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A general consensus now is that there are two physically inequivalent complete decompositions of the
nucleon spin, i.e. the decomposition of the canonical type and that of mechanical type. The well-known
Jaffe-Manohar decomposition is of the former type. Unfortunately, there is a wide-spread misbelief that
this decomposition matches the partonic picture, which states that motion of quarks in the nucleon is
approximately free. In the present monograph, we reveal that this understanding is not necessarily correct
and that the Jaffe-Manohar decomposition is not such a decomposition, which natively reflects the intrinsic
(or static) orbital angular momentum structure of the nucleon.
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I. INTRODUCTION

Over the past few years, there have been intensive
debates on the question of whether the gauge-invariant
complete decomposition of the nucleon spin is possible or
not. (See Refs. [1–3] for review.) One of the central issues
of this debate was concerned with the significance of the
concept of the physical component of the gauge field,
which was first introduced by Chen et al. into the nucleon
spin decomposition problem [4,5]. A consensus now is that
the definition of the physical component of the gauge
field Aμ

phys is not unique. The ultimate reason is because
Aμ
phys cannot be defined independently of the choice of the

Lorentz frame [6]. The original proposal for Aμ
phys by Chen

et al. amounts to a non-Abelian generalization of the
familiar transverse-longitudinal decomposition of the pho-
ton field also called the Helmholtz decomposition. This
Helmholtz decomposition works perfectly in the decom-
position problem of the total photon angular momentum
into its intrinsic spin and orbital parts [7–10]. The reason
for it is twofold. First, in this problem, we are dealing with
free photons, or more precisely, a wave packet of free
photons. Second, the measurement of the photon spin and
orbital angular momentum (OAM) is carried out in a fixed
or prescribed Lorentz frame by making use of interactions
with atoms, so that a particular choice of a Lorentz frame is
nothing problematic [11].
Unfortunately but importantly, the situation is fairly

different for the nucleon spin decomposition problem.
Here, we must handle quarks and gluons tightly bound
in the nucleon. To our present knowledge, the only way to
probe the internal spin and OAM contents of such a
composite particle is to use deep-inelastic scatterings
(DIS). One important property of DIS observables (or

quasiobservables) typified by parton distribution functions
is the Lorentz-boost invariance along the direction of the
momentum of the parent nucleon [12]. Accordingly, the
definition of Aμ

phys, which is relevant for the DIS measure-
ments of the nucleon spin contents, must also have this
property [6]. (This is clear, for example, from the fact that
the measurable gluon spin is the first moment of the
longitudinally polarized gluon distribution function.) The
Coulomb-gauge-motivated definition of Aμ

phys proposed
by Chen et al. does not satisfy this property [4,5]. The
definition of Aμ

phys, which satisfies this property, is the light-
cone-gauge motivated definition proposed by Hatta [13]. In
this way, the claim that there can be infinitely many gauge-
invariant decompositions of the nucleon spin loses its basis,
once the importance of the boost-invariance requirement
mentioned above is properly recognized [6].
Still, we are left with two physically inequivalent types

of complete decompositions of the nucleon spin, which
are now called the canonical-type decomposition and the
mechanical-type (or kinetic-type) decomposition. Note
that, from the physical viewpoint, the canonical decom-
position is nothing different from the famous Jaffe-
Manohar decomposition [14] later refined by Bashinsky
and Jaffe [15]. In a series of papers [2,16–19], we have
advocated a view which favors the mechanical decom-
position rather than the canonical one as a natural decom-
position of the nucleon spin. Unfortunately, there still
remains a wide-spread misbelief in the DIS community
that, as compared with the mechanical decomposition, the
Jaffe-Manohar decomposition is more compatible with
the familiar partonic picture of the quark motion inside
the nucleon [15,20,21]. Undoubtedly, this misbelief comes
from a careless extension of the parton model idea, which
states that the motion of partons in the nucleon is free at the
leading-twist approximation. Here is a pitfall, however. The
partonic picture is certainly established for the collinear*wakamatu@post.kek.jp
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motion of constituents along the direction of the nucleon
momentum. As a matter of course, however, the generation
of the OAM component along the nucleon momentum
requires motion of partons in the plane perpendicular to this
direction. Whether this transverse motion of quarks is also
partonic or not is a highly nontrivial question, which must
be judged only after careful consideration. In fact, a more
natural picture is that this motion of quarks, which
generates the longitudinal component of the OAM, is a
circular motion in the transverse plane. It seems obvious
that such a circular motion cannot be a free motion in
any sense.
Anyhow, the above consideration throws a strong doubt

on the partonic interpretation of the Jaffe-Manohar decom-
position of the nucleon spin. What is a correct physical
interpretation of the quark and gluon OAM terms appearing
in the Jaffe-Manohar decomposition, then? Is it really an
observable decomposition? The purpose of the present
paper is to answer these questions as clearly as possible. To
this end, we think it very important to clearly understand
the distinction between the canonical OAM and the
mechanical OAM under the presence of the electromag-
netic potential. The famous Landau problem is a quantum
mechanics of a charged particle motion under the presence
of uniform magnetic field [22]. In Sec. II, we concisely
review the essence of these topics with the particular
intention of unmasking the identities of the two types of
OAMs, i.e. the canonical and mechanical OAMs. Next, in
Sec. III, we demonstrate an important role of the non-
Abelian Stokes theorem in the nucleon spin decomposition
problem following the recent suggestion by Tiwari [23].
We explicitly show that the relation between the canonical
and mechanical OAMs derived by Burkardt can more
quickly be obtained by making use of this general theorem
[24]. Next, after these preparations, we revisit in Sec. IV
several fundamental questions of the gauge-invariant
nucleon spin decomposition problem. Can one say that
the complete decomposition of the nucleon spin based on
the concept of the physical component of the gauge field is
genuinely gauge invariant? Which of the types, canonical
or mechanical, can be thought of as an observable decom-
position? Next, in Sec. V, we reveal the physical meaning of
the Jaffe-Manohar decomposition in a coherent fashion, to
show why its partonic interpretation is not justified. Finally,
in Sec. VI, we summarize what we have clarified in the
present paper.

II. TWO ORBITAL ANGULAR MOMENTA
IN THE LANDAU PROBLEM

In several previous publications, we repeatedly empha-
sized the fact that, under the presence of strong background
of magnetic field, what describes the physical orbital
motion of a charged particle is the mechanical (or kinetic)
OAM, not the canonical one [2,16,17]. In view of the
existence of strong color magnetic field inside the nucleon

as a quark-gluon composite, this naturally implies that the
physically favorable decomposition of the nucleon spin is
the mechanical- (or kinetic-)type decomposition not the
canonical-type one. Unfortunately, this reasonable claim of
us is not necessarily accepted in the community of DIS
physics. This is due to a blind belief of the parton picture,
which states that the motion of quarks inside the nucleon
must be approximately free at the leading order. To correct
this misunderstanding, we think it useful to understand the
essence of the famous Landau problem [22], i.e. the motion
of a charged particle in a uniform magnetic field, especially
by paying attention to the physical content of the two
OAMs, i.e. the canonical and mechanical OAMs [25–27].
(A very comprehensible lecture note on the Landau
problem can be found in Ref. [28].)
For simplicity, let us confine ourselves to the two-

dimensional motion of a particle with charge e in the x − y
plane under uniform magnetic field B ¼ Bez along the
z axis. (Here, for clarity, the charge e of the particle is
assumed to be positive.) In classical mechanics, the Lorentz
force causes a circular motion of the charged particle. The
balance equation between the centrifugal force and the
Lorentz force reads as

mv2

r
¼ eBv: ð1Þ

(Here and hereafter, we use the natural unit c ¼ ℏ ¼ 1.) This
gives the radius of the circular motion,

r ¼ mv
eB

; ð2Þ

which is called the Larmor radius or the cyclotron radius.
The energy of the system is given by

E ¼ 1

2
mv2 ¼ 1

2
mr2ω2; ð3Þ

with ω ¼ v
r ¼ eB

m being the angular frequency of the cyclo-
tron motion. In classical mechanics, the cyclotron radius as
well as the velocity v can take any real values. In quantum
mechanics, the orbit of the cyclotron motion as well as the
energy are quantized. It can be seen already in the semi-
classical treatment, which corresponds to imposing the so-
called Bohr-Sommerfeld quantization condition as

1

2π

I
p · dr ¼ nþ 1

2
: ð4Þ

With the use of the relation p ¼ mvþ eA, where A is the
gauge potential corresponding to the magnetic field B, this
leads to
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nþ 1

2
¼ 1

2π

I
ðmvþ eAÞ · dr

¼ mvr −
1

2π
eBðπr2Þ ¼ mvr −

1

2
mvr ¼ 1

2
mvr; ð5Þ

where we have used the relation ω ¼ v
r ¼ eB

m . Here, use has
been made of the Stokes theorem. [The origin of the minus
sign in front of the second termon the rhs of Eq. (5) is that the
cyclotron motion is clockwise for eB > 0, and in this case,
the line integral of the vector potential gives the negative of
the magnetic flux inside the Larmor radius.] Multiplying
both sides with ω, this gives the quantized energy as

�
nþ 1

2

�
ω ¼ 1

2
mv2 ¼ E; ð6Þ

with n being a non-negative integer. Accordingly, the
cyclotron radius is also quantized as

rn ¼
ffiffiffiffiffiffi
1

eB

r
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
: ð7Þ

As we shall see shortly, in quantum mechanics, the above
discrete orbit with the radius rn corresponds to a Landau
state describing quantized cyclotron motion. However, we
shall also see that each state has an infinite degeneracy
originating from the fact that each state with a definite
Landau quantum number n contains infinitely many states,
which are characterized by another integerm, the eigenvalue
of the canonical angular momentum operator Lcan.
As is well known, a quantum mechanical treatment

of the cyclotron motion requires one to introduce the
vector potential A, which is defined through the relation
∇ × A ¼ B. The relevant Hamiltonian of the Landau
problem is then given by

H ¼ 1

2m
Π2 ¼ 1

2m
ðp − eAÞ2: ð8Þ

The choice of A, which gives the same B, is not unique,
but the physics must be independent of this choice. We
say that the theory has a gauge invariance. To solve the
quantum mechanical problem explicitly, however, we are
forced to take some specific choice for the vector potential
A, which amounts to taking a particular gauge choice.
Some of the popular choices are the rotationally symmetric
gauge given by

A ¼ ðAx; AyÞ ¼
B
2
ð−y; xÞ; ð9Þ

the gauge with the translational invariance along the x axis
given as

A ¼ ðAx; AyÞ ¼ Bð−y; 0Þ; ð10Þ

and the gauge with the translational invariance along the y
axis given as

A ¼ ðAx; AyÞ ¼ Bð0; xÞ: ð11Þ

The choice (10) is the gauge used by Landau in solving the
problem for the first time, so that we call it the Landau
gauge hereafter [22]. Although gauge-invariant quantities
are independent of the gauge choice, the symmetric gauge
is most convenient for understanding the relation between
the canonical OAM and the mechanical OAM, so let us first
work in this gauge.
In the combination

Π ¼ p − eA; ð12Þ

which enters the Hamiltonian, p is the standard canonical
momentum, while Π is called the mechanical (or kinetic)
momentum. At variance with the canonical momenta, the
mechanical momenta do not commute with each other.
Their commutation relation is

½Πx;Πy� ¼ ieB: ð13Þ

To obtain the eigenvalues and eigenstates of the Landau
Hamiltonian (8), we introduce the ladder (annihilation and
creation) operators by

a ¼
ffiffiffiffiffiffiffiffi
1

2eB

r
ðΠx þ iΠyÞ; a† ¼

ffiffiffiffiffiffiffiffi
1

2eB

r
ðΠx − iΠyÞ:

ð14Þ

They satisfy the following commutation relations:

½a; a†� ¼ 1; ½a; a� ¼ ½a†; a†� ¼ 0: ð15Þ

The Hamiltonian then reduces to

H ¼ 1

2m
ðΠ2

x þ Π2
yÞ ¼ ω

�
a†aþ 1

2

�
: ð16Þ

Since the last expression is nothing but the Hamiltonian of
a one-dimentional harmonic oscillator, its eigenstates and
eigenvalues are readily obtained as

Hjni ¼ Enjni; with En ¼
�
nþ 1

2

�
ω; ð17Þ

where

jni ¼ ða†Þnffiffiffiffiffi
n!

p j0i: ð18Þ

Actually, it is a widely known fact that each Landau level
with given n is infinitely degenerated. To understand this
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degeneracy, let us introduce the two operators X and Y,
which have the meaning of the center of cyclotron motion:

X ≡ xþ vy
ω

¼ xþ 1

eB
Πy; ð19Þ

Y ≡ y −
vx
ω

¼ y −
1

eB
Πx: ð20Þ

They satisfy the following commutation relation:

½X; Y� ¼ −i
1

eB
: ð21Þ

Here, we introduce another ladder operator b and b† by

b ¼
ffiffiffiffiffiffi
eB
2

r
ðX − iYÞ; b† ¼

ffiffiffiffiffiffi
eB
2

r
ðX þ iYÞ: ð22Þ

It is an easy exercise to check that they satisfy the following
commutation relations:

½b; b†� ¼ 1; ½b; b� ¼ ½b†; b†� ¼ 0: ð23Þ

Furthermore, b and b† commute with either of a and a† as

½b; a� ¼ ½b; a†� ¼ ½b†; a� ¼ ½b†; a†� ¼ 0: ð24Þ

Of our particular interest is the relation between the two
orbital angular momenta, i.e. the canonical OAM and the
mechanical OAM. Since the motion of the charged particle
is confined in the x − y plane, we have only to consider the
z-component of the orbital angular momenta. The canoni-
cal OAM is given by

Lcan ≡ xpy − ypx; ð25Þ

whereas the mechanical OAM is given by

Lmech ≡mðxvy − yvxÞ ¼ xΠy − yΠx: ð26Þ

In the symmetric gauge, the relation between these two
OAMs is given as

Lcan ¼ Lmech þ
eB
2
ðx2 þ y2Þ: ð27Þ

It is interesting to point out that the difference between the
canonical and mechanical OAMs is just given by the
“potential angular momentum" introduced in Refs. [16,17],

Lpot ¼ eðr × AÞz ¼
eB
2
ðx2 þ y2Þ; ð28Þ

which means that

Lcan ¼ Lmech þ Lpot: ð29Þ

As explained in Refs. [2,16,17], Lpot represents the angular
momentum carried by the electromagnetic potential, which
is the external magnetic field in the present problem.
Equation (29) thus means that the canonical OAM repre-
sents the total OAM, that is, the sum of the particleOAMand
the OAM carried by the electromagnetic field. (A support to
this interpretation is also found in a recent paper [29].)
To proceed, we express Lmech and Lcan in terms of the

ladder operators a; a†; b, and b†. The answer is given by

Lmech ¼ iðba† − b†aÞ − ða†aþ aa†Þ; ð30Þ

Lcan ¼
1

2
ðb†bþ bb†Þ − 1

2
ða†aþ aa†Þ: ð31Þ

[Remember that the Hamiltonian is already expressed as
(16) only with a and a†.] Using the commutation relations
of a; a†; b, and b†, one can easily verify that the canonical
OAM operator Lcan commutes with the Hamiltonian,

½Lcan; H� ¼ 0; ð32Þ

although the mechanical OAM operator does not. This
means that we can construct simultaneous eigenstates of H
and Lcan, which are characterized by two harmonic oscil-
lator quanta n and m as

Hjn; nþmi ¼
�
nþ 1

2

�
ωjn; nþmi; ð33Þ

Lcanjn; nþmi ¼ mjn; nþmi; ð34Þ

where

jn;mi ¼ ða†Þnðb†Þmffiffiffiffiffiffiffiffiffiffi
n!m!

p j0; 0i: ð35Þ

Here, n are non-negative integers (n ¼ 0; 1; � � �) character-
izing the Landau level, while m are integers satisfying the
inequality m ≥ −n. Thus, for a fixed Landau label n with
the eigen-energy En ¼ ðnþ 1

2
Þω, there are infinitely many

states with exactly the same eigenenergy but different
z-component of the canonical OAM.
To understand the physical content of the two OAMs, let

us investigate the expectation value of the canonical and
mechanical OAMs in the eigenstate jn; nþmi, defined by

hOi≡ hn; nþmjOjn; nþmi: ð36Þ

As can be easily checked, the expectation value of the
mechanical OAM becomes

hLmechi ¼ −ð2nþ 1Þ; ð37Þ

which is independent of m. The expectation value of
the potential angular momentum can also be readily
calculated as
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hLpoti ¼
eB
2
hx2 þ y2i ¼ mþ ð2nþ 1Þ: ð38Þ

Adding up these two quantities, we find that

hLcani ¼ hLmechi þ hLpoti ¼ m; ð39Þ

which naturally reproduces the eigenvalue of Lcan in the
state jn; nþmi.
Somewhat surprisingly, the canonical OAM charac-

terized by the quantum number m has little to do with
the physical cyclotron motion of a charge particle in the
magnetic field. This is reflected in the fact that the
quantum number m does not appear in the (observable)
energy En ¼ ðnþ 1

2
Þ of the Landau problem, so that it is

not a direct observable. On the other hand, the expect-
ation value of the mechanical OAM is characterized by
the Landau quantum number n, so that it is clearly an
observable. Remember that the eigenenergy of the Landau
level n is just consistent with the Bohr-Sommerfeld
quantization condition corresponding to the semiclassical
cyclotron motion.
Undoubtedly, this noticeable difference between the two

OAMs is not unrelated to the fact that the canonical OAM is
not a gauge-invariant quantity. To confirm it, let us inves-
tigate both OAMs in a different gauge from the symmetric
gauge, for example, in the Landau gauge. The gauge
transformation from the symmetric gauge ASðrÞ ¼
B
2
ð−y; x; 0Þ to the Landau gauge ALðrÞ ¼ Bð−y; 0; 0Þ is

given by

ALðrÞ ¼ ASðrÞ þ∇χðrÞ; ð40Þ

with the choice of the gauge function

χðrÞ ¼ −
B
2
xy: ð41Þ

Note that, in the Landau gauge, the mechanical momenta
take the form

Πx ≡ px − eAx ¼ px þ eBy;

Πy ≡ py − eAy ¼ py:

The Hamiltonian is given by

H ¼ 1

2m
ðΠ2

x þ Π2
yÞ ¼

1

2m
fðpx þ eByÞ2 þ p2

yg: ð42Þ

Since this Hamiltonian does not contain the coordinate x, its
eigenfunction is given as

ψðx; yÞ ∝ eikxxϕðyÞ; ð43Þ

or in more abstract form as

jψi ¼ jkx;ϕi≡ jkxijϕi; ð44Þ

with jkxi being the eigenstate of px:

pxjkxi ¼ kxjkxi: ð45Þ

This leads to an effective Hamiltonian in the y-space as

H0 ¼ 1

2m
fðkx þ eByÞ2 þ p2

yg: ð46Þ

This is essentially the Hamiltonian of the one-dimensional
Harmonic oscillator, so that its eigenvalues and eigenfunc-
tions are easily be written down as

H0jni ¼
�
nþ 1

2

�
jni: ð47Þ

with

jni ¼ ða†Þn
n!

j0i: ð48Þ

Here,

a ¼
ffiffiffiffiffiffiffiffi
1

2eB

r
fðkx þ eByÞ þ ipyg; ð49Þ

a† ¼
ffiffiffiffiffiffiffiffi
1

2eB

r
fðkx þ eByÞ − ipyg ð50Þ

are the ladder operators in the Landau gauge.
To sum up, the eigenenergies and eigenstates of the

original Hamiltonian are expressed as

jkx;ϕi ¼ jkx; ni ¼ jkxijni; ð51Þ

with

hxjkxi ¼
1ffiffiffiffiffi
Lx

p eikxx: ð52Þ

Here, use the box normalization for the plane wave in the
x-plane with large but finite length Lx.
To proceed, it is convenient to write the ladder operators

in the form

a ¼
ffiffiffiffiffiffiffiffi
1

2eB

r
feBðy − YÞ þ ipyg; ð53Þ

a† ¼
ffiffiffiffiffiffiffiffi
1

2eB

r
feBðy − YÞ − ipyg; ð54Þ

with
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Y ≡ −
kx
eB

: ð55Þ

Here, Y has the meaning of the center of cyclotron motion
projected on the y axis. Using the equations

py ¼
1

i

ffiffiffiffiffiffi
eB
2

r
ða− a†Þ; y− Y ¼ 1ffiffiffiffiffiffiffiffi

2eB
p ðaþ a†Þ; ð56Þ

one can easily verify the following relations:

hnjpyjni ¼ 0; ð57Þ

hnjy − Yjni ¼ 0; ð58Þ

hnjðy − YÞ2jni ¼ 1

eB
ð2nþ 1Þ: ð59Þ

Now, we are ready to evaluate the expectation values of
the two OAM operators in the state jkx; ni. Note first that
the expectation value of the mechanical OAM can be
expressed as

hLmechi ¼ hkx; njxΠy − yΠxjkx; ni
¼ hLcani − hLpoti; ð60Þ

with

hLcani≡ hkx; njxpy − ypxjkx; ni; ð61Þ

hLpoti≡ eBhkx; njy2jkx; ni: ð62Þ

Using the relation

hnjy2jni ¼ Y2 þ 1

eB
ð2nþ 1Þ; ð63Þ

we find that

hLpoti ¼
k2x
eB

þ ð2nþ 1Þ: ð64Þ

On the other hand, we get

hLcani ¼ hkxjxjkxihnjpyjni − kxhnjyjni ¼ 0 − kxY ¼ k2x
eB

:

ð65Þ

Here, we have used the relation

hnjpyjni ¼ 0: ð66Þ

Note that, although hkxjxjkxi diverges in the limit Lx → ∞,
this limit can be taken after using the relation hnjpyjni ¼ 0,
or we can keep Lx a large but finite value.

One sees that the expectation value of the canonical
OAM operator in the Landau gauge does not coincide with
that in the symmetric gauge. (The same is true also for the
potential angular momentum operator.) On the other hand,
from Eq. (60), the expectation value of the mechanical
OAM operator in the Landau gauge is given by

hLmechi ¼
k2x
eB

−
�
k2x
eB

þ ð2nþ 1Þ
�

¼ −ð2nþ 1Þ; ð67Þ

which precisely reproduces the expectation value of the
mechanical OAM operator in the symmetric gauge. The
expectation value of the mechanical OAM operator is
therefore gauge independent as expected. Undoubtedly,
the demonstration above implies an unphysical nature of
the canonical OAM, in spite of the fact that the canonical
momentum as well as the canonical OAM are useful objects
in solving the quantum mechanical problem. (More gen-
erally speaking, the canonical momentum is a fundamental
element in the canonical formalism of quantum theory.) On
the other hand, the mechanical OAM is gauge invariant,
and it describes the physical cyclotron motion of a charged
particle in the magnetic field. This analysis within a
solvable system clearly shows the superiority of the
mechanical OAM over the canonical OAM as a physical
OAM of a charge particle under the presence of a strong
magnetic field. In our opinion, it also throws slight doubts
on the physical relevance or the observability of the
canonical OAM of quarks, which appears in the Jaffe-
Manohar decomposition of the nucleon. In the following
sections, we shall investigate this QCD problem by keeping
in mind the lesson learned from the Landau problem.

III. NON-ABELIAN STOKES THEOREM AND THE
TWOTYPESOF QUARKOAMS IN THENUCLEON

An important lesson learned from the Landau problem is
that, under the presence of a strong magnetic field, one
must pay the finest care regarding the physical difference
between the two types of OAMs, i.e. the canonical one and
the mechanical one. As first recognized by Burkardt [24],
the existence of the two types of quark OAMs in the
nucleon is deeply connected with the existence of a strong
color-electromagnetic field inside the nucleon, which is
generated by the QCD dynamics of bound quarks and
gluons. As we shall see below, the essence of Burkartdt’s
observation can more transparently be understood on the
basis of the non-Abelian Stokes theorem as pointed out in a
recent paper by Tiwari [23].
The non-Abelian Stokes theorem is an identity for the

Wilson-loop operator

WðCÞ ¼ TrP exp

�
ig
I
C
dzμAμðzÞ

�
; ð68Þ

where C is a closed path in the four-dimensional space-
time, Tr stands for the trace in color space, while P does the
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color-space path ordering operator. The theorem states
that [30,31]

TrPexp

�
ig
I
C
dzμAμðzÞ

�
¼TrPexp

�
ig
Z
S
dσμν ~F

μνðyÞ
�
;

ð69Þ

where

~FμνðyÞ ¼ L½a; y�FμνðyÞL½y; a�; ð70Þ

with Fμν¼∂μAν−∂νAμ−ig½Aμ;Aν� being the field-strength
tensor for the non-Abelian gauge field, whereas

L½y; x� ¼ P exp

�
ig
Z

y

x
dzμAμðzÞ

�
ð71Þ

is a gauge-link operator connecting the two space-time
points x and y.
We apply this theorem to the average transverse

momenta of quarks in the transversely polarized nucleon
and also to the average longitudinal OAM of quarks in the
longitudinally polarized nucleon, which were investigated
by Burkardt in Ref. [24]. They are, respectively, defined by

hkl⊥iL ¼
Z

dx
Z

d2b⊥
Z

d2k⊥kl⊥ρLðx;b⊥;k⊥;S⊥Þ; ð72Þ

hL3iL ¼
Z

dx
Z

d2b⊥
Z

d2k⊥ðb×k⊥Þ3ρLðx;b⊥;k⊥;S∥Þ;

ð73Þ

where l ¼ 1, or 2. The Wigner distributions ρL appearing
in the above equations are five-dimensional phase space
distribution defined as

ρLðx; b⊥; k⊥; SÞ ¼
1

2

Z
d2Δ⊥
ð2πÞ2

Z
d2ξ⊥dξ−
ð2πÞ3

× e−iΔ⊥·b⊥eiðxPþξ−−k⊥·ξ⊥Þ

× hp0; s0jψ̄ð0ÞγþL½0; ξ�ψðξÞjp; si; ð74Þ

with P ¼ 1
2
ðp0 þ pÞ and p0 − p ¼ ð0;Δ⊥; 0Þ, while S ¼

1
2
ðs0 þ sÞ with s0 and s denoting the polarization states of

the final and initial nucleons. As is widely known, the
Wigner distribution generally depends on the path of the
gauge link L½0; ξ� connecting the two space-time points ξ
and 0.
Two physically interesting choices of the gauge-link

paths are the so-called future-pointing staplelike light-cone
(LC) path denoted as LþLC and the past-pointing staplelike
LC path denoted as L−LC. They are, respectively, specified
as (see Fig. 1)

L�LC½0; ξ�≡ LðstÞ½0−; 0⊥;�∞−; 0⊥�
× LðstÞ½�∞−; 0⊥;�∞−; ξ⊥�
× LðstÞ½�∞−; ξ⊥; ξ−; ξ⊥�; ð75Þ

where LðstÞ½ξ; η� stands for a straight-line path directly
connecting the two space-time points η and ξ. [In the
following, the suffix ðstÞ will be omitted for brevity, when
there is no possibility of misunderstanding.] Remember
that the above two choices of the gauge-link path corre-
spond to the kinematics of semi-inclusive hadron produc-
tions and that of Drell-Yan processes, respectively. In fact, a
future-pointing Wilson line appears in the semi-inclusive-
deep-inelastic scattering (SIDIS) processes because the
flow of color runs via an outgoing quark, whereas a
past-pointing Wilson line appears because the flow of
color runs via an incoming antiquark [32].
In addition to the above two paths, also physically

important is the gauge-link path directly connecting the
two space-time points ξ and 0. Although this choice of path
does not directly correspond to the kinematics of the DIS
processes, it is nevertheless important, since this choice in
(72) and (73) is known to give manifestly gauge-invariant
mechanical transverse momentum and mechanical longi-
tudinal OAM of quarks in the nucleon [33].
Anyhow, an important fact is that, through the gauge-link

path dependence of the Wigner distribution, the average
transverse momentum as well as the average longitudinal
OAM of quarks are generally path dependent. As pointed

FIG. 1. Two gauge-link paths, which correspond to two DIS processes.
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out by Tiwari, the reason of this path dependence can most
transparently be understood on the basis of the non-Abelian
Stokes theorem. Let us first consider the closed path C in
the ðη−; η⊥Þ plane as illustrated in Fig. 2. Because this
closed gauge link is expressed as

LC½0; 0� ¼ LþLC½0; ξ�LðstÞ½ξ; 0� ¼ LþLC½0; ξ�ðLðstÞ½0; ξ�Þ−1;
ð76Þ

we immediately obtain the following relation for the path-
dependent average momenta of quarks,

hkl⊥iC ¼ hkl⊥iþLC − hkl⊥istraight; ð77Þ
where

hkl⊥iC ¼
Z

dx
Z

d2k⊥kl⊥

×
1

2

Z
d2ξ⊥dξ−
ð2πÞ3 eiðxPþξ−−k⊥·ξ⊥Þ

× hPS⊥jψ̄ð0ÞγþLC½0; 0�ψð0ÞjPS⊥i; ð78Þ
with

LC½0; 0� ¼ TrP exp

�
ig
I
C
dzμAμðzÞ

�
ð79Þ

being the Wilson loop corresponding to the closed path C.
By using the non-Abelian Stokes theorem, this Wilson loop
can be rewritten as

LC½0; 0� ¼ TrP exp
�
ig
Z
S
dσμνðηÞL½0; η�FμνðηÞL½η; 0�

�
;

ð80Þ
where S is an arbitrary surface with its boundary being the
closed path C. The physical insight obtained from the non-
Abelian Stokes theorem is simple but very important. If
there is no color electromagnetic flux inside the nucleon,
we would have FμνðηÞ ¼ 0 so that LC½0; 0� ¼ 1. In this
case, one can easily verify that the difference between the
two quantities hkl⊥iþLC and hkl⊥istraight vanishes identically.
Conversely speaking, what generates the gauge-link path
dependence of the two definitions of the average transverse

momentum of quarks is the existence of the color electro-
magnetic field inside the nucleon.
Now, we can proceed as follows. First, we rewrite (77)

with (78) in the following form:

hkl⊥iþLC − hkl⊥istraight

¼
Z

dx
Z

d2k⊥
1

2

Z
d2ξ⊥dξ−
ð2πÞ3 eiðxPþξ−−k⊥·ξ⊥Þ

×
1

i
∂

∂ξl⊥ hPS⊥jψ̄ð0ÞγþLC½0; 0�ψð0ÞjPS⊥i: ð81Þ

Here, by using the identities

Z
dxeixP

þξ− ¼ 2π

Pþ δðξ−Þ; ð82Þ
Z

d2k⊥e−ik⊥·ξ⊥ ¼ ð2πÞ2δ2ðξ⊥Þ; ð83Þ

it reduces to

hkl⊥iþLC−hkl⊥istraight

¼ 1

2Pþ×
1

i
∂

∂ξl⊥hPS⊥jψ̄ð0Þγ
þLC½0;0�ψð0ÞjPS⊥ijξ−¼0;ξ⊥¼0;

ð84Þ

with LC½0; 0� given by (80).
Since the surface S in the integral (80) can be taken

arbitrarily as long as its boundary is constrained to be the
closed path C, we take it as a trapezoid in the ðη−; ηm⊥Þ plane
as illustrated in Fig. 2. Then, we have

Z
dσμνðηÞL½0; η�FμνðηÞL½η; 0�

¼ −
�Z

ξ−

0

dη−
Z ðη−=ξ−Þξm⊥
0

dηm⊥L½0; η�FþmðηÞL½η; 0�

þ
Z þ∞

ξ−
dξ−

Z
ξm⊥

0

dηm⊥L½0; η�FþmðηÞL½η; 0�
�
: ð85Þ

This gives

1

i
∂

∂ξl⊥ exp

�
ig
Z
S
dσμνðηÞL½0; η�FμνðηÞL½η; 0�

�����
ξ−¼0;ξ⊥¼0

¼ −gδlm
�Z

ξ−

0

dη−
η−

ξ−
L
�
0−; 0⊥; η−;

η−

ξ−
ξm⊥

	
Fþm

�
η−;

η−

ξ−
ξm⊥

�
L
�
η−;

η−

ξ−
ξm⊥; 0−; 0⊥

	

þ
Z þ∞

ξ−
dη−L½0−; 0⊥; η−; ξm⊥�Fþmðη−; ξm⊥ÞL½η−; ξm⊥; 0−; 0⊥�g

����
ξ−¼0;ξ⊥¼0

: ð86Þ
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It can be shown that the first term of the above equation
vanishes, while the second term reduces to

− g
Z

∞

0

dη−L½0−; 0⊥; η−; 0⊥�Fþlðη−; 0⊥ÞL½η−; 0⊥; 0−; 0⊥�

¼ −g
Z þ∞

−∞
dη−θðη−ÞL½0; η−�Fþlðη−ÞL½η−; 0�; ð87Þ

[with θðxÞ being the ordinary step function with the
property θðxÞ ¼ 1 for x > 0 and θðxÞ ¼ 0 for x < 0]
thereby leading to a simple relation,

1

i
∂

∂ξl⊥ exp

�
ig
Z
S
dσμνðηÞL½0; η�FμνðηÞL½η; 0�

�����
ξ−¼0;ξ⊥¼0

¼ −g
Z þ∞

−∞
dη−θðη−ÞL½0; η−�Fþlðη−ÞL½η−; 0�: ð88Þ

Here, we recall the fact that the average transverse
momentum corresponding to the straight-line path directly
connecting ξ and 0 reduces to the mechanical transverse
momentum [33]

hkl⊥istraight ¼ hkl⊥imech; ð89Þ
where

hkl⊥imech ¼
1

2Pþ hPS⊥jψ̄ð0ÞγþDl⊥ð0Þψð0ÞjPS⊥i; ð90Þ

with Dl⊥ ¼ ∂l − igAl⊥ being the usual covariant derivative.
In this way, we eventually arrive at a key relation,

hkl⊥iþLC − hkl⊥imech

¼ 1

2Pþ hPS⊥jψ̄ð0Þγþ
Z þ∞

−∞
dη−ð−θðη−ÞÞ

× L½0; η−�gFþlðη−ÞL½η−; 0�ψð0ÞjPS⊥i: ð91Þ

According to Burkardt [24], the rhs of the above equation
has a meaning of final-state interaction (FSI) in the SIDIS
processes. In more detail, it represents the change of
transverse momentum of the ejected quark due to the color
Lorentz force caused by the residual target. In fact, in the
LC gauge, the gauge link along the light-cone direction
becomes unity, and the relevant component of the field-
strength tensor reduces to

−
ffiffiffi
2

p
gFþ2 ¼ −gF02 − gF32 ¼ g½Eþ v × B�2; ð92Þ

which is nothing but the y-component of the color Lorentz
force acting on a particle that moves with the light velocity
v ¼ ð0; 0;−1Þ in the −z direction [24].
Repeating the same manipulation for the closed gauge

link

LC0 ½0; 0� ¼ L−LC½0; ξ�LðstÞ½ξ; 0�
¼ L−LC½0; ξ�ðLðstÞ½0; ξ�Þ−1; ð93Þ

containing the past-pointing staplelike LC path L−LC, we
get an analogous relation for hkl⊥i−LC. Putting the two cases
together, the answers can be summarized as

hkl⊥i�LC ¼ hkl⊥imech þ hkl⊥i�LC
int ; ð94Þ

with

hkl⊥i�LC
int ¼ 1

2Pþ

Z þ∞

−∞
ð∓ θð�η−ÞÞ

× hPS⊥jψ̄ð0ÞγþL½0; η−�gFþlðη−Þ
× L½η−; 0�ψð0ÞjPS⊥i: ð95Þ

Here, hkl⊥iþLC
int represents the FSI in the SIDIS processes,

while hkl⊥i−LCint does the initial-state interaction (ISI) in the
Drell-Yan processes. Note that Eq. (93) with Eq. (94)
precisely reproduces the relations derived by Burkardt with
a different method. We point out that essentially the same
relations were also obtained by Boer et al., although in a
somewhat different form [34]. (See also Refs. [35,36].) To
verify it, we recall mathematical identities

Z þ∞

−∞
dx

i
x ∓ iϵ

eiλx ¼∓ 2πθð�λÞ: ð96Þ

Using them, the above FSI or ISI term can also be
expressed in the form

hkl⊥i�LC
int ¼ 1

2Pþ

Z
dx
2π

Z þ∞

−∞
dη−

i
x ∓ iϵ

eixP
þη−

× hPS⊥jψ̄ð0ÞγþL½0; η−�gFþlðη−Þ
× L½η−; 0�ψð0ÞjPS⊥i; ð97Þ

which corresponds to the second term of rhs of Eq. (4)
in Ref. [34].
A similar analysis can also be carried out for the average

longitudinal OAM of quarks in the longitudinally polarized
nucleon. The answer is given as

hL3i�LC ¼ hL3imech þ hL3i�LC
int ; ð98Þ

where

FIG. 2. The future-pointing staplelike LC path made closed to a
loop.
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hL3imech ¼ N
Z

d2b⊥ϵij⊥bi⊥hPS∥jψ̄ð0−; b⊥Þγþ
1

i
Dj

⊥ð0−; b⊥Þψð0−; b⊥ÞjPS∥i; ð99Þ

with N ¼ 1=ð2Pþ R
d2b⊥Þ is the manifestly gauge-invariant mechanical OAM, while

hL3i�LC
int ¼ N

Z
d2b⊥ϵij⊥bi⊥

Z þ∞

−∞
dη−ð∓ θð�η−ÞÞ

× hPS∥jψ̄ð0−; b⊥ÞγþL½0−; b⊥; η−; b⊥�gFþjðη−; b⊥ÞL½η−; b⊥; 0−; b⊥�ψð0−; b⊥ÞjPS∥i ð100Þ

is the FSI or ISI term. [Here, ϵij⊥ði; j ¼ 1; 2Þ is the antisymmetric tensor in the transverse plane with the convention
ϵ12⊥ ¼ þ1.] Again, this precisely reproduces the relation derived by Burkardt [24]. Alternatively, by using the identities (96),
the FSI or ISI term can also be expressed in the following form:

hL3i�LC
int ¼ N

Z
dx
2π

Z
d2b⊥ϵij⊥bi⊥

Z þ∞

−∞
dη−

i
x� iϵ

eixP
þη−

× hPS∥jψ̄ð0−; b⊥ÞγþL½0−; b⊥; η−; b⊥�gFþjðη−; b⊥ÞL½η−; b⊥; 0−; b⊥�ψð0−; b⊥ÞjPS∥i: ð101Þ

The physical interpretation of the above relations are
essentially the same as the average transverse momentum
case. The term hL3iþLC

int represents the FSI in the SIDIS
processes, while hL3i−LCint represents the ISI in the Drell-
Yan processes. The only change from the previous case is
that the role of color Lorentz force is now replaced by the
torque of it given by

Tz ¼ g½b⊥ × ðEþ v × BÞ�3: ð102Þ

IV. ON THE IDEA OF PHYSICAL
COMPONENT OF THE

GAUGE FIELD

It is important to recognize the fact that the theoretical
formulation so far is absolutely independent of the issue of
a proper definition of the physical component of the gauge
field, which brought about a lot of controversies in the
nucleon spin decomposition problem. Note that each term
on the rhs of the relations (94) and (98) has clear and
unambiguous physical meaning. Namely, the first terms
of (94) and (98) represent the manifestly gauge-invariant
mechanical momentum and the mechanical OAM, respec-
tively, whereas the second terms in the same equations
stand for the FSI in the SIDIS processes or the ISI in the
Drell-Yan processes. Unfortunately, there is some delicacy
in the interpretation of the lhs. In particular, if one wants to
relate Eq. (98) to the problem of gauge-invariant complete
decomposition of the nucleon spin, one cannot stay out of
the idea of the physical component of the gauge field Aμ

phys.
According to Hatta [37], the original proposal for Aμ

phys by
Chen et al. [4,5] based on the non-Abelian generalization
of the transverse component of the photon field is not
acceptable, because it does not correspond to observable
decomposition of the nucleon spin probed by DIS

measurements. Instead, he proposed three candidates for
the proper definition of Aμ

phys, given as

Aj
physð0Þ ¼

Z þ∞

−∞
dη−ð−θðþη−ÞÞL½0;η−�Fþjðη−ÞL½η−;0�

¼
Z

dx
2π

Z þ∞

−∞
dη−

i
x− iϵ

eixP
þη−

×L½0;η−�Fþjðη−ÞL½η−;0�; ð103Þ

which will be called the postform here, or as

Aj
physð0Þ ¼

Z þ∞

−∞
dη−ðþθð−η−ÞÞL½0; η−�Fþjðη−ÞL½η−; 0�

¼
Z

dx
2π

Z þ∞

−∞
dη−

i
xþ iϵ

eixP
þη−

× L½0; η−�Fþjðη−ÞL½η−; 0�; ð104Þ

called the prior form, or

Aj
physð0Þ ¼ −

1

2

Z þ∞

−∞
dη−ϵðη−ÞL½0; η−�Fþjðη−ÞL½η−; 0�

¼
Z

dx
2π

Z þ∞

−∞
dη−P

i
x
eixP

þη−

× L½0; η−�Fþjðη−ÞL½η−; 0�; ð105Þ

called the principle-value form. As pointed out by Hatta, for
any of the above three choices, the parity and time-reversal
(PT) symmetries ensures that the FSI and ISI terms in (98)
precisely coincide and reduce to the following form [37],
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hL3iþLC
int ¼hL3i−LCint

¼N
Z

d2b⊥ϵij⊥bi⊥hPS∥jψ̄ðb⊥ÞγþgAj
physðb⊥Þψðb⊥ÞjPS∥i;

ð106Þ

which can be identified with the so-called potential angular
momentum term hL3ipot according to the terminology in
Refs, [16,17]. Inserting it into (98), we therefore get the
relation

hL3i�LC ¼ hL3imech þ hL3ipot: ð107Þ

Here, the sum of the mechanical OAM and the potential
OAM reduces to

hL3i“can”¼N
Z

d2b⊥ϵij⊥bi⊥hPS∥jψ̄ð0−;b⊥Þ

× γþ
1

i
Dj

pure;⊥ð0−;b⊥Þψð0−;b⊥ÞjPS∥i; ð108Þ

with the definition of the so-called pure-gauge-covariant
derivative as

Dj
pure;⊥ð0−; b⊥Þ ¼ ∂j

⊥ − gAj
pure;⊥ð0−; b⊥Þ: ð109Þ

Equation (108) is nothing but the gauge-invariant canonical
OAM. In this way, the average longitudinal OAM defined
through the Wigner distribution with the future-pointing
LC path as well as with the past-pointing LC path just
coincide, and both reduce to the gauge-invariant canonical
OAM,

hL3iþLC ¼ hL3i−LC ¼ hL3i“can”; ð110Þ

which is physically equivalent to the canonical OAM
appearing in the Jaffe-Manohar decomposition of the
nucleon spin [14,15].
As emphasized in our previous paper [6], however, the

situation is considerably different for the case of average
transverse momentum of quarks in the transversally polar-
ized nucleon. In fact, if we adopt the postform definition
(103) of Al

phys, the average transverse momentum corre-
sponding to the SIDIS processes reduces to

hkl⊥iþLC ¼ hkl⊥imech

þ 1

2Pþ hPS⊥jψ̄ð0ÞγþgAl
physð0Þψð0ÞjPS⊥i;

ð111Þ

which formally takes the form of gauge-invariant canonical
momentum. On the other hand, if we use the prior-form
definition (104) of Al

phys, the average transverse momentum
corresponding to the Drell-Yan processes becomes

hkl⊥i−LC ¼ hkl⊥imech

þ 1

2Pþ hPS⊥jψ̄ð0ÞγþgAl
physð0Þψð0ÞjPS⊥i;

ð112Þ

which also takes the form of gauge-invariant canonical
momentum. However, we already know the fact that the
average transverse momentum corresponding to the SIDIS
processes and that corresponding to the Drell-Yan proc-
esses have opposite signs [38],

hkl⊥i−LC ¼ −hkl⊥iþLC: ð113Þ

This means that, at least for the average transverse
momentum case, neither the postform definition nor the
prior-form definition of Al

phys is acceptable as a concept
with universal or process-independent meaning.
An important lesson learned from the above consider-

ation is that, while it is certainly true that the gauge-link
structure of the average transverse momentum as well as
the average longitudinal OAM is determined by the
kinematics of DIS processes, the definition of the physical
component Al

phys still has some sort of arbitrariness. As
pointed out in Ref. [6], the most natural choice of Al

phys,
which holds universally in both the average transverse
momentum case and the average longitudinal OAM case,
would be to use the principle-value prescription for Al

phys

given by (105). In fact, the principle-value prescription
for avoiding 1=x-type singularity of the parton distributions
is nothing uncommon [39]. It is widely used in other
situations, too. Especially relevant to our present problem
is the definition of the longitudinally polarized gluon
distribution.
Let us start here with the popular definition of the

longitudinally polarized gluon distribution given in the
paper by Manohar [40,41] (see also Refs. [39,42])

xΔgðxÞ ¼ i
4Pþ

Z
dξ−

2π
eixP

þξ−

× fhPS∥j ~Fþ;a
λ ð0ÞLb

a½0; ξ−�Fþλ
b ðξ−ÞjPS∥i

− hPS∥j ~Fþ;a
λ ðξ−ÞLb

a½ξ−; 0�Fþλ
b ð0ÞjPS∥ig; ð114Þ

where Lb
a½0; ξ−� represents the gauge link in the adjoint

representation. Using the gauge link in the fundamental
representation, the same quantity can also be expressed as

xΔgðxÞ¼ i
4Pþ

Z
dξ−

2π
eixP

þξ−

×fhPS∥j2Trð ~Fþ
λ ð0ÞL½0;ξ−�Fþλðξ−ÞL½ξ−;0�ÞjPS∥i

−hPS∥j2Trð ~Fþ
λ ðξ−ÞL½ξ−;0�Fþλð0ÞL½0;ξ−�ÞjPS∥ig:

ð115Þ
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Rewriting the second term by utilizing the translational
invariance together with the variable change ξ− → −ξ−,
one can rewrite the above equation as

xΔgðxÞ¼ i
4Pþ

Z
dξ−

2π
ðeixPþξ− −e−ixP

þξ−Þ

× hPS∥j2Trð ~Fþ
λ ð0ÞL½0;ξ−�Fþλðξ−ÞL½ξ−;0�ÞjPS∥i:

ð116Þ

Since the above expression shows that the distribution
ΔgðxÞ has 1=x-type singularity, there is a danger that the
first moment of ΔgðxÞ depends on how to avoid this
singularity. Fortunately, we do not need to worry about it
[13]. As is clear from the consideration of the average
transverse momentum as well as the average longitudinal
OAM, physics-motivated choices would be given by the
replacements

1

x
→

1

x ∓ iϵ
; ð117Þ

which correspond to the post- and prior-form prescriptions,
respectively, relevant for the DIS processes and the Drell-
Yan processes. However, because of the identity

1

x ∓ iϵ
ðeixPþξ− − e−xP

þξ−Þ

¼ P
1

x
ðeixPþξ− − e−xP

þξ−Þ � iπδðxÞðeixPþξ− − e−xP
þξ−Þ

¼ P
1

x
ðeixPþξ− − e−xP

þξ−Þ; ð118Þ

only the principle-value parts survive in both cases. We thus
obtain

ΔgðxÞ ¼ 1

4Pþ

Z
dξ−

2π
P
i
x
ðeixPþξ− − e−xP

þξ−Þ

× hPS∥j2Trð ~Fþ
λ ð0ÞL½0; ξ−�Fþλ½ξ−; 0�ÞjPS∥i:

ð119Þ

This ensures that the longitudinally polarized gluon dis-
tribution measured in the DIS processes and that in the
Drell-Yan processes are just the same [36]. Clearly, this is
related to the PT-even nature of the longitudinally polarized
gluon distribution defined by (114). Now, by using the
identity

Z þ∞

−∞
dxP

i
x
ðeixPþξ− − e−xP

þξ−Þ ¼ −2πϵðξ−Þ; ð120Þ

the first moment of ΔgðxÞ can be written as

Z
ΔgðxÞdx ¼ −

1

4Pþ

Z þ∞

−∞
ϵðξ−ÞhPS∥j2Trð ~Fþ

λ ð0Þ

× L½0; ξ−�Fþλ½ξ−; 0�ÞjPS∥i: ð121Þ

We recall that this is just the form given in the paper [43] by
Jaffe. Now, if we introduce the physical component of the
gluon field by the equation,

Aλ
physð0Þ ¼ −

1

2

Z þ∞

−∞
dξ−ϵðξ−ÞL½0; ξ−�Fþλðξ−ÞL½ξ−; 0�

¼
Z

dx
2π

Z þ∞

−∞
P
i
x
eixP

þξ−L½0; ξ−�FþλL½ξ−; 0�;

ð122Þ

the first moment of ΔgðxÞ just reduces to the familiar form

Z
ΔgðxÞdx ¼ 1

2Pþ hPS∥j2Trð ~Fþ
λ ð0ÞAλ

physð0ÞÞjPS∥i:
ð123Þ

In any case, we confirm that, once we define the physical
component of the gluon field by Eq. (105), a gauge-
invariant complete decomposition of the nucleon spin
including the gluon intrinsic spin term is possible. A
delicate question is whether it is a gauge-invariant decom-
position in a standard sense. From a formal standpoint, the
rhs of the definition (105) for the physical component of the
gluon looks completely gauge invariant, since it contains
only the field-strength tensor. Furthermore, although this
definition is motivated by the LC gauge, it does not prevent
us from working in other gauges including the covariant
gauges like the Feynman gauge. However, we also know
that this definition of the physical component is path
dependent and there are many indications that the path
dependence after all means gauge dependence [44–47].
Lorcé argued that the above definition of the physical
component is gauge invariant but it is not invariant under
what he called the Stückelberg transformation [48–50].
According to him, if some quantity is gauge invariant but
Stückelberg variant, such a quantity is said to have only
weak gauge invariance. The gauge-invariant canonical
quark OAM is typical of such quantities. On the other
hand, the mechanical quark OAM is Stückelberg invariant
as well as gauge invariant. Such a quantity is said to have
strong gauge invariance. Admitting the existence of two
forms of gauge symmetry, an immediate question is the
relation with the gauge principle of physics, especially the
relation between the observability and the two types of
gauge symmetry. Lorcé argued that a strong form of gauge
symmetry is a sufficient condition of observability but
it is not a necessary condition. The weak form of gauge
invariance is enough for observability. Based on these
considerations, he proposed to classify measurable quan-
tities into two categories as follows [48]:
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(i) Observables, which are gauge-invariant quantities in
a strong sense;

(ii) Quasiobservables, which are gauge-invariant quan-
tities in a weak sense.

When he refers to quasiobservables, what is in his mind
are principally the parton distribution functions (PDFs). To
provide a supplementary explanation, we first recall that
the nucleon structure functions are genuine observables,
because they appear directly in the cross section formulas
of DIS reactions. On the other hand, the PDFs are not, since
they are theoretical concepts, which generally depend on
the factorization scheme within the framework of the
perturbative QCD. Despite this theoretical-scheme depend-
ence, the PDFs are approximately (i.e. at the leading order
of twist expansion) equal to the corresponding structure
functions. In this sense, the PDFs are sometimes called
quasiobservables.
One might think that the above classification of an

observable is roughly to the point. However, there remains
some question for admitting it as a general rule. In fact,
according to Lorcé, the standard transverse-longitudinal
decomposition (or the Helmholtz decomposition) of the
photon field is also gauge invariant but Stückelberg variant.
The transverse-longitudinal decomposition is therefore
gauge invariant only in a weak sense. As we have
repeatedly emphasized, the reason why the transverse-
longitudinal decomposition has only weak gauge invari-
ance can be explained by using a more familiar concept of
physics. As far as we are working in a fixed Lorentz frame
of reference, there is no doubt that the transverse (or
physical) component of the photon is gauge invariant
[7,8,51]. Still, this invariance cannot be a strong gauge
invariance, because the concept of transversality is neces-
sarily Lorentz-frame dependent. Importantly, however, the
measurements of the spin and OAM of the photon are
carried out in a prescribed Lorentz frame by making use of
interactions with atoms. Thus, even though the spin and
OAM decomposition of the photon are only weakly gauge
invariant, several concrete experiments carried out in the
past definitely show that they are genuine observables, not
quasiobservables [52,53]. In our opinion, what ensures the
observability of a given quantity is whether there is an
external current or a probe that couples to the quantity in
question. A typical example is electroweak current, which
can be used to probe the internal electroweak structure of
hadrons. In the photon spin and OAM measurements,
interactions with atoms play the role of external probes.
Turning back to the general rule of Lorcé, the canonical
OAMs of quarks as well as the gluon spin are quasiobserv-
ables, not because they are weakly gauge-invariant quan-
tities. This is obvious from the fact that even the manifestly
gauge-invariant OAM of quarks, which is related to the
generalized parton distributions (GPDs), is also a quasiob-
servable. The quasiobservability is rather related to the fact
that we are dealing with the bound state, not free photons,

and that, for extracting the information on the internal
quark-gluon structure of the nucleon, we need a special
theoretical framework of perturbative QCD.
To sum up, we agree that the observability does not

necessarily require strong gauge-invariance. The weak
gauge invariance is enough for observability. Still, it would
not be so easy to make a simple and clear-cut statement on
the relation between the observability and the weak gauge
invariance. Only a statement we can make at the present
moment would be the following. To the best of our belief, it
highly improbable that some general principle like the
Noether theorem is able to give an unambiguous answer to
our intricate question whether a quantity with a weak gauge
invariance only is observable or not. After all, for obtaining
a definite answer, we cannot avoid to discuss a concrete
measuring method of the quantity in question. Anyhow,
with the understanding gained from the above general
consideration in mind, we compare the following four
decompositions of the nucleon spin. They are the Ji
decomposition (I) [54,55]

1

2
¼ Jq þ JG; ð124Þ

the Ji decomposition (II) [54]

1

2
¼ Lq

mech þ
1

2
ΔΣþ JG; ð125Þ

the mechanical decomposition proposed in Refs. [16,17],

1

2
¼ Lq

mech þ
1

2
ΔΣþ LG

mech þ ΔG; ð126Þ

and the canonical decomposition, which is equivalent to the
Jaffe-Manohar decomposition [14,15],

1

2
¼ Lq

“can” þ
1

2
ΔΣþ LG

“can” þ ΔG; ð127Þ

where the quark and gluon OAMs in the decomposition
(126) and the canonical decomposition (127) are related by
the following equations:

Lq
“can” ¼ Lq

mech þ Lpot; ð128Þ

LG
“can” ¼ LG

mech − Lpot: ð129Þ

Among these four decomposition, manifestly gauge-
invariant decompositions are the first two. The last two
decompositions, which provide us with complete decom-
positions of the nucleon spin, requires the concept of the
physical component of the gluon field.
As is widely known, the total angular momenta of quarks

and gluons can be related to the second moments of the
GPDs Hq=Gðx; ξ; tÞ and Eq=Gðx; ξ; tÞ, or equivalently the
forward limits of the so-called generalized (or gravitational)
form factors Aq=GðtÞ and Bq=GðtÞ as [54,55]
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Jq ¼ 1

2

Z
dxx½Hqðx; 0; 0Þ þ Eqðx; 0; 0Þ�

¼ 1

2
½Aqð0Þ þ Bqð0Þ�; ð130Þ

JG ¼ 1

2

Z
dxx½HGðx; 0; 0Þ þ EGðx; 0; 0Þ�

¼ 1

2
½AGð0Þ þ BGð0Þ�: ð131Þ

Although the GPDs Hq=Gðx; ξ; tÞ and Eq=Gðx; ξ; tÞ are
quasiobservables just like the PDFs, the gravitational form
factors Aq=GðtÞ and Bq=GðtÞ can in principle be extracted
frame independently by carrying out gedanken graviton-
nucleon scattering experiments, so that Jq and JG may be
thought of as genuine observables as emphasized in
Ref. [56]. (Of course, the graviton-nucleon scattering
measurement is practically impossible.) Turning to the Ji
decomposition (II), the quark spin term ΔΣ is usually
believed to be observable. To be more strict, it is a
quasiobservable, since it is just the first moment of the
longitudinally polarized distribution function of quarks. In
fact, the definition of ΔΣ is known to be factorization-
scheme dependent. The two popular choices of factoriza-
tion schemes are the standard MS scheme and the so-called
Adler-Bardeen (AB) scheme [57]. However, the current
understanding is that there is no compelling reason to
choose the AB scheme, which breaks gauge invariance at
the cost of chiral symmetry. Once the MS scheme is
chosen, ΔΣ can be identified with the forward limit of
the flavor-singlet axial form factor of the nucleon, which
will be extracted in the near-future measurements of the
neutrino-nucleon scatterings [58]. We may then be able to
say that the Ji decomposition (II) is also an observable
decomposition.
As repeatedly emphasized, the last two gauge-invariant

complete decompositions of the nucleon spin require the
idea of the physical component of the gluon field. Still, we
emphasize that there is a big difference between these two
decompositions from the observational point of view. The
gluon spin term ΔG in the mechanical decomposition is
certainly a quasiobservable. (Note that the same ΔG
appears also in the canonical decomposition.) There is
no form factor measurement, which can be used to extract
ΔG. Nevertheless, within the theoretical formulation of
DIS scatterings, ΔG and ΔΣ appear on equal footing [59].
Although the extraction ofΔG is far more difficult than that
of ΔΣ, great progress is under way, and there is no doubt
that it will be determined more precisely in the near future
[60]. Once ΔΣ and ΔG are known, the quark and gluon
OAM terms in the mechanical decomposition can be
extracted from the relations

Lq
mech ¼ Jq −

1

2
ΔΣ; ð132Þ

LG
mech ¼ JG − ΔG: ð133Þ

Even a direct extraction of Lq might be possible through the
known relation

Lq
mech ¼ −

Z
dxxG2ðx; 0; 0Þ; ð134Þ

whereG2 is one of the twist-3GPDs [61–64].Wewould thus
conclude that the mechanical decomposition is an exper-
imentally accessible decomposition of the nucleon spin.
Let us now turn to the last decomposition, i.e. the

canonical decomposition or the Jaffe-Manohar decompo-
sition. We emphasize that the quark and gluon OAMs
in this decomposition cannot be extracted from the knowl-
edge of ΔΣ and ΔG supplemented with that of Jq and JG,
since [16,17]

Lq
“can” ≠ Jq −

1

2
ΔΣ; ð135Þ

LG
“can” ≠ JG − ΔG: ð136Þ

Some years ago, Lorce and Pasquini pointed out that the
canonical quark OAM L0

q appearing in the Jaffe-Manohar
decomposition can be related to a moment of a Wigner
distribution F14 as [65] (see also Ref. [37])

Lq
“can” ¼ −

Z
dx

Z
d2k⊥

k2⊥
M2

N
F14

× ðx; ξ ¼ 0; k2⊥; k⊥ · Δ⊥ ¼ 0;Δ2⊥ ¼ 0Þ: ð137Þ

Soon after, however, Courtoy et al. pointed out that this
Wigner function F14 disappears in both the GPD and
transverse-momentum-dependent distribution (TMD) fac-
torization schemes [66]. Since the appearance in the
factorization scheme or in the cross section formula is a
necessary condition of observability or quasiobservability,
we must say that F14 is not even a quasiobservable, at least
within our limited knowledge of DIS measurements. One
might suspect that the fact that the canonical OAM is not
observable would be connected with the fact that it is not
gauge-invariant in a strong sense. However, the gauge-
invariant definition of the gluon spin ΔG also needs the
idea of the physical component, while it appears in the
cross section formula within the standard collinear factori-
zation scheme. The underlying reason of this difference
between the canonical quark OAM and the gluon spin is
still unexplained.

V. PHYSICAL INTERPRETATION OF THE
TWO OAMS OF QUARKS

In the previous section, we have demonstrated that the
principle-value prescription (105) would be the most
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natural choice for defining the physical component of the
gluon field. Once we accept this choice, the FSI and the ISI
terms of the average transverse momenta can be written as

hkl⊥i�LC
int ¼ hkl⊥ipot þ hkl⊥igluon−pole; ð138Þ

where

hkl⊥ipot ¼
1

2Pþ hPS⊥jψ̄ð0ÞγþgAl
physð0Þψð0ÞjPS⊥i ð139Þ

corresponds to the potential momentum, while

hkl⊥igluon−pole ¼∓ 1

4Pþ

Z þ∞

−∞
dη−hPS⊥jψ̄ð0Þγþ

× L½0; η−�gFþlðη−ÞL½η−; 0�ψð0ÞjPS⊥i;
ð140Þ

is the so-called gluon-pole term of the Efremov-Teryaev-
Qui-Stermann (ETQS) quark-gluon correlation function
ΨFðx; x0Þ [67–69], i.e.

hkl⊥igluon−pole ¼
1

2
ϵij⊥S

j
⊥ð∓ πÞ

Z
dxΨFðx; xÞ: ð141Þ

(We recall that hkl⊥i�LC
int can also be related to a moment of

the T-odd TMD called the Sivers function [70,71].) Since it
holds that

hkl⊥imech þ hkl⊥ipot ¼ hkl⊥i“can”; ð142Þ

the average transverse momenta hkl⊥i�LC in (94) can be
expressed in either of the following two forms:

hkl⊥i�LC ¼ hkl⊥imech þ hkl⊥i�LC
int ð143Þ

or

hkl⊥i�LC ¼ hkl⊥ican þ hkl⊥i�LC
gluon−pole: ð144Þ

There is no inconsistency between these two expressions,
since the PT symmetry dictates that

hkl⊥imech ¼ hkl⊥ican ¼ 0 ð145Þ

and that

hkl⊥i�LC
int ¼ hkl⊥igluon−pole: ð146Þ

We stress that hkl⊥i�LC coincide with neither the canonical
momentum nor the mechanical one. Since this is the case,
one may conclude that the idea of a physical component (or
the concept of canonical momentum) plays no practically
useful role in the case of average transverse momentum.

It is therefore convenient to return to the original gauge-
invariant relation (94), which is independent of the idea
of the physical component of the gauge field. For clarity,
we consider below the case of the SIDIS processes. The
relation in this case is written as

hkl⊥iþLC ¼ hkl⊥imech þ hkl⊥iþLC
int ; ð147Þ

with the additional information that hkl⊥imech ¼ 0. The
physical interpretation of this relation should be obvious by
now. Initially, the average transverse momentum of quarks
inside the nucleon is given by hkl⊥imech, which is actually
zero due to the PT symmetry. Through the FSI hkl⊥iþLC

int in
the SIDIS processes, the quark ejected by the virtual photon
acquires nonzero transverse momentum. The lhs of the
relation (147) can therefore be interpreted as the transverse
momentum of the quark at the asymptotic distance, or that
well outside the nucleon.
Exactly the same interpretation must hold also for the

average longitudinal OAM. For clarity, we again confine to
the case of the future-pointing staplelike LC path L ¼
þLC corresponding to the SIDIS processes. In this case,
we have the relation

hL3iþLC ¼ hL3imech þ hL3iþLC
int : ð148Þ

We already know that the FSI term hL3iþLC
int coincides with

the potential angular momentum hL3ipot, so that we can
also write

hL3iþLC ¼ hL3imech þ hL3ipot ¼ hL3ican; ð149Þ

where the rhs is the so-called gauge-invariant canonical
OAM. (Note that it is gauge invariant only in a weak sense.)
A natural interpretation of the above relation deduced from
the average transverse momentum case is as follows.
Initially, the average OAM of quarks inside the nucleon
is obviously the manifestly gauge-invariant mechanical
OAM hL3imech, which is generally nonzero. Through the
FSI caused by the torque of color Lorentz force, the ejected
quark acquires an additional OAM, i.e. the potential
angular momentum hL3ipot, which was originally stored
in the gluon OAM part appearing in the mechanical
decomposition of the nucleon spin. Consequently, the final
OAM of the ejected quark is converted into the canonical
OAM. We emphasize that this interpretation is just con-
sistent with our previous observation in the Landau
problem that the canonical OAM represents the total
OAM, i.e. the sum of the mechanical OAM of a particle
and the OAM carried by the electromagnetic potential.
Now, the reason why the relation hL3iþLC ¼ hL3ican holds
should be clear. For, according to our general rule, the
average longitudinal OAM hL3iþLC, defined by the Wigner
distribution with the gauge-link path L ¼ þLC, must
represent the asymptotic OAM of the ejected quark after
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leaving the spectator in the SIDIS processes. It is only
natural that this OAM of a quark well separated from the
original nucleon center reduces to the seemingly free
canonical OAM, since there is no background of the color
electromagnetic field in this asymptotic distance. It is also
clear that this canonical OAM is not an intrinsic OAM
carried by the quarks inside the nucleon. Stated differently,
the canonical OAM of the Jaffe-Manohar decomposition is
not an intrinsic (or static) property of the nucleon.
Because our conclusion is fairly different from the naive

picture believed by quite a few researchers in the DIS
physics community, some more explanation would be
mandatory. After all, what makes our problem delicate
and complicated is the FSI or ISI, which comes into the
game through the transverse gauge link. This can be easily
understood if one inspects the average longitudinal
momentum defined through the Wigner distribution:

hxiL ¼
Z

dx
Z

d2b⊥
Z

d2k⊥xρLðx; b⊥; k⊥Þ: ð150Þ

In this case, the integration over b⊥ and k⊥ is trivial (the
contribution from the transverse gauge link vanishes), and
the gauge-link path dependence essentially disappears,
thereby leading to the familiar result,

hxi ¼ 1

2Pþ hPSjψ̄ð0Þγþ 1

i
Dþð0Þψð0ÞjPSi ¼ hximech:

ð151Þ
This is nothing but the manifestly gauge-invariant mechani-
cal quark momentum hximech. At first glance, it appears to
contradict our general rule that the average longitudinal
momentum of quarks defined through the Wigner distri-
bution should represent the asymptotic quark momentum.
There is no discrepancy, however, since we generally get

hximech ¼
1

2Pþ hPSjψ̄ð0Þγþ 1

i
Dþψð0ÞjPSi

¼ 1

2Pþ hPSjψ̄ð0Þγþ 1

i
Dþ

pureψð0ÞjPSi

−
1

2Pþ hPSjψ̄ð0ÞγþAþ
physð0Þψð0ÞjPSi

¼ hxi“can” − hxipot; ð152Þ

and since we know that the FSI or the potential momentum
term vanishes identically, i.e. hxipot ¼ 0. (This is manifest
in the LC gauge Aþ ¼ Aþ

phys ¼ 0, and it is true also in the
general gauge [72].) Namely, due to the cancellation of the
FSI for the collinear momentum case, there is no difference
between the canonical and mechanical momenta,

hximech ¼ hxi“can”: ð153Þ

In this case, one is therefore allowed to say that either of
the canonical or mechanical momentum is partonic and at
the same time either represents the intrinsic property of the
nucleon.
As explained above, this is clearly not the case for the

OAM of quarks in the nucleon. What would be an under-
lying physical reason for this difference? It can be easily
understood from our consideration of the cyclotron motion
of a charged particle in Sec. II. A generation of nonzero
orbital angular momentum in the stationary nucleon state
necessarily requires the circular motion of quarks. This
circular motion cannot be a free (or translational) motion in
any sense. One might say that this is certainly true for the
mechanical OAM but that the same argument does not
apply to the canonical OAM, since the latter looks like the
OAM of free quarks. However, what meaning does it have
to say that such an orbital angular momentum well outside
the nucleon is partonic?
After all, a natural conclusion is that neither the

canonical OAM nor the mechanical OAM cannot be
interpreted as partonic. Both are intrinsically twist-3
quantities. To convince the statement above, we recall
the following relation derived by Hatta and Yoshida [64],

ΦDðx1; x2Þ ¼ P
1

x1 − x2
ΦFðx1; x2Þ þ δðx1 − x2ÞLq

canðx1Þ;
ð154Þ

where ΦDðx1; x2Þ is the D-type quark-gluon correlation
function of twist 3 defined by

Z
dλ
2π

Z
dμ
2π

eiλx1eiμðx2−x1Þhp0; s0jψ̄ð0ÞγþL½0; μ�DiðμÞL½μ; λ�ψðλÞjp; si ¼ ϵþiρσSρΔ⊥;σΦDðx1; x2Þ þ � � � ; ð155Þ

while ΦFðx1; x2Þ is the F-type quark-gluon correlation functions defined by

Z
dλ
2π

Z
dμ
2π

eiλx1eiμðx2−x1Þhp0; s0jψ̄ð0ÞγþL½0; μ�gFþiðμÞL½μ; λ�ψðλÞjp; si

¼ Pþϵij⊥S
j
⊥ΨFðx1; x2Þ þ ϵij⊥Δ

j
⊥SþΦFðx1; x2Þ þ � � � : ð156Þ
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[Note that ΨFðx1; x2Þ here is the more familiar ETQS
function, while another correlation function ΦFðx1; x2Þ
appears in (154).] Lq

canðx1Þ in (154) is the canonical
OAM density given as [64]

LcanðxÞ¼ x
Z

ϵðxÞ

x

dx0

x0
ðHqðx0ÞþEqðx0ÞÞ− s

Z
ϵðxÞ

x

dx0

x02
~Hqðx0Þ

−x
Z

ϵðxÞ

x
dx1

Z
1

−1
dx2ΦFðx1;x2Þ

3x1−x2
x21ðx1−x2Þ2

−x
Z

ϵðxÞ

x
dx1

Z
1

−1
dx2 ~ΦFðx1;x2ÞP

1

x21ðx1−x2Þ
;

ð157Þ

with ~ΦFðx1; x2Þ being an F-type quark-gluon correlation
function defined by

Z
dλ
2π

Z
dμ
2π

eiλx1eiμðx2−x1Þhp0; s0jψ̄ð0Þγþγ5
× L½0; μ�gFþiðμÞL½μ; λ�ψðλÞjp; si

¼ Pþϵij⊥S
j
⊥ ~ΨFðx1; x2Þ þ ϵij⊥Δ

j
⊥Sþ ~ΦFðx1; x2Þ þ � � � :

ð158Þ

Our interest here is only the integrated OAMs, since we
think that the density level decomposition needs more
satisfactory understanding of the role of surface terms,
which we do not believe has been cleared up yet. Then,
using the relations

Lq
mech ¼

Z
dx1

Z
dx2ΦDðx1; x2Þ; ð159Þ

Lpot ¼
Z

dx1

Z
dx2P

1

x1 − x2
ΦFðx1; x2Þ ð160Þ

as well as the symmetries of the correlation functions
ΦFðx1; x2Þ and ~ΦFðx1; x2Þ,
Φðx1;x2Þ¼Φðx2;x1Þ; ~Φðx1;x2Þ¼− ~Φðx2;x1Þ; ð161Þ

one readily obtains

Lcan ¼
Z

dx1

Z
dx2δðx1 − x2ÞLcanðx1Þ

¼ 1

2

Z
dxxðHqðxÞ þ EqðxÞÞ −

1

2

Z
dx ~HqðxÞ þ Lpot:

ð162Þ

The fact that the potential OAM Lpot is related to the
genuine twist-3 quark-gluon ΦFðx1; x2Þ correlation func-
tion is nothing surprising, since we already explained our
interpretation that Lpot is just the FSI in the SIDIS processes
or ISI in the Drell-Yan processes. A noteworthy fact here is

that the genuine twist-3 piece of Lcan is precisely canceled
by that of Lpot in the combination Lmech ¼ Lcan − Lpot. This
result could be anticipated from the famous Ji sum rule
[55], which is given only with the twist-2 quantities as

Lmech ¼
1

2

Z
dxxðHqðxÞ þ EqðxÞÞ −

1

2

Z
dx ~HqðxÞ:

ð163Þ
Still interesting is the fact that this cancellation reminds us
of the observation in the Landau problem that the quantum
number m dependence of the canonical OAM and that
of the potential angular momentum are just canceled and
the mechanical OAM is independent of this unphysical
quantum number m, the eigenvalue of the canonical OAM
operator.

VI. CONCLUDING REMARKS

The main objective of the present paper is to get a clear
understanding on the physical meaning of the two existing
decompositions of the nucleon spin, i.e. the canonical and
mechanical decompositions. Needless to say, when one
talks about the decomposition of the nucleon spin, one is
tacitly supposing in mind the intrinsic spin structure of the
nucleon. As we have shown, what meets this requirement is
the mechanical decomposition, not the canonical decom-
position also known as the Jaffe-Manohar decomposition.
In fact, the canonical quark OAM represents the OAM of an
ejected quark in the SIDIS processes. Putting this in other
words, it stands for the OAM of a quark well outside the
nucleon. How can one think of it as representing an
intrinsic (static) structure of the nucleon?
There is wide-spread misbelief in the DIS physics

community that the canonical OAM just matches the
partonic picture of quark motion in the nucleon. This
misunderstanding partially comes from the fact that, for the
collinear quark (or gluon) momentum fraction, there is no
difference between the canonical and mechanical momenta
due to the cancellation of the final-state interaction in the
inclusive DIS processes. In this case, one can say that either
the canonical or mechanical momentum is partonic and
besides either represents the intrinsic property of the
nucleon. This is not the case for the orbital angular
momentum of quarks, however. The reason for it is clear
by now from our present analysis. The generation of
nonzero orbital angular momentum inside the stationary
nucleon state necessarily requires the circular motion of a
particle. The point is that this circular motion cannot be a
free motion in any sense. In fact, we showed that neither the
canonical OAM nor the mechanical OAM can be partonic.
They are intrinsically twist-3 objects. Still, one should pay
close attention to the vital difference between these two
OAMs. An obvious superiority of the mechanical OAMs is
that they are observables (or at least a quasiobservables)
within the framework of the GPD factorization scheme.
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On the other hand, the F14 sum rule, which was once
believed to provide us with a hope to experimentally
access the canonical OAM of quarks, is questioned now
since the Wigner distribution F14 does not appear in
either of the GPD (collinear) or TMD factorization
schemes. In that sense, one might be able to say that
it is not even a quasiobservable, at least according to our
present knowledge of the method of measurement based
on the perturbative QCD framework. In our opinion,
this proves the validity of our claim of long years,
which advocates the superiority of the mechanical-type

decomposition of the nucleon spin over the canonical one
either from the physical viewpoint or from the observa-
tional viewpoint.
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