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Effective field theories have often been applied to systems with deeply inelastic reactions that produce
particles with large momenta outside the domain of validity of the effective theory. The effects of the deeply
inelastic reactions have been taken into account in previous work by adding local anti-Hermitian terms to
the effective Hamiltonian. Here, we show that when multiparticle systems are considered, an additional
modification is required in equations governing the density matrix. We define an effective density matrix by
tracing over the states containing high-momentum particles and show that it satisfies a Lindblad equation,
with local Lindblad operators determined by the anti-Hermitian terms in the effective Hamiltonian density.
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I. INTRODUCTION

Elementary particles are accurately described by local
quantum field theories. Some of the most fascinating phe-
nomena in condensed matter physics and in atomic physics
can also be described by local quantum field theories. The
modern understanding of local quantum field theories is
based largely on effective field theory [1–7]. This approach
provides physical interpretations of the mathematical singu-
larities that are ubiquitous in local quantum field theories.
Effective field theory provides a systematic framework for
quantifying the effects of higher-momentum physics that
cannot be described explicitly within a low-energy effective
theory. Effective field theory also provides a systematic
framework for developing low-energy approximations for
phenomena that are described by a local quantum field theory.
One areawhere effective field theories have proven useful

is in the analysis of the impact of high-momentum decays on
nonrelativistic field theories. Examples include positronium
decay into photons, analyzed in nonrelativistic QED [8,9],
the decays of quarkonium states into gluons, analyzed
perturbatively in nonrelativistic QCD [10], and the thermal
annihilation of a heavy quark and antiquark, analyzed
nonperturbatively in nonrelativistic QCD [11]. Processes
such as these, the final-state particles of which have much
larger 3-momenta than the inital-state particles, are mim-
icked in nonrelativistic effective field theories by local non-
Hermitian corrections to the effective Lagrangian.
Previous analyses have focused on systems consisting of a

single atom or a single meson, where the treatment of the
non-Hermitian corrections is straightforward. In this paper,
we extend this earlier work to include multiparticle systems.

We show that the non-Hermitian terms in the effective
Lagrangian lead to modifications in the evolution equation
of the effective density matrix that describes multiparticle
systems. In particular, we show that the effective density
matrix satisfies a Lindblad equation [12–14]. This is true
provided the decay products escape from the system or
otherwise decouple, so they cannot influence it later.
In Sec. II, we review the ideas behind effective field

theories and their use for deeply inelastic processes. We
then outline how these ideas must be adapted for use in
multiparticle systems and the role played by the Lindblad
equation. In Sec. III, we show explicitly how the Lindblad
equation emerges from a perturbative analysis of a simple
model. Finally, in Sec. IV, we summarize our results and
discuss possible applications.

II. EFFECTIVE THEORIES AND DEEPLY
INELASTIC PROCESSES

A. Two types of locality

An effective field theory is obtained by removing
(integrating out) states from a field theory. The simplest
applications involve removing very massive particles. A
muon, for example, decays into a νμ neutrino and a W
boson. The W is almost a thousand times more massive
than the muon and so is highly virtual. It decays almost
immediately (Δt ≈ 1=MW) into an electron and the anti-
neutrino ν̄e. This process is very accurately modeled by the
Fermi interaction (Fig. 1), where the decay occurs at a point
rather than spread over space-time distances of order
1=MW :
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GFffiffiffi
2

p ν̄μγαð1 − γ5Þμēγαð1 − γ5Þνe: ð1Þ

We have integrated the W out of the theory.
The Fermi interaction is the leading term in a series

of local operators that can be used to mimic the decay
process to arbitrary precision. This series is obtained at tree
level by Taylor expanding theW propagator 1=ðq2W −M2

WÞ
in powers of q2W=M

2
W to obtain

δLeff ¼
GFffiffiffi
2

p
X∞
n¼0

ν̄μγαð1 − γ5Þμ
�
−∂2

M2
W

�
n

ēγαð1 − γ5Þνe: ð2Þ

In practice, only one or two terms in this series are needed
to account for experiment. The individual operators are
renormalized when loop corrections are included, but the
effective theory is still capable of reproducing the original
theory to arbitrary precision provided operators of suffi-
ciently high dimension are retained. The dimensions of the
operators in Eq. (2) are 2nþ 6. Operators of dimension k
correct the theory at order ðp=MWÞk−4 where p is of the
order of the muon’s four-momentum.
A less obvious opportunity to remove states arises when

a particle decays to particles with much smaller masses.
Such a decay is an example of a deeply inelastic reaction,
where a large fraction of the initial state’s rest mass is
converted into large kinetic energies for the final-state
particles. Muon decay is again a good example. The
amplitude for μ− → νμe−ν̄e → μ− on the left side of
Fig. 2 is analytic in the muon’s 3-momentum p provided
that momentum is nonrelativistic. This is because the
nearest nonanalyticity in the amplitude is at the threshold
energy for the νμe−ν̄e state, which is effectively zero and far

below the nonrelativistic muon’s energy (≈mμ). As a result,
we can Taylor expand the amplitude in powers of p2=m2

μ:

T½μ → νμeν̄e → μ� ¼ T0

�
1þ

X∞
n¼1

b2n

�
−p2

m2
μ

�
n
�
: ð3Þ

In practice, only a few terms need to be retained, depending
upon how nonrelativistic the muon is. These corrections
can be incorporated into an effective field theory by
discarding the high-energy νμe−ν̄e states and introducing
new correction terms in the effective theory’s Lagrangian,

δLeff ¼ T0ψ
†
μ

�
1þ

X∞
n¼1

b2n

�∇2

m2
μ

�
n
�
ψμ; ð4Þ

where ψμ is the (2-component) nonrelativistic muon field.
Here, we are particularly interested in the imaginary part

of this series, coming from the muon’s deeply inelastic
decay reaction. We can write that part of the effective
Lagrangian as

Ldeep ¼
i
2
Γμψ

†
μ

�
1þ

X∞
n¼1

c2n

�∇2

m2
μ

�
n
�
ψμ; ð5Þ

where Γμ is the muon’s decay rate to νμe−ν̄e. (The subscript
“deep” stands for “deeply inelastic reactions.”) These terms
mimic the effects of muon decay in the effective theory.
Given our first example, it seems nonintuitive that the

effects of a decay to on-shell particles can be mimicked by
local operators. In fact, the decay process is quite local.
This is because the location of the decay can be recon-
structed by tracking the decay products back to their origin.
The decay products have relatively short wavelengths of
order 1=mμ (because of their high momenta, of order mμ)
and so can locate the decay with a resolution of order
Δx ≈ 1=mμ. So, the decay is localized over a region of size
Δx, which is very small compared to the wavelength of a
nonrelativistic muon (≫ 1=mμ).
The utility of the effective theory is easily illustrated by

adding QED effects. Corrections are needed in Ldeep to
account for photons radiated by the decay products (the W
or the electron). Gauge invariance requires the following
form,

Ldeep ¼
i
2
Γμψ

†
μ

�
1þ c2

D2

m2
μ
þ c4

D4

m4
μ
þ � � �

þ f2
eσ · B
m2

μ
þ f3

e∇ · E
m3

μ
þ � � �

�
ψμ; ð6Þ

where D is the QED gauge-covariant derivative and E and
B are the electric and magnetic fields. The coefficients c2n
are the same (to leading order) as in the theory without
QED corrections. This formula shows, for example, that the
lifetime of a μ−eþ atom equals the muon’s lifetime up to
corrections of order α2ðme=mμÞ2Γμ (due to the c2 term); in

FIG. 1. In the amplitude for muon decay, the W can propagate
only over short distances. Its exchange can therefore be approxi-
mated by a contact interaction.

FIG. 2. In the amplitude for μ− → νμe−ν̄e → μ−, the high-
momentum intermediate-state particles are created and annihi-
lated in a localized region. Their effects can therefore be
reproduced by local operators.
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particular, there are no corrections to the binding energy of
order α2ðme=mμÞΓμ [15].
These same ideas apply to deeply inelastic scattering

reactions. For example, the final-state neutrinos in μ−eþ →
νμν̄e have momenta of order mμ when the initial positron
and muon are nonrelativistic. The amplitude for μ−eþ →
νμν̄e → μ−eþ on the left side of Fig. 3 is analytic in the
momenta of μ− and eþ. The imaginary part of the
amplitude comes from the deeply inelastic scattering
reaction. We can again mimic the effects of the high-
momentum final states using local interactions,

Ldeep ¼ iB0ψ
†
μψμψ

†
ēψ ē þ iB1ψ

†
μσψμ · ψ

†
ēσψ ē þ � � � ; ð7Þ

where B0 and B1 are obtained from the imaginary part of
the amplitude on the left side of Fig. 3. It is also
straightforward to add QED effects here.

B. Multiparticle systems

The Hamiltonian that follows from the effective theory
described in the previous section has both a Hermitian
piece Heff , associated with conventional dynamics, and an
anti-Hermitian piece −iKdeep, coming from the deeply
inelastic reactions whose reaction products have been
removed from the theory.1 In the case of our nonrelativistic
muon,

Heff ¼
Z

d3rψ†
μ

�
eA0 −

D2

2mμ
þ � � �

�
ψμ; ð8aÞ

Kdeep ¼
1

2
Γμ

Z
d3rψ†

μ

�
1þ c2

D2

m2
μ
þ � � �

�
ψμ; ð8bÞ

where Aα is the photon field. The leading term in Kdeep is
1
2
ΓμN̂μ, where N̂μ is the muon number operator:

N̂μ ¼
Z

d3rψ†
μψμ: ð9Þ

This Hamiltonian applies to both single-muon and multi-
muon systems.
The quantum mechanics of such a theory is unconven-

tional because probability is not obviously conserved. The
Hamiltonian Heff − iKdeep does not change the number of
muons in a state, because it commutes with N̂μ. Instead, it
accounts for the effects of muon decay by reducing the
probability carried by each state; the norm of a state that
starts with n muons decays to zero with the decay rate nΓμ

(in leading order). This is the correct result—the probability
for n muons to still be n muons after time t is expð−nΓμtÞ.
We typically want more information about where the

probability goes. In the effective theory, an n-muon state
evolves into a mixture of states with n; n − 1; n − 2…
muons that is most naturally described by a density matrix.
We can construct an effective density matrix ρ̂eff from the
density matrix ρ̂ of the full theory by tracing over the
deeply inelastic decay products:

ρ̂effðtÞ ¼ Trdeepðρ̂ðtÞÞ: ð10Þ

More precisely, we trace out any state containing a particle
with momentum exceeding the ultraviolet cutoff ΛUV of the
effective field theory. In the case of our nonrelativistic
muon theory, this cutoff is some fraction of the muon
mass mμ.
The effective density matrix defined by Eq. (10), like the

density matrix of the full theory, is Hermitian and non-
negative, and it has unit trace: Trðρ̂effÞ ¼ 1. Fourier modes
with large frequencies of order mμ cannot be described
accurately in the effective theory. Thus, the definition of the
effective density matrix should also involve a time average
that eliminates high frequencies. Such a time average is
implicit in Eq. (10).
The density matrix defined by the partial trace in Eq. (10)

is in general non-Markovian. The time derivative
ðd=dtÞρ̂effðtÞ at time t is determined not only by ρ̂effðtÞ
but also by its past history: ρ̂effðt0Þ, t0 < t. The non-
Markovian behavior arises because a high-momentum
particle created by a decay at time t0 can interact with a
low-energy particle at a later time t. We make an additional
physical assumption that eliminates this possibility. We
assume the high-energy particles from the deeply inelastic
reactions interact so weakly with the low-energy particles
that their subsequent interactions can be ignored. This
would certainly be the case if the high-momentum particles
escape from the system. Given this assumption, the
effective density matrix should be Markovian.
Given that ρ̂eff is Markovian, we might naively expect its

time evolution equation to be

FIG. 3. In the amplitude for μ−eþ → νμν̄e → μ−eþ, the
high-momentum intermediate-state neutrinos are created and
annihilated in a localized region. Their effects can therefore be
reproduced by local operators.

1Contributions to Kdeep mimic the anti-Hermitian parts of
scattering amplitudes hbjTjai, where jai and jbi are states in the
effective theory that are connected by intermediate deeply
inelastic reaction channels. The Hermitian parts of these ampli-
tudes are absorbed into Heff .
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i
d
dt

ρ̂eff¼? ½Heff ; ρ̂eff � − ifKdeep; ρ̂effg; ð11Þ

but this equation does not conserve the total probability
Trðρ̂effÞ. The correct evolution equation has the structure of
the Lindblad equation [12,13]: if the local operator Kdeep

can be written in the form

Kdeep ¼
Z

d3r
X
n

L†
nðrÞLnðrÞ; ð12Þ

the Lindblad equation is

i
d
dt

ρ̂eff ¼ ½Heff ; ρ̂eff � − ifKdeep; ρ̂effg

þ 2i
Z

d3r
X
n

LnðrÞρ̂effL†
nðrÞ: ð13Þ

The additional term makes Trðρ̂effÞ time independent, since
the trace of a commutator is zero and the traces of the last
two terms in Eq. (13) cancel. The Lindblad equation is a
necessary consequence of our physical requirements on the
effective density matrix: ρ̂eff is Hermitian, non-negative,
and Markovian and it has unit trace.
In the muon decay example, the anti-Hermitian part of

the effective Hamiltonian is given by Eq. (8b). There is a
single Lindblad operator at leading order, and the Lindblad
equation reduces to

i
d
dt

ρ̂eff ¼ ½Heff ; ρ̂eff � −
i
2
ΓμfN̂μ; ρ̂effg

þ iΓμ

Z
d3rψμðrÞρ̂effψ†

μðrÞ: ð14Þ

The role of the Lindblad term is easily understood if we
use the evolution equation to calculate the rate of change of
the probability PnðtÞ for finding n muons in the system.
This probability equals the partial trace of ρ̂eff over all states
jXni that contain n muons:

PnðtÞ≡
X
Xn

hXnjρ̂effðtÞjXni: ð15Þ

The partial trace of the evolution equation in Eq. (14) gives

d
dt

PnðtÞ ¼ −nΓμPnðtÞ þ ðnþ 1ÞΓμPnþ1ðtÞ: ð16Þ

The commutator term in Eq. (14) does not contribute to the
partial trace. The anticommutator term gives −nΓμPn,
which is the rate at which probability leaves the n-muon
sector because of the decay of a muon. The Lindblad term
gives þðnþ 1ÞΓμPnþ1, which is the rate at which prob-
ability enters the n-muon sector from the decay of muons in
the (nþ 1)-muon sector.2

The Lindblad term in Eq. (14) is essential to get the
correct physical behavior for the time evolution of the total
number of muons. The expectation value of the muon
number, for example, is

NμðtÞ≡ TrðN̂μρ̂effðtÞÞ ¼
X
n

nPnðtÞ: ð17Þ

We can use Eq. (16) to determine the time dependence of
NμðtÞ:

d
dt
NμðtÞ¼−Γμ

�X
n

n2PnðtÞ−
X
n

nðnþ1ÞPnþ1ðtÞ
�
: ð18Þ

After shifting the index of the second term on the right
side, we obtain ðd=dtÞNμ ¼ −ΓμNμ, which implies that
NμðtÞ ¼ N0 expð−ΓμtÞ, as expected.
In order to obtain the Lindblad equation in Eq. (13), it is

essential that Kdeep have the structure shown in Eq. (12).
This is generally the case in a nonrelativistic effective field
theory. In the muon decay example, the operator Kdeep in
Eq. (8b) can be put into the canonical form in Eq. (12) by
expressing the expansion inside the braces as the square of
the expansion of its square root. The corresponding
corrections to the Lindblad term in Eq. (14) can be obtained
by making the substitution

ψμðrÞ →
�
1þ c2

D2

2m2
μ
þ � � �

�
ψμðrÞ: ð19Þ

More complicated operators in Kdeep, like those that come
from the electron-muon terms in Eq. (7), can also be
rewritten in the required form. Such operators have the
generic form

Kdeep ¼
Z

d3r
X
nm

cnmL
†
nðrÞLmðrÞ; ð20Þ

where the LmðrÞ are local operators made of low-energy
fields and where cnm is a Hermitian matrix, because
Kdeep is Hermitian by definition. It is also guaranteed
to be a positive matrix by the optical theorem:
−iðT − T†Þ ¼ T†T. The double sum is easily rewritten
in the canonical form of Eq. (12) by expanding cnm in terms
of outer products of its eigenvectors.

III. SIMPLE EXAMPLE

In this section, we illustrate how the Lindblad equation
for an effective density matrix emerges naturally from a
simple model in perturbation theory. We consider a theory
that describes a nonrelativistic particle of mass M (with
field ψ) that can decay into two massless particles (with
field ϕ). The Hamiltonian for the full theory is

2This result follows because ψ†ðrÞ acting on an n-muon basis
state gives

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
times an (nþ 1)-muon state.
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H ¼ Hψ
0 þHϕ

0 þHint; ð21Þ

where

Hψ
0 ¼

Z
r
ψ†ðrÞ

�
M −

∇2

2M

�
ψðrÞ; ð22aÞ

Hϕ
0 ¼

Z
r

1

2
ð _ϕ2 þ ð∇ϕÞ2Þ; ð22bÞ

Hint ¼
1

2
g
Z
r
ðψ†ðrÞϕ2ðrÞ þ ϕ2ðrÞψðrÞÞ: ð22cÞ

To reduce visual clutter, we have introduced the compact
notation

Z
r
≡
Z

d3r: ð23Þ

The free Hamiltonians Hψ
0 and Hϕ

0 describe particles with
on-shell energies

Ep ¼ M þ p2

2M
; ð24aÞ

ωq ¼ jqj; ð24bÞ

respectively. The interaction Hamiltonian allows a ψ
particle to decay into a pair of ϕ particles. Our analysis
below is simplified if we isolate the part of the interaction
Hamiltonian in Eq. (22c) that causes the deeply inelastic
decay,

Hdeep ¼
1

2
g
Z
r
ðψ†ðrÞ ~ϕ2ðrÞ þ ~ϕ†2ðrÞψðrÞÞ; ð25Þ

where ϕ ¼ ~ϕþ ~ϕ† and ~ϕ is the annihilation part of ϕ.
We are interested in systems consisting of nonrelativistic

ψ particles, the energies and momenta of which satisfy

Ep ≈M jpj ≪ M: ð26Þ

The decay products in ψ → ϕϕ therefore have momenta
that are approximately �q, where q is much larger than the
ψ’s momentum p:

jqj ≈M=2 ≫ jpj: ð27Þ

We show below how the entire decay process in this limit is
effectively local and instantaneous; it takes place over a
spatial region of size Δx ∼ 1=M, which is much smaller
than the typical length scale 1=jpj associated with a
nonrelativistic ψ particle, and during a time interval
Δt ∼ 1=M, which is much smaller than the typical time
scale 1=ðp2=MÞ. We use this locality to remove all ϕ

particles from the theory, creating an effective theory of
unstable ψ particles. We do this first for a single ψ particle
and then for a system containing multiple ψ particles.
Finally, we show how to adapt these results to a different
model in which ψ particles are lost through ψψ collisions
rather than ψ decays. For simplicity, we assume the
coupling g is small, and we work to leading order in g2.

A. Locality

The leading decay contribution to the ψ self-energy
comes from the diagram for ψ → ϕϕ → ψ in Fig. 4,

~ΠðE; pÞ ¼ g2
Z

d3q
ð2πÞ3

1

4ωqωp−q

1

E − ωp − ωp−q þ iϵ
;

ð28Þ
where we have used standard time-dependent perturbation
theory to calculate the contribution from Hdeep in Eq. (25)
[16]. The integral over q is dominated by momentum scales
of order M or larger. This is true as well of the imaginary
part of ~ΠðE; pÞ evaluated on shell at E ¼ Ep,

Im ~ΠðEp;pÞ¼−
1

2
g2
Z

d3q
ð2πÞ3

1

4ωqωp−q
2πδðEp−ωq−ωp−qÞ;

ð29Þ

since the delta function forces jqj ≈M=2 ≫ jpj. As a result,
the distance and time scales that dominate the Fourier
transform of ~ΠðE; pÞ are of order 1=M, and, therefore, the
decay process is local so far as the external (nonrelativistic)
ψ particle is concerned. This also means that we can expand
~ΠðEp; pÞ in powers of p2,

~ΠðEp; pÞ ¼ ~ΠðM; 0Þ
�
1þ

X∞
n¼1

cn

�
p2

M2

�
n
�
; ð30Þ

where the coefficients cn are independent of p. We are
interested here in the leading term (n ¼ 0) in the power
series expansion of ~ΠðEp; pÞ. We ignore the remaining
terms in what follows. They are easily included as higher-
order corrections to the effective Hamiltonian, as we
discussed in Sec. II.
The leading effect of ~ΠðE; pÞ on a single-ψ state is to

renormalize its free Hamiltonian,

FIG. 4. Self-energy diagram of order g2 for a ψ particle. The
propagators for ψ and ϕ are represented by solid lines and dashed
lines, respectively.
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Hψ
0 → Heff − iKdeep; ð31Þ

where

Heff ¼
Z
r
ψ†ðrÞ

�
M −

∇2

2M
þ Re ~ΠðM; 0Þ

�
ψðrÞ; ð32aÞ

Kdeep ¼
1

2
Γ
Z
r
ψ†ðrÞψðrÞ: ð32bÞ

In the Hermitian part of the effective Hamiltonian,
Re ~ΠðM; 0Þ is absorbed into a renormalization of the mass
M. In the anti-Hermitian part, Γ is the decay rate of a ψ
particle:

Γ ¼ −2Im ~ΠðM; 0Þ: ð33Þ

The locality of the decay process for nonrelativistic
momenta, which implies ~ΠðE; pÞ ≈ ~ΠðM; 0Þ, allows us to
simplify correlators that involve ~ϕ fields and ψ† fields. For
example, in the absence of interactions, the correlator
h0j ~ϕ2ðr; tÞψ†ð0; 0Þj0i vanishes. With interactions, we can
use locality to replace the ~ϕ fields by a ψ field, as illustrated
in Fig. 5,

1

2
g ~ϕ2ðr; tÞ → ~ΠðM; 0Þψðr; tÞ; ð34Þ

when the operators are acting to the right on a state in the
Fock space of ψ . Similarly, we can replace

1

2
g ~ϕ†2ðr; tÞ → ~Π�ðM; 0Þψ†ðr; tÞ ð35Þ

when the operators are acting to the left on a state in the
Fock space of ψ . We use these substitutions in the next
section.

B. Emergence of the Lindblad equation

Replacing the free Hamiltonian Hψ
0 by the effective

Hamiltonian Heff − iKdeep is all that is needed to analyze
the impact of the high-momentum decay on single-ψ states.
Analyzing multi-ψ states is more complicated, however, as
we discussed in Sec. II: a system that is described initially
by a state with n ψ particles evolves into a mixture of states
with n, n − 1; n − 2;…ψ particles. The single-ψ state also
evolves into a mixture, but there are only two states, n ¼ 1
and n ¼ 0, and we do not care about the second one. For

n > 1, we need the density matrix ρ̂ðtÞ to track the
superposition of states containing different numbers of ψ
particles over time. Following Sec. II, we replace this
density matrix by an effective density matrix obtained by
tracing over the Hilbert space of the decay products:

ρ̂effðtÞ≡ Trϕρ̂ðtÞ: ð36Þ

Our goal is to derive an evolution equation for ρ̂eff.
The temporal evolution of the density matrix is given by

i
d
dt

ρ̂ ¼ ½H; ρ̂�; ð37Þ

where H is the Hamiltonian for the full theory in Eq. (21).
We obtain an evolution equation for the effective density
matrix by tracing both sides of this equation over all ϕ
states:

i
d
dt

ρ̂eff ¼ Trϕ½H; ρ̂�: ð38Þ

The contributions to this equation from the kinetic terms are
simple since

Trϕ½Hψ
0 ; ρ̂� ¼ ½Hψ

0 ; ρ̂eff �; ð39aÞ

Trϕ½Hϕ
0 ; ρ̂� ¼ 0: ð39bÞ

The first equation holds because Hψ
0 does not act on ϕ

states. The second equation holds becauseHϕ
0 depends only

on ϕ fields.3 The evolution equation (38) reduces to

i
d
dt

ρ̂eff ¼ ½Hψ
0 ; ρ̂eff � þ Trϕ½Hint; ρ̂�: ð40Þ

Again, we focus on the interaction termHdeep in Eq. (25)
that causes decays. The other parts of the interaction term
Hint in Eq. (22c) generate additional contributions to the
Hermitian part of the effective Hamiltonian (Heff ), which
we ignore because they are irrelevant to decays. The decay
interaction contributes four terms to the right side of the
evolution equation (40):

FIG. 5. The operator 1
2
g ~ϕ2ðr; tÞ can be replaced by

~ΠðM; 0Þψðr; tÞ in a nonrelativistic correlator.

3The identity TrϕðÂ B̂Þ ¼ TrϕðB̂ ÂÞ holds for any operator Â
constructed out of the field ϕ and any operator B̂. This can be
verified by expressing the partial trace as a sum over a complete
set of ϕ states and inserting a complete set of ϕ states between Â
and B̂.
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Trϕ½Hdeep; ρ̂� ¼
1

2
g
Z
r
Trϕðψ†ðrÞ ~ϕ2ðrÞρ̂þ ~ϕ†2ðrÞψðrÞρ̂Þ

−
1

2
g
Z
r
Trϕðρ̂ψ†ðrÞ ~ϕ2ðrÞ þ ρ̂ ~ϕ†2ðrÞψðrÞÞ:

ð41Þ

For simplicity, we consider the initial time when the
system consists only of ψ particles. The action of ρðtÞ at
this time includes a projection onto the Fock space of ψ . We
proceed to examine each of the four terms in Eq. (41) in
turn. We can use the substitution in Eq. (34) to rewrite the
first trace in Eq. (41) as

1

2
gTrϕðψ†ðrÞ ~ϕ2ðrÞρ̂Þ ≈ ~ΠðM; 0Þψ†ðrÞψðrÞρ̂eff : ð42Þ

Similarly, we can use Eq. (35) to rewrite the trace in the
second decay term as

1

2
gTrϕð ~ϕ†2ðrÞψðrÞρ̂Þ ¼ 1

2
gTrϕðψðrÞρ̂ ~ϕ†2ðrÞÞ

≈ ~Π�ðM; 0ÞψðrÞρ̂effψ†ðrÞ: ð43Þ

The traces in the remaining two terms follow the same
patterns:

1

2
gTrϕðρ̂ψ†ðrÞ ~ϕ2ðrÞÞ ≈ ~ΠðM; 0ÞψðrÞρ̂effψ†ðrÞ; ð44aÞ

1

2
gTrϕðρ̂ ~ϕ†2ðrÞψðrÞÞ ≈ ~Π�ðM; 0Þρ̂effψ†ðrÞψðrÞ: ð44bÞ

Inserting these traces into Eq. (41), we obtain our final
result for the evolution equation in Eq. (40),

i
d
dt

ρ̂eff ¼ ½Heff ; ρ̂eff � −
i
2
Γ
Z
r
ðψ†ðrÞψðrÞρ̂eff

þ ρ̂effψ
†ðrÞψðrÞ − 2ψðrÞρ̂effψ†ðrÞÞ; ð45Þ

where Heff and Γ are defined in Eqs. (32a) and (33). This
equation has the standard Lindbladian form. The last term
removes ψ particles one at a time to account for their
disappearance due to decays into pairs of high-momentum
ϕ particles.
Note that we are making a nontrivial physical

assumption about ρ̂ when we use, for example, Eq. (34)
to remove ~ϕ fields from the effective evolution equation, as
in Eq. (42). This substitution is valid provided ~ϕ2 annihi-
lates ϕ particles coming from the ψ sector of the density
matrix (that is from ψ decays). In principle, it is also
possible for ~ϕ2ðrÞ to annihilate ϕ particles from the ϕ-
sector of ρ̂. We assume that such contributions can be
ignored because the probability for finding two ϕ particles
at the same space-time point is vanishingly small (and

therefore the probability of an inverse decay, ϕϕ → ψ , is
negligible). This is the case if ρ̂ describes a situation in
which all ϕ particles are produced by ψ decays and, once
produced, they escape from the system or otherwise
decouple.

C. Inelastic scattering

A variation on our simple model is to replace the decay
process ψ → ϕϕ by a deeply inelastic scattering process
ψψ → ϕϕ as the mechanism by which probability leaks
from the ψ sector. We replace the interaction Hamiltonian
in Eq. (22c) by

Hint ¼
1

4
g
Z
r
ðψ†2ðrÞϕ2ðrÞ þ ϕ2ðrÞψ2ðrÞÞ: ð46Þ

This interaction term allows the inelastic scattering reaction
ψψ → ϕϕ, where now the decay products have approxi-
mate momenta �q with jqj ≈M. The leading contribution
to the transition amplitude for ψψ → ψψ comes from the
diagram in Fig. 6.
The analysis of the effective density matrix for this

model, where the ϕ states are traced out, is almost identical
to our decay model analysis above. Here, in place of
Eqs. (34) and (35), we have substitutions

1

2
g ~ϕ2ðr; tÞ → 1

2
~Πð2M; 0Þψ2ðr; tÞ; ð47aÞ

1

2
g ~ϕ†2ðr; tÞ → 1

2
~Π�ð2M; 0Þψ†2ðr; tÞ; ð47bÞ

where ~ΠðE; pÞ is the same function defined in Eq. (28). The
new term in the effective Hamiltonian is an interaction term
instead of a mass term:

Heff − iKdeep ¼ Hψ
0 þ 1

4
~Πð2M; 0Þ

Z
r
ψ†2ðrÞψ2ðrÞ: ð48Þ

The anti-Hermitian part of the effective Hamiltonian comes
from the imaginary part of ~Πð2M; 0Þ, which we denote by
−Γ=2. The final evolution equation for the effective density
matrix is

FIG. 6. Diagram of order g2 for ψψ → ψψ through an inter-
mediate state with two ϕ particles.
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i
d
dt

ρ̂eff ¼ ½Heff ; ρ̂eff � −
i
2
Γ
Z
r
ðψ†2ðrÞψ2ðrÞρ̂eff

þ ρ̂effψ
†2ðrÞψ2ðrÞ − 2ψ2ðrÞρ̂effψ†2ðrÞÞ: ð49Þ

This equation again has the standard Lindbladian form. The
last term removes ψ particles two at a time to account for
their disappearance due to inelastic scattering into pairs of
high-momentum ϕ particles.

IV. DISCUSSION

The effective Hamiltonian for an effective field theory
obtained by integrating out high-momentum particles
produced by deeply inelastic reactions is local but non-
Hermitian. We have pointed out that states consisting of
low-energy particles are naturally described by an effective
density matrix obtained by tracing over states containing
high-momentum particles, as in Eq. (10). The time evolu-
tion of the effective density matrix is given by the Lindblad
equation in Eq. (13). The Lindblad operators LnðrÞ are
local, and they can be deduced from the anti-Hermitian
terms in the effective Hamiltonian density, which can be
expressed in the form in Eq. (12). The Lindblad terms in the
evolution equation are essential to get the correct behavior
for the time evolution of multiparticle observables, such as
the number of low-energy particles.
The Lindblad equation is familiar in quantum informa-

tion theory [14]. An open quantum system consists of a
subsystem of interest together with its environment. A time
evolution equation for the density matrix of the subsystem
is called a master equation. Under special conditions, the
master equation has the form of the Lindblad equa-
tion [12,13]. These conditions ensure that the autocorre-
lation function of the interaction Hamiltonian that connects
the subsystem and the environment decreases to zero at
large times.
An open effective field theory is an open quantum system

in which the subsystem of interest is an effective field
theory [17,18]. Grozdanov and Polonyi have proposed
an open effective field theory for the hydrodynamic
modes of a quantum field theory as a framework for
deriving dissipative hydrodynamics [17]. Burgess,
Holman, Tasinato, and Williams have applied open effec-
tive field theory to the super-Hubble modes of primordial
quantum fluctuations in the early Universe [18,19]. In the
stochastic inflation framework, the master equation is the
Lindblad equation. We have shown that an effective field

theory in which deeply inelastic reaction products have
been integrated out is an open effective field theory. In this
case, the environment consists of the high-momentum
particles produced by the deeply inelastic reactions.
A heavy quark and heavy antiquark in the quark-gluon

plasma can be regarded as an open quantum system in
which the heavy quark-antiquark pair is the subsystem of
interest and the quark-gluon plasma is the environment.
The quark-gluon plasma can cause the decoherence of the
heavy quark-antiquark pair and the dissociation of heavy-
quarkonium bound states. A master equation for the heavy
quark-antiquark subsystem that has the Lindblad form has
been derived [20]. This problem could perhaps be formu-
lated in terms of an open effective field theory using
potential nonrelativistic QCD [21].
Ultracold atoms can be described by a local nonrelativ-

istic effective field theory for which the coupling constant is
the scattering length [22]. Many loss processes for ultracold
atoms involve deeply inelastic reactions. An important
example is three-body recombination, in which a collision
of three low-energy atoms results in the binding of two of
the atoms into a diatomic molecule with a large binding
energy. The Lindblad equation is useful for deriving
universal relations for the loss rate of ultracold atoms [23].
Open effective field theories from integrating out

deeply inelastic reactions may have other applications
in high-energy physics. One particularly interesting appli-
cation is dark matter. The deeply inelastic reactions are
annihilation collisions of pairs of dark matter particles,
which produce Standard Model particles that may be
observed in indirect detection experiments. The Lindblad
equation could prove to be especially useful if dark matter
particles have strong self-interactions or if they are in a
Bose-Einstein condensate.
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