → aμ þ 1

2
að5ÞμαβF Fαβ;

bμ → bμ þ 1

2
bð5ÞμαβF Fαβ;

Hμν → Hμν þ 1

2
Hð5Þμναβ

F Fαβ;

cμα → cμα þ 1

2
cð6ÞμαβγF Fβγ;

dμα → dμα þ 1

2
dð6ÞμαβγF Fβγ;

eα → eα þ 1

2
eð6ÞαβγF Fβγ;

fα → fα þ 1

2
fð6ÞαβγF Fβγ;

gμνα → gμνα þ 1

2
gð6ÞμναβγF Fβγ: ð40Þ

The remaining terms involving the coefficients mð5Þαβ
F

and mð5Þαβ
5F can also be absorbed, but into the fermion mass

instead. When Fαβ is constant, the combination mð5Þαβ
F Fαβ

represents a contribution to the Dirac mass, while

mð5Þαβ
5F Fαβ acts as a chiral mass term. The latter can be

removed by a chiral transformation with parameter θ
determined by

ψ → e−iθγ5ψ ; tan θ ¼ mð5Þαβ
5F Fαβ

2mψ þmð5Þαβ
F Fαβ

: ð41Þ

This transformation leaves invariant the usual Dirac kinetic
term, and it has no leading-order effect on other Lorentz-
violating terms because it differs from the identity only by
powers of coefficients for Lorentz violation. The absorption

of the coefficients mð5Þαβ
F and mð5Þαβ

5F is thereby found to be
equivalent to the replacement

mψ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mψ þ 1

2
mð5Þαβ

F Fαβ

�
2

þ
�
1

2
mð5Þαβ

5F Fαβ

�
2

s

≈mψ þ 1

2
mð5Þαβ

F Fαβ ð42Þ

at leading order in Lorentz violation. Note that the

coefficient mð5Þαβ
5F is unobservable at this order.

The above discussion demonstrates that the spinor
couplings to constant Fαβ in Lorentz-violating QED with
d ≤ 6 reduce to terms in the minimal QED extension of
Ref. [6]. However, the fermion mass and the minimal
coefficients for Lorentz violation become dependent on
Fαβ according to the results (40) and (42). The operators
with symmetrized covariant momenta appearing in the

Lagrange densities Lð5Þ
D and Lð6Þ

D are unaffected by this
argument.

In the discussions below analyzing experiments with
Penning traps, the method described in this subsection is
used to simplify calculations with terms containing a
factor of Fαβ. As expected, the results obtained are
consistent with direct perturbative calculations that
explicitly keep the terms in Lψ involving spinor cou-
plings to constant Fαβ.

C. Frame changes

This subsection outlines some generic considerations
involving the frame changes that appear in performing
an analysis for violations of rotation invariance. More
specific details for these and also other types of searches
for Lorentz and CPT violation using Penning traps are
provided in subsequent parts of this work.
Tests of Lorentz and CPT symmetry with a trapped

particle effectively investigate its properties under
rotations or boosts, or compare its behavior to that
of a trapped antiparticle. Since boosts close under
commutation into rotations, it is impossible to break
Lorentz invariance without also breaking rotation
invariance: even if the physics predicted by a particular
model is isotropic in a special frame, any boost to
another frame reintroduces anisotropic effects. Also, as
CPT violation in realistic effective field theory is
accompanied by Lorentz violation [6,8], it follows that
CPT violation comes with rotation violation as well.
Tests of rotation symmetry are therefore of particular
importance in the search for Lorentz and CPT
violation.
The explicit form of a coefficient for Lorentz viola-

tion depends on the inertial frame of the observer.
Comparing different experiments thus involves compar-
ing results in a standard frame. The canonical frame
adopted in the literature is the Sun-centered celestial-
equatorial frame [43], which has the origin of its time
coordinate T defined as the 2000 vernal equinox. The
Cartesian coordinates XJ ≡ ðX; Y; ZÞ in this frame are
specified as having the Z axis aligned along the rotation
axis of the Earth and the X axis pointing from the Earth
to the Sun, with the Y axis completing a right-handed
coordinate system. The Sun-centered frame is well
suited as a standard frame because it is essentially
inertial during typical experimental time scales and
because its axes are conveniently chosen for laboratory
studies.
In any inertial frame in the vicinity of the Earth,

including the canonical Sun-centered frame, the coef-
ficients for Lorentz violation can be assumed to be
constants in time and space [6,7]. However, the Earth
rotates in this frame, and so the coefficients for Lorentz
violation change with sidereal time when observed in
the laboratory [44]. As a result, experimental observ-
ables for Lorentz violation can oscillate in time at
harmonics of the Earth’s sidereal frequency

YUNHUA DING and V. ALAN KOSTELECKÝ PHYSICAL REVIEW D 94, 056008 (2016)

056008-10



ω⊕ ≃ 2π=ð23 h 56 minÞ, with their amplitudes and
phases controlled by the coefficients.
To establish the time dependence of the coefficients

appearing in an experiment located on the Earth’s
surface, it is useful to introduce a standard laboratory
frame with time coordinate t and Cartesian coordinates
xj ≡ ðx; y; zÞ [43]. The origin of t can be defined
conveniently for a given laboratory. A useful choice
is to match t with the local sidereal time T⊕, defined
to have origin at a chosen moment when the y axis lies
along the Y axis. This is offset from the time T in the
Sun-centered frame by any chosen integer number of
sidereal rotations of the Earth and by an additional
shift

T0 ≡ T − T⊕ ≃ ð66.25° − λÞ
360°

ð23.934 hrÞ; ð43Þ

where λ is the longitude of the laboratory in degrees.
The spatial axes in the standard laboratory frame are
defined with the x axis pointing to local south, the y
axis pointing to local east, and the z axis pointing to
the local zenith. To obtain dominant effects, both the
boost β⊕ ≃ 10−4 of the Earth relative to the Sun-
centered frame and the boost βL ≃ 10−6 of the labo-
ratory due to the rotation of the Earth can be treated as
negligible. The relationship xj ¼ RjJxJ between the
coordinates xj in the laboratory frame and the coor-
dinates xJ in the Sun-centered frame is then given by
the T⊕-dependent rotation matrix [43]

RjJ ¼

0
B@

cos χ cosω⊕T⊕ cos χ sinω⊕T⊕ − sin χ

− sinω⊕T⊕ cosω⊕T⊕ 0

sin χ cosω⊕T⊕ sin χ sinω⊕T⊕ cos χ

1
CA:

ð44Þ

This matrix generates the harmonic time dependences
of the coefficients for Lorentz violation observed in the
laboratory frame.
For many laboratory experiments, it is also convenient

to introduce an apparatus frame with Cartesian coor-
dinates xa ≡ ðx1; x2; x3Þ. We denote the corresponding
unit vectors by ðx̂1; x̂2; x̂3Þ. For example, in the experi-
ments with Penning traps discussed below, the x3 axis is
taken to be aligned with the uniform trapping magnetic
field. This may subtend a nonzero angle to the local
zenith specified in the standard laboratory frame by ẑ, so
that x̂3 · ẑ ≠ 0. The relationship xa ¼ Rajxj connecting
the standard laboratory coordinates (x, y, z) to the
apparatus coordinates (x1, x2, x3) then involves a
rotation matrix Raj, which can be specified in general
as the product of three Euler rotations for suitable Euler
angles α, β, and γ,

Raj ¼

0
B@

cos γ sin γ 0

− sin γ cos γ 0

0 0 1

1
CA
0
B@

cos β 0 − sin β

0 1 0

sin β 0 cos β

1
CA

×

0
B@

cos α sin α 0

− sin α cos α 0

0 0 1

1
CA: ð45Þ

Combining the above results reveals that the coordinates
in the Sun-centered frame are related to those in the
apparatus frame by

xaðT⊕Þ ¼ RajRjJðT⊕ÞXJ: ð46Þ

Expressions relating any given coefficients for Lorentz
violation in the two frames can be obtained from this
result.
In addition to its sidereal rotation, the Earth’s

revolution about the Sun induces further time varia-
tions in the coefficients for Lorentz violation in the
laboratory and apparatus frames. These variations
occur at harmonics of the annual frequency, and they
arise due to the boost β⊕ ≃ 10−4 of the Earth in the
Sun-centered frame. Effects also arise from the boost
βL ≃ 10−6 of the laboratory due to the rotation of the
Earth. All these effects are suppressed by one or more
powers of the boost. Nonetheless, they typically
introduce experimental sensitivities to coefficients for
Lorentz violation beyond those observable via pure
rotations, as has been demonstrated in the literature
[33,34,45–47]. They can also be of larger magnitude
than effects suppressed by other mechanisms, such as
those involving couplings to electromagnetic fields in
the apparatus. However, to retain a reasonable scope
for the present work, we disregard boost effects in our
analysis below of experiments with Penning traps,
focusing instead on sidereal signals arising from
rotations. A treatment of boost effects for trapped
particles is feasible in principle and would make an
excellent subject for a future work.

III. APPLICATION TO PENNING TRAPS

In this section, the Lagrange density (1) is used as
the starting point for an analysis of the sensitivity to
Lorentz and CPT violation attainable in experiments
with Penning traps. We apply perturbation theory to
determine the shifts in energy levels for electrons,
positrons, protons, and antiprotons arising in the
presence of coefficients for Lorentz violation. This
leads to expressions for the dominant shifts in the
cyclotron and anomaly frequencies of trapped particles
and permits studies of experimental effects. Observable
signals arise from sidereal variations and comparisons

LORENTZ-VIOLATING SPINOR ELECTRODYNAMICS AND … PHYSICAL REVIEW D 94, 056008 (2016)

056008-11



of particle and antiparticle properties. We apply the
results to published data from Penning traps to obtain
first constraints on several SME coefficients, and we
investigate the potential signals in some forthcoming
experiments.

A. Theory

For precision experiments on particles in Penning
traps, the transitions of primary interest involve the
energy levels created by the constant magnetic field of
the trap. It is therefore appropriate to base the theo-
retical analysis on the idealized scenario of a relativ-
istic charged quantum particle moving in a uniform
magnetic field, for which the unperturbed eigenenergies
are the relativistic Landau levels. The signals of
experimental interest are energy-level shifts rather than
transition probabilities. The dominant effects from
Lorentz and CPT violation can thus be treated as
perturbative energy-level shifts, to be added to the
independent perturbations generated by radiative cor-
rections in conventional QED such as the splitting
induced by the anomalous magnetic moment of the
trapped particle.
The unperturbed eigenenergies and eigenfunctions in

the absence of Lorentz violation or radiative corrections
can be found by solving the minimally coupled Dirac
equation for a spin-1=2 fermion of mass m and charge
q≡ σjqj of fixed sign σ in a constant magnetic field.
For definiteness, we choose the apparatus frame such
that the magnetic field B ¼ Bx̂3 lies along the positive
x3 axis, and we fix the gauge so that the electromag-
netic potential is Aμ ¼ ð0; x2B; 0; 0Þ ¼ ð0;−x2B; 0; 0Þ.
The spin-up and spin-down eigenstates form the two
stacks of relativistic Landau levels, which are degen-
erate except for the ground state. We denote the level
number as n ¼ 0; 1; 2; 3;… and label the fermion spin
relative to the magnetic field by s ¼ þ1 and s ¼ −1 for
up and down, respectively. The stacks of levels are
similar for the antifermion, but with spin labels
reversed.
At the nth level, the stationary eigenstates χn;s for

the positive-energy fermion are associated with
eigenenergies

En;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3 þ ð2nþ 1 − σsÞjqBj
q

: ð47Þ

The energy eigenvalues for the corresponding antifer-
mion eigenstates χcn;s take the same form, but with σ
being the opposite sign. For example, this equation
encodes the information that the ground state for
electrons or antiprotons is E0;−1 with spin down, while
that for positrons or protons is E0;þ1 with spin up.

The four-component eigenspinors χn;s are given by

χn;þ1 ¼ Nn;þ1

0
BBB@

ðmþ En;þ1Þun
0

p3un

−
ffiffiffiffiffiffiffiffiffijqBjp

unþ1

1
CCCA;

χn;−1 ¼ Nn;−1

0
BBB@

0

ðmþ En;−1Þun
−2n

ffiffiffiffiffiffiffiffiffijqBjp
un−1

−p3un

1
CCCA; ð48Þ

where the functions unðζÞ are defined as

unðζÞ ¼ exp ðip1x1 þ ip3x3Þ exp ð−ζ2=2ÞHnðζÞ; ð49Þ

in terms of the Hermite polynomials HnðζÞ, with

ζ ¼
ffiffiffiffiffiffiffiffiffi
jqBj

p �
x2 þ p1

σjqBj
�
: ð50Þ

The normalization factors Nn;s are

Nn;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijqBjp
ffiffiffi
π

p
2nþ1n!En;sðmþ En;sÞL2

s
; ð51Þ

where a cutoff L has been adopted along the x1 and x3

directions. The corresponding antifermion eigenstates χcn;s
are found to be

χcn;þ1 ¼ Nn;þ1

0
BBB@

ðmþ En;þ1Þun
0

p3un

2n
ffiffiffiffiffiffiffiffiffijqBjp

un−1

1
CCCA;

χcn;−1 ¼ Nn;−1

0
BBB@

0

ðmþ En;−1ÞunffiffiffiffiffiffiffiffiffijqBjp
unþ1

−p3un

1
CCCA; ð52Þ

where the various quantities are defined as before but
involve the opposite value of σ. These positive-energy
antifermion eigenstates can be obtained from the negative-
energy fermion solutions by charge conjugation in the
usual way.

1. Perturbative energy shift

The unperturbed eigenstates (48) can be used to calculate
the perturbative shifts of the particle eigenenergies once the
perturbation Hamiltonian δH is known. However, a direct
construction of δH is challenging due to the higher powers
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of momenta appearing in the Lorentz-violating operator Q̂.
Following Ref. [36], we can instead adopt a procedure that
yields an approximation to δH valid at leading order in
Lorentz violation.
The exact Hamiltonian H can be defined from the

modified Dirac equation via

ðp0 −HÞψ ¼ γ0ðp · γ −mþ Q̂Þψ ¼ 0; ð53Þ

where p0 is the exact energy. This gives

H ¼ γ0ðp · γ þm − Q̂Þ≡H0 þ δH; ð54Þ

where δH ¼ −γ0Q̂ is the exact perturbation Hamiltonian.
This form cannot be used directly in a perturbative
calculation because δH depends on the eigenenergies of
H and therefore requires prior knowledge of the energy
shifts. However, the energy shifts are perturbative, so their
contributions to δH lead to corrections at second or higher
order in coefficients for Lorentz violation. This means that
leading-order results can be derived by evaluating δH using
the unperturbed eigenenergies,

δH ≈ −γ0Q̂jp0→En;s
: ð55Þ

For a trapped fermion, the dominant perturbative energy
shifts due to Lorentz and CPT violation are therefore given
by the matrix elements

δEn;s ¼ hχn;sjδHjχn;si: ð56Þ

The corresponding perturbation Hamiltonian δHc for
antiparticles is obtained from δH by reversing the sign of
the charge q and the spin orientation s and changing the
sign of all coefficients for Lorentz violation that control
CPT-odd operators. These coefficients are identified in
Table I. The shifts in the antiparticle energy levels can then
be obtained using the unperturbed eigenstates (52),

δEc
n;s ¼ hχcn;sjδHcjχcn;si: ð57Þ

To obtain explicit results, we can take advantage of the
constancy of the magnetic field and adopt the approach
presented in Sec. II B 3. It therefore suffices to limit
attention to the operators appearing in Lð3Þ, Lð4Þ, Lð5Þ

D ,

and Lð6Þ
D . After calculation with these terms, we obtain the

corresponding perturbative energy shifts. The results are
somewhat lengthy, so here we report them only for d ¼ 3,
4, and 5 and relegate them to the Appendix. They hold at
leading order in coefficients for Lorentz violation but are
exact in other quantities. To obtain the additional contri-

butions from operators in Lð5Þ
F and Lð6Þ

F , it suffices to apply
the substitutions listed in Sec. II B 3, while keeping only
terms linear in coefficients for Lorentz violation. The

corresponding energy-level shifts for a trapped antiparticle
can be obtained from those for the particle by reversing the
spin s and changing the signs σ of the charge and of all
coefficients controlling CPT-odd operators.
The scales of all the energy shifts are set by the

coefficients, which are therefore the appropriate targets
for experimental measurements. However, some contribu-
tions are suppressed. Among these are corrections propor-
tional to any nonzero power of jqBj, all of which arise from
operators involving covariant derivatives. Even the com-
paratively large magnetic fields of B≃ 5 T often found in
Penning-trap experiments produce only effects suppressed
by jeBj=m2

e ≃ 10−9 for electrons or positrons and by
jeBj=m2

p ≃ 10−16 for protons or antiprotons. This means
that the results presented in the Appendix could be used
together with experimental data to obtain constraints on
many coefficients associated with a factor of jqBj, albeit
yielding weaker sensitivities. However, since these coef-
ficients are associated with covariant-derivative couplings,
they are also accessible in unsuppressed experimental
studies of the behavior of free particles. We therefore
disregard effects proportional to jqBj in what follows. In
contrast, terms proportional to B without a factor of q,

which arise from operators in Lð5Þ
F and Lð6Þ

F , represent
Lorentz-violating couplings that are independent of free-
particle motion and hence can only be detected in the
presence of an electromagnetic field. Comparatively few
investigations of these terms have been performed to date.
We therefore include these effects in this work, placing first

constraints on some of the coefficients appearing in Lð5Þ
F

and Lð6Þ
F .

A Penning trap includes not only the radially confining
magnetic field of uniform magnitude B but also an axially
confining electric field of varying magnitude E. The
Landau momentum p3 appearing in the expressions in
the Appendix therefore physically represents an effective
momentum for the axial motion. In the presence of the
electric field, terms involving powers of p3 become
expectation values of the physical axial momentum. For
a trapped particle, the odd powers must vanish, but the even
powers can be expected to contribute. When the axial
quantum number is low, neglecting energy shifts from the
even powers is a reasonable approximation because the
ratio of axial to cyclotron frequencies is typically much less
than 1. Some cooling procedures may equipartition the
axial and cyclotron energies and thus lead to large axial
quantum numbers, which could produce Lorentz-violating
perturbative shifts proportional to jqEj comparable to those
proportional to jqBj. For coefficients associated with
covariant-derivative couplings, neglecting both effects is
therefore consistent. For the F-type coefficients involving
E, the effects are interesting in principle because they
cannot be studied in the absence of the electric field.
However, they are more challenging to analyze because E
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varies with position, and moreover the sensitivity to these
coefficients is typically weaker by the ratio jE=Bj. For
example, for a typical configuration with 100 V applied
over about 5 mm in a 5 T magnetic field, the ratio is about
10−5 in natural units. We therefore choose to disregard
effects involving these coefficients in what follows.
With the above choices, the perturbative energy shift

δEn;s for a fermion of species w, charge sign σ, and spin
sign s in a magnetic field of magnitude B oriented along x̂3
is found to have the form

δEw
n;s ¼ ~a0w − σs ~b3w − ~m3

F;wBþ σs ~b33F;wB ð58Þ

in the noninertial laboratory frame, where the tilde quan-
tities are convenient combinations of the Cartesian coef-
ficients, defined by

~a0w ¼ a0w −mwc00w −mwe0w þm2
wm

ð5Þ00
w þm2

wa
ð5Þ000
w

−m3
wc

ð6Þ0000
w −m3

we
ð6Þ000
w ;

~b3w ¼ b3w þH12
w −mwd30w −mwg120w

þm2
wb

ð5Þ300
w þm2

wH
ð5Þ1200
w

−m3
wd

ð6Þ3000
w −m3

wg
ð6Þ12000
w ;

~m3
F;w ¼ mð5Þ12

F;w þ að5Þ012F;w −mwc
ð6Þ0012
F;w −mwe

ð6Þ012
F;w ;

~b33F;w ¼ bð5Þ312F;w þHð5Þ1212
F;w −mwd

ð6Þ3012
F;w −mwg

ð6Þ12012
F;w :

ð59Þ

The fermion-flavor dependence of the coefficients is
reflected in the subscript w, which can take the values e,
p, and in principle others as well. The indices 0, 3, and 33
on these tilde quantities correctly reflect their properties
under spatial rotations, as the index pair 12 is antisym-
metric wherever it appears on the right-hand side and hence
transforms like a single 3 index. The dependence on only
the x̂3 direction is due to the cylindrical symmetry of the
Penning trap.
We remark in passing that the first four terms of the

quantity ~b3w form a widely used coefficient in studies of the
minimal SME, also denoted ~b3w [4], which here is extended
to include d ¼ 5 and 6 effects. In fact, judicious use of
Eqs. (26)–(28) of Ref. [19] permits a further generalization
of this coefficient to include effects arising at arbitrary d,
giving

~b3w ¼
X
d

md−3
w ðbðdÞ30d−3w þHðdÞ30d−3

w

− dðdÞ30
d−3

w − gðdÞ120
d−3

w Þ; ð60Þ

where the sum is over odd values of d for the b- andH-type
coefficients and over even values of d for the d- and g-type
coefficients, and where the index 0d−3 denotes d − 3

timelike indices. A similar result can be obtained for ~a0w.
Obtaining the analogous expressions for the F-type coef-
ficients requires the Lagrange density for F-type couplings
at arbitrary d, which remains unexplored to date.
The perturbative energy shift (58) is the key to extracting

dominant signals for Lorentz and CPT violation in
Penning-trap experiments. It reveals that only four quan-
tities in the noninertial laboratory frame, the tilde coef-
ficients ~a0w, ~b3w, ~m3

F;w, and ~b33F;w, govern all the dominant
Lorentz-violating energy shifts for a given fermion in an
idealized Penning trap. However, the isotropic coefficient
~a0w provides the same instantaneous shift for all energy
levels, which cancels in all frequencies and is therefore
unobservable. Moreover, the coefficient ~m3

F;w also provides
an identical instantaneous shift to all energy levels, despite
the shift being dependent on the magnetic field and
ultimately also dependent on sidereal time due to the
coefficient anisotropy. In contrast, the other two coeffi-
cients ~b3w and ~b33F;w can in principle be detected in suitable
experiments. They contribute with opposite signs for spin
up and spin down and therefore shift the two Landau-level
stacks relative to each other, which is a measurable effect.
This shift preserves the level spacing within each stack
because the perturbation (58) is independent of the level
number n. Notice that the magnitude jqj of the fermion
charge plays no role here.
The expression for the perturbative energy shift δEw̄

n;s for
the corresponding antifermion is obtained by reversing the
orientation of the spin s and the signs of the coefficients
controlling CPT-odd operators in the energy shift (58),

δEw̄
n;s ¼ δEn;−sjða;b;e;gÞ→ð−a;−b;−e;−gÞ

≡ − ~a�0w þ σs ~b�3w − ~m�3
F;wB − σs ~b�33F;wB; ð61Þ

where the set of four starred tilde coefficients is defined by

~a�0w ¼ a0w þmwc00w −mwe0w −m2
wm

ð5Þ00
w þm2

wa
ð5Þ000
w

þm3
wc

ð6Þ0000
w −m3

we
ð6Þ000
w ;

~b�3w ¼ b3w −H12
w þmwd30w −mwg120w

þm2
wb

ð5Þ300
w −m2

wH
ð5Þ1200
w

þm3
wd

ð6Þ3000
w −m3

wg
ð6Þ12000
w ;

~m�3
F;w ¼ mð5Þ12

F;w − að5Þ012F;w −mwc
ð6Þ0012
F;w þmwe

ð6Þ012
F;w ;

~b�33F;w ¼ bð5Þ312F;w −Hð5Þ1212
F;w þmwd

ð6Þ3012
F;w −mwg

ð6Þ12012
F;w :

ð62Þ

In deriving the result (61), the sign σ of the fermion charge
is understood to change, the orientation of the magnetic
field is assumed constant, and the direction s of the spin is
still taken relative to the magnetic field. In parallel with the
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fermion case, only the combinations ~b�3w and ~b�33F;w are
observable.

2. Cyclotron and anomaly frequencies

In Penning-trap experiments, the primary observables are
frequencies. Two key frequencies are the cyclotron fre-
quency νc ¼ ωc=2π and the Larmor spin-precession fre-
quency νL ¼ νa þ νc, where νa ¼ ωa=2π is the anomaly
frequency [48]. In the presence of Lorentz and CPT
violation, these frequencies can become shifted. For experi-
ments with a fixed magnetic field and trapped fermions or
antifermions of a given flavor w, the dominant shifts depend
on only the four combinations ~b3w, ~b

33
F;w, ~b

�3
w , and ~b�33F;w of

Cartesian coefficients in the noninertial laboratory frame. In
this subsection, we use the results (58) and (61) to determine
these shifts for the cyclotron and anomaly frequencies of
trapped electrons, positrons, protons, and antiprotons. We
show that the shifts are governed by a total of 36 independent
inertial-frame observables in Penning-trap experiments,
formed as combinations of 432 independent components
of Cartesian coefficients in the Sun-centered frame.
The cyclotron frequency ωc is in natural units the energy

difference between the ground-state n ¼ 0 level and the
n ¼ 1 level in the same Landau stack, which for the
particles of interest here is the stack with s ¼ σ. Since
the perturbations (58) and (61) are independent of n and
therefore constant for fixed s and σ, no change in the
cyclotron frequency appears at leading order,

δωw
c ¼ δEw

1;σ − δEw
0;σ ≈ 0;

δωw̄
c ¼ δEw̄

1;σ − δEw̄
0;σ ≈ 0; ð63Þ

for either a fermion w ¼ e−, p or for an antifermion
w̄ ¼ eþ, p̄. Note that the exact expressions for the energy
shifts in the Appendix reveal the existence of subleading
effects suppressed by jqBj that do vary with n and therefore
can produce subleading shifts in the cyclotron frequency,
but these can be neglected here in accordance with the
discussion in the previous subsection.
The dominant Lorentz-violating effects thus appear as

shifts in the anomaly frequency ωa. In natural units and for
the particles relevant here, this is the energy difference
between the n ¼ 1 level in the Landau stack with s ¼ σ and
the n ¼ 0 level in the stack with s ¼ −σ. Using the
perturbative corrections (58) and (61) reveals that the
anomaly frequencies for either a fermion w ¼ e−, p or
for an antifermion w̄ ¼ eþ, p̄ are shifted according to

δωw
a ¼ δEw

0;−σ − δEw
1;σ ¼ 2~b3w − 2~b33F;wB;

δωw̄
a ¼ δEw̄

0;−σ − δEw̄
1;σ ¼ −2~b�3w þ 2~b�33F;wB: ð64Þ

Note that for each flavor all four tilde coefficients in the
laboratory frame appear in these expressions. Note also that

the antifermion result can be obtained from the fermion one
by changing the signs of all the basic coefficients associated
with CPT-odd operators, as might be expected.
The above formulas for the shifts in the anomaly

frequencies involve coefficients controlling a mixture of
CPT-even and CPT-odd effects. However, comparisons
between particles and antiparticles can in principle permit
the independent extraction of the CPT-odd contributions.
For simplicity, suppose the magnetic fields in the two
measurements have the same magnitude and orientation.
Given the shifts in the anomaly frequencies δωw

a for a
fermion and δωw̄

a for its antifermion, we can take the
difference to obtain

Δωw
a ≡ 1

2
ðδωw

a − δωw̄
a Þ

¼ ~b3w − ~b33F;wBþ ~b�3w − ~b�33F;wB

¼ 2b3w − 2mwg120w þ 2m2
wb

ð5Þ300
w − 2m3

wg
ð6Þ12000
w

− 2bð5Þ312F;w Bþ 2mwg
ð6Þ12012
F;w B

¼ 2Δ ~b3w þ 2Δ ~b33F;w; ð65Þ

where in the last expression we have introduced the
convenient definitions

Δ ~b3w ≡ 1

2
ð ~b3w − ~b�3w Þ

¼ b3w −mwg120w þm2
wb

ð5Þ300
w −m3

wg
ð6Þ12000
w ;

Δ ~b33F;w ≡ 1

2
ð ~b33F;w − ~b�33F;wÞ

¼ −bð5Þ312F;w þmwg
ð6Þ12012
F;w : ð66Þ

The result (65) shows explicitly that only coefficients for
CPT violation appear in Δωw

a . In fact, all of the CPT-odd
effects are encoded in the differenceΔωw

a , as the orthogonal
combination

Σωw
a ≡ 1

2
ðδωw

a þ δωw̄
a Þ

¼ ~b3w − ~b33F;wB − ~b�3w þ ~b�33F;wB

¼ 2H12
w − 2mwd30w þ 2m2

wH
ð5Þ1200
w − 2m3

wd
ð6Þ3000
w

þ 2Hð5Þ1212
F;w B − 2mwd

ð6Þ3012
F;w B ð67Þ

contains only coefficients for CPT-even Lorentz violation.
We remark in passing that each term contributing to the
CPT violation in the result (65) is also CT violating, as
predicted by the discussion in Sec. II C of Ref. [11].
To express the shifts (64) in the anomaly frequencies and

the difference (65) in terms of constant coefficients in the
Sun-centered frame requires applying the methods
described in Sec. II C. This thereby reveals the sidereal-
time and geometric dependences of the laboratory-frame
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tilde coefficients. As a simple example, consider a scenario
having the laboratory located at colatitude χ with the
magnetic field pointing to the local zenith so that
x̂3 ¼ ẑ, and focus on the single-index laboratory-frame
coefficient ~b3w. In this special case, application of the
rotation matrices given in Sec. II C and the transformation
(46) yields the result

~b3w ¼ ~bZw cos χ þ ð ~bXw cosω⊕T⊕ þ ~bYw sinω⊕T⊕Þ sin χ;
ð68Þ

expressing the noninertial-frame quantity ~b3w in terms of the
three independent quantities ~bJw, J ¼ X, Y, Z, in the
canonical inertial frame. More generally, when the mag-
netic field points along a generic direction in the laboratory
frame, trigonometric functions of the extra Euler angles α,
β, γ in Eq. (45) appear as well.
In an analogous fashion, the laboratory-frame tilde

coefficient ~b33F;w is associated with the six independent

combinations ~bðJKÞF;w in the Sun-centered frame. These
produce up to second harmonics in the sidereal frequency,

due to the nature of ~bðJKÞF;w as an observer 2-tensor. For
example, in the above simple scenario at colatitude χ with
the magnetic field pointing to the local zenith, we find

~b33F;w ¼ ~bZZF;w þ 1

2
ð ~bXXF;w þ ~bYYF;w − 2~bZZF;wÞsin2χ

þ ð ~bðXZÞF;w cosω⊕T⊕ þ ~bðYZÞF;w sinω⊕T⊕Þ sin 2χ

þ
�
1

2
ð ~bXXF;w − ~bYYF;wÞ cos 2ω⊕T⊕

þ ~bðXYÞF;w sin 2ω⊕T⊕

�
sin2χ: ð69Þ

Taking into account the relevant two fermion flavors w and
including also experiments with antiparticles, which can
access the nine additional independent combinations ~b�Jw
and ~b�JKF;w , we can conclude that there are 36 independent
tilde observables in the Sun-centered frame. Each of these
observables is a linear combination of Cartesian coeffi-
cients, of which 12 independent components appear in the
perturbative corrections (58) and (61). Various combina-
tions such as the 18 independent differences

Δ ~bJw ≡ 1

2
ð ~bJw − ~b�Jw Þ;

Δ ~bðJKÞF;w ≡ 1

2
ð ~bðJKÞF;w − ~b�ðJKÞF;w Þ ð70Þ

may also appear in performing experimental analyses.
We thus see that the 36 independent observables in
Penning-trap experiments are formed as linear combina-
tions of 432 independent components of Cartesian

coefficients in the Sun-centered frame. Each observable
corresponds to a physically distinct and dominant
Lorentz-violating effect, so Penning traps offer excellent
coverage of the available coefficient space, and moreover
coverage at high sensitivity.
Any single Penning-trap experiment with fixed magnetic

field and a given particle can in principle access four
harmonics and a constant term, although the latter is time
independent and hence challenging to measure. This means
that at most 5 of the 36 independent pieces of information
are accessible in any given experiment. A joint analysis of
data from multiple experiments is therefore required to
explore fully the available coefficient space. Complete
coverage can be obtained only if experiments are per-
formed with all relevant particles and antiparticles and if
different experimental geometries are adopted. The exper-
imental conditions can be changed by changing the
orientation or magnitude of the magnetic field or by
performing the experiment at a different colatitude.

B. Experiments

In this subsection, we first discuss some concepts
essential to studies of Lorentz and CPT violation in
Penning-trap experiments. These concepts and the results
obtained above are then used to extract estimated con-
straints on coefficients for Lorentz and CPT violation and
to predict potential future signals in some existing and
forthcoming experiments.

1. Concepts

Studies of the anomalous magnetic moment and the g
factor of a particle in a Penning trap can be idealized as
measurements of the ratio of the anomaly frequency νa to
the cyclotron frequency νc, linked to g in a Lorentz- and
CPT-invariant scenario by

νa
νc

≡ ωa

ωc
¼ g

2
− 1 ðLorentz=CPT invarianceÞ: ð71Þ

In this conventional Lorentz- and CPT-invariant case, g is a
numerical scalar quantity that is an intrinsic property of the
particle. The predicted value of g can in principle be
calculated in a suitable theoretical framework such as
Lorentz-invariant quantum field theory, and it is related
to fundamental quantities such as the fine structure con-
stant. Radiative corrections modify the theoretical tree-level
value of g [49], and real measurements must take into
account various experimental effects involving the axial
frequency, the relativistic shift, the cavity shift, and more
[50], but g remains an intrinsic numerical property of the
particle.
In the presence of Lorentz and CPT violation, this

scenario is drastically changed because the energies and
hence the anomaly frequency ωa are directly shifted, as is
evident from Eq. (58). The portion of the shift associated
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with the coefficient ~b3w is independent of the magnitude of
B but depends on geometric factors such as the local
sidereal time T⊕, the colatitude χ of the experiment, and the
direction x̂3 of the magnetic field, while the part involving
~b33F;w depends both on B and on the geometric factors. In
short, the anomaly frequency can be viewed as a function of
these variables,

ωa ¼ ωaðT⊕; χ; x̂3; BÞ ðLorentz=CPT violationÞ: ð72Þ

An immediate consequence is that the experimental ratio
ωa=ωc is no longer an intrinsic property of the particle and
instead becomes an experiment-dependent quantity.
Reported values of g obtained using the result (71) there-
fore cannot be directly compared between experiments in a
meaningful way because they depend on the local exper-
imental conditions: the local sidereal time, the colatitude of
the laboratory, and the direction and magnitude of the
magnetic field. Instead, the intrinsic quantities that provide
experiment-independent measures of Lorentz and CPT
violation are SME coefficients expressed in the canonical
Sun-centered frame. In the present context of Penning-trap
experiments with electrons, positrons, protons, and anti-
protons, these intrinsic quantities can be taken as the 36

tilde coefficients ~bJe, ~b
�J
e , ~bðJKÞF;e , ~b�ðJKÞF;e and ~bJp, ~b

�J
p , ~bðJKÞF;p ,

~b�ðJKÞF;p in the Sun-centered frame. They can be extracted
from the ratios ωa=ωc obtained for the different species
under various laboratory conditions, by matching to the
predicted dependences on the geometrical factors relevant
for each given experiment.
In the conventional context with Lorentz and CPT

invariance, one experimental advantage of extracting the
ratio (71) is that both ωa and ωc are proportional to B, so B
cancels in the determination of g. For example, if the
measurements can be performed quasisimultaneously, then
accurate knowledge of B is unnecessary to achieve a high-
precision measurement of g. However, in the presence of
Lorentz and CPT violation, the ratio (71) is no longer
independent of B because the coefficients ~bJw, ~b

�J
w appear

without an accompanying factor of B. A precision meas-
urement of these coefficients therefore requires continuous
calibration of B as implemented, for instance, in a sidereal-
variation analysis performed at the University of
Washington [13]. However, for measurements restricting

attention to the F-type coefficients ~bðJKÞF;w and ~b�ðJKÞF;w , which
always come with a factor of B, the cancellation remains in
force, and accurate knowledge of B is again unnecessary.
Implications related to the above conceptual points also

arise for comparative tests involving particles and anti-
particles. Suppose one experiment measures the ratio
ωw
a=ωw

c for a particle of species w, while a second experi-
ment measures the ratio ωw̄

a =ωw̄
c for the corresponding

antiparticle. We are allowing here for the possibility that the
cyclotron frequencies ωw

c , ωw̄
c of the two measurements

may differ due to different magnitudes of the experimental
magnetic fields. In a Lorentz- and CPT-invariant scenario,
the difference between these two measurements is

ωw
a

ωw
c
−
ωw̄
a

ωw̄
c
¼ 1

2
ðg − ḡÞ ðCPT invarianceÞ ð73Þ

according to Eq. (71). The CPT theorem guarantees that
this quantity is identically zero.
However, in the presence of CPT violation, the picture

again changes drastically due to the qualitatively different
nature of the anomaly frequency (72). Using Eq. (64), the
difference between the two measurements is found to be

ωw
a

ωw
c
−
ωw̄
a

ωw̄
c
¼ δωw

a

ωw
c
−
δωw̄

a

ωw̄
c

ðCPT violationÞ; ð74Þ

since the CPT theorem guarantees the cancellation of all
Lorentz- and CPT-invariant contributions. We see from the
result (72) that the experimental difference ðωw

a=ωw
c Þ −

ðωw̄
a =ωw̄

c Þ depends on the local experimental conditions: the
local sidereal time, the colatitudes of the laboratories where
the two experiments are performed, and the directions and
magnitudes of the magnetic fields.
More insight can be gained by algebraically expressing

the difference (74) in terms of sums and differences of the
anomaly and cyclotron frequencies, defined as

Δωw
a ¼ 1

2
ðδωw

a − δωw̄
a Þ; Σωw

a ¼ 1

2
ðδωw

a þ δωw̄
a Þ;

Δωw
c ¼ 1

2
ðωw

c − ωw̄
c Þ; Σωw

c ¼ 1

2
ðωw

c þ ωw̄
c Þ: ð75Þ

This gives

ωw
a

ωw
c
−
ωw̄
a

ωw̄
c
¼ 2

ωw
cω

w̄
c
ðΣωw

cΔωw
a − Δωw

cΣωw
a Þ: ð76Þ

We have seen in the previous section that no leading-order
changes in the cyclotron frequencies occur in the presence
of Lorentz and CPT violation, so any difference Δωw

c is
purely due to experimental magnetic fields of different
magnitude. For magnetic fields of identical orientation, the
theoretical predictions (65) for Δωw

a and (67) for Σωw
a show

that the first term of the result (76) involves CPT violation,
while the second involvesCPT-invariant Lorentz violation.
These points reveal that the experimental difference
ðωw

a=ωw
c Þ − ðωw̄

a =ωw̄
c Þ is a clean measure of CPT violation

only if both measurements use magnetic fields of identical
strength and orientation.
In the event that indeed both ratio measurements are

made using the same B, which implies ωw
c ¼ ωw̄

c , then the
explicit form of the difference (76) reduces to
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ωw
a

ωw
c
−
ωw̄
a

ωw̄
c
¼ 2Δωw

a

ωw
c

ðCPT violation;ωw̄
c ¼ ωw

c Þ

¼ 4

ωw
c
ðΔ ~b3w þ Δ ~b33F;wBÞ ð77Þ

by using the result (65). This is indeed a pure CPT test, as
only coefficients for CPT violation enter the definitions
(66) for Δ ~b3w and Δ ~b33F;w. Conversion of this expression
from the noninertial laboratory frame to the canonical
inertial Sun-centered frame using the transformation (46)
displays the dependence on the 18 intrinsic experiment-

independent observables Δ ~bJw, Δ ~bðJKÞF;w for CPT violation
and exposes the explicit dependence on the local sidereal
time T⊕, the colatitude χ of the laboratory, and the direction
ẑ of the magnetic field.

2. Sensitivities and signals

The above discussion shows that the experiment-inde-
pendent observables relevant for studies of the anomaly
frequency of a trapped electron, positron, proton, or

antiproton are the 36 quantities ~bJe, ~b
�J
e , ~bðJKÞF;e , ~b�ðJKÞF;e and

~bJp, ~b
�J
p , ~bðJKÞF;p , ~b�ðJKÞF;p . In the special case of comparative

tests between particles and antiparticles performed with
magnetic fields of the same magnitude B, these observables

reduce to the 18 differences Δ ~bJe, Δ ~bðJKÞF;e and Δ ~bJp, Δ ~bðJKÞF;p .
As a guide to existing and prospective sensitivities to
Lorentz and CPT violation that could be obtained, we
consider next a subset of sensitive Penning-trap experi-
ments measuring the anomaly frequency for these species.
The experiments chosen for the discussion here are listed

in Table III. For each experiment, we show the species
involved, the colatitude χ of the laboratory, the direction x̂3
of the magnetic field, and its magnitude B. For complete-
ness and reference, we also provide the longitude λ of the
laboratory and the offset time T0 relating the local sidereal
time T⊕ to the canonical time T in the Sun-centered frame
according to Eq. (43).
Consider first experiments sensitive to the electron

sector. A 1999 experiment at the University of
Washington [12] compared the anomaly frequencies of
electrons and positrons with a precision of about 2 ppt. The
data were analyzed for an effect independent of sidereal

time, so the reported results can be viewed as time-averaged
measurements of the predicted difference (74). The cyclo-
tron frequencies used for the two species were almost
identical, so the form (77) can be adopted to obtain

sensitivities to the coefficients Δ ~bJe, Δ ~bðJKÞF;e . Using the
geometric factors in Table III and the rotation transforma-
tion (46), the expression (77) can be converted to the Sun-
centered frame. The relevant combinations of tilde coef-
ficients are shown in the first two lines of Table IV. We
conservatively take the constraint b≲ 50 rad=s reported in
Ref. [12] to represent the limit jbZe j≲ 5 × 10−24 GeV in the
present notation. Averaging the result over time and
substituting for the values in Ref. [12] then gives the bound

jΔ ~bZe þ ð4 × 10−16 GeV2ÞðΔ ~bXXF;e þ Δ ~bYYF;eÞ
þð8 × 10−16 GeV2ÞΔ ~bZZF;ej ≲ 7 × 10−24 GeV: ð78Þ

The result (78) can be viewed as generalizing the published
result to the tilde coefficients Δ ~bZe and Δ ~bJJF;e or, equiv-
alently, as incorporating also the basic coefficients gXYTe ,

bð5ÞZTTe , gð6ÞXYTTTe , bð5ÞXYZF;e , bð5ÞYZXF;e , bð5ÞZXYF;e , gð6ÞXYTXYF;e ,

gð6ÞYZTYZF;e , and gð6ÞZXTZXF;e .
Another 1999 analysis at the University of Washington

[13] reported results from an analysis of the sidereal
variation of the anomaly frequency of a trapped electron
measured over a two-month period, with the magnetic field
continuously calibrated. Fitting the data to a sinusoid at the
sidereal frequencyω⊕ and constraining its amplitude yielded
a 2σ limit of jδωe

aj ≤ 8 × 10−25 GeV in the present notation.

The combinations of tilde coefficients ~bJe and ~bðJKÞF;e relevant
for this experiment are shown in Table IV. These expressions
reveal that the experiment places the constraint

ð½0.7~bXe þ ð10−15 GeV2Þ ~bðXZÞF;e �2

þ ½0.7~bYe þ ð10−15 GeV2Þ ~bðYZÞF;e �2Þ1=2
≲ 4 × 10−25 GeV: ð79Þ

Comparing this result to the bound (78) obtained using
the 1999 comparison of electron and positron anomaly
frequencies shows that the sidereal analysis constrains
different spatial components of the tilde coefficients.

TABLE III. Geometrical quantities for some experiments.

Experiment Species χ x̂3 B λ T0

Washington [12] e−, eþ 42.5° upward 5.85 T −122.3° 12.54 h
Washington [13] e− 42.5° upward 5.85 T −122.3° 12.54 h
Harvard [25] e− 47.6° upward 5.36 T −71.1° 9.13 h
Harvard [29] eþ 47.6° upward ≃6 T −71.1° 9.13 h
ATRAP [27] p̄ 43.8° upward 5.2 T 6.1° 4.00 h
BASE [28] p 40.0° south 1.90 T 8.3° 3.85 h
BASE [31] p̄ 43.8° 60° west of north 1.95 T 6.1° 4.00 h
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Moreover, CPT-even effects are also contained in the result
(79) via H- and d-type basic coefficients.
A more recent Penning-trap experiment at Harvard

University [25] measured the g factor of the electron to
0.28 ppt. This impressive precision offers in principle
improved sensitivity to several components of the tilde
coefficients ~bJe, ~b

JK
F;e via the study of sidereal variations in

analogy to the 1999 work discussed above [13]. No such
analysis has been performed to date, but we present in
Table IV the relevant combinations of tilde coefficients for
the first and second harmonics required for this study and
specific to the geometric factors of the experiment.
A similar sidereal analysis for a trapped positron could

be performed using another experiment under development
at Harvard University [29]. This would offer not only the
first sensitivity to components of the tilde coefficients ~b�Je ,
~b�ðJKÞF;e but would also permit improved measurements of the

experiment-independent CPT-odd observables Δ ~bZe and
Δ ~bJJF;e by comparison with measurements for the electron.
Table IV contains the combinations of tilde coefficients for
the first and second harmonics for the planned positron
experiment. We also list the components of the CPT-odd
observables that could be constrained by comparing the
anomaly frequencies for the electron and positron at the
same magnetic field strength. Note that sidereal variations
of these difference coefficients are also of interest. The
corresponding expressions in the Sun-centered frame

follow from the definitions (66), so they appear in the
same linear combinations up to an overall sign for the
antiparticle coefficients.
Next, we consider experiments sensitive to the proton

sector. In an experiment located at CERN, the ATRAP
Collaboration has measured the magnetic moment of the
antiproton to 4.4 ppm [27]. In principle, an analysis of
sidereal variations using this experiment could yield
measurements of some components of the tilde coefficients
~b�Jp and ~b�ðJKÞF;p , which would represent the first sensitivity
achieved to these physical effects. The components acces-
sible to the geometry of this experiment via first and second
harmonics of the sidereal frequency are listed in the first
few lines of Table V.
A measurement of the magnetic moment of the proton at

the record sensitivity of 3.3 ppb has recently been per-
formed by the BASE Collaboration in an experiment
located in Mainz, Germany [28]. In this case, a search
for sidereal variations could in principle provide sensitivity
to certain components of the tilde coefficients ~bJp and ~bðJKÞF;p .
Table V shows the combinations of coefficients that would
be accessible to this experimental geometry. The BASE
Collaboration also plans to perform a version of this
experiment at CERN, which is at a different colatitude,
using a different orientation and strength of the bore of the
primary magnet and ultimately using a quantum logic
readout that will permit rapid measurements of the proton

TABLE IV. Analysis for the electron sector.

Experiment Lab. frame Sun-centered frame Harmonic

Washington [12] Δ ~b3e 0.7Δ ~bZe 1

Δ ~b33F;e 0.2ðΔ ~bXXF;e þ Δ ~bYYF;eÞ þ 0.5Δ ~bZZF;e 1
Washington [13] ~b3e 0.7~bXe cosω⊕T⊕

0.7~bYe sinω⊕T⊕
~b33F;e ~bðXZÞF;e

cosω⊕T⊕

~bðYZÞF;e
sinω⊕T⊕

Harvard [25] ~b3e 0.7~bXe cosω⊕T⊕

0.7~bYe sinω⊕T⊕
~b33F;e ~bðXZÞF;e

cosω⊕T⊕

~bðYZÞF;e
sinω⊕T⊕

0.3ð ~bXXF;e − ~bYYF;eÞ cos 2ω⊕T⊕

0.5~bðXYÞF;e
sin 2ω⊕T⊕

Harvard [29] ~b�3e −0.7~b�Xe cosω⊕T⊕

−0.7~b�Ye sinω⊕T⊕
~b�33F;e − ~b�ðXZÞF;e

cosω⊕T⊕

− ~b�ðYZÞF;e
sinω⊕T⊕

−0.3ð ~b�XXF;e − ~b�YYF;e Þ cos 2ω⊕T⊕

−0.5~b�ðXYÞF;e
sin 2ω⊕T⊕

Δ ~b3e 0.7Δ ~bZe 1

Δ ~b33F;e 0.3ðΔ ~bXXF;e þ Δ ~bYYF;eÞ þ 0.5Δ ~bZZF;e 1
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and antiproton anomaly frequencies [31]. This offers the
opportunity to measure many components of the tilde

coefficients ~bJp, ~b
ðJKÞ
F;p , ~b�Jp , and ~b�ðJKÞF;p via sidereal-variation

studies. The constant parts and the sidereal variations of the

differences Δ ~bJp and Δ ~bðJKÞ
F;p would also be measurable with

this setup. Using the geometrical factors listed in Table III
reveals that this future experiment can access the combina-
tions of difference components shown in Table V. Modulo an
overall sign for the antiproton case, the same linear combi-
nations of tilde coefficients appear in sidereal studies, as can
be deduced by inspection of the definitions (66).
Taken together, the published results [27,28] from the

ATRAP and BASE experiments can be combined to extract
estimated constraints on experiment-independent observ-
ables for Lorentz and CPT violation. The methodology to
derive these constraints is of potential interest for future
experiments as well, so we outline it here. Consider the
comparison (76), recalling that all anomaly frequencies are
functions of the form (72). Since both experiments took
data over an extended time period, we can plausibly
approximate the sidereal variations as averaging to zero,
leaving only the constant shifts. This means only the
dependence on the colatitude and on the direction and
strength of the magnetic fields needs to be considered. For
BASE, the colatitude is χ ≃ 40.0°, and the magnetic field
B≃ 1.9 T points to local south, corresponding to the x̂

direction in the standard laboratory frame discussed in
Sec. II C. For ATRAP, the colatitude is χ� ≃ 43.8°, and the
magnetic field B� ≃ 5.2 T points upward, along the ẑ
direction in the standard laboratory frame. The expressions
(64) for the frequency shifts can then be combined to yield

Δωp
a ≡ 1

2
ðδωp

a − δωp̄
aÞ

¼ ~bxp − ~bxxF;pBþ ~b�zp − ~b�zzF;pB�

¼ − ~bZp sin χ þ ~b�Zp cos χ�

−
1

2
ð ~bXXF;p þ ~bYYF;pÞB cos2 χ − ~bZZF;pB sin2 χ

−
1

2
ð ~b�XXF;p þ ~b�YYF;p ÞB� sin2 χ� − ~b�ZZF;p B� cos2 χ�;

Σωp
a ≡ 1

2
ðδωw

a þ δωw̄
a Þ

¼ ~bxp − ~bxxF;pB − ~b�zp þ ~b�zzF;pB�

¼ − ~bZp sin χ − ~b�Zp cos χ�

−
1

2
ð ~bXXF;p þ ~bYYF;pÞB cos2 χ − ~bZZF;pB sin2 χ

þ 1

2
ð ~b�XXF;p þ ~b�YYF;p ÞB� sin2 χ� þ ~b�ZZF;p B� cos2 χ�:

ð80Þ

TABLE V. Analysis for the proton sector.

Experiment Lab. frame Sun-centered frame Harmonic

ATRAP [27] ~b�3p −0.7~b�Xp cosω⊕T⊕

−0.7~b�Yp sinω⊕T⊕

~b�33F;p − ~b�ðXZÞF;p
cosω⊕T⊕

− ~b�ðYZÞF;p
sinω⊕T⊕

−0.2ð ~b�XXF;p − ~b�YYF;p Þ cos 2ω⊕T⊕

−0.5~b�XYF;p
sin 2ω⊕T⊕

BASE [28] ~b3p 0.8~bXp cosω⊕T⊕

0.8~bYp sinω⊕T⊕

~b33F;p − ~bðXZÞF;p
cosω⊕T⊕

− ~bðYZÞF;p
sinω⊕T⊕

0.3ð ~bXXF;p − ~bYYF;pÞ cos 2ω⊕T⊕

0.6~bXYF;p sin 2ω⊕T⊕

BASE [31] Δ ~b3p 0.3Δ ~bZp 1

−0.4Δ ~bXp − 0.9Δ ~bYp cosω⊕T⊕

0.9Δ ~bXp þ 0.4Δ ~bYp sinω⊕T⊕

Δ ~b33F;p 0.4ðΔ ~bXXF;p þ Δ ~bYYF;pÞ þ 0.1Δ ~bZZF;p 1

−0.2Δ ~bðXZÞF;p − 0.6Δ ~bðYZÞF;p
cosω⊕T⊕

0.6Δ ~bðXZÞF;p − 0.2Δ ~bðYZÞF;p
sinω⊕T⊕

−0.3ðΔ ~bXXF;p − Δ ~bYYF;pÞ þ 0.6Δ ~bðXYÞF;p
cos 2ω⊕T⊕

−0.3ðΔ ~bXXF;p − Δ ~bYYF;pÞ − 0.6Δ ~bðXYÞF;p
sin 2ω⊕T⊕
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These results can be entered on the right-hand side of the
comparison (76). Using the numerical values of the other
quantities reported by the ATRAP and BASE measure-
ments and keeping only one significant figure in light of the
approximations made, we obtain the 2-sigma limit

j ~bZp − 0.4~b�Zp þ ð2 × 10−16 GeV2Þð ~bXXF;p þ ~bYYF;pÞ
þ ð2 × 10−16 GeV2Þ ~bZZF;p
þ ð1 × 10−16 GeV2Þð ~b�XXF;p þ ~b�YYF;p Þ
þ ð3 × 10−16 GeV2Þ ~b�ZZF;p j≲ 2 × 10−21 GeV: ð81Þ

This is the desired experiment-independent measure of
Lorentz and CPT violation in the proton sector, which is
specific to the comparison of the BASE proton and ATRAP
antiproton results.
Each of the three constraints (78), (79), and (81) obtained

above involves several tilde coefficients. Some intuition for
the scope of these constraints can be obtained by assuming
each coefficient in turn to be the only nonzero one and
determining its bound. This procedure, which is common
practice across many subfields searching for Lorentz and
CPT violation [4], neglects any cancellation or interference
among different coefficients but does offer insight and a
reasonable measure of the sensitivity to individual coef-
ficients provided no signal has been observed. The result-
ing constraints on each tilde coefficient are displayed in
Table VI. All 16 of these bounds are new in detail because
they include effects from d ¼ 4, 5, and 6 that are analyzed
for the first time in the present work. As described above,
some of them reduce in an appropriate limit to results

already reported in a suitable minimal-SME limit. Note that
a large number of the 36 independent observables remain
unexplored in Penning-trap experiments to date.

IV. SUMMARY AND OUTLOOK

In this work, we explore the prospects for searching for
Lorentz- and CPT-violating effects using experiments with
Penning traps. We begin in Sec. II by presenting the
Lagrange density for Lorentz-violating spinor QED with
operators of mass dimensions up to 6. The minimal-SME
terms in this theory are given in Eqs. (3) and (4), while the
complete set of terms at d ¼ 5 and 6 is displayed in
Eqs. (6), (7), (10), (11), and (12). The basic properties of
the corresponding coefficients for Lorentz violation are
compiled in Table I.
Determining the observables in the theory requires

investigating the interplay between different operators
under field redefinitions. We perform a general fermion
field redefinition (19) and list the resulting transformations
in Table II. Among other results, this analysis demonstrates
that many terms in the Lagrange density that couple spinors
to the electromagnetic field strength can be absorbed into
other terms in the theory via suitable field redefinitions. A
result of practical utility in this work involves the case of a
constant electromagnetic field, for which the piece (12) of
the Lagrange density vanishes, while all the F-type
coupling terms in Eqs. (7) and (11) can be generated by
the replacements (40) and (42) in the Lagrange-density
terms (6) and (10).
Another issue in characterizing the observables for

Lorentz and CPT violation is the noninertial nature of
any laboratory on the surface of the Earth. In Sec. II C, we
discuss three relevant frames for experimental analysis: the
inertial Sun-centered frame, the standard noninertial labo-
ratory frame, and a noninertial apparatus frame. Allowing
for the rotation of the Earth, the transformations required to
achieve the inertial Sun-centered frame are given by
Eqs. (44) and (45). This analysis neglects the suppressed
boost effects arising from the revolution of the Earth about
the Sun, which would be an interesting subject for a
separate work.
Applications of the theory to experiments with Penning

traps are discussed in Sec. III. We use perturbation theory to
determine the effects of Lorentz and CPT violation on the
relativistic Landau levels of a particle in a uniform
magnetic field. The results obtained are at leading order
in Lorentz violation but exact in other quantities. They are
found to be lengthy and are presented in the Appendix. The
dominant Lorentz- and CPT-violating perturbative shifts of
the energy levels are given in Eq. (58), while the corre-
sponding results for antiparticles are presented in Eq. (61).
These expressions permit the derivation of the dominant
Lorentz- and CPT-violating shifts of the cyclotron and
anomaly frequencies of trapped particles and antiparticles.
At leading order, the cyclotron-frequency shifts (63) are

TABLE VI. Constraints on tilde coefficients.

Coefficient Constraint Ref.

j ~bXe j < 6 × 10−25 GeV [13]

j ~bYe j < 6 × 10−25 GeV [13]

j ~bZe j < 7 × 10−24 GeV [12]

j ~b�Ze j < 7 × 10−24 GeV [12]

j ~bXXF;e þ ~bYYF;ej < 2 × 10−8 GeV−1 [12]

j ~bZZF;ej < 8 × 10−9 GeV−1 [12]

j ~bðXZÞF;e j < 4 × 10−10 GeV−1 [13]

j ~bðYZÞF;e j < 4 × 10−10 GeV−1 [13]

j ~b�XXF;e þ ~b�YYF;e j < 2 × 10−8 GeV−1 [12]

j ~b�ZZF;e j < 8 × 10−9 GeV−1 [12]

j ~bZpj < 2 × 10−21 GeV [27, 28]

j ~b�Zp j < 6 × 10−21 GeV [27, 28]

j ~bXXF;p þ ~bYYF;pj < 1 × 10−5 GeV−1 [27, 28]

j ~bZZF;pj < 1 × 10−5 GeV−1 [27, 28]

j ~b�XXF;p þ ~b�YYF;p j < 2 × 10−5 GeV−1 [27, 28]

j ~b�ZZF;p j < 8 × 10−6 GeV−1 [27, 28]
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found to vanish. The leading-order shifts in anomaly
frequencies for particles and antiparticles of species w
are given explicitly by Eq. (64). We use the latter
expressions to show that the difference (65) between these
anomaly frequencies is a measure of pure CPT violation in
idealized comparative experiments with the same orienta-
tion and magnitude of the trapping magnetic field, while the
sum (67) involves only CPT-even effects.
Turning next to issues closer to experiment, we discuss

observable signals for trapped electrons, positrons, protons,
and antiprotons. Since the anomaly frequency (72) depends
on the magnitude of the magnetic field and on geometric
factors including the local sidereal time, the colatitude of
the experiment, and the local direction of the magnetic
field, it follows that the ratio of the anomaly to cyclotron
frequencies is no longer an intrinsic property of the particle
but becomes an experiment-dependent quantity. We prove
that the intrinsic observables providing experiment-
independent measures of Lorentz and CPT violation are

instead the 36 tilde coefficients ~bJe, ~b
�J
e , ~bðJKÞF;e , ~b�ðJKÞF;e and

~bJp, ~b
�J
p , ~bðJKÞF;p , ~b�ðJKÞF;p . Comparisons of results for particles

and antiparticles must also take this into account. One
consequence is that the difference (76) between the ratios of
the anomaly to cyclotron frequencies for a particle and an
antiparticle typically contains both CPT-odd and CPT-
even effects.
The above results make feasible the analysis of existing

and future experiments for sensitivity to experiment-
independent observables for Lorentz and CPT violation.
The theory predicts oscillations of all observables at
specific harmonics of the sidereal frequency, along with
time-independent signals that can be detected in compar-
ative experiments with particles and antiparticles. To
illustrate the methodology for the analysis, we consider
the sensitive experiments listed in Table III and examine
some of their implications. The key information permitting
the extraction of constraints on observables is derived and
tabulated for electrons and positrons in Table IV and for
protons and antiprotons in Table V. Existing experimental
measurements are used to extract new and improved
constraints on numerous tilde coefficients for Lorentz
and CPT violation, using the sidereal variation of observ-
ables and comparisons between particles and antiparticles.
In the electron sector, we obtain the bounds (78) and (79)
using results from experiments at the University of
Washington [12,13], while in the proton sector we combine
independent results from the ATRAP [27] and BASE [28]
experiments to obtain the bound (81). Table VI lists the
ensuing 16 constraints obtained when a single tilde
coefficient is taken to be nonzero at a time.
We close this work with a brief outlook on some open

and feasible projects that would further enhance the role of
Penning traps in studying the foundational Lorentz and
CPT symmetry of nature. Each of the following five
general topics represents an open challenge for theory

and experiment, the resolution of which will ultimately
require disentangling conceptual and calculational issues
and performing analyses to extract constraints from exper-
imental data:
(1) Boost effects.—A comparatively direct extension of

the present work would involve investigation of
suppressed effects neglected here. The largest of
these effects comes from the revolution of the Earth
about the Sun, which introduces harmonics of the
annual revolution frequency and corresponding side-
bands near the sidereal harmonics. The new observ-
ables come with a suppression factor of the Earth’s
boost β⊕ ≃ 10−4, but they include coefficient com-
binations that are unobservable without the boost.
Additional smaller effects associated with the boost
of the laboratory due to the rotation of the Earth,
which are suppressed by βL ≃ 10−6, are also of
potential interest. While boosting the system can
generate sensitivity to coefficients otherwise unob-
servable in Penning-trap experiments, the corre-
sponding shifts in the Landau levels remain
independent of the level number, so much of the
conceptual structure for the treatment of signals
given in the present work remains in force. The
techniques for handling the boosts have been de-
veloped in several prior contexts [33,34,45–47] and
could be transferred to Penning-trap analyses.

(2) Cyclotron-frequency shifts.—Qualitatively different
suppressed effects arise from subleading Lorentz-
and CPT-violating contributions to the energy shifts
that are proportional to jqBj. These contributions can
be extracted from the expressions for the energy
shifts for d ≤ 5 given in the Appendix. The sup-
pression factors are stronger than those for boosts,
being of order 10−9 for electrons or positrons and of
order 10−16 for protons or antiprotons. However,
many of the contributions produce energy shifts that
depend on the level number, so they can change the
relative spacing of the lowest-lying levels in a single
Landau stack and hence affect the cyclotron fre-
quency as well as the anomaly frequency. This
implies that signals for Lorentz and CPT violation
can appear not only in measurements of anomalous
magnetic moments but also in measurements of
charge-to-mass ratios. Signals of this type have been
studied theoretically in the minimal SME [11], and
they have led to constraints using experiments
comparing the cyclotron frequencies of antiprotons
and H− ions [14,15]. Revisiting the theoretical basis
for these works while including effects at d ¼ 5 and
6 can be expected to yield interesting new con-
straints and stimulate further experiments.

(3) Field effects.—Additional sensitivities to Lorentz
and CPT violation could be obtained by refining
the analysis of the electromagnetic fields in a
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realistic Penning trap. For example, the presence of
the electric field that restricts the axial motion of the
trapped particle produces several types of novel and
potentially interesting effects. If the experimental
procedure equipartitions the axial and cyclotron
energies, then effects from the axial motion will
be comparable to those proportional to jqBj men-
tioned above and so will permit suppressed sensi-
tivities to additional coefficients for Lorentz and
CPT violation associated with covariant-derivative
couplings of the trapped fermion. These kinds of
effects correspond to terms involving powers of p3

in the energy shifts given in the Appendix. The
electric field also introduces new sensitivities to the
F-type coefficients, which are associated with
electromagnetic couplings of the fermion that vanish
in the absence of the electric field. For a constant
electric field, these effects can be derived from the
energy shifts given in the Appendix by performing
the replacements (40) and (42). Moreover, the
spatially varying electric field in a realistic Penning
trap could offer sensitivity to the terms in the
Lagrange density (12) that otherwise are inacces-
sible. Control of the magnetic field also implies
interesting prospects for studying independent ob-
servables. For example, the dependence on B of the
anomaly frequency (72) shows that two experiments
differing only in the magnitudes of the magnetic
fields can yield sensitivities to coefficients for
Lorentz violation.

(4) Other species.—Trapping and studying the magnetic
moments of species other than electrons, positrons,
protons, and antiprotons could provide additional
sensitivities to coefficients for Lorentz and CPT
violation beyond those discussed here. For example,
experiments on any ion with magnetic moment
influenced by the neutrons in its nucleus could offer
sensitivities to coefficients in the neutron sector. A
theoretical treatment of this possibility along the
lines in the present work would make an interesting
project with the potential to influence experimental
discovery. The coefficients for Lorentz violation for
composite species are combinations of those in the
electron, proton, and neutron sectors, and determin-
ing the relationship is a crucial part of this type of
investigation. For H− ions in the context of the
minimal SME, the link has been established at
leading order in Lorentz violation and has been
shown to imply experimental sensitivities differing
from those for trapped electrons or protons [11].
Inclusion of operators with d ¼ 5, 6 would introduce
unique dependences on the momenta of the particles
forming the composite species. For nuclear compo-
nents with comparatively high momenta, this im-
plies a potential increase in the experimental reach

by several orders of magnitude, in line with results
from atomic spectroscopy [34].

(5) Additional SME sectors.—Efforts to extend the
theoretical scope of our analysis can also be ex-
pected to provide interesting and novel results. One
option would be to extend the results in this work to
operators of arbitrary d. Partial results along these
lines are given in Eq. (60). Another line of inves-
tigation would consider effects from other SME
sectors. For example, contributions from Lorentz
and CPT violation in the photon sector are known to
modify the Maxwell equations and hence could in
principle affect the behavior of trapped particles,
although most effects are tightly constrained by
other experiments [4,51,52]. Effects on trapped
particles from Lorentz and CPT violation in the
strong, electroweak, or gravitational sector could
also be envisaged. Many of these are likely to be
suppressed in typical scenarios. For example, effects
proportional to the local gravitational acceleration in
the laboratory must come with a numerical suppres-
sion factor of order 10−32. In light of the current
reach of experiments with Penning traps, counter-
shaded Lorentz and CPT violation [53] may be the
most interesting possibility to pursue in this context.

In conclusion, this work presents the general theory for
Lorentz- and CPT-violating QED including operators of
mass dimensions d ≤ 6 and offers a guide to the prospects
for detecting dominant effects from Lorentz and CPT
violation in precision experiments on particles and anti-
particles confined to a Penning trap. We have used the
methodology developed here and existing experimental
data to constrain 16 of the 36 experiment-independent
observables for Lorentz and CPT violation in the electron
and proton sectors, but much work remains before a
complete coverage of all predicted dominant effects can
be achieved. The many prospective effects in current and
future Penning-trap experiments provide strong induce-
ment for continuing these types of efforts to investigate
Lorentz and CPT symmetry, with promising potential for
uncovering violations of these basic spacetime symmetries.
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APPENDIX: PERTURBATIVE ENERGY SHIFTS

In this Appendix, we present the results of perturbative
calculations for the energy levels of a fermion of mass m,
charge q ¼ σjqj, and spin orientation s ¼ �1. The
analysis is performed using Eq. (56) with Lorentz- and

CPT-violating operators appearing in Lð3Þ, Lð4Þ, and Lð5Þ
D .

As discussed in Sec. III A 1, the contributions from Lð5Þ
F
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can be obtained via the substitutions presented in
Sec. II B 3. The expressions below are valid at leading
order in Lorentz violation but are otherwise exact. They
are presented in the apparatus frame having coordinates

ðx1; x2; x3Þ described in Sec. II C, with the magnetic field
aligned along x̂3.
At d ¼ 3, calculation with Lð3Þ reveals contributions to

the energy shift given by

δEð3Þ
n;s ¼ a0 − a3

p3

En;s
þ σsb0

p3

En;s
− σsb3

�
1 −

ð2nþ 1 − σsÞjqBj
En;sðEn;s þmÞ

�
− σsH12

�
1 −

p2
3

En;sðEn;s þmÞ
�
: ðA1Þ

For d ¼ 4, we obtain from Lð4Þ the results

δE4
n;s ¼ −c00En;s þ ðc03 þ c30Þp3 − ðc11 þ c22Þ ð2nþ 1 − σsÞjqBj

2En;s
− c33

p2
3

En;s
− σsd00p3 þ σsd30m

�
1 −

p2
3

En;sðEn;s þmÞ
�

þ σsðd03 þ d30Þ p2
3

En;s
− σsðd11 þ d22Þp3

ð2nþ 1 − σsÞjqBj
2En;sðEn;s þmÞ − σsd33p3

�
1 −

ð2nþ 1 − σsÞjqBj
En;sðEn;s þmÞ

�

− e0mþ e3p3

m
En;s

þ σsg120
�
mþ ð2nþ 1 − σsÞjqBj

En;s þm

�
− σsg123p3

�
m
En;s

þ ð2nþ 1 − σsÞjqBj
En;sðEn;s þmÞ

�

þ σsðg231 − g132Þp3

ð2nþ 1 − σsÞjqBj
2En;sðEn;s þmÞ þ σsðg012 − g021Þ ð2nþ 1 − σsÞjqBj

2En;s
: ðA2Þ

The contributions from Lð5Þ
D at d ¼ 5 are found to be

δEð5Þ
n;s ¼ mð5Þ00mEn;s − 2mð5Þ03p3mþ ðmð5Þ11 þmð5Þ22ÞjqBj

�ð2nþ 1Þm
2En;s

þ σs
ð2nþ 1 − σsÞjqBj
2En;sðEn;s þmÞ

�
þmð5Þ33p2

3

m
En;s

þ að5Þ000En;s
2 − 2að5Þ003p3En;s þ ðað5Þ011 þ að5Þ022Þ

�
2nþ 1

2
− σs

ð2nþ 1 − σsÞjqBj
2En;sðEn;s þmÞ

�
jqBj

þ að5Þ033p2
3 þ ðað5Þ101 þ að5Þ202Þð2nþ 1 − σsÞjqBj − ðað5Þ113 þ að5Þ223Þp3

ð2nþ 1 − σsÞjqBj
En;s

− að5Þ300p3En;s þ 2að5Þ303p2
3 − ðað5Þ311 þ að5Þ322Þp3

ð2nþ 1ÞjqBj
2En;s

− að5Þ333p3
3

1

En;s

þ σsbð5Þ000p3En;s − 2σsbð5Þ003p2
3 þ σsðbð5Þ011 þ bð5Þ022Þp3

ð2nþ 1ÞjqBj
2En;s

þ σsbð5Þ033p2
3

1

En;s

þ σsðbð5Þ101 þ bð5Þ202Þp3

ð2nþ 1 − σsÞjqBj
ðEn;s þmÞ − σsðbð5Þ113 þ bð5Þ223Þp2

3

ð2nþ 1 − σsÞjqBj
En;sðEn;s þmÞ

− σsbð5Þ300En;s

�
En;s −

ð2nþ 1 − σsÞjqBj
En;s þm

�
þ 2σsbð5Þ303p3

�
En;s −

ð2nþ 1 − σsÞjqBj
En;s þm

�

− σsðbð5Þ311 þ bð5Þ322ÞjqBj
�
2nþ 1

2
þ σs

ð2nþ 1 − σsÞjqBj
En;sðEn;s þmÞ

�
− σsbð5Þ333p2

3

�
1 −

ð2nþ 1 − σsÞjqBj
2En;sðEn;s þmÞ

�

þ σsðHð5Þ0102 −Hð5Þ0201Þð2nþ 1 − σsÞjqBj − σsðHð5Þ0123 −Hð5Þ0212Þp3

ð2nþ 1 − σsÞjqBj
En;s

− σsHð5Þ1200En;s
2

�
1 −

p2
3

En;sðEn;s þmÞ
�
þ 2σsHð5Þ1203p3

�
En;s −

p2
3

En;s þm

�

− σsðHð5Þ1211 þHð5Þ1222ÞjqBj
�ð2nþ 1Þm

2En;s
þ ð2nþ 1 − σsÞ2jqBj

2En;sðEn;s þmÞ
�
− σsHð5Þ1233p2

3

�
1 −

p2
3

En;sðEn;s þmÞ
�

þ σsðHð5Þ1302 −Hð5Þ2301Þp3

ð2nþ 1 − σsÞjqBj
ðEn;s þmÞ − σsðHð5Þ1323 −Hð5Þ2313Þp2

3

ð2nþ 1 − σsÞjqBj
En;sðEn;s þmÞ : ðA3Þ

The corresponding energy shifts for the antiparticle can be obtained as described in Sec. III A 1.
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